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SHUFFLES OF TREES

ERIC HOFFBECK AND IEKE MOERDIJK

ABSTRACT. We discuss a notion of shuffle for trees which extends the usual
notion of a shuffle for two natural numbers. We give several equivalent descrip-
tions, and prove some algebraic and combinatorial properties. In addition, we
characterize shuffles in terms of open sets in a topological space associated to
a pair of trees. Our notion of shuffle is motivated by the theory of operads and
occurs in the theory of dendroidal sets, but our presentation is independent
and entirely self-contained.

INTRODUCTION

For two natural numbers p and ¢ the set of (p,q)-shuffles plays a central role
in many parts of algebra, topology, probability theory and combinatorics. For
example, they occur in the description of the coalgebra and Hopf algebra structures
on exterior or tensor algebras [14], and in the description of the Eilenberg—Zilber
map for the homology of a product of two topological spaces [10]. The name shuffle
refers back to the fact that the (p, ¢)-shuffles are shuffles of linear orders of length
p and ¢ (rather than just sets of cardinality p and ¢), like shuffling two decks of p
and ¢ cards respectively, as studied in [1].

The goal of this paper is to study a notion of shuffle of two trees, rather than
just of linear orders. Several such notions already occcur in the literature, for
example in the context of automata theory and formal languages [8]. Our notion is
different from these. It specialises to the standard one if the two trees happen to be
linear orders, and seems very natural from the point of view of non-deterministic
programming semantics where the trees describe programs. Such shuffles of trees
also enter in the description of a free resolution of the Boardman—Vogt tensor
product of operads [3], and related to this, play a crucial role in the homotopy
theory of dendroidal sets [4].

In this paper, we will present a purely combinatorial and self-contained discus-
sion of this notion of shuffle of two trees, which is motivated by, but can be read
completely independently from the theory of operads and dendroidal sets. In partic-
ular, we shall consider questions concerning shuffles which have not been addressed
in that context, such as: What is the structure of the set of shuffles of two trees?
How is the number of shuffles related to the size of the trees? etc. That second
question has a very simple answer in terms of binomial coefficients in the linear
case, but seems quite intractable for general trees, as we will explain.

The plan of the paper, then, is as follows. In a first section, we will give what
we believe is the most accessible definition of a shuffle of two trees, and illustrate
it by various examples. In a subsequent section, we prove that this definition is
equivalent to several others, the most concise one being that a shuffle of two trees
S and T is a maximal subtree of the product partial order S x T' containing all the
pairs of leaves (cf. Proposition 2.3). In a third section, we discuss some aspects of
the number of shuffles of two trees. It is an open question whether one can find
a comprehensible closed formula expressing the number of shuffles of two trees S
and T in terms of the size (height, width, etc) of S and T. We present some upper
and lower bounds, and show that in the case where T is a linear tree of length n

1



2 E. HOFFBECK AND I. MOERDIJK

and S is fixed, this number is a polynomial in n with rational coefficients, of which
the degree and leading coefficient can be described quite simply in terms of the
size of S. In a fourth section, we will show that the set of shuffles of two trees S
and T carries the natural structure of a distributive lattice, which is rather rigid in
the sense that in most cases it has no automorphisms other than the ones coming
from automorphisms of S or T'. This description also leads to the observation that
shuffles can be composed. Indeed, two shuffles, one between S and T, and the
other between R and S, naturally give rise to a third shuffle between R and T.
More technically, we prove that trees and shuffles between them form a category
enriched in distributive lattices. In a final section, mainly added for motivation and
background, we very briefly discuss in which way shuffles of trees naturally occur
in topology, in operad theory and in the theory of dendroidal sets.

Acknowledgements: We would like to thank James Cranch who wrote a com-
puter program enumerating shuffles of some small trees, which led to the examples
3.4 and 3.6 in the paper. The first author is also indebted to Denis-Charles Cisin-
ski and Gijs Heuts for discussions which improved his understanding of shuffles.
We also like to thank our home universities and NWO for supporting our mutual
visits. Finally, we would like to thank the referees for their careful comments on
an earlier version of this paper. The first author is partially funded by the ANR
grants ANR-13-BS02-0005-02 CATHRE and ANR-16-CE40-0003 ChroK.

1. DEFINITION AND FIRST EXAMPLES

In this section we present several equivalent definitions of a shuffle of two trees.
What we mean by a “tree” in this context is a finite connected graph without
cycles, whose external edges are open, i.e., connected to one vertex only. One of
these external edges is selected as the root, and the other external edges are called
the leaves of the tree. The chosen root provides an orientation, pictured downwards
towards the root. Each vertex will have one outgoing edge (towards the root), and
a strictly positive number of incoming edges to which we will refer as the valence
of the vertex (see also Remark 2.8). Here is a picture of the type of tree that we
shall consider.

AN

[ ]
Yy z

7\

b ®
x

ii
N

This is a tree with five leaves, and root edge a. There are four vertices, of
valence two, two, three and one. The vertex which has the root as output edge
will be referred to the root vertex. For an arbitrary tree T, we will write E(T') and
V(T) for its sets of edges and vertices, respectively. Moreover, we will denote by
rp its root edge (and later in Section 4 its root vertex).

Remark 1.1. When drawing a tree, the picture automatically provides the tree with
a planar structure. We do not presuppose our trees to have any planar structure
however, and a picture like the one above but with the leaves ¢ and d interchanged,
for example, represents the same tree.

