UNIVERSITY of York

This is a repository copy of Note on the spectrum of classical and uniform exponents of Diophantine approximation.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/130106/</u>

Version: Accepted Version

Article:

Marnat, Antoine (2018) Note on the spectrum of classical and uniform exponents of Diophantine approximation. Acta Arithmetica. ISSN 1730-6264

https://doi.org/10.4064/aa170106-23-3

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Note on the spectrum of classical and uniform exponents of Diophantine approximation

Antoine MARNAT* antoine.marnat@york.ac.uk

Abstract

Using the Parametric Geometry of Numbers introduced recently by W.M. Schmidt and L. Summerer [13, 14] and results by D. Roy [10, 11], we establish that the 2n exponents of Diophantine approximation in dimension $n \geq 3$ are algebraically independent.

1 Introduction

Throughout this paper, the integer $n \geq 1$ denotes the dimension of the ambient space \mathbb{R}^n endowed with its Euclidean norm and $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_n)$ denotes an *n*-tuple of real numbers such that $1, \theta_1, \ldots, \theta_n$ are \mathbb{Q} -linearly independent.

Let d be an integer with $0 \le d \le n-1$. We define the exponent $\omega_d(\boldsymbol{\theta})$ (resp. the uniform exponent $\hat{\omega}_d(\boldsymbol{\theta})$) as the supremum of the real numbers ω for which there exist rational affine subspaces $L \subset \mathbb{R}^n$ such that

$$\dim(L) = d$$
, $H(L) \leq H$ and $H(L)d(\boldsymbol{\theta}, L) \leq H^{-\omega}$

for arbitrarily large real numbers H (resp. for every sufficiently large real number H). Here H(L) denotes the exponential height of L (see [12] for more details), and $d(\theta, L) = \min_{P \in L} d(\theta, P)$ is the minimal distance between θ and a point of L. Note that this definition is independent of the choice of a norm on \mathbb{R}^n .

These exponents were introduced originally by M. Laurent [7]. They interpolate between the classical exponents $\omega(\theta) = \omega_{n-1}(\theta)$ and $\lambda(\theta) = \omega_0(\theta)$ (resp. $\hat{\omega}(\theta) = \hat{\omega}_{n-1}(\theta)$ and $\hat{\lambda}(\theta) = \hat{\omega}_0(\theta)$) that were introduced by A. Khintchine [4, 5], V. Jarník [3] and Y. Bugeaud

^{*}supported by the Austrian Science Fund (FWF), Project F5510-N26, and FWF START project Y-901 and EPSRC Programme Grant EP/J018260/1

and M. Laurent [1, 2].

We have the relations

$$\omega_0(\boldsymbol{\theta}) \leq \omega_1(\boldsymbol{\theta}) \leq \cdots \leq \omega_{n-1}(\boldsymbol{\theta}),$$

 $\hat{\omega}_0(\boldsymbol{\theta}) \leq \hat{\omega}_1(\boldsymbol{\theta}) \leq \cdots \leq \hat{\omega}_{n-1}(\boldsymbol{\theta}),$

and Minkowski's First Convex Body Theorem [9] and Mahler's compound convex bodies theory provide the lower bounds

$$\omega_d(\boldsymbol{\theta}) \ge \hat{\omega}_d(\boldsymbol{\theta}) \ge \frac{d+1}{n-d}, \text{ for } 0 \le d \le n-1.$$

These 2n exponents happen to be related as was first noticed by Khinchin with his transference theorem [5]. We use the following notion of spectrum to study more general transfers. Given k exponents e_1, \ldots, e_k , we define the *spectrum* of the exponents (e_1, \ldots, e_k) as the subset of \mathbb{R}^k described by all k-uples $(e_1(\boldsymbol{\theta}), \ldots, e_k(\boldsymbol{\theta}))$ as $\boldsymbol{\theta}$ runs through all points $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_n) \in \mathbb{R}^n$ such that $1, \theta_1, \ldots, \theta_n$ are \mathbb{Q} -linearly independent.

In [8], the author proved the following theorem.

Theorem 1. For every integer $n \ge 3$, the *n* uniform exponents $\hat{\omega}_0, \ldots, \hat{\omega}_{n-1}$ are algebraically independent.

