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Self-Organized Aggregation without Computation

Melvin Gauci, Jianing Chen, Wei Li, Tony J. Dodd, Roderich Groß

Abstract

This paper presents a solution to the problem of self-organized aggregation of embodied robots that

requires no arithmetic computation. The robots have no memory and are equipped with one binary

sensor, which informs them whether or not there is another robot in their line of sight. It is proven

that the sensor needs to have a sufficiently long range; otherwise aggregation cannot be guaranteed,

irrespective of the controller used. The optimal controller is found by performing a grid search over

the space of all possible controllers. With this controller, robots rotate on the spot when they perceive

another robot, and move backwards along a circular trajectory otherwise. This controller is proven to

always aggregate two simultaneously moving robots in finite time, an upper bound for which is provided.

Simulations show that the controller also aggregates at least 1000 robots into a single cluster consistently.

Moreover, in 30 experiments with 40 physical e-puck robots, 98.6% of the robots aggregated into one

cluster. The results obtained have profound implications for the implementation of multi-robot systems

at scales where conventional approaches to sensing and information processing are no longer applicable.

1 Introduction

Many studies in distributed robotics have investigated systems in which the robots only make use of infor-

mation from their immediate surroundings. This ‘principle of locality’ has come to define a paradigm in

the design of systems with decentralized control (Parker, 2008), and is currently the primary approach in

the field of swarm robotics (Brambilla et al., 2013). When using sensors of a limited range, robots can only
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learn about their environment gradually, and as Brooks (1991) argues, “when intelligence is approached in

an incremental manner [...], reliance on representation disappears”. Without such a reliance, a system is

more likely to be adaptable to changing environments.

Using a limited sensing range is also widely believed to help relax the hardware requirements of the

individual robots. This paper investigates an alternative approach, and reveals a surprising result: by

designing robots that only use a minimal amount of unrestricted-range information, the need for information

processing—within each robot and among the robots—can be immensely reduced. Moreover, the non-reliance

on a global representation remains intact. The approach of using a minimal amount of unrestricted range

information also brings about other advantages, namely: (i) The fact that only a minimal amount of features

need to be extracted from the environment allows for system designs that can be transferred from simulation

to reality with minimal effort (Jakobi, 1997); (ii) Using information that is not restricted in range allows the

system to solve problems that are otherwise unsolvable (see (Litovsky et al., 1993), referred to in (Klavins,

2007)).

In the system presented in this paper1, the complexity and amount of information processing is reduced

to the extreme that

• each robot only needs one sensor that provides it with one bit of information about its environment;

• the robots do not need to store any information during run time (and have no IDs);

• the robots are not required to perform any arithmetic computations.

Despite all these limitations, as shown in this paper, it is possible to solve canonical problems in distributed

robotics. This paper uses the task of self-organized aggregation (also known as “gathering” (Gordon et al.,

2004; Fatès, 2010; Cieliebak et al., 2003; Flocchini et al., 2005) and “rendezvous” (Zebrowski et al., 2007;

Cortés et al., 2006; Yu et al., 2012)) as a case study in order to illustrate the proposed methodology. The

problem of aggregating robots with limited information is a challenging one, because the robots, if not

controlled properly, may end up forming separate clusters. The solution presented here is the simplest one

that has been presented so far, in terms of both sensor and controller complexity. Each robot can only tell

whether or not there is another robot in its line of sight (in principle, this sensor can be implemented as

a single pixel CCD or CMOS sensor). Furthermore, this simple sensing scheme does not come at the cost

of a complex controller. Rather, it turns out that any possible controller is equivalent to an ‘if-then-else’

statement, and this is sufficient to solve the task. The controller simply chooses one of two predefined sets

of actuation parameters for the robot, according to the sensor reading.

We believe that it is the right time to study the collective capabilities of systems of robots that have

severly limited computational and memory resources, and that are only able to retrieve a very limited amount

1A preliminary version of this work was presented at the 2012 International Symposium on Distributed Autonomous Robotic

Systems, Baltimore, MD, USA (Gauci et al., 2012). This paper includes a substantial amount of new analyses (e.g. all the

plots, and Sec. 5), as well as results from a new set of 30 experiments with 40 physical e-puck robots (Sec. 7).
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of information about their environment (in our case, a single bit). This truly minimalistic approach helps to

pave the way for implementing massively distributed robotic systems at scales where conventional approaches

to sensing and information processing are no longer applicable (Requicha, 2003).

This paper is organized as follows. Sec. 2 presents related work. Sec. 3 presents the methods used,

including the problem definition, the performance metrics, and the robotic and simulation platforms. Sec. 4

details the structure of the controller and shows that if the range of the sensor is limited, it is not possible to

guarantee aggregation, irrespective of the controller used. It also presents the method used for obtaining the

optimal controller, along with its results. Sec. 5 provides a mathematical analysis of the optimal controller,

including a proof and a time upper bound for the case of two simultaneously moving robots. Sec. 6 presents

a number of studies in simulation, including an analysis of the effects of the range of the sensor and noise

on the sensor, as well as a scalability study with up to 1000 robots. Sec. 7 discusses the implementation of

the solution on 40 physical e-puck robots, and presents the results obtained from a systematic experiment

on this system. Sec. 8 concludes the paper.

2 Related Work

This paper uses the task of self-organized aggregation as a case study in order to illustrate the proposed

methodology. Trianni (2008) argues that in distributed robotic systems, “aggregation is of particular interest

since it stands as a prerequisite for other forms of cooperation.” This section discusses how aggregation occurs

in nature, and how it has been implemented on distributed robotic systems so far.

2.1 Aggregation in Nature

Self-organized aggregation is a widely-observed phenomenon in nature. It occurs in a range of organisms, in-

cluding bacteria, arthropods, fish and mammals (Camazine et al., 2001; Parrish and Edelstein-Keshet, 1999).

In some cases, self-organized aggregation is aided by environmental heterogeneities, such as areas providing

shelter or thermal energy (Halloy et al., 2007; Kernbach et al., 2009; Fatès, 2010). However, aggregation

can also occur in homogeneous environments, purely as a result of interactions between the individuals. For

example, Deneubourg et al. (1990) observed that bark beetle larvae aggregate in homogeneous Petri dishes

by using a mechanism based on pheromone secretion and detection.

2.2 Probabilistic Algorithms

Jeanson et al. (2005) investigated aggregation in cockroach larvae and developed a model of their behavior.

The cockroaches were reported to join and leave clusters with probabilities that depend on the sizes of the

clusters. The larger a cluster is, the more likely a cockroach is to join it, and the less likely it is to leave
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it, and vice versa. Several works have implemented algorithms based on this model for self-organized robot

aggregation (Garnier et al., 2008; Bayindir and Şahin, 2009; Soysal and Şahin, 2005). Perhaps most notably,

the work of Garnier et al. (2008) demonstrated aggregation with 20 physical Alice robots in a homogeneous

environment.

