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Abstract

Using the Parametric Geometry of Numbers introduced recently by W.M. Schmidt and
L. Summerer [13, 14] and results by D. Roy [10, 11], we establish that the 2n exponents of
Diophantine approximation in dimension n ≥ 3 are algebraically independent.

1 Introduction

Throughout this paper, the integer n ≥ 1 denotes the dimension of the ambient space Rn

endowed with its Euclidean norm and θ = (θ1, . . . , θn) denotes an n-tuple of real numbers
such that 1, θ1, . . . , θn are Q-linearly independent.

Let d be an integer with 0 ≤ d ≤ n − 1. We define the exponent ωd(θ) (resp. the uniform
exponent ω̂d(θ)) as the supremum of the real numbers ω for which there exist rational affine
subspaces L ⊂ Rn such that

dim(L) = d , H(L) ≤ H and H(L)d(θ, L) ≤ H−ω

for arbitrarily large real numbers H (resp. for every sufficiently large real number H).
Here H(L) denotes the exponential height of L (see [12] for more details), and d(θ, L) =
minP ∈L d(θ, P ) is the minimal distance between θ and a point of L. Note that this definition
is independent of the choice of a norm on Rn.

These exponents were introduced originally by M. Laurent [7]. They interpolate between
the classical exponents ω(θ) = ωn−1(θ) and λ(θ) = ω0(θ) (resp. ω̂(θ) = ω̂n−1(θ) and
λ̂(θ) = ω̂0(θ)) that were introduced by A. Khintchine [4, 5], V. Jarník [3] and Y. Bugeaud
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and M. Laurent [1, 2].

We have the relations
ω0(θ) ≤ ω1(θ) ≤ · · · ≤ ωn−1(θ),

ω̂0(θ) ≤ ω̂1(θ) ≤ · · · ≤ ω̂n−1(θ),

and Minkowski’s First Convex Body Theorem [9] and Mahler’s compound convex bodies
theory provide the lower bounds

ωd(θ) ≥ ω̂d(θ) ≥
d + 1

n − d
, for 0 ≤ d ≤ n − 1.

These 2n exponents happen to be related as was first noticed by Khinchin with his trans-
ference theorem [5]. We use the following notion of spectrum to study more general trans-
fers. Given k exponents e1, . . . , ek, we define the spectrum of the exponents (e1, . . . , ek) as
the subset of Rk described by all k-uples (e1(θ), . . . , ek(θ)) as θ runs through all points
θ = (θ1, . . . , θn) ∈ Rn such that 1, θ1, . . . , θn are Q-linearly independent.

In [8], the author proved the following theorem.

Theorem 1. For every integer n ≥ 3, the n uniform exponents ω̂0, . . . , ω̂n−1 are algebraically
independent.

Using the same construction, it is even possible to show that for every integer n ≥ 3, the
spectrum of ω̂0, . . . , ω̂n−1 is a subset of Rn with non empty interior. In this paper, we extend
this result as follows.

Theorem 2. For every integer n ≥ 3, the 2n exponents ω̂0, . . . , ω̂n−1, ω0, . . . , ωn−1 are alge-
braically independent.

In dimension n = 2, the spectrum is fully described in [6]:

Theorem 3 (Laurent, 2009). In dimension 2, the spectrum of the four exponents ω0, ω1, ω̂0, ω̂1

is described by the inequalities

ω̂0 + 1/ω̂1 = 1, 2 ≤ ω̂1 ≤ +∞,
ω1(ω̂1 − 1)

ω1 + ω̂1

≤ ω0 ≤
ω1 − ω̂1 + 1

ω̂1

.

When ω̂1 < ω1 = +∞ we have to understand these relations as ω̂1 − 1 ≤ ω0 ≤ +∞ and when
ω̂1 = +∞, the set of constraints should be interpreted as ω0 = ω1 = +∞ and ω̂0 = 1.

The first equality, relating the two uniform exponents, is known as Jarník’s relation [3] and
breaks the algebraic independence. Note that this sharpens previously mentioned relations.
In dimension n = 1 the uniform exponent is always equal to 1.