Using the same construction, it is even possible to show that for every integer $n \ge 3$, the spectrum of $\hat{\omega}_0, \ldots, \hat{\omega}_{n-1}$ is a subset of \mathbb{R}^n with non empty interior. In this paper, we extend this result as follows.

Theorem 2. For every integer $n \ge 3$, the 2n exponents $\hat{\omega}_0, \ldots, \hat{\omega}_{n-1}, \omega_0, \ldots, \omega_{n-1}$ are algebraically independent.

In dimension n = 2, the spectrum is fully described in [6]:

Theorem 3 (Laurent, 2009). In dimension 2, the spectrum of the four exponents $\omega_0, \omega_1, \hat{\omega}_0, \hat{\omega}_1$ is described by the inequalities

$$\hat{\omega}_0 + 1/\hat{\omega}_1 = 1, \quad 2 \le \hat{\omega}_1 \le +\infty, \quad \frac{\omega_1(\hat{\omega}_1 - 1)}{\omega_1 + \hat{\omega}_1} \le \omega_0 \le \frac{\omega_1 - \hat{\omega}_1 + 1}{\hat{\omega}_1}.$$

When $\hat{\omega}_1 < \omega_1 = +\infty$ we have to understand these relations as $\hat{\omega}_1 - 1 \leq \omega_0 \leq +\infty$ and when $\hat{\omega}_1 = +\infty$, the set of constraints should be interpreted as $\omega_0 = \omega_1 = +\infty$ and $\hat{\omega}_0 = 1$.

The first equality, relating the two uniform exponents, is known as Jarník's relation [3] and breaks the algebraic independence. Note that this sharpens previously mentioned relations. In dimension n = 1 the uniform exponent is always equal to 1.

We refer the reader to [8, \$2] for the notation and the presentation of the parametric geometry of numbers, main tool of the proof. We mainly use the notation introduced by D. Roy in [10, 11] which is essentially dual to the one of W. M. Schmidt and L. Summerer [13, 14].

2 Proof of the main Theorem 2

To prove Theorem 2, we place ourselves in the context of parametric geometry of numbers. We fully use Roy's theorem [8, Theorem 5] that reduces the study of spectra of Diophantine approximation to the study of the combinatorial properties of generalized n-systems. We construct explicitly a family of generalized (n + 1)-systems with 2n parameters, which provides the algebraic independence in the spectrum via Roy's theorem.

We fix the dimension $n \geq 3$. Consider any family of positive parameters

$$A_1 = A_2 < A_3 < \dots < A_{n+1}, B_2 < B_3 < \dots < B_n, C, D$$

satisfying the following properties for $2 \le k \le n$:

$$A_1 + A_2 + \dots + A_{n+1} = 1, \ B_2 < D < CA_2, A_{k+1} < B_k < A_{k+2}, \ B_k < CA_k,$$
(1)

where $A_{n+2} = \infty$.

We consider the generalized (n + 1)-system P on the interval [1, C] depending on the previous parameters whose combined graph is given below by Figure 1, where

$$P_k(1) = A_k$$
 and $P_k(C) = CA_k$ for $1 \le k \le n+1$.

Conditions (1) are consistent with the graph. On each interval between two consecutive division points, there is only one line segment with non zero slope. This line segment has slope 1 on the intervals $[1, \delta_{2,1}]$, $[\delta_{k-1,2}, \delta_{k,1}]$ for $3 \le k \le n$, and $[\mu_k, \mu_{k-1}]$ for $n \ge k \ge 1$, and has slope 1/2 on the interval $[\mu_0, C]$ and $[\delta_{k,1}, \delta_{k,2}]$ for $3 \le k \le n$, where the two components P_k and P_{k+1} coincide. We have 3n + 1 division points 1, C, $\delta_{k,1}$ and $\delta_{k,2}$ for $2 \le k \le n$ and μ_l for $n + 1 \ge l \ge 0$. They are all ordinary division points except μ_k for $1 \le k \le n$ which are switch points.

The points which will be most relevant for the proof are labeled with black dots. Note that from 1 to $\delta_{n,2}$, the combined graph is the same as in [8, §5].