Probabilistic aggregation algorithms have the advantage that, as long as the environment is bounded, it

is not required to assume that the robots initially form a connected graph in terms of their sensing and/or

communication ranges. Nevertheless, by analyzing a model similar to the one in (Jeanson et al., 2005)

and (Garnier et al., 2008), Correll and Martinoli (2011) showed that the “robots [still] need a minimum

combination of communication range and locomotion speed in order to aggregate into a single cluster when

using probabilistic aggregation rules”.

The algorithms in this category require the agents to obtain estimates of cluster sizes or robot densities.

In order to meet this requirement, Garnier et al. (2008) used local infra-red communication to estimate the

number of nearby robots. Bayindir and Şahin (2009) showed how the cluster size can be estimated from its

area using circle packing theory. As an alternative to explicitly estimating cluster sizes, Soysal and Şahin

(2005) proposed a variation on the probabilistic finite state machine method of aggregation, where each

robot emits a sound, and a robot, when in the “approach” state, moves in the direction of the maximum

sound it perceives. Kernbach et al. (2013) proposed another method of bypassing the direct measurement

of cluster sizes, based on a weakly correlated random walk in a heterogenous environment. In this method,

a robot, upon meeting another robot, decides on a time to wait before moving on, based on an activation

function.

The algorithms discussed in this section all assume arithmetic computations on the part of the robots, in

order to calculate the probabilities governing their joining and leaving of clusters. A particularly challenging

aspect of implementing them on physical robotic systems lies in the estimation of cluster sizes and/or robot

densities.

2.3 Deterministic Algorithms

Ando et al. (1999) introduced an algorithm for achieving aggregation in a group of mobile robots with a

limited sensing range. Cortés et al. (2006) generalized this algorithm and showed that it can be used to

achieve aggregation in arbitrarily high dimensions. These algorithms require that the robots initially form

a connected visibility graph, and are based on geometrically ensuring that this graph is maintained in every

time step. The robots are required to measure the relative positions (distances and angles) of all their

neighbors. Gordon et al. (2004) relaxed this requirement, such that the robots only need to measure the

angles to their neighbors, and not the distances. Although the algorithm was theoretically proven to work,

simulation results revealed that “the merging process [was] generally agonizingly slow” (Gordon et al., 2004).

In order to address this problem, in follow up work, Gordon et al. (2008) introduced an additional crude
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distance sensing capability to the algorithm in (Gordon et al., 2004), where the robots could discriminate

between closer and further neighbors.

Gennaro and Jadbabie (2006) developed an aggregation algorithm based on every robot computing the

Laplacian matrix of its neighbors. Gasparri et al. (2012b) developed an algorithm for aggregation based

on an attractive/repulsive force model that was introduced by Gazy and Passino (2003), and generalized

further by Li (2008). This algorithm was further developed to handle actuator saturation by Gasparri et al.

(2012a), and to cope with obstacles by Leccese et al. (2012).

The algorithms presented in this section so far all require the robots to perform arithmetic computations,

based on the positions and/or orientations of perceived robots. To our knowledge, none of these algorithms

have been evaluated on physical robots, with the exception of (Gasparri et al., 2012b,a; Leccese et al., 2012).

These algorithms were implemented on 5 SAETTA robots, but the sensing was performed in a centralized

fashion, with an external camera being used to measure the distances between the robots.

Yu et al. (2012) proposed a connectivity-based algorithm for Dubins-type vehicles that, as this paper, is

in the spirit of minimalism. Their algorithm assumes relatively little sensing and control capabilities on the

part of the agents; however, for the algorithm to work, each agent has to either be able to track a specific

agent that it is assigned to, or at least choose the closest one from a number of agents that are within its

“wind shield”. Furthermore, the algorithm requires the robots to synchronise their control when they are in

proximity, and it has only been validated in simulation with point-robots.

2.4 Evolutionary Approaches

Dorigo et al. (2004) addressed the problem of aggregation by using an evolutionary robotics approach (Nolfi

and Floreano, 2000) in order to design a deterministic control algorithm. In their system, the robots can

emit a sound and can sense each other using proximity sensors and directional microphones. A controller,

in the form of a feedforward neural network, was evolved and validated in simulation with up to 40 robots.

Bahceci and Şahin (2005) used a similar setup and investigated the effects of several parameters, such as the

number of robots, arena size, and run time.

These controllers all rely on memory and/or arithmetic computation. They have all been evolved and

evaluated with simulated embodied robots. The feasibility of implementing them on physical robotic systems

remains an open question.
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3 Methods

3.1 Problem Formulation

The problem that we address here is as follows. An unbounded, homogeneous 2-D environment, with no

obstacles, contains a number, n, of robots, that are initially placed in arbitrary positions, facing in arbitrary

directions. Here, we consider robots that are circular and differential wheeled2. The robots are memoryless

(in the sense that they cannot store any information during run time), and all execute the same controller.

They are also embodied, meaning that they cannot overlap with each other.

Each robot is equipped with one sensor at its front, which allows it to know whether or not there is

another robot in its direct line of sight. This sensor is therefore a binary line-of-sight sensor. We say that

the sensor gives a reading of I = 1, if there is a robot in the line of sight, and a reading of I = 0 otherwise.

It does not provide the distance to the robot being perceived.

The objective is to aggregate the robots as quickly as possible, via decentralized control, into one cluster

that is as compact as possible.

3.2 Performance Metrics

3.2.1 Dispersion Metric

Following Graham and Sloane (1990), we use the second moment of the robots as a measure of their disper-

sion, which we want to minimize. Let r represent the radius of one robot. Let p
(t)
i represent the position of

robot i at time t, and let p̄(t) = 1
n

∑n

i=1 p
(t)
i represent the centroid of the positions of the robots. Then, the

second moment of the robots is given by:

u(t) =
1

4r2

n
∑

i=1

||p
(t)
i − p̄(t)||2. (1)

The 4r2 in the denominator serves to normalize u(t) such that it becomes independent of r for geometrically

similar configurations. u(t) does not have an upper bound, because the robots can be arbitrarily dispersed.

It has a positive lower bound, because of the physical constraint that the robots cannot overlap with each

other, i.e. ||p
(t)
j −p

(t)
i || ≥ 2r, i 6= j. Graham and Sloane (1990) report lower bounds of u(t) for several values

of n up to n = 499. Except for n = 212, the packings corresponding to the lower bounds of u(t) are optimal

among hexagonal packings (Chow, 1995).

2It will later be shown that the optimal controller can also be implemented on other robotic platforms.
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Figure 1: The e-puck robot fitted with a black ‘skirt’. The e-puck’s diameter and height are approximately

7.4 cm and 5.5 cm, respectively.