Remark 1.2. There are various ways to think about such a tree which are relevant
for what follows. When reading the tree from top to bottom, we think of the edges
as objects and of the vertices as operations, taking a finite (but strictly positive)
number of input objects to an output object. In the picture above, the vertex y
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is an operation taking the objects ¢ and d as inputs and producing b as output.
Operations can be composed, for instance x o y is an operation with inputs ¢, d, e
and output a. This way of viewing trees is common, for example, in the theory of
operads, cf. Section 5 below.

In some cases, it may be more suggestive to read the tree from bottom to top, and
view the vertices as decomposition operations. In the example above, the operation
x decomposed the root object into two objects b and ¢, etc. This point of view is
relevant in modelling non-deterministic programming: the program z transforms a
state a into either b or ¢, but we have no way of knowing which one and have to
carry both b and ¢ along in the model (see e.g. [5]).

Remark 1.3. A tree in which all vertices have valence one will be called a linear
tree. It is the same thing as a linear order on the (non-empty) set of its edges, or a
(possibly empty) linear order on its vertices. In particular, we will also consider the
unit tree 1 in which the leaf and the root coincide. We will denote by L,, the linear
tree with n vertices. Here are pictures of the linear tree L3 with edges a, b, ¢, d, and
of the unit tree n = Ly.

U

and ‘

<o

Q

—e—0o—0—
[

An arbitrary tree T can also be viewed as a non-empty partial order on the
set E(T) of its edges. We will call a partial order of this form treelike. Thus,
a treelike partial order has the following characteristic properties: it is a finite
partially ordered set with a minimal element (the root), and with the property that
the induced order on each “down-segment” of the form | e = {d|d < e} is linear.
It is of course sufficient to ask this for each maximal element e, i.e., for each leaf of
the tree. When e is a leaf, we call | e the branch associated to e. Sometimes, we
will also consider the induced partial order on the (possibly empty) set V(T') of the
vertices of the tree T'. The partially ordered set V(T') is isomorphic to E(T)\ L(T)
and hence is again treelike. Notice, however, that one cannot reconstruct 7' from
this partial order, because a vertex on top of the tree can have multiple leaves.
However, given a possibly empty treelike partial order V', there is always a smallest
tree T for which V' = V(T). Such trees will be called reduced. We will come back
to these reduced trees in Section 4.

1.1. Shuffles of linear trees. There is a well-known notion of shuffle of two linear
orders, much used and studied in combinatorics and in algebraic topology: a shuflle
of two linear orders A and B is simply a linear order on the disjoint union A + B
which agrees with the given orders on A and on B. If A has m > 0 elements and
B has n > 0 elements, there are exactly (m:") such shuffles.

Another way, more common in algebraic topology, is to view a shuffle of two
linear orders A and B, now assumed non-empty, as a maximal linearly ordered
subset within the product partial order A x B. If Aistheorder 0 <1< ... <m
and B is the order 0 < 1 < ... < n, then such a linear order has (0,0) as smallest
element and (m,n) as largest, and can be pictured as a “staircase” path through
the rectangular grid.
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There are again (™) such paths, or shuffles. If we picture A = (0 <1 <... <m)
as a linear tree with m + 1 edges and m vertices, and similarly for B, then this
path through the grid is another linear tree whose edges are now named (i, j) with
0<i<mandO0<j<n, and where each vertex looks like one of

i(i+17j) (L(iﬂ'-l-l)
(4,9) (4,9)

We call these shuffles of linear trees classical.

Example 1.4. For the two linear orders

Slz c
A: jfi B: Zj)

0

here are three ways of viewing one and the same shuffle:

(3’C)£

(3,0)

3,b .
( )l
(va)l (1,b)
(1,b)i or : (2.b) (3.b)
(1,a) Ere——

(0,a) (1,a)
(0.0) \

or the linear order z < u <y < z < v.

‘We now wish to extend this notion of shuffle to trees.

1.2. Shuflles of trees.

Definition 1.5. Let S and T be two trees. A shuffle of S and T is a tree A for
which the following four conditions hold:

(1) The edges of A are labelled by pairs (s,t) where s and ¢ are edges of S and
T, respectively.

(2) The root of A is labelled by the pair (rg,r7) of root edges of S and T

(3) The set of labels of the leaves of A is equal to the cartesian product of the
leaves of S and those of T

(4) If (s,t) is the label of an edge of A which is not a leaf, then either the in-
coming edges of the vertex above (s,t) are labelled (s1,t),. .., (Sm,t) where
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$1,---,Sm are the incoming edges of the vertex above s in S; or these incom-
ing edges are labelled (s,t1),...,(s,t,) where t1,...,t, are the incoming
edges of the vertex above ¢ in T.

Notation: We will write Sh(S,T) for the set of shuffles of the trees S and T'.

Here is a picture to illustrate the last condition of the definition, where the vertex
of S above the edge s and the vertex of T" above the edge t give rise to a vertex in
A of two possible types above (s, t):

31\47” tl\./t"

S : 0 T:
s ‘t

A (317\ /sm, or A: (‘sth 4%)
(s,t) (s,t)

Example 1.6. Here is a complete list of the 14 shuffles of the following two trees

Ns Y
1 and T b\./d

0 ‘ a

0
—o0—0

taken from [12], Example 9.4. The labels are specified for the first three shuffles.