We extend \boldsymbol{P} to the interval $[1, \infty)$ by self-similarity. This means, $\boldsymbol{P}(q) = C^m \boldsymbol{P}(C^{-m}q)$ for all integers m. In view of the value of \boldsymbol{P} and its derivative at 1 and C, one sees that the extension provides a generalized (n + 1)-system on $[1, \infty)$.

The relation between exponents and *n*-systems [8, Proposition 1] suggests to define 2n

Figure 1: Pattern of the combined graph of \boldsymbol{P} on the fundamental interval [1, C]

quantities $W_{n-1}, \ldots, W_0, \hat{W}_{n-1}, \ldots, \hat{W}_0$ by

$$\frac{1}{1+\hat{W}_{n-k}} := \limsup_{q \to +\infty} \frac{P_1(q) + \dots + P_k(q)}{q} \text{ for } 1 \le k \le n,$$
$$\frac{1}{1+W_{n-k}} := \liminf_{q \to +\infty} \frac{P_1(q) + \dots + P_k(q)}{q} \text{ for } 1 \le k \le n.$$

Indeed with this setting, Roy's Theorem provides the existence of a point $\boldsymbol{\theta}$ in \mathbb{R}^n such that $\hat{\omega}_k(\boldsymbol{\theta}) = \hat{W}_k$ and $\omega_k(\boldsymbol{\theta}) = W_k$ for every $0 \le k \le n-1$.

Here, self-similarity ensures that the lim sup (resp. lim inf) is in fact the maximum (resp. the minimum) on the interval [1, C[. Note that for $1 \le k \le n$, the function $P_1 + \cdots + P_k$ has slope 1 on the intervals $[1, \delta_{k,1}]$ and $[\mu_k, C[$, slope 1/2 on the interval $[\delta_{k,1}, \delta_{k,2}]$ and is constant on the interval $[\delta_{k,2}, \mu_k]$. Therefore the minimum of the function $q \mapsto q^{-1}(P_1(q) + \cdots + P_k(q))$ is reached at μ_k and its maximum is reached either at $\delta_{k,1}$ or at $\delta_{k,2}$, when slope changes from 1 to 1/2 or from 1/2 to 0. Namely, the maximum is reached at $\delta_{k,1}$ if

$$\frac{P_1(\delta_{k,1}) + \dots + P_k(\delta_{k,1})}{\delta_{k,1}} \ge \frac{1}{2}$$
(2)

and at $\delta_{k,2}$ if the lefthand side is $\leq 1/2$. We deduce that for $1 \leq k \leq n$,

$$\hat{W}_{n-k} = \frac{P_{k+1}(q) + \dots + P_{n+1}(q)}{P_1(q) + \dots + P_k(q)}$$
 where $q = \begin{cases} \delta_{k,1} & \text{if (2) is satisfied} \\ \delta_{k,2} & \text{otherwise} \end{cases}$
$$W_{n-k} = \frac{P_{k+1}(\mu_k) + \dots + P_{n+1}(\mu_k)}{P_1(\mu_k) + \dots + P_k(\mu_k)}.$$

It is easy to check that the parameters

$$C = 3, A_1 = A_2 = 2^{-n}, A_k = 2^{-n+k-2} \text{ for } 3 \le k \le n+1$$
$$D = \frac{11}{8} 2^{-n+1}, B_k = \frac{5}{4} 2^{-n+k-1} \text{ for } 2 \le k \le n$$
(3)

satisfy the conditions (1). For this choice of parameters, the lefthand side of inequality (2) is > 1/2 for $1 \le k \le n-1$ and < 1/2 for k = n. This property remains true for $(C, A_2, \ldots, A_n, D, B_2, B_3, \ldots, B_n)$ in an open neighborhood of the point

$$(3, 2^{-n}, \dots, 2^{-2}, \frac{11}{8}2^{-n+1}, \frac{5}{2}2^{-n}, \dots, \frac{5}{2}2^{-2})$$