3.2.2 Cluster Metric

Let a cluster of robots be defined as a maximal connected subgraph of the graph defined by the robots’

positions, where two robots are considered to be adjacent if another robot cannot fit in between them (in

other words, robots i and j are adjacent if ||pj
(t) − pi

(t)|| < 4r). The sizes of the clusters can be found by

using a depth-first search algorithm (Knuth, 1997). As the objective of this work is to bring all the robots

into a single cluster, we define the cluster metric as the proportion of robots in the largest cluster:

c(t) =
number of robots in the largest cluster at time t

n
. (2)

3.3 Robotic Platform

The robotic platform that has been used in this study is the e-puck robot (Mondada et al., 2009), shown

in Fig. 1, which is a miniature, differential wheeled mobile robot. The e-puck’s diameter and height are

approximately 7.4 cm and 5.5 cm, respectively, and its weight is approximately 150 g.

The e-puck is equipped with a directional camera located at its front, which has been used in this study to

realize the binary sensor in the physical implementation3 (see Sec. 7). The e-puck’s processor is a Microchip

dsPIC micro-controller with 8KB of RAM and 144KB of flash memory.

3.4 Simulation Platform

The simulations were performed using the open-source Enki library (Magnenat et al., 2011), which is used

by WebotsTM (Michel, 2008) in 2-D mode. Enki is capable of modeling the kinematics and the dynamics

3As we will explain in Sec. 7.1, we only use an area of the image that is a single pixel wide. Although this inevitably makes

the sensor have a narrow field of view (rather than being strictly a line of sight), the results obtained show that this does not

noticeably undermine the system’s performance.
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of rigid bodies in two dimensions, and has a built-in model of the e-puck. In Enki, the body of an e-puck

is modeled as a disk of diameter 7.4 cm and mass 152 g. The inter-wheel distance is 5.1 cm. The velocities

of the left and right wheels along the ground4 can be set independently in [−12.8, 12.8] cm/s. The binary

sensor was realized by projecting a line from the robot’s front and checking whether it intersects with another

robot’s body. The length of the control cycle was set to 0.1 s, and the physics was updated at a rate of 10

times per control cycle.

4 Controller Synthesis

4.1 Controller Structure

As the robots are memoryless, and are only equipped with one binary sensor, any controller for their behavior

can be reduced to a mapping from each of the two possible sensor readings, I = 0 and I = 1, onto a pair of

pre-defined velocities for the left and right wheels. This controller is an if-then-else statement, and performs

no arithmetic computations. Let v̄l, v̄r ∈ [−1, 1] represent the normalized left and right wheel velocities,

respectively, where −1 (1) corresponds to the wheel rotating backwards (forwards) with maximum speed.

The controller can be written as a quadruple,

x = (v̄ℓ0, v̄r0, v̄ℓ1, v̄r1) , x ∈ [−1, 1]
4
, (3)

where v̄ℓ0 refers to the normalized velocity of the left wheel when I = 0, and so on.

4.2 Impossibility of Guaranteeing Aggregation with a Limited Sensing Range

Theorem 1. Let the range of the sensor be limited to some value δ, and let the robots initially form a

connected visibility graph5. Under the problem formulation of Sec. 3.1, it is impossible to guarantee that the

robots will always aggregate into one cluster (as defined in Sec. 3.2.2), irrespective of the controller used.

Proof. Henceforth, we neglect the inertia of the robots, and assume that a robot’s velocity changes instantly

when its actuation parameters change. For a fixed pair of wheel velocities, in general, a differential wheeled

robot moves along a circular trajectory. Two special cases arise: the radius of curvature can be zero, in which

case the robot rotates on the spot, and it can be infinite, in which case the robot moves in a straight line. Let

N denote that a robot does not move at all; S denote that it rotates on the spot (in either direction), and

F and B that it moves forwards or backwards along a circular trajectory (in either direction; possibly with

an infinite radius of curvature). The controller (see Sec. 4.1) maps each of the two possible sensor readings

4This refers to the instantaneous linear velocity of the robot at the point at which the wheel makes contact with the ground.

It is equal to the wheel’s angular velocity multiplied by the wheel’s radius.
5In this graph, two robots are defined as being connected if the distance between them does not exceed their sensing ranges.
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onto one of these four behaviors, meaning that the same sensor reading always results in the same relative

displacement (unless the robot collides with other robots). Let us use a tuple (∗0, ∗1) ∈ {N,S, F,B}
2
, to

denote what the robot does when I = 0 and I = 1. The proof now reduces to finding, for each of the

4 × 4 = 16 possible tuples, at least one initially-connected configuration of robots with a limited sensing

range δ, that does not lead to aggregation.

The seven cases where the tuple contains at least one N are trivial, as is the case (S, S). Pathological

initial configurations for the cases (B, ∗) and (F, ∗) are easily achieved with n = 2, where the robots start

off at a distance δ apart6, not seeing each other, and it is ensured that they will never see each other as they

move. The case (S,B) is also easily eliminated with n = 2 robots that are initialized a distance δ apart: once

one of these robots sees the other, it moves backwards and the connectivity is broken and never restored.

The remaining case is (S, F ). This case cannot be eliminated with n = 2; in particular, in the special case

where the robots move forward in a straight line when I = 1, this controller can easily be shown to always

aggregate n = 2 robots. We therefore consider n = 3 robots: i starts off at a distance δ from j, which in turn

starts off at a distance δ from k. With the right set of initial orientations, j sees k first, and moves towards

it, while i rotates on the spot. i is now disconnected from j and k, and rotates on the spot indefinitely, while

j and k move towards each other. Diagrams of pathological initial configurations for the non-trivial cases

are provided in Appendix B.

In view of this result, we use an unlimited sensing range in the simulations performed in the rest of this

paper, except in Sec. 6.2, where we investigate the effect of the sensing range. We believe that the good

experimental results obtained (Sec. 7) show that in practice, the solution that we propose is not undermined

by this result.

4.3 Controller Optimization

We performed a grid search over the entire space of possible controllers, in order to (i) find the optimal con-

troller (within a finite resolution), and (ii) obtain a visualization of the performance landscape. We used a res-

olution of 21 settings per parameter, with each parameter taking values in {−1,−0.9, . . . ,−0.1, 0, 0.1, . . . , 0.9, 1}.

Therefore, 214 = 194481 controllers were evaluated.

In order to evaluate each controller, 100 simulations employing the controller were run for T = 1800 time

steps (corresponding to 180 s) with different initial configurations of n = 10 robots7. In each simulation, the

robots were initialized with a uniform random distribution in a (virtual) square of sides 316.23 cm, such that

6More precisely, the distance δ refers to the length of the sensors. If this is measured between the robots’ peripheries, then

the distance between their centers is actually δ + 2r, where r is their radius.
7This combination of number of robots and run time was found to achieve a good balance between keeping the computation

time of the grid search within reasonable limits, and sufficiently capturing the dynamics of aggregation such that the resulting

controller is scalable to larger numbers of robots.
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the area per robot was, on average, 10000 cm2. The performance of the controller, x, in each simulation

k ∈ {1, 2, . . . , 100}, was evaluated by using a metric that is based on the robots’ dispersion, as defined in

Eq. 1:

U (x) =
T−1
∑

t=0

t u(t). (4)

Eq. 4 is designed to reward both a low dispersion at the end of the time interval, as well as the speed with

which the robots aggregate. It penalizes large values of u(t) at every time instant (except for the very first

one), but gives increasing importance to small values of u(t) for increasing t. The overall performance of the

controller was calculated as the average of these values, i.e. Ū (x) =
∑100

k=1 Uk (x) /100.