(2,c)l (2,e)l (3,c)i (3,e)l (2,c)l (3,c)l (2,e)l (3,e)l (2,c)l (3,c)l (2,6\)\0/(3,6)
(Q,b)\./(Q,d) (3,b)\./(3,d) (2,b)\o/(3,b) (Q,d)\o/(s,d) (2,b)\o/(3,b) (1’e)i

(2,a) Mo ,a) (1,b) >Se (1,d) (1,6) S (1,d)
a, a)i (1,a)i (1,a (L
(0,a) ‘ (0,a) ‘ (0,a ‘
Ny i l NSNS DL
i i NN

O0—CQ

~, 4 ~" I
% i ~

Ll N L NN LN WY

VUUOLN DD N }
é\. /é é\. /l é\. /é é\. /é
NN NG AN S B N NV AN Y/
o1 YLl
I

Remark 1.7. Notice that a planar structure on each of two trees S and 7" induces a
planar structure on each of their shuffles, as illustrated by the way we have drawn
the trees in the example above.
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2. CHARACTERIZATIONS OF SHUFFLES OF TREES

In the examples presented in the previous section, one observes that each branch
of a shuffle of two trees S and T is given by a classical shuffle of a branch of S
and one in T. We will start this section by showing that in fact this provides an
equivalent definition of the notion of shuffle.

Proposition 2.1. Let S and T be two trees. A shuffle of S and T is a tree A
satisfying the conditions (1)-(3) of Definition 1.5 (on the labelling of the edges, the
root and the leaves), as well as,
(4") For any two leaves s of S and t of T, the branch from the leaf (s,t) of A
down to its root is a classical shuffle, of the two branches from s down to
the root in S and from t down to the root in T.

Proof. First note that for linear trees, both Definition 1.5 and Proposition 2.1 are
equivalent descriptions of classical shuffles.

For general trees, given the other conditions, it is then clear that Condition (4)
implies Condition (4') .

For the converse implication, let us consider an edge (s,t) in A, where the edges
immediately above s are denoted s;’s and the ones above t are denoted t;’s, as in
the picture below Definition 1.5. Because of Condition (4'), all edges above (s,t)
must be of the form (s;,t) or (s,t;). We have to show that no two different types
occur, and all of the same type occur. For the first property, suppose that some
(s;,t) and some (s,t;) are successors of (s,t). Let ¢; be a leaf above s; in S, and
¢; aleaf above t; in T. Then by Condition (3), (¢;,¢;) is in A. But then A is not
a treelike order. For the second property, suppose now that one has only edges of
type (si,t) above (s,t). Choose a leaf ¢; above each s;, and a leaf ¢ above ¢. Then
(¢;,0) are all in A by Condition (3), so by Condition (4'), all (s;,t) occur above
(s,t) (since as we have just seen no (s,t¢;) can). O

Remark 2.2. Conversely, given two trees S and T, and two branches bg and bp
inside them, it is not difficult to see that any classical shuffle of bg and by can be
extended to a shuffle of S and T'. The extension is in general not unique. The proof
is left to the reader.

The set of edges of a shuffle A is a subset of the cartesian product E(S) x E(T)
of the set of edges of S and of T', and the partial order induced by the tree structure
of A is the one induced by the partial orders on the edges of S and T', respectively.
These two partial orders are all treelike, of course. The notion of shuffle can also
be described in these terms. This way of defining shuffles generalizes the classical
notion of a shuffle of two linear trees L and M as a maximal linear suborder in
L x M, cf. Subsection 1.1 above.

Proposition 2.3. Let S and T be two trees. A shuffle of S and T is a subset
A C E(S) x E(T) for which

(1) The partial order on E(S) x E(T) restricts to a treelike partial order on A.

(2) The largest elements in this partial order on A are in bijective correspon-

dence with the pairs (s,t) where s and t range over the leaves of S and T,

respectively.
(3) The set A is mazimal with these properties (1)-(2).

Remark 2.4. To see the effect of Condition (2), consider the trees

: b\ and T l;

o c
‘ a

S
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Then the tree A pictured as

J‘(CJ)
(b,())\*/(a,l)

\ (a,0)

is maximal with Condition (1), since adding either the edge (b,1) or the edge (c,0)
will result in a partial order which is not treelike. This shows that Condition (2) is
necessary.

Proof. Suppose A is a shuffle in the sense of Proposition 2.1. Then, by definition,
the partial order A is treelike and the pairs of leaves are exactly the largest elements
of A. Only the maximality remains to be shown. Recall that Condition (4") implies
that for every pair of leaves (¢,¢') the branch | (£,¢') is a maximal linear order,
that is | (¢,£') is of the form {(rg,rr) < a1 < ... < ap < (¢, ')} such that there
isno b € E(S) x E(T) with a; < b < a;+1. Suppose now there exists some edge
(s,t) not in A, such that AU {(s,t)} is a tree. Consider a leaf (¢,¢") above (s,t).
Then | (¢,¢') (in AU {(s,t)}) is the set {(rs,rr),a1,...,an, (¢, €),(s,t)} with a
total order, which is impossible.

Conversely, consider a subset A C E(S) x E(T'), maximal with properties (1)
and (2). Let us show it is a shuffle in the sense of Definition 1.5. Conditions (1) and
(3) are obvious. Condition (2) on the root of A is true because of the maximality
condition. Indeed, if the pair of roots does not belong to A one could always add it
to obtain a larger set A having properties (1) and (2) of Proposition 2.3. We first
prove the remaining condition for the root, and then proceed by induction.