provided that we set $A_1 = A_2$ and $A_{n+1} = 1 - (A_1 + \cdots + A_n)$. In this neighborhood, the quantities $W_0, \ldots, W_{n-1}, \hat{W}_0, \ldots, \hat{W}_{n-1}$ are given by the following rational fractions in $\mathbb{Q}(C, A_2, \ldots, A_n, D, B_2, B_3, \ldots, B_n)$:

$$\begin{split} \hat{W}_{n-1} &= \frac{1}{A_2} - 1, & \hat{W}_0 = \frac{1 - (2A_2 + A_3 + A_4 + \dots + A_n)}{A_2 + (B_2 + \dots + B_{k-1})}, \\ \hat{W}_{n-k} &= \frac{1 - (2A_2 + A_3 + A_4 + \dots + A_{k+1}) + B_k}{A_2 + (B_2 + \dots + B_k)} & \text{for } 2 \le k \le n - 1, \\ W_{n-k} &= \frac{C(1 - (2A_2 + A_3 + A_4 + \dots + A_k))}{A_2 + B_2 + \dots + B_k} & \text{for } 2 \le k \le n, \\ W_{n-1} &= \frac{D + C(1 - 2A_2)}{A_2}. \end{split}$$

Since $W_0, \ldots, W_{n-1}, \hat{W}_0, \ldots, \hat{W}_{n-1}$ come from a generalized (n+1)-system \boldsymbol{P} , Roy's Theorem provides the existence of a point $\boldsymbol{\theta}$ in \mathbb{R}^n such that $\hat{\omega}_k(\boldsymbol{\theta}) = \hat{W}_k$ and $\omega_k(\boldsymbol{\theta}) = W_k$ for every $0 \leq k \leq n-1$. Therefore, to prove Theorem 2 it is sufficient to show that the rational fractions $W_0, \ldots, W_{n-1}, \hat{W}_0, \ldots, \hat{W}_{n-1} \in \mathbb{Q}(C, A_2, A_3, \ldots, A_n, D, B_2, B_3, \ldots, B_n)$ are algebraically independent.

First, note that only W_{n-1} depends on D and \hat{W}_{n-1} only depends on A_2 . Therefore, it is enough to prove that the 2n-2 other rational fractions are algebraically independent over $\mathbb{Q}(A_2)$. For the calculation, it is convenient to successively make the following two changes of variables. First, we set

$$M_k := 1 - \sum_{i=1}^k A_i \text{ for } 2 \le k \le n+1,$$

$$N_k := A_1 + \sum_{i=2}^k B_i \text{ for } 1 \le k \le n.$$

Note that $M_{n+1} = 0$ and $N_1 = A_1$. We get the formulae

$$\hat{W}_0 = \frac{M_n}{N_{n-1}},$$

$$W_{n-k} = \frac{CM_k}{N_k} \text{ for } 2 \le k \le n,$$

$$\hat{W}_{n-k} = 1 + \frac{M_{k+1} - N_{k-1}}{N_k} \text{ for } 2 \le k \le n-1.$$

Then, we set

$$U_k := \frac{M_k}{N_k}$$
 and $V_k := \frac{M_{k+1}}{N_k}$ for $2 \le k \le n$,

and $V_1 = \frac{1-2A_2}{A_2}$ getting the formulae

$$\hat{W}_0 = V_{n-1},$$

 $W_{n-k} = CU_k \text{ for } 2 \le k \le n,$
 $\hat{W}_{n-k} = 1 + V_k - \frac{U_k}{V_{k-1}} \text{ for } 2 \le k \le n-1$

Hence, the 2n-2 independent parameters $C, A_3, \dots, A_n, B_2, \dots, B_n$ provide the 2n-2 independent parameters $C, U_2, \dots, U_n, V_2, \dots, V_{n-1}$. Thus, it is sufficient to show that the rational fractions $W_0, \dots, W_{n-2}, \hat{W}_0, \dots, \hat{W}_{n-2} \in \mathbb{Q}(A_2)(C, U_2, U_3, \dots, U_n, V_2, V_3, \dots, V_{n-1})$ are algebraically independent over $\mathbb{Q}(A_2)$.