We refer the reader to [8, §2] for the notation and the presentation of the parametric
geometry of numbers, main tool of the proof. We mainly use the notation introduced by D.
Roy in [10, 11] which is essentially dual to the one of W. M. Schmidt and L. Summerer [13, 14].
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2 Proof of the main Theorem 2

To prove Theorem 2, we place ourselves in the context of parametric geometry of numbers.
We fully use Roy’s theorem [8, Theorem 5] that reduces the study of spectra of Diophantine
approximation to the study of the combinatorial properties of generalized n-systems. We con-
struct explicitly a family of generalized (n + 1)-systems with 2n parameters, which provides
the algebraic independence in the spectrum via Roy’s theorem.

We fix the dimension n ≥ 3. Consider any family of positive parameters

A1 = A2 < A3 < · · · < An+1 , B2 < B3 < · · · < Bn , C , D

satisfying the following properties for 2 ≤ k ≤ n:

A1 + A2 + · · · + An+1 = 1 , B2 < D < CA2,

Ak+1 < Bk < Ak+2 , Bk < CAk,
(1)

where An+2 = ∞.

We consider the generalized (n + 1)-system P on the interval [1, C] depending on the
previous parameters whose combined graph is given below by Figure 1, where

Pk(1) = Ak and Pk(C) = CAk for 1 ≤ k ≤ n + 1.

Conditions (1) are consistent with the graph. On each interval between two consecutive
division points, there is only one line segment with non zero slope. This line segment has
slope 1 on the intervals [1, δ2,1], [δk−1,2, δk,1] for 3 ≤ k ≤ n, and [µk, µk−1] for n ≥ k ≥ 1, and
has slope 1/2 on the interval [µ0, C] and [δk,1, δk,2] for 3 ≤ k ≤ n , where the two components
Pk and Pk+1 coincide. We have 3n + 1 division points 1, C, δk,1 and δk,2 for 2 ≤ k ≤ n and
µl for n + 1 ≥ l ≥ 0. They are all ordinary division points except µk for 1 ≤ k ≤ n which are
switch points.

The points which will be most relevant for the proof are labeled with black dots. Note
that from 1 to δn,2, the combined graph is the same as in [8, §5].

We extend P to the interval [1, ∞) by self-similarity. This means, P (q) = Cm
P (C−mq)

for all integers m. In view of the value of P and its derivative at 1 and C, one sees that the
extension provides a generalized (n + 1)-system on [1, ∞).

The relation between exponents and n-systems [8, Proposition 1] suggests to define 2n
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Figure 1: Pattern of the combined graph of P on the fundamental interval [1, C]

quantities Wn−1, . . . , W0, Ŵn−1, . . . , Ŵ0 by

1

1 + Ŵn−k

:= lim sup
q→+∞

P1(q) + · · · + Pk(q)

q
for 1 ≤ k ≤ n,

1

1 + Wn−k

:= lim inf
q→+∞

P1(q) + · · · + Pk(q)

q
for 1 ≤ k ≤ n.

Indeed with this setting, Roy’s Theorem provides the existence of a point θ in Rn such that
ω̂k(θ) = Ŵk and ωk(θ) = Wk for every 0 ≤ k ≤ n − 1.

Here, self-similarity ensures that the lim sup (resp. lim inf) is in fact the maximum (resp.
the minimum) on the interval [1, C[. Note that for 1 ≤ k ≤ n, the function P1 + · · · + Pk has
slope 1 on the intervals [1, δk,1] and [µk, C[, slope 1/2 on the interval [δk,1, δk,2] and is constant
on the interval [δk,2, µk]. Therefore the minimum of the function q 7→ q−1(P1(q)+ · · ·+Pk(q))
is reached at µk and its maximum is reached either at δk,1 or at δk,2, when slope changes from
1 to 1/2 or from 1/2 to 0. Namely, the maximum is reached at δk,1 if

P1(δk,1) + · · · + Pk(δk,1)

δk,1

≥
1

2
(2)
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and at δk,2 if the lefthand side is ≤ 1/2. We deduce that for 1 ≤ k ≤ n,

Ŵn−k =
Pk+1(q) + · · · + Pn+1(q)

P1(q) + · · · + Pk(q)
where q =

{

δk,1 if (2) is satisfied
δk,2 otherwise

,

Wn−k =
Pk+1(µk) + · · · + Pn+1(µk)

P1(µk) + · · · + Pk(µk)
.