Suppose S has edges s1, ..., Sy above its root edge rg and T has tq, ..., t, above
its root edge rp. Write S; = {s € S; s > s;} and T; = {t € T'; t > t;} for the
corresponding subtrees. We know (rg,rr) is in A. Suppose that some (s;,rr) is
not in A. The maximality condition implies that A U {(s;,77)} is not a tree, that
is we can have either two incomparable elements a and b in A below (s;, ), or
a = (ag,ar) and b = (bg,br) in A with (s;,r7) < a and b < a and (s;, ) not
comparable with b. The first option is impossible: consider a leaf (¢,¢) above
(siyr7); this leaf is in A (as are all the leaves) and is above the incomparable
elements a and b, which contradicts A being a tree. The second option implies that
ag is in S;, and thus bg is in S; or is the root of S. That means b and (s;,rr) can
be incomparable only if bg is the root of S (and then by is not the root of T'). This
proves that for each i, either (s;,rr) is in A or some (rg,t) (with ¢ # rr) is in A.
Symmetrically, for each j, either (rg,t;) is in A or some (s,ry) (with s # rg) is in
A. But observe that two elements (rg,t) (with ¢t # r7) and (s,r7) (with s # rg)
can never be simultaneously in A (as they have a common leaf above them). Thus
we get that either for each 4, (s;,77) is in A, or for each j, (rg,t;) is in A.

We continue by induction. Suppose for instance, that for each 4, (s;,77) is in A.
Let A; be the intersection of A with S; x T'. It suffices to prove that each A; is a
maximal tree in S; x T. If it is not maximal, we can find © = (zg,zr) not in A;
such that A; U {x} is a tree. But by the maximality condition on A, we know that
AU{x} is not a tree. So, as before, we find elements a and b in A such that z < a,
b < a and z and b incomparable. Since z lies in 5; x T, a is in A;. Now, as b < a,
we obtain that b is either the root or lies in A;. But b cannot be the root as the
root is comparable with any element. Moreover b cannot be in A; because A; U {z}
is a tree, which contradicts x and b being incomparable while being both below a.
This contradiction shows that each A; is maximal. O

We will conclude this section with an inductive characterization of the notion of
a shuffle of two trees. To this end, notice that a tree S is either the unit tree 7, or



8 E. HOFFBECK AND I. MOERDIJK

is obtained by grafting m > 0 trees Si,...,S,, onto a corolla C,, (a tree with just
one vertex and m leaves); in this case we will write S = C,,[S1, ..., Sn].
Here is a picture of a corolla C,, and S = C,,,[S1, ..., Sm]-

Proposition 2.5. The set of shuffles Sh(S,T) of two trees S and T satisfies the
following three properties:
(1) (symmetry) Sh(S,T) ~ Sh(T, S).
(2) (unit) Sh(S,n) and Sh(n,T) are one-point sets.
(3) (induction) If S = Cpp[S1,...,m) and T = Cy[Th, ..., T,], then there is a
canonical bijection

0 : Sh(S,T) — ﬁ Sh(S;,T) + H Sh(S,T}).

i=1 j=1
(Here [ and + denote cartesian product and disjoint sum of sets.)

Proof. The first and second properties are obvious. The last one follows from the
description in Condition (3) of Definition 1.5. O

Remark 2.6. Of course, these properties determine the set of shuffles uniquely up
to isomorphism, in the sense that if F' is an operation associating a set F/(S,T) to
any pair of trees and 7 is a bijection

m n
T F(S,T) = [[F(S:.T) + [] F(S. 1),

i=1 j=1
such that F(S,n) and F(n,T) are singletons, then

o there is a natural bijection F(S,T) — F(T,S)
e there is a bijection F(S,T) — Sh(S,T) compatible with 7 and 6.

Remark 2.7. From this description, we see that the set Sh(S,T) carries a natural
partial order, again defined by induction: if the partial orders on shuffles of smaller
trees have been defined, we order Sh(S,T) by taking the product partial orders on
[1Sh(S;,T) and [[Sh(S,T};), and then ordering the two summands by declaring
elements in the left hand summand to be smaller than those in the right hand one.
The symmetry isomorphism in (3) reverses this order. We will discuss this partial
order in more detail in Section 4.

Remark 2.8. So far in the paper, we have considered open trees, that is trees whose
external edges are open, i.e., connected to one vertex only. In the literature (cf.
[7], for example) one also considers shuffles of trees with stumps (also referred to
as bald vertices or vertices of valence zero). From our point of view, these can be
described as follows: for two trees S and T, possibly with stumps, let S and T°
be the open subtrees obtained by pruning the stumps away. Then the shuffles of .S
and T are in bijective correspondence with those of S° and T°. In fact, a shuffle of
the former two as considered in loc. cit. is obtained from a shuffle A of the latter
two by reintroducing a stump above each pair of leaves of S° and T° which aren’t
both leaves in S and in T, respectively.
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Here is an example, with the three shuffles obtained from the following two trees:

A .
S l(L ’ and T: b\O/C

0 ‘ ‘

o O] S ©

o © o
b2\ /175 02\ / c3 b2\ /bS 2\ / 3 bz\. c2 b3\ / c3

e} C.