The performance landscape of the controller is 5-dimensional (4 controller parameters plus the perfor-

mance measure, Ū), and cannot be visualized directly. Therefore, we considered each combination of two

controller parameters (
(

4
2

)

= 6 combinations) as a sub-space, and for each point in this sub-space, we calcu-

lated the performance measure as the best (i.e. the minimum) value that is achievable with the remaining

two parameters as degrees of freedom. For instance, on the sub-space (v̄ℓ0, v̄r0), the performance measure

Ū∗ (v̄ℓ0, v̄r0) was calculated as:

Ū∗ (v̄ℓ0, v̄r0) = min
v̄ℓ1,v̄r1

Ū (v̄ℓ0, v̄r0, v̄ℓ1, v̄r1) .

Fig. 2 shows the landscape of the reciprocal of Ū∗ over the 6 sub-spaces. The reciprocal was taken in

order to improve the plot’s visuals, because otherwise, extreme values of U , caused by the robots diverging

due to a badly-performing controller, dominate the landscape and render the other points indistinguishable

from each other.

As the robots used here are symmetrical, if their left and right wheel velocities are inverted, their behavior

is unaffected, other than that it is ‘inverted’ in space. For this reason, we expect (i) the landscapes on (v̄ℓ0, v̄r0)

and (v̄ℓ1, v̄r1) to be symmetrical along the diagonals v̄ℓ0 = v̄r0 and v̄ℓ1 = v̄r1, respectively, (ii) the landscape

on (v̄ℓ0, v̄r1) to be identical to the one on (v̄r0, v̄ℓ1), and (iii) the landscape on (v̄r0, v̄r1) to be identical to

the one on (v̄ℓ0, v̄ℓ1). The landscapes shown in Fig. 2 agree with these expectations. The small discrepancies

that are present arise from the fact that the controllers are only evaluated a finite number of times.

We now analyze the features of the landscape. Note that the landscape is not uni-modal, but rather

reveals rich multi-modal features, with well-performing controllers being present in different areas of the

controller space. The landscape on the sub-space (v̄ℓ0, v̄r0) (top left plot in Fig. 2) shows a marked ‘hill’

along the diagonal defined by v̄ℓ0 = v̄r0, implying that having the robots move in a straight line when they do

not perceive another robot leads to a poor performance. The landscape on the sub-space (v̄ℓ1, v̄r1) (top right

plot in Fig. 2) also shows a ‘hill’ along the diagonal defined by v̄ℓ1 = v̄r1, implying that it is sub-optimal for

the robots to move straight towards perceived robots. This is an interesting, and somewhat counter-intuitive

result, that illustrates the challenges involved in hand-designing controllers for collective behaviors.
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Figure 2: Visualization of the performance landscape over the entire space of possible controllers. Each axis

in each plot ranges between −1 and 1, corresponding to the maximum backwards and forwards velocity,

respectively, of one of the robot’s wheels. A higher value signifies a better performance. See the text for

more details.

In order to investigate how sensitive the performance landscape is to the particular initial configuration

of robots used, we performed a separate grid search with a different initialization pattern. The robots

were initialized in a straight line, spaced 50 cm apart, with random orientations. The resulting landscape

(corresponding to the one presented in Fig. 2), is available in the online supplementary material (Gauci et al.,

2013). This landscape is not substantially different from the one in Fig. 2; however, the resultant optimal

controller lies in a different region. Nevertheless, simulations confirmed that the controller presented here

(i.e. the optimal one in Fig. 2) also consistently aggregates robots that are initialized in a straight line.

The optimal controller over the entire space of possible controllers in Fig. 2 is given by x = (v̄ℓ0, v̄r0, v̄ℓ1, v̄r1) =

(−0.7,−1, 1,−1). The following analyses and experiments in this paper have been performed with this con-

troller.
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R diw

c

p

p′

Figure 3: Differential wheeled robot kinematics. Over a short time interval, the robot moves along a circular

trajectory from position p (blue) to position p′ (red). R and c denote the radius and the center of curvature,

respectively, and diw denotes the robot’s inter-wheel distance.

5 Controller Analysis

In this section, we show how the optimal controller that was found by the grid search in Sec. 4 exploits

the geometry and the physics that are brought about by the robots’ embodiment, in order to bypass the

need for computation. In Sec. 5.1, we begin by analyzing how a robot behaves when it is executing the

controller. In Sec. 5.2, we prove that a robot that is executing the controller always aggregates with another,

static robot, or a circular, static cluster of already-aggregated robots. We also calculate an upper bound on

the aggregation time. In Sec. 5.3, we generalize the analysis of Sec. 5.2 to the case of two robots that are

simultaneously executing the controller. We prove that these always aggregate, and derive equations that

can be used to numerically calculate an upper bound on the aggregation time.

5.1 Individual Robot Behavior

Recall that for a fixed pair of wheel velocities, a differential wheeled robot moves, in general, along a

circular trajectory of radius R, with an angular speed ω. As shown in Fig. 3, let p represent the position

of a differential wheeled robot, c represent its center of curvature, diw represent its inter-wheel distance,

and vℓ and vr represent its left and right wheel velocities along the ground, respectively. Then, it can be

shown (Dudek and Jenkin, 2010) that R and ω are related to vℓ and vr by:

R =
diw
2

(

vr + vℓ
vr − vℓ

)

, ω =
1

diw
(vr − vℓ) . (5)

In the optimal controller found by the grid search, for I = 0, v̄ℓ0 = −0.7, v̄r0 = −1. By multiplying these

normalized values by a factor of 12.8 cm/s (the maximum speed of the e-puck), and using Eq. 5, we obtain

R0 ≈ 14.45 cm, ω0 ≈ −0.75 rad/s. Similarly, for I = 1, we obtain R1 = 0 cm, ω1 ≈ −5.02 rad/s. We can now

describe the behavior of the robot as follows. When I = 0, it moves backwards along a circular trajectory

in a clockwise fashion. When I = 1, it rotates clockwise on the spot, with the maximum possible angular

velocity.

12



R

d

d
′

ri

rj

ci

c′i

pi

pj

|α|

|α|

Figure 4: Scenario with a moving robot i (small blue circle) and a static robot (or circular cluster) j (red

circle). Robot i moves backwards along its circular trajectory centered at ci (large solid blue circle), until

it sees robot j (solid blue line). It then rotates clockwise on the spot through an angle of size |α|, until it

no longer sees robot j (dashed blue line). As it rotates, robot i’s center of curvature moves from ci to c′i.

Robot i then moves backwards along its new circular trajectory (dashed blue circle).

In the remainder of this section, we assume that the robots react instantaneously when I changes from

0 to 1 or vice versa (i.e. the sensing is continuous). As R1 = 0 and will not feature in the analyses, we

henceforth drop the “0” subscript from R0, with R representing this quantity unless otherwise stated.