Suppose that there exists an irreducible polynomial $R \in \mathbb{Q}(A_2)[X_1, \ldots, X_{2n-2}]$ such that

$$R\left(\hat{W}_{0},\ldots,\hat{W}_{n-2},W_{0},\ldots,W_{n-2}\right)=0.$$

Specializing C in 1, we obtain

$$R\left(V_{n-1}, V_{n-1} + 1 - \frac{U_{n-1}}{V_{n-2}}, \dots, V_2 + 1 - \frac{U_2}{V_1}, U_n, \dots, U_2\right) = 0$$
(4)

where the 2n-3 last rational fractions generate the field $\mathbb{Q}(A_2)(U_2, \ldots, U_n, V_2, \ldots, V_{n-1})$ over $\mathbb{Q}(A_2)$. Therefore, they are algebraically independent. We investigate their relation with the first coordinate, that will provide information on R. Observe that for $2 \leq k \leq n-1$,

$$\hat{W}_{n-k} = 1 + V_k - \frac{U_k}{V_{k-1}}$$

provide the relation

$$V_k = \hat{W}_{n-k} - 1 + \frac{W_{n-k}}{V_{k-1}}.$$

Since $\hat{W}_0 = V_{n-1}$, we can compute by finite induction

$$\hat{W}_0 = V_{n-1} = (\hat{W}_1 - 1) + \frac{W_1}{V_{n-2}} = f_0 + \overset{n-2}{\underset{k=1}{\text{K}}} \frac{e_k}{f_k}$$

where

$$\begin{cases} e_k = W_k & \text{for } 1 \le k \le n-2\\ f_k = \hat{W}_{k+1} - 1 & \text{for } 0 \le k \le n-3\\ f_{n-2} = V_1 = \frac{1 - 2A_2}{A_2} \end{cases}$$

and

$$f_0 + \frac{\prod_{k=1}^{n-2} e_k}{f_k} = f_0 + \frac{e_1}{f_1 + \frac{e_2}{f_2 + \frac{\ddots}{f_{n-2}}}}$$

is Gauss' notation for a (finite) generalized continued fraction. Denote by $\left(\frac{E_k}{F_k}\right)_{k=0}^{n-2}$ the finite sequence of its convergents.

We set

$$\tilde{R} = F_{n-2}\hat{W}_0 - E_{n-2}$$

where F_{n-2} and E_{n-2} are seen as polynomials in $\mathbb{Q}(A_2)[W_0, \ldots, W_{n-2}, \hat{W}_0, \ldots, \hat{W}_{n-2}]$. Note that F_{n-2} and E_{n-2} do not depend on \hat{W}_0 since none of the $(e_k)_{1 \leq k \leq n-2}$ and $(f_k)_{0 \leq k \leq n-2}$ do. Hence, \tilde{R} is a polynomial of degree 1 with respect to \hat{W}_0 . Writing the Euclidean division of R by \tilde{R} in $\mathbb{Q}(A_2, \hat{W}_1, \ldots, \hat{W}_{n-2}, W_0, \ldots, W_{n-2})[\hat{W}_0]$ we get

$$R = \tilde{R}Q + P$$

with $\deg_{\hat{W}_0}(P) = 0$. Hence P can be seen as a polynomial in the 2n - 3 variables $\hat{W}_1, \ldots, \hat{W}_{n-2}, W_0, \ldots, W_{n-2}$ over $\mathbb{Q}(A_2)$. The latter are algebraically independent over $\mathbb{Q}(A_2)$

because their specializations at C = 1 are. We deduce that P = 0, and by irreducibility of R, the polynomial Q is a constant:

$$R = \alpha \left(F_{n-2} \hat{W}_0 - E_{n-2} \right)$$

with $\alpha \in \mathbb{Q}(A_2)$.

Specializing C in 0, we obtain

$$R\left(V_{n-1}, V_{n-1} + 1 - \frac{U_{n-1}}{V_{n-2}}, \dots, V_2 + 1 - \frac{U_2}{V_1}, 0, \dots, 0\right) = 0$$

where the n-1 non zero rational fractions generate the field $\mathbb{Q}(V_1)(U_3, \ldots, U_{n-1})(V_{n-1}, V_{n-2}, \ldots, V_2, U_2)$ over $\mathbb{Q}(V_1)(U_3, \ldots, U_{n-1})$. Therefore, they are algebraically independent over $\mathbb{Q}(A_2) = \mathbb{Q}(V_1)$. We deduce that the constant monomial of R seen in $\mathbb{Q}(A_2, \hat{W}_0, \ldots, \hat{W}_{n-2})[W_0, \ldots, W_{n-2}]$ should be zero.