] Jo e .
\ / ’ all} all}

‘ aO‘ aO‘

3. THE NUMBER OF SHUFFLES

For two trees S and T, we will write sh(S,T) for the number of shuffles of
S and T, in contrast with the set of shuffles Sh(S,T). This number grows very
fast in the size of the trees S and T, and it seems difficult to give some uniform
closed formulas giving precise information about this number as a function of S
and T, except for some very special types of trees. In this section, we will present
some simple observations concerning the number sh(S,T). To begin with, from
Proposition 2.5 one immediately obtains the following.

Proposition 3.1. The number of shuffles sh(S,T) of two trees S and T satisfies
the following three properties:
(1) sh(S,T) = sh(T,S).
(2) If T is the unit tree n, sh(S,n) =
(3) If S=Cn[S1,...,8n] and T = C [Tl,...,Tn], then
sh(S,T) = [ [ sh(S:, T) + [ sh(S.T)).
i=1 j=1
Remark 3.2. For the linear trees L, and L, with p and ¢ vertices respectively, let us
write A(p, q) for sh(L,, L,). Then the proposition states that A(p,0) =1 = A(0, q)
and A(p,q) = Ap — 1,9) + Mp,q — 1), which is the familiar inductive relation
defining the binomial coefficient (p;q) =" ;i'q) + (7 +Z_1). It corresponds to the
generating function (see e.g. [15, Ch 14]) defined by A(x,y) = (= + y)A(z,y) for
which A(z,y) = > A(p, ¢)xPy?.
A similar simple relation already fails for binary trees. For example, let us write
By, for the binary tree all of whose branches have p vertices,

O Ny XN
? B : \\/ Bs :
| T \/

and B(p, q) for sh(B,, By). Then the proposition gives 3(p,0) =1 = (0, ¢) and for
p,q >0,

Bll

B(p,a) =B —1,9)* + B(p,q — 1)
But the coefficients of the generating function F defined by F(x,y) = (z+y)F(x,y)?
do not describe these shuffles. Instead, the coefficient of zPy? describes the number
of binary trees with p white vertices and ¢ black ones, a related but different
combinatorial number.
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One can describe upper and lower bounds for the number sh(S,T). Let us define
the height ht(S) of a tree S as the number of vertices on the longest branch.

Proposition 3.3. For any two trees S and T, the following inequalities hold:

() =)

, o,
< H (|a + |ﬁ|)
AL
where « and B range over all branches of S and of T, respectively, and |a| denotes
the height of a branch.

Proof. If a and (8 are the longest branches of S and T, we have observed in Re-
mark 2.2 that a shuffle of o and S can be extended to a shuffle of all of S and T
This gives the lower bound. Since an arbitrary shuffle of S and T is determined by
the family of shuffles of their branches, we obtain the coarser upper bound. The
sharper one simply comes from the observation that any shuffle must start with the
root of S or with the root of T. O

Example 3.4. The lower bound is in general not very sharp. Indeed, in the case
of Example 1.6, with both trees of height 2, we already counted 14 shuffles, while
the binomial coefficient of the lower bound is 6. A computer calculation by James
Cranch shows that for the trees S and T

R

and T : l
%
|

of height 3 and 4 respectively, the number of shuffles is 3089. The fact that this is
a prime number perhaps shows the lack of symmetry and additivity properties of
sh(S,T).

\f/
|

As a final illustration of the growth of the number of sh(S,T), let us consider
shuffles of a tree S with linear trees. For such a fixed tree S, define an integer
function Pg : N — N by Pg(n) = sh(S, L,). Thus, for example, Ps(0) = 1 for any
tree S, while Ps(n) = 1 if S is the unit tree n and Pg(n) = n + 1 if S has one
vertex, i.e., is a corolla. For the proposition, let us introduce some notation. If S
is a tree and v is a vertex in S, write S, = {s € S; s > v} for the maximal subtree
of S with v as its root vertex,

\4

and write S! for the number

St=1] 15

veS
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where v ranges over all the vertices in .S, and |S,| is the number of vertices in S,,.
Then for a linear tree L,, one has L,! = n! and for S = C,,[S1,...,Sn] one has

Sl = || (lj Sﬂ) :

Proposition 3.5. For any tree S the function Ps : N — N is a polynomial of
degree |S| with rational coefficients, and leading coefficient (S!)~!

Proof. The proposition is obviously true for a corolla S, as already pointed out.
For a larger tree S = C,,[S1,...,Sn], we can use Proposition 2.5(3) to write

HPS -‘rPS n—l)

ég

HPS n—l HPS

If we write the leading term of Pg(n) as csn®s, and that of Ps,(n) as ¢;n?, then
cgn?s is also the leading term of

m m m
H cindi + ch(n —D% 4+ Hclv()di
i=1 i=1 i=1

1=1

(l1) {5

where d = dy + ... + dy,. But by Faulhaber’s formula [9], >°7_ j¢ is a polynomial
in n with rational coefficients, of degree d+ 1 and with leading coefficient (d+1)~!
So we find that

=([[e)@d+1)"" and ds=d+1.
But if d; = |S;| then d +1 = |S], and if ¢; = (S;!)™! then c¢g = (S!)~!. So the
proposition is proved. O

Example 3.6. The polynomial Ps does not determine S, as the following example,
pointed out to us by James Cranch, shows. Consider the following two trees S and
R,

b

*—
*—

wd Be e s
d R: \./
|

and let us calculate Ps(n) and Pr(n). A shuffle of S and the linear tree L, is
described by putting i vertices of L, below the root of .S, then j vertices between
the bottom two vertices, so that on each of the three branches, one is left with a
shuffle of the top n—i—j vertices of L,, and the one top vertex of S on that branch.
There are n — i — j + 1 of the latter shuffles on each branch, so

\f/
|

n

UES 3 NURESTRIES 3) BISFEEIED 3 DED 3l W)

=0 j k=0 35=0 k=0 Il=1 k=0

3

I
<

where we have used the familiar formula for the sum of cubes.
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On the other hand, a shuffle of R and L, is described by putting i vertices of L,,
below the root of R, and then shuffling each of the two linear branches of R with
the remaining (n — %) vertices of L,. So

"n—i+2\° & (k+ 2\
=32 (") -2 (%)
; k=0
also, showing Pr = Ps.