5.2 One Moving Robot and One Static Robot or Circular Cluster

Let us analyze the situation where the environment contains one robot that is executing the controller, and

one circular, static object. The latter can represent either a static robot, or a cluster of already-aggregated

robots that is quasi-circular and quasi-static. Fig. 4 shows the moving robot, i, of radius ri, (small blue

circle) and the static robot (or circular cluster), j, of radius rj (red circle). Let us define d = ||pj − ci||.

Note that the two robots cannot collide with each other as long as d > R+ ri+ rj , and we therefore consider

them as being aggregated when this condition no longer holds.

Theorem 2. One moving robot will always aggregate with another static robot or circular cluster.

Proof. Consider the scenario shown in Fig. 4. We want to obtain an expression for d′ = ||pj − c′i|| in terms

of d = ||pj − ci||. Without loss of generality, let ci = [0, 0]
T
, and let the sensor of robot i point to the right

along the horizontal at the moment when it starts seeing robot j. It follows that:

pj =

[

δ

− (R+ rj)

]

, (6)
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Figure 5: Mapping from the original distance d to the new distance d′ between the center of curvature of a

moving robot, i, to a static robot, j. The red trajectory illustrates how, starting some value d0 > R+ri+rj ,

d decreases stepwise until it becomes smaller than or equal to R+ri+rj . For the values used here, R+ri+rj

corresponds to 21.85 cm. The value of d0 used in this figure is 50 cm.

where δ is the length of the ‘sensory beam’ (from the center of robot i to the point at which it touches the

circumference of robot j), at the instant when robot i starts seeing robot j. δ is given by:

δ =

√

d2 − (R+ rj)
2
. (7)

From the geometry of Fig. 4, the coordinates of c′i are given by:

c′i =

[

R sin |α|

R (cos |α| − 1)

]

, (8)

where |α| ∈ (0, π). Moreover, we can write the equation tan (|α|/2) = rj/δ, from which we obtain8:

sin |α| =
2δrj

δ2 + r2j
, cos |α| =

δ2 − r2j
δ2 + r2j

. (9)

Finally, by substituting Eqs. 6–9 into d′ = ||pj − c′i||, and simplifying the resulting expression9, we obtain:

d′ =
√

d2 − 4Rrj , d > R+ ri + rj . (10)

Fig. 5 shows the mapping from d onto d′ according to Eq. 10, for the values of R and rj that are used here.

The red trajectory illustrates how, starting from some value d0 > R + ri + rj , d decreases stepwise until it

becomes smaller than or equal to R+ ri+ rj , at which point the robots are considered to be aggregated.

8These relationships can be derived by using standard trigonometric identities.
9This simplification is not straightforward to work out by hand. We obtained it using the mathematical software Sage

(http://www.sagemath.org/).
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Theorem 3. The time, in s, that it takes for a moving robot to aggregate with a static robot or circular

cluster of radius rj is bounded by 2πm/|ω0| s, where

m =

⌈

d20 − (R+ ri + rj)
2

4Rrj

⌉

, (11)

and d0 is the initial value of ||pj − ci|| (see Fig. 4).

Proof. We begin by calculating the number of d → d′ updates that must occur until d ≤ R+ ri + rj . Let us

write Eq. 10 as a recurrence relation:

dm+1 =
√

d2m − 4Rrj , dm > R+ ri + rj . (12)

Now, let d̂m = d2m, such that we can re-write Eq. 12 as d̂m+1 = d̂m − 4Rrj , the solution to which is given by

d̂m = d̂0 − 4Rrjm. Therefore, the solution to Eq. 12 is given by:

dm =
√

d20 − 4Rrjm, dm > R+ ri + rj . (13)

The number of d → d′ that are required until d ≤ R + ri + rj is now given by setting dm = R + ri + rj in

Eq. 13, solving for m, and taking the ceiling of this value, which leads to:

m =

⌈

d20 − (R+ ri + rj)
2

4Rrj

⌉

. (14)

Given m, we can now calculate an upper bound on the time that it takes until d ≤ R + ri + rj . From the

time that robot i stops seeing robot j, it takes robot i slightly less than one cycle along its circular trajectory

until it once again starts seeing robot j. The time that it takes for robot i to rotate on the spot while it sees

robot j is negligible, because |ω1| is much larger than |ω0|. At most one d → d′ update occurs per cycle of

robot i along its circular trajectory. The aggregation time is thus bounded by 2πm/|ω0| s.

5.3 Two Simultaneously Moving Robots

We now analyze the situation with two robots that are simultaneously executing the controller. In this

scenario, it is sensible to define d = ||cj − ci||. Note that the two robots cannot collide with each other as

long as d > 2(R + r), and we therefore consider them as being aggregated when this condition no longer

holds.

Theorem 4. Two simultaneously moving robots will always aggregate, and an upper bound on the time that

this takes is given by solving Eqs. 15 – 18.

15



θi
θj

|α|

d

d′

R

r

ci c′i

pi

cj

pj

p′
j

Figure 6: Scenario with two simultaneously moving robots, i and j (small blue and red circles, respectively).

Robot i moves backwards along its circular trajectory centered at ci (large solid blue circle), until it sees

robot j (solid blue line). Robot i then rotates clockwise on the spot through an angle of size |α|, while robot

j moves backwards along its circular trajectory. As it rotates, robot i’s center of curvature moves from ci

to c′i. Robot i stops rotating when it stops seeing robot j (dashed blue line), and it then moves backwards

along its new circular trajectory (dashed blue circle).

Proof. Consider the arrangement shown in Fig. 6. Without loss of generality, let ci = [0, 0]
T
, and cj = [d, 0]

T
.

As in the case of the previous section, we want to calculate d′ = ||cj − c′i||; d
′ now depends not only on d,

but also on the position of robot j along its circular trajectory at the instant when robot i starts seeing it.

The latter can be parametrized by the angle that robot j makes with the horizontal10, θi ∈
(

−π
2 , 0
)

. From

the geometry of Fig. 6:

c′i = pi +R

[

cos (π + θi − |α|)

sin (π + θi − |α|)

]

, (15)

where pi = ci +R [cos θi, sin θi]
T
. We now need expressions for θi and |α| in terms of d and θj .

The expression for θi can be obtained from the geometry of Fig. 6 as:

θi = arcsin

(

R sin θj
||pj − ci||

)

+ arcsin

(

R+ r

||pj − ci||

)

−
π

2
, (16)

where pj = cj +R [cos θj , sin θj ]
T
.