It is easy to check that the parameters

C = 3, A1 = A2 = 2−n , Ak = 2−n+k−2 for 3 ≤ k ≤ n + 1

D =
11

8
2−n+1 , Bk =

5

4
2−n+k−1 for 2 ≤ k ≤ n

(3)

satisfy the conditions (1). For this choice of parameters, the lefthand side of inequality
(2) is > 1/2 for 1 ≤ k ≤ n − 1 and < 1/2 for k = n. This property remains true for
(C, A2, . . . , An, D, B2, B3, . . . , Bn) in an open neighborhood of the point

(3, 2−n, . . . , 2−2,
11

8
2−n+1,

5

2
2−n, . . . ,

5

2
2−2)

provided that we set A1 = A2 and An+1 = 1 − (A1 + · · · + An). In this neighborhood,
the quantities W0, . . . , Wn−1, Ŵ0, . . . , Ŵn−1 are given by the following rational fractions in
Q(C, A2, . . . , An, D, B2, B3, . . . , Bn) :

Ŵn−1 =
1

A2

− 1, Ŵ0 =
1 − (2A2 + A3 + A4 + · · · + An)

A2 + (B2 + · · · + Bn−1)
,

Ŵn−k =
1 − (2A2 + A3 + A4 + · · · + Ak+1) + Bk

A2 + (B2 + · · · + Bk)
for 2 ≤ k ≤ n − 1,

Wn−k =
C(1 − (2A2 + A3 + A4 + · · · + Ak))

A2 + B2 + · · · + Bk

for 2 ≤ k ≤ n,

Wn−1 =
D + C(1 − 2A2)

A2

.

Since W0, . . . , Wn−1, Ŵ0, . . . , Ŵn−1 come from a generalized (n+1)-system P , Roy’s The-
orem provides the existence of a point θ in Rn such that ω̂k(θ) = Ŵk and ωk(θ) = Wk

for every 0 ≤ k ≤ n − 1. Therefore, to prove Theorem 2 it is sufficient to show that the
rational fractions W0, . . . , Wn−1, Ŵ0, . . . , Ŵn−1 ∈ Q(C, A2, A3, . . . , An, D, B2, B3, . . . , Bn) are
algebraically independent.

First, note that only Wn−1 depends on D and Ŵn−1 only depends on A2. Therefore, it is
enough to prove that the 2n − 2 other rational fractions are algebraically independent over
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Q(A2). For the calculation, it is convenient to successively make the following two changes
of variables. First, we set

Mk := 1 −

k
∑

i=1

Ai for 2 ≤ k ≤ n + 1,

Nk := A1 +
k
∑

i=2

Bi for 1 ≤ k ≤ n.

Note that Mn+1 = 0 and N1 = A1. We get the formulae

Ŵ0 =
Mn

Nn−1

,

Wn−k =
CMk

Nk

for 2 ≤ k ≤ n,

Ŵn−k = 1 +
Mk+1 − Nk−1

Nk

for 2 ≤ k ≤ n − 1.

Then, we set

Uk :=
Mk

Nk

and Vk :=
Mk+1

Nk

for 2 ≤ k ≤ n,

and V1 = 1−2A2

A2
getting the formulae

Ŵ0 = Vn−1,

Wn−k = CUk for 2 ≤ k ≤ n,

Ŵn−k = 1 + Vk −
Uk

Vk−1

for 2 ≤ k ≤ n − 1.

Hence, the 2n−2 independent parameters C, A3, · · · , An, B2, · · · , Bn provide the 2n−2 inde-
pendent parameters C, U2, . . . , Un, V2, . . . , Vn−1. Thus, it is sufficient to show that the rational
fractions W0, . . . , Wn−2, Ŵ0, . . . , Ŵn−2 ∈ Q(A2)(C, U2, U3, . . . , Un, V2, V3, . . . , Vn−1) are alge-
braically independent over Q(A2).

Suppose that there exists an irreducible polynomial R ∈ Q(A2)[X1, . . . , X2n−2] such that

R
(

Ŵ0, . . . , Ŵn−2, W0, . . . , Wn−2

)

= 0.