4. THE LATTICE OF SHUFFLES

The inductive description of the set of shuffles of two trees S and T given at the
end of Section 3,

Sh(S,T) = ﬁ Sh(S;,T) + ﬁ Sh(S,T;),

i=1 j=1

defines a partial order on the set of shuffles, by declaring elements in the left sum-
mand to be smaller than those in the right and next proceeding by induction. We
would like to describe a more picturesque way of introducing this partial order.
Let us draw the vertices of S as white and those of T' as black. Then the minimal
element in Sh(S,T) is the one with a copy of the black tree T on top of each of the
leaves of S. The elements in the partial order immediately above that are obtained
by “percolating” the copies of the black root vertex of T' just above a single top
white vertex of S through that white vertex. If the root of T" has n incoming edges
and that particular top vertex of S has m incoming edges then this involves replac-
ing m copies of the root of T' by just one, and replacing the top vertex involved of
S by n copies of it. Here is a picture for n = 2 and m = 3:

vV

If, more generally, we change a shuffle by locally replacing a white vertex with m
incoming edges and m copies of the same n-ary black vertex on top, by percolating
each black vertex through the white one to obtain one single black vertex with n
copies of the white one on top, we obtain a new shuffle of which we will say that
it is obtained from the first one by a single percolation step. Below is a picture
illustrating such a single percolation step. Notice that the figures below have the
same “boundary”, i.e., the same root and the same set of local leaves, be it in a
different planar order. Therefore such a percolation step can indeed be performed
locally, leaving the rest of the shuffle untouched.
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t\;élxtn) (Sm;tk;ém’tn) (51 athgémvtl) (Sl’t)\mé'm’tn)

(s1,t1

(Slyt) O (S'm7t) (S)tl) L 3 (S;tn)

(s:t)

Above is a picture of a percolation step locally, for a part of S and a part of T

drawn below.
AN N

‘ t

With this definition, a shuffle A comes before a shuffle B in the partial order on
Sh(S,T) precisely when B can be obtained from A by a sequence of percolation
steps. If we start with the minimal shuffle having copies of the black tree T on top
of a single white tree S, and perform all possible sequences of percolation steps,
then we obtain all the possible shuffles of S and T', ending with the maximal one
having copies of S on top of the tree T'. For this reason, these shuffies of trees were
called percolation schemes in [12] where they occur first. In the recent literature,
the term ”elementary initial subtrees” is also used, cf. [13].

For instance, in Example 1.6, the first shuffle is the minimal shuffle. The second
shuffle is obtained from the first one by a single percolation step (in the middle),
and the third one is obtained from the second one by a single percolation step (in
the top right corner). The fourth shuffle can be obtained from the second one, but
not from the third one. Actually, the third and fourth shuffles are not comparable.

For a tree T, recall that we write V(T) for the partial order of vertices of T,
taking the root vertex as smallest element. From now on, rp will now denote the
root vertex rather than the root edge. We will also have occasion to use the opposite
partial order, denoted V(T')¥. Any partial order P defines a topology on its set of
elements, the so-called Alezandrov topology, the open sets of which are the upwards
closed sets. Explicitly, U C P is open if and only if

(p<qandpelU)=qeU
for any p, ¢ in P. Every such open set is the union of basic open sets of the form

B(p) ={qeP|p<d}

Let us write O(P) for the lattice of open subsets of P. With this notation, we can
state the following result.

Proposition 4.1. Let S and T be two trees. There is a natural isomorphism of
partially ordered sets

¢ : Sh(S,T) — O(V(S) x V(T)Y).

Remark 4.2. An intuitive way to describe this isomorphism is as follows: Thinking
of a shuffle A of S and T as obtained by percolation steps from the minimal shuffle
(copies of the black tree T on top of the white one S), the corresponding open
set consists of exactly the pairs of vertices (v, w) € V(S) x V(T) for which w has
percolated through v in A. For example, in Example 1.6, the first tree consists
in copies of T' above S, and the corresponding open set of percolated vertices is
empty. To obtain the second tree, the root vertex of T' has percolated through the
top vertex of S, and thus the corresponding open set is just the singleton consisting
of the pair with the top vertex of S and the root vertex of T'.
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Proof. Note that if S or T is the unit tree n with just a single edge, then Sh(S,T)
is a single point, as is the lattice of open subsets of the empty partial order, so the
proposition is still valid.