We now turn to calculating |α|. In Fig. 6, robot j moves along its circular trajectory while robot i

rotates on the spot11. Let trot denote the time that robot i spends rotating on the spot while seeing

10We use the convention of counter clockwise angles being positive, and clockwise angles being negative.
11It should be noted that for a small range of θj , robot j will simultaneously be seeing robot i, and will therefore be rotating
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Figure 7: d′ − d against θj for one d → d′ update in the case of two simultaneously moving robots. The

lowermost curve corresponds to d = 2 (R+ r), and subsequent curves correspond to d increasing in steps of

10 cm.

robot j, from which it follows that |α| = |ω1|trot. Now, we can express p′
j in terms of trot, as p′

j =

cj + R [cos (θj − |ω0|trot), sin (θj − |ω0|trot)]
T
. Using this, in turn, we can express |α| in terms of d, θj , and

trot by noting from the geometry of Fig. 6 that:

|α| (d, θj , trot) = 6 (pj − pi)− 6
(

p′
j − pi

)

+ arcsin

(

r

||pj − pi||

)

+ arcsin

(

r

||p′
j − pi||

)

,

(17)

where 6 (·) denotes the angle that the vector makes with the horizontal axis. The value of trot, and hence

that of |α|, is given when:

|α| (d, θj , trot) = |ω1|trot. (18)

The left hand side of Eq. 18 is a complex expression in terms of d, θj , and trot, and as a consequence, it does

not seem possible to obtain an analytical solution for |α| in terms of d and θj . Nevertheless, it is possible to

obtain an accurate solution by solving Eq. 18 numerically12.

We are now in possession of expressions for θi in terms of d and θj (Eq. 16) and an equation from which

we can calculate |α| numerically given these quantities (Eq. 18). By substituting the values of θi and |α| into

Eq. 15, we obtain c′i, and from this, in turn, we obtain d′ = ||c′i−cj ||. Fig. 7 shows a plot of d′−d against θj

for one d → d′ update. The lowermost curve corresponds to d = 2 (R+ r), and subsequent curves correspond

to d increasing in steps of 10 cm. As one expects, as d increases, the curves become flatter (meaning that

the effect of θj on d′ diminishes), and d′ − d tends towards zero.

clockwise on the spot. This range, however, is very small, and its effect can therefore be neglected by treating robot j as if it

were still moving along its circular trajectory. This assumption does not violate the worst case scenario.
12We use the function uniroot that is available in the R software environment (http://www.r-project.org/).
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Figure 8: The time required for two simultaneously moving robots to aggregate.

We can now calculate, starting from some initial d = d0 > 2 (R+ r), an upper bound on the number m of

d → d′ updates that need to occur until d ≤ 2 (R+ r). We do this by assuming the worst case scenario—that

in each update, d′−d assumes the closest value to zero that is possible (these values correspond to the maxima

of the curves in Fig. 7). As we do not have a closed-form expression for |α|, we find m by numerically iterating

from d onto d′ using Eqs. 15–18, and counting the number of iterations that are required until d′ ≤ 2 (R+ r).

Once we have m, we obtain the time that elapses until d ≤ 2 (R+ r), as we did for the case of one moving

robot in Sec. 5.2. In this case, at most two d → d′ updates can occur per 2π/|ω0| s, because the two robots

are moving simultaneously. Therefore, the aggregation time is bounded by 2πm/2|ω0| = πm/|ω0| s.

Fig. 8 shows a plot of the upper bound aggregation time, starting from an initial value d = d0 (red curve).

Overlain on the plot are 1000 data points obtained from simulations with two simultaneously moving robots

(blue crosses). By re-plotting Fig. 8 using log-scales for both axes, it turns out that the relationship between

log (time) and log (d0) is sublinear for small values of d0, and becomes asymptotically linear as d0 increases.

A least squares regression fit reveals that the slope of the linear part is almost exactly 2, which means that

the relationship between d0 and the time required until d ≤ 2 (R+ r) is asymptotically quadratic (compare

this to the quadratic relationship in the case of one moving robot in Sec. 5.2, given by Eq. 14).

5.4 n Robots

We are not able to provide a rigorous mathematical analysis for the general case of n simultaneously moving

robots. Their aggregation is the result of complex collective movements of clusters of physically interacting

robots, as can be seen in the accompanying video (Extension 1). We provide a qualitative analysis of this

effect in Sec. 7.3.
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Figure 9: These plots show the aggregation dynamics with n = 100 robots. In both plots, the horizontal

axis represents the time, t. In (a), the vertical axis represents the dispersion of the robots (Eq. 1, lower is

better). In (b), it represents the proportion of the robots in the largest cluster (Eq. 2, higher is better).

The blue curves show the mean measure across 100 simulations with different initial configurations, whereas

the red curves show the range (minimum, maximum) of the measure across the 100 simulations. In (a),

the lower and the upper green lines show, respectively, the minimum possible dispersion for 100 robots, and

their expected dispersion at the point of initialization.

6 Simulation Studies

In the controller synthesis stage (Sec. 4), only n = 10 robots were used, in order to keep the computation

time within reasonable limits. In the following, we analyze, with n = 100 robots, the aggregation dynamics

(Sec. 6.1), and the effects of the sensing range (Sec. 6.2) and sensory noise (Sec. 6.3) on the aggregation

performance. In Sec. 6.4 we analyze the scalability of the controller with up to n = 1000 robots. In all the

simulations (regardless of n), the robots were initialized with a uniform random distribution in a (virtual)

square, such that on average, the area per robot was 10000 cm2 — identical to that used in the controller

synthesis stage.

6.1 Aggregation Dynamics

We performed 100 simulations with n = 100 robots. In every run, the robots formed a single cluster. Figs. 9a

and b show, respectively, how the dispersion and the cluster metrics of the robots developed over time. The

longest time taken to form a single cluster was 663 s, and on average, the dynamics reached steady state

after around 750 s.

For n = 100 robots, the minimum possible dispersion u(t) (among hexagonal packings) is 25.9913 (Graham

and Sloane, 1990). In the simulations, the final value of u(t) (i.e. after 1800 s) was only 8.92% larger than this
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(a) (b)

Figure 10: (a) The configuration of 100 robots with the minimum possible dispersion (Eq. 1). (b) The

final configuration of 100 robots after 1800 s with the controller found by the grid search in Sec. 4. This

configuration comes from the run that had the median dispersion after 1800 s across 100 simulations with

different initial configurations.

theoretical lower bound (averaged across the 100 simulations). Fig. 10 shows (a) the configuration with the

minimum possible dispersion for 100 robots, and (b) the final configuration of 100 robots after 1800 s—the

trial chosen for this figure was the one that led to the median robot dispersion in the final configuration, as

found from the 100 simulations.

6.2 The Effect of the Sensing Range

In this section, we study how the aggregation performance is affected when the sensing range of the robots

(assumed to be unlimited in the other sections) is finite. As the robots are initialized within a virtual

square of sides 1000 cm, a sensing range of δ∞ =
(

10002 + 10002
)

1

2 = 1414 cm can be considered as being

virtually unlimited. We performed 100 simulations for each δ/δ∞ = {0.0, 0.1, . . . , 1.0}. In each simulation,

the dispersion of the robots and the proportion of robots in the largest cluster after 1800 s were recorded.