We now compute the constant monomial of $F_{n-2}\hat{W}_0 - E_{n-2}$ seen in $\mathbb{Q}(A_2, \hat{W}_0, \dots, \hat{W}_{n-2})[W_0, \dots, W_{n-2}]$. We use the classical recurrence formulae for the convergents

$$E_{k+1} = e_{k+1}E_k + f_{k+1}E_{k-1}$$
 and $F_{k+1} = e_{k+1}F_k + f_{k+1}F_{k-1}$

to compute the constant term of E_{n-2} and F_{n-2} to be

$$\prod_{k=0}^{n-2} f_k \text{ and } \prod_{k=1}^{n-2} f_k$$

respectively. Thus the constant monomial of $F_{n-2}\hat{W}_0 - E_{n-2}$ seen in $\mathbb{Q}(A_2, \hat{W}_0, \dots, \hat{W}_{n-2})[W_0, \dots, W_{n-2}]$ is

$$\left(\prod_{k=1}^{n-2} f_k\right) \hat{W}_0 - \prod_{k=0}^{n-2} f_k = (\hat{W}_0 - \hat{W}_1 + 1) \frac{1 - 2A_2}{A_2} \prod_{k=1}^{n-3} (\hat{W}_{k+1} - 1).$$

The fact that $\hat{W}_{k+1} \neq 1$ and $\hat{W}_0 + 1 \neq \hat{W}_1$ induces that this constant monomial is non zero. Hence α and R are zero.

This proves the algebraic independence of the 2n exponents.

References

- [1] Yann Bugeaud and Michel Laurent. On exponents of homogeneous and inhomogeneous diophantine approximation. *Moscow Math. J.*, 5:747–766, 2005.
- [2] Yann Bugeaud and Michel Laurent. Exponents of diophantine approximation. *Diophan*tine Geometry Proceedings, 4:101–121, 2007.

- [3] Vojtěch Jarník. Zum khintchineschen "Übertragungssatz". Trav. Inst. Math. Tbilissi, 3:193–212, 1938.
- [4] Alexander Ya. Khinchin. Über eine klasse linearer diophantischer approximationen. Rend. Circ. Mat. Palermo 50, pages 170–195, 1926.
- [5] Alexander Ya. Khinchin. Zur metrischen theorie der diophantischen approximationen. Math.Z., 24:706–714, 1926.
- [6] Michel Laurent. Exponents of diophantine approximation in dimension two. Canad. J. Math., 61:165–189, 2009.
- [7] Michel Laurent. On transfer inequalities in Diophantine approximation. In Analytic number theory, pages 306–314. Cambridge Univ. Press, Cambridge, 2009.
- [8] Antoine Marnat. About Jarník's type relation in higher dimension. Annales de l'Institut Fourier, to appear.
- [9] Hermann Minkowski. *Geometrie der Zahlen*. Bibliotheca Mathematica Teubneriana, Band 40. Johnson Reprint Corp., New York-London, 1968.
- [10] Damien Roy. On Schmidt and Summerer parametric geometry of numbers. Ann. of Math., 182:739–786, 2015.
- [11] Damien Roy. Spectrum of the exponents of best rational approximation. Math. Z., 283:143–155, 2016.
- [12] Wolfgang M. Schmidt. On heights of algebraic subspaces and diophantine approximations. Ann. of Math. (2), 85:430–472, 1967.
- [13] Wolfgang M. Schmidt and Leonhard Summerer. Parametric geometry of numbers and applications. Acta Arithmetica, 140(1):67–91, 2009.
- [14] Wolfgang M. Schmidt and Leonhard Summerer. Diophantine approximation and parametric geometry of numbers. *Monatsch. Math.*, 169(1):51–104, 2013.