We first show that O(V(S) x V(T)V) allows a similar inductive description as
Sh(S,T). To this end, write S = Cy,[S1,...,5m] and T = C,[T1,...,Ty], as
before. Consider an open set U C V(S) x V(T)V. If the pair (rg,rr) of root
vertices does not belong to U, then no (rg,t) can belong to U, so U is in fact a
subset of [[V(S;) x V(T)V. On the other hand, if (rg,rr) does belong to U, then
Sx{rr} C U,soU is of the form S x {rr}UUU...UU, where U; C V(S)xV(T;)¥
are disjoint open sets. These U;’s together with the fact that (rg, ) € U determine
U. These observations define an isomorphism:

T:O(V(S) x V(T)Y) = [JoW(S) x V(1)) + [JOV(S) x V(T)Y).

We can now simply define the isomorphism ¢ = ¢g 1 of the proposition by induc-
tion, in a way that respects the two “induction isomorphisms” 6 and 7, as in the
diagram below.

Sh(S,T) - T12%, Sh(Si, T) + 1", Sh(S,T})
»s,T [Tes;, r+1ws
OV (S) x V(T)Y) = [TO(V(S:) x V(T)Y) + [TO(V(S) x V(T})Y)

O

Remark 4.3. Since open sets in a poset correspond to antichains of elements in that
poset, the problem of counting shuffles is a special case of that of counting such
antichains, a problem known to be notoriously difficult.

Corollary 4.4. The partial order Sh(S,T) is a finite distributive lattice.

Recall the notion of a reduced tree from Section 1. Any tree T has a unique
reduction 7.4, obtained by pruning away all the leaves, except for leaving exactly
one leaf at each top vertex.

\t/ |

N\ N\ n ol l

T W d Tyoy : N
|

This reduced tree T,eq is the minimal tree for which V(T}..q) ~ V(T). The
previous proposition clearly implies that for the study of shuffles, one can restrict
oneself to reduced trees. We state this explicitly as:

Corollary 4.5. For any two trees S and T there is a canonical isomorphism of
partially ordered sets:

Sh(S,T) = Sh(Sred, Tred)-

Before stating the next corollary, let us introduce some more notation. If P is
a partial order, each open set U C P has a characteristic function xy : P — Lo
where Ly is the linear order with two vertices v and w

S
\
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and xp(p) = v if and only if p € U. In this way, we obtain an isomorphism of partial
orders O(P) — Hom(P, Ly). We also recall the familiar natural order isomorphism
for three partial orders P, () and R,

Hom(P x Q,R) - Hom(P, Hom(Q, R)).

Finally, we note that O(P) is the free complete semilattice generated by the basic
open sets B(P), which form a partial order isomorphic to PV. More precisely, if L
is a semilattice with all suprema and f : PV — L is a map of partially ordered sets,
then f extends uniquely to a map f : O(P) — L of semilattices, i.e., preserving all
suprema. Using these generalities, we observe the following:

Corollary 4.6. There is a natural order isomorphism
Sh(S,T) — Homy(O(V(T)),0(V(S)))
between the shuffles and the maps of sup-semilattices.

Proof. We just rewrite the isomorphism of the proposition, as follows.
Sh(S,T) = OV(S)x V(T)Y)
= Hom(V(S) x V(T)Y, Ls)
= Hom(V(T)Y,Hom(V(S), Ls))
= Hom(V(T)Y,0(V(S)))
= Homy(O(V(T)),0(V(5))
O

Corollary 4.7. For any three trees R, S and T, there is an asssociative composition
Sh(S,T) x Sh(R,S) — Sh(R,T)

giving the trees and shuffles between them the structure of a category (more precisely,
a category enriched in distributive lattices).

We conclude this section with a discussion of the group of automorphisms of the
lattice Sh(S,T) of the shuffles of the two trees S and T’; or equivalently, the group
of automorphisms of the partial order V(S) x V(T')V. Clearly two automorphisms
a of S and 8 of T give an automorphism of Sh(S,T), thus defining a map

7 Aut(S) x Aut(T) — Aut(Sh(S,T)).
We shall prove the following result.

Proposition 4.8. Let S and T be two reduced trees. Then the above map w :
Aut(S) x Aut(T) — Aut(Sh(S,T)) is an isomorphism, except in the case where
S =T is a linear tree with at least two vertices, in which case Aut(S) = Aut(T) is

trivial while Aut(Sh(S,T)) is ¥s.

Proof. Let us start with the easy linear case. If S = L,, and T' = L,, are lin-
ear trees with m and n vertices, respectively, than V(S) x V(T)Y is a rectangle
{1,...,m} x {1,...,n}V. The only possible non-identity automorphism of such
a rectangle switches the two initial sides {1} x {1,...,n}¥ and {1,...,m} x {n},
and this automorphism exists if and only if n = m (but is again the identity if
n=m=1).

Next, suppose S is not linear, and let s; and sy be two distinct top vertices in
S. Also, write

M = {(s,rr)|s is a top vertex in S}

for the set of maximal elements in V(S) xV(T)V. The subset V(S) x {rr} C
V(S) x V(T)V contains M, is open, and is a tree. We claim it is the maximal set
with these three properties. Indeed, if A is an open tree containing M, then A
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cannot contain any element of the form (s',t') with ¢ # r7. To see this, observe
that since A is a tree, it must then contain a lower bound for (s1,rr), (s2,77) and
(s',t'), which is an element (s,t) with s < s1,s2 and t # rp. Since A is open, it
will then also contain (s1,t) and (s2,t), as well as (s,r7):

(s1,77) (s2,77)

(s,1)

which is impossible in a tree. This shows that A = V(S) x {rr}, and hence
this set is completely described by order-theoretic properties. In particular, any
automorphism ¢ of V(S) x V(T)Y must map V(S) x {rr} to itself, and hence
fix (rg,r7). Thus ¢ restricts to an automorphism of 1 (rg,rr) ~ V(S) and of
1 (rg,rr) =~ V(T)V. In other words, there are unique automorphisms a of S and 8
of T such that
w(rSWt) = B(t) and w(SaTT) = Oé(S).