Fig. 11 shows a box plot13 with the results. The performance is virtually unaffected as δ/δ∞ is reduced

from 1.0 to 0.3. As δ/δ∞ is reduced to 0.1, the median performance drops instantly, almost to the expected

value at the point of initialization—equivalent to robots that do not move throughout the simulation (upper

green line in Fig. 11a).

13The box plots presented here are all as follows. The line inside the box represents the median of the data. The edges of

the box represent the lower and the upper quartiles (25-th and 75-th percentiles) of the data, and the whiskers represent the

lowest and the highest data points that are within 1.5 times the inter-quartile range from the lower and the upper quartiles,

respectively. Circles represent outliers.
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Figure 11: These box plots show the effect of the sensing range on the aggregation performance with n = 100

robots. In both plots, the horizontal axis represents the sensing range, as a proportion of the maximum

possible distance between two robots at the point of initialization. In (a), the vertical axis represents the

dispersion of the robots after 1800 s (Eq. 1, lower is better). In (b), it represents the proportion of the robots

in the largest cluster after 1800 s (Eq. 2, higher is better). In both plots, each box represents values obtained

from 100 simulations with different initial configurations of robots. In (a), the lower and the upper green

lines show, respectively, the minimum possible dispersion for 100 robots, and their expected dispersion at

the point of initialization.

6.3 The Effect of Sensory Noise

In this section, we investigate how the aggregation performance is affected when the readings of the robots’

binary line-of-sight sensors are corrupted by noise. We considered two types of noise on the sensor. False

negative noise flips an input of I = 1 to I = 0 (i.e. a perceived robot is missed) with probability pn.

False positive noise flips an input of I = 0 to I = 1 (i.e. an imaginary robot is perceived) with probability

pp. We considered a grid of 11 × 11 = 121 noise level combinations, with pn and pp taking the values

{0.0, 0.1, . . . , 1.0}. For each combination, we performed 100 simulations, and the mean dispersion of the

robots and the proportion of the robots in the largest cluster after 1800 s were recorded.

Fig. 12 shows the noise performance landscapes as color maps. Note that for noise level combinations

that lie on the diagonal defined by pn + pp = 1.0, the reading of the sensor is 0 with probability pn, and

1 with probability pp, irrespective of whether or not there is a robot in the direct line of sight. On this

diagonal, the sensor provides no meaningful information. In the region pn + pp > 1.0, the sensor reading

could be inverted so as to obtain a performance corresponding to the noise combination that mirrors the

actual one in the diagonal pn + pp = 1.0.

The controller leads to a low dispersion and a high proportion of robots in the largest cluster for a sizeable

sub-region of noise level combinations—approximately, for up to pn+ pp < 0.6. The controller is thus highly
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Figure 12: These plots show the effect of sensory noise on the aggregation performance with n = 100 robots.

In both plots, the horizontal and the vertical axes show, respectively, the level of false negative and false

positive noise (see the text for details). In (a), the colors represent the dispersion of the robots after 1800 s

(Eq. 1, lower is better). In (b), they represent the proportion of the robots in the largest cluster after 1800 s

(Eq. 2, higher is better). In both plots, the color in each box represents the mean value across 100 simulations

with different initial configurations.

robust to both types of noise on the sensor.

6.4 Scalability

In order to investigate the scalability of the aggregation performance with binary line-of-sight sensors, the

controller was evaluated with increasing numbers of robots. 100 simulations were performed for each value

of n ∈ {100, 200, . . . , 1000}.

Each simulation was stopped when the robots formed a single cluster, and the time taken for them to do

so was recorded. Every trial finished, meaning that the controller is capable of achieving consistent, error

free aggregation with at least 1000 robots. Fig. 13 shows a box plot of the times taken to achieve a single

cluster. A least squares regression fit of the form Ank (dashed red line in Fig. 13) to the means of the times

(red squares in Fig. 13) yields A = 5.34, k = 0.88, which suggests that the time taken to achieve a single

cluster increases slightly sub-linearly with the number of robots.
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Figure 13: This box plot shows the time taken by the controller to aggregate increasing numbers of robots into

a single cluster. Each box represents values obtained from 100 simulations with different initial configurations

of robots. The red points show the mean values, and the dashed red line shows a least squares regression fit

to these points of the form Ank, where A = 5.34, k = 0.88.

7 Experiments

The sensor/controller solution described in the previous sections was implemented on a system of 40 physical

e-puck robots, in order to validate its feasibility.

7.1 Sensor Implementation

The sensor was implemented using the e-puck’s directional camera. The robots were fitted with black

‘skirts’ in order to make them distinguishable against the white walls of the arena (see Fig. 1). The e-puck’s

camera is a CMOS RGB color camera with a resolution of 640 (horizontal) by 480 (vertical) pixels, with

corresponding viewing angles of 56◦ and 42◦, respectively. Note that the amount of RAM available on

the e-puck’s micro-controller is not large enough to even store a single raw color image from the camera,

which comes to illustrate the importance of keeping the amount of information processing to a minimum on

small-scale robotic systems.

In principle, using one pixel of the camera is sufficient for implementing the binary line-of-sight sensor.

However, in order to account for vertical misalignments between the orientations of the robots’ cameras,

we used the middle column of pixels from the camera to implement the sensor. This column of pixels is

sub-sampled in order to obtain 15 equally-spaced pixels from its bottom to its top, resulting in an area of

width 1 pixel and height 15 pixels. The gray values of these 15 pixels are compared against a threshold,

which was empirically set to 2/3 of the maximum possible value (pure white). If one or more of the pixels

have a gray value below this threshold, the sensor gives a reading of I = 1. Otherwise it gives a reading
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of I = 0. The implemented sensor has been found to provide reliable readings for a range of up to around

150 cm.

7.2 Experimental Setup and Procedure

The arena used for the experiments is a rectangle of size 400 cm × 225 cm. It has a light gray floor, and is

surrounded by white walls that are 50 cm in height. Its floor is marked with a grid of 15 × 8 = 120 points,

spaced 25 cm from each other and from the walls. For each trial, 40 of these points were chosen randomly

to serve as the initial positions of the robots. With the robots positioned on these points, an infrared signal

was issued to instruct each robot to turn on the spot through a randomly generated portion of a revolution,

such that robots now faced in random directions. Another infrared signal was then issued to instruct the

robots to start executing the controller. The robots were programmed to stop automatically after 900 s. If a

robot stopped moving during a trial, the start signal was reissued in an attempt to restart it (moving robots

were unaffected by this signal). If the robot failed to restart, it was left in the arena until the end of the

trial.

We performed 30 trials with n = 40 robots. Each trial was recorded by an overhead camera. All the 30

videos are available in the online supplementary material (Gauci et al., 2013).

7.3 Results

Fig. 14 shows a series of snapshots taken at different times from a single trial. After around 180 s, the robots

had formed two clusters, and these clusters eventually approached each other, made contact after around

360 s, and amalgamated into one ‘body’ after around 540 s. The dynamics of this trial are representative of

those of most of the other trials. Fig. 16 shows a plot of the performance metrics over time (compare this

to Fig. 9). For n = 40 robots, the lower bound of u(t), as reported in (Graham and Sloane, 1990), is 220.33.