Specializing C in 1, we obtain

R

(

Vn−1, Vn−1 + 1 −
Un−1

Vn−2

, . . . , V2 + 1 −
U2

V1

, Un, . . . , U2

)

= 0 (4)
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where the 2n−3 last rational fractions generate the field Q(A2)(U2, . . . , Un, V2, . . . , Vn−1) over
Q(A2). Therefore, they are algebraically independent. We investigate their relation with the
first coordinate, that will provide information on R. Observe that for 2 ≤ k ≤ n − 1,

Ŵn−k = 1 + Vk −
Uk

Vk−1

provide the relation

Vk = Ŵn−k − 1 +
Wn−k

Vk−1

.

Since Ŵ0 = Vn−1, we can compute by finite induction

Ŵ0 = Vn−1 = (Ŵ1 − 1) +
W1

Vn−2

= f0 +
n−2

K
k=1

ek

fk

where


















ek = Wk for 1 ≤ k ≤ n − 2
fk = Ŵk+1 − 1 for 0 ≤ k ≤ n − 3

fn−2 = V1 =
1 − 2A2

A2

and

f0 +
n−2

K
k=1

ek

fk

= f0 +
e1

f1 +
e2

f2 +

.. .

fn−2

is Gauss’ notation for a (finite) generalized continued fraction. Denote by

(

Ek

Fk

)n−2

k=0

the finite

sequence of its convergents.

We set
R̃ = Fn−2Ŵ0 − En−2

where Fn−2 and En−2 are seen as polynomials in Q(A2)[W0, . . . , Wn−2, Ŵ0, . . . , Ŵn−2]. Note
that Fn−2 and En−2 do not depend on Ŵ0 since none of the (ek)1≤k≤n−2 and (fk)0≤k≤n−2

do. Hence, R̃ is a polynomial of degree 1 with respect to Ŵ0. Writing the Euclidean division
of R by R̃ in Q(A2, Ŵ1, . . . , Ŵn−2, W0, . . . , Wn−2)[Ŵ0] we get

R = R̃Q + P

with deg
Ŵ0

(P ) = 0. Hence P can be seen as a polynomial in the 2n − 3 variables

Ŵ1, . . . , Ŵn−2, W0, . . . , Wn−2 over Q(A2). The latter are algebraically independent over Q(A2)
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because their specializations at C = 1 are. We deduce that P = 0, and by irreducibility of
R, the polynomial Q is a constant:

R = α
(

Fn−2Ŵ0 − En−2

)

with α ∈ Q(A2).

Specializing C in 0, we obtain

R

(

Vn−1, Vn−1 + 1 −
Un−1

Vn−2

, . . . , V2 + 1 −
U2

V1

, 0, . . . , 0

)

= 0

where the n−1 non zero rational fractions generate the field Q(V1)(U3, . . . , Un−1)(Vn−1, Vn−2, . . . , V2, U2)
over Q(V1)(U3, . . . , Un−1). Therefore, they are algebraically independent over Q(A2) = Q(V1).
We deduce that the constant monomial of R seen in Q(A2, Ŵ0, . . . , Ŵn−2)[W0, . . . , Wn−2]
should be zero.

We now compute the constant monomial of Fn−2Ŵ0−En−2 seen in Q(A2, Ŵ0, . . . , Ŵn−2)[W0, . . . , Wn−2].
We use the classical recurrence formulae for the convergents

Ek+1 = ek+1Ek + fk+1Ek−1 and Fk+1 = ek+1Fk + fk+1Fk−1

to compute the constant term of En−2 and Fn−2 to be

n−2
∏

k=0

fk and
n−2
∏

k=1

fk

respectively. Thus the constant monomial of Fn−2Ŵ0−En−2 seen in Q(A2, Ŵ0, . . . , Ŵn−2)[W0, . . . , Wn−2]
is

(

n−2
∏

k=1

fk

)

Ŵ0 −
n−2
∏

k=0

fk = (Ŵ0 − Ŵ1 + 1)
1 − 2A2

A2

n−3
∏

k=1

(Ŵk+1 − 1).

The fact that Ŵk+1 6= 1 and Ŵ0 + 1 6= Ŵ1 induces that this constant monomial is non zero.
Hence α and R are zero.

This proves the algebraic independence of the 2n exponents.
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