The final value of u(t) (i.e. after 900 s) was 49.08% larger than this theoretical lower bound (averaged across

the 30 trials).

Fig. 15 shows the final configurations of the robots in all the 30 trials. In 27 of the trials, all the 40 robots

were aggregated into one cluster within 900 s. In 2 of the trials, the largest cluster contained 39 robots. In

one trial, the robots were divided into two clusters of 25 and 15 robots after 900 s14. Therefore, on average,

across the 30 trials, the proportion of robots in the largest cluster after 900 s was equal to 98.6%.

We observed that, after starting to execute the controller, most of the robots quickly form small clusters.

These clusters then move collectively, and merge into one another. The collective movement of a cluster

occurs by an effect that is similar to convection. Robots that are on the periphery of the cluster, and which

14After the trial was completed, the robots were restarted, and the two clusters eventually merged into one after around an

additional 180 s.
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do not see other clusters as they rotate on the spot, often displace themselves, and end up on another part

of the cluster’s periphery, from which other clusters can be seen. As this happens repeatedly, the cluster

moves as a whole towards other clusters. This can be seen in the accompanying video (Extension 1) and in

the videos in the online supplementary material (Gauci et al., 2013). Note that this behavior seems to be

rather inefficient in terms of the speed of the aggregation process. We therefore conjecture that the severe

limitations imposed on the amount of sensing and information processing lead to a performance trade-off

as compared to deterministic algorithms that make use of more sensory information and/or computation

(Sec. 2.3).

A current limitation of this work is that the robots are unable to stop searching for other clusters, even

when none are present. This can lead to a continual energy consumption. However, the robots could be

instructed to sleep when they have been rotating on the spot for some time, and wake up periodically in

order to check whether this is still the case. In this way, robots that are inside a cluster would consume very

little energy.

8 Conclusion

This paper has presented the simplest solution so far to the problem of self-organized robot aggregation in

a homogeneous environment. In this solution, each robot has only one sensor that provides it with one bit

of information about its environment: whether or not there is another robot in its line of sight. As the

sensor is binary and the robots are memoryless, computation by the controller is futile, as any controller

can be reduced to a mapping of each of the two possible sensor readings onto a set of pre-defined actuation

parameters.

The optimal controller was found by a grid search over the entire space of possible controllers, using

10 robots that are initialized uniformly randomly within a square region. Proofs of aggregation, as well as

time upper bounds, have been provided for the cases of one moving robot and one static robot or circular

cluster, and two simultaneously moving robots. Simulations have shown that the robots can form very

dense packings (on average, only 8.92% worse than the optimum) when employing the sensor/controller

solution. Such dense packings are desirable, for example, if after aggregating, the robots are required to

perform tasks as a physically connected robotic ensemble (Goldstein et al., 2005; Groß and Dorigo, 2008).

The simulations have also shown that the sensing range of the robots can be reduced to around 30% of

the span of their initial configuration, without a significant detriment to the aggregation performance; that

the solution is highly robust with respect to noise on the sensor; and that the solution can aggregate at

least 1000 robots consistently. The solution was ported onto a system of 40 physical e-puck robots. On

average, across 30 experiments, 98.6% of the robots aggregated into one cluster within 900 s. From these

experiments, we observed that the aggregation depends on the complex collective movement of clusters of

physically-interactive robots, which happens by an effect that is similar to convection.
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We believe that the solution provided here is not restricted to the e-puck robotic platform on which

it has been validated so far. Rather, it is employable on any system of robots that have the abilities to

(i) tell whether there is another robot in their line of sight, and (ii) move along circular trajectories of

different curvatures. We anticipate that the ease of porting the synthesized controller onto a system of

physical robots that was demonstrated here will also carry forward to other robotic platforms, because of

the extreme simplicity of the sensor and the controller. However, we suspect that the shape and the material

properties of the robots will have an impact on the aggregation performance and the structures formed (see,

e.g., (Damasceno et al., 2012)), which is yet to be investigated.

In this study, a binary line-of-sight sensor was implemented on a relatively small scale robotic platform

using a CMOS camera. It remains to be investigated how such a sensor could be implemented on smaller

scales. Potentially, if this helps the implementation, the system could be modified such that the sensor, while

still being binary in nature, covers a relatively wider angle than the very narrow field of view associated with

our single-pixel-wide realization. This possibility will be explored in future work.

It is high time to gain more understanding of how meaningful collective behaviors in distributed robotic

systems can be obtained with exceptionally low hardware requirements on the part of the individual robots.

This will pave the way for the implementation of such systems with millions of robotic units (Fitch and

Butler, 2008; Ashley-Rollman et al., 2011), and at scales ranging from the micro down to the nano (Sitti,

2007).

The framework introduced in this work has been shown to be applicable to the relatively more complex

task of object clustering, both in simulation and on a physical robotic platform (Gauci et al., 2014). In the

future, we intend to investigate the applicability of the framework to further tasks and in more complex

environments, such as ones with obstacles. We also intend to implement the solutions on a physical robotic

system at the micro scale.

Appendix A: Index to Multimedia Extensions

Extension Media Type Description

1 Video Aggregation of 40 physical e-puck robots and of

100 simulated e-puck robots.

Appendix B: Pathological Initial Configurations for Theorem 1

Pathological initial configurations for Theorem 1 are shown in Figs. 17, 18, and 19. For more details, and

variable definitions, see Secs. 4.2 and 5.1.
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initial configuration after 20 s

after 40 s after 180 s

after 300 s after 360 s

after 540 s after 900 s

Figure 14: A sequence of snapshots taken during one of the experiments with 40 physical e-puck robots.

The dimensions of the arena are 400 cm × 225 cm. The bright patches that can be seen in the arena are

reflections from the overhead lighting, and did not affect the behavior of the robots.

27



Figure 15: Overhead snapshots of the final configurations of the 40 robots in the 30 experiments. The

dimensions of the arena are 400 cm×225 cm. The bright patches that can be seen in the arena are reflections

from the overhead lighting, and did not affect the behavior of the robots.
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Figure 16: These plots show the aggregation dynamics with n = 40 physical e-puck robots. In both plots,

the horizontal axis represents the time, t. In (a), the vertical axis represents the dispersion of the robots

(Eq. 1, lower is better). In (b), it represents the proportion of the robots in the largest cluster (Eq. 2,

higher is better). The blue curves show the mean measure across the 30 trials, whereas the red curves show

the range (minimum, maximum) of the measure across the 30 trials. The black curves show the measures

corresponding to the trial shown in Fig. 14. In (a), the lower and the upper green lines show, respectively,

the minimum possible dispersion for 40 robots, and their expected dispersion at the point of initialization.
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Figure 17: A pathological initial configuration for the six cases (B, ∗) and (F, ∗).

29



pi

ci

pj

cj
δ

Figure 18: A pathological initial configuration for the case (S,B).
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Figure 19: A pathological initial configuration for the case (S, F ).
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