We claim that ¥ (s,t) = (a(s), 5(¢)) for all s and ¢. Indeed, such a point (s,t) lies
on the side of the rectangular sublattice defined as the “interval” between (rg,t)
and (s,77).

This interval is a rectangle L, x Ly? given by the linear segments L from s down
to the root of S and L; from ¢t down to the root of T

(87TT)
e ~N

(rs,rr) (s,t)
~ ~

(Ts, t)

If we now apply what we noticed for the linear case in the beginning of the proof
to these two segments L, and L;, we know that the only possible non-identity
automorphism of such a rectangle switches (rg,rr) and (s,t). Applying this to
Y~ lom(a, B), which fixes (s,rr) and (rs,t) and hence defines an automorphism of
this rectangle, we find that since it fixes (rg, r7), it must also fix (s,t). This proves
P(s,t) = (a(s), B(t)) for all s and .

The case where T is non-linear follows by symmetry. O

5. RELATION TO OTHER STRUCTURES

In this section, we briefly sketch the réle played by shuffles in the relation between
trees and other structures, viz. topological spaces, operads and dendroidal sets.

5.1. Topological spaces. Each tree S defines a topological space BS, called its
classifying space. One way to define it is by viewing the partial order E(S) as a
category, and then to take the classifying space of this category, i.e., the geometric
realization of its nerve N(E(S)) [6]. Explicitly, a point of BS is an assignment A
of a length A(e) to each edge e of S. These lengths are real numbers 0 < A(e) < 1,
and the assignment must satisfy two conditions:

) Me)=1

e the set of edges e with A(e) > 0 lie on a single branch.
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The topology of BS is inherited from the product topology on [0, 1]E(S). Thus, for
the linear tree L, with n + 1 edges, BL,, = {(to,...,tn)|0 < t; < 1,> t; = 1}
is the standard n-simplex A™. As pointed out in the introduction, an elementary
but important observation is that the product A™ x A™ is a union of copies of
A™™ indexed by all the (n, m)-shuffles, i.e., all the shuffles of L, and L,,. More
generally, one has the following proposition.

Proposition 5.1. Let S and T be trees. Then BS x BT =, BA where A ranges
over all the shuffles of S and T.

Proof. Each shuffle A of the trees S and T' defines an injection of posets E(A) —
E(S) x E(T), and hence a map |[NE(A)| — |[N(E(S x T))|. Since realization and
nerve commute with products and preserve injections, this gives an embedding of
compact Hausdorff spaces BA — BS x BT. The family of all these embeddings is
jointly surjective. Indeed, the family of maps of simplicial sets NE(A) — N(E(S) x
E(T)) already is. To see this, consider a non-degenerate n-simplex of N(E(S) x
E(T)), say
(So,to) < (Sl,fl) <...<Z (Sn,tn).

Call such a non-degenerate simplex maximal if it is not a face of another non-
degenerate simplex. Each such maximal simplex must have the property that
(Sn,tn) is a pair of leaves, while (sg,%g) is the pair of roots, and the simplex it-
self is a shuffle of the two branches, down from s,, in S and down from ¢, in T.
Thus, a maximal simplex is a simplex in a shuffle A of S and T' (cf. Remark 2.2). O

Remark 5.2. Realization and nerve also preserve pullbacks (intersections), so for
two shuffles A and A’ we find that BANBA’ = B(AN A’). Notice that the partial
suborder E(A)NE(A’") C E(S)x E(T) is again a tree with the same root and leaves
as A and as A’. This tells us exactly how the different BA’s are glued together
to form BS x BT. More formally, let Z be the family of finite non-empty subsets
I={A;,...,A,} of the set of all shuffles A of S and T, and let A; = A;N...NA,.
Then BS x BT is the colimit of the diagram of spaces BA; indexed by Z.

5.2. Operads. A coloured operad P consists of a set C' = Cp of colours, and for
each n > 0 and each (n+1)-tuple (¢, ..., ¢y, ¢) of elements of C' a set P(cy, ..., cu;c)
of “operations”, including a “unit” 1. € P(c;c) for each colour. The idea is that
these operations take n inputs of “colours” ¢y, ..., c, respectively, and produce an
output of colour ¢. For example, if {X.}.cc is a family of sets indexed by C, one can
take P(cq,...,cn;c) to be the set of functions X, x...x X, — X.. By definition,
an operad also has structure maps, encoding the composition of operations, identity
operations and permutations of variables. We refer to [16] for a precise definition
and examples.

For two operads P and @, with sets of colours C' and D respectively, there is a
so-called Boardman—Vogt tensor product P®py ), which is a coloured operad with
C x D a set of colours, and with operations generated by the following:

p ® 1d S (P ®BV Q)((cl7 d)a ey (Cn, d)7 (C7 d))
for each p € P(cy,...,cp;¢) and d € D; and
10 ® q € (P ®BV Q)((C, d1)7 sy (C7 dn)a (C7 d))

for each ¢ € Q(dy,...,dyn;d) and ¢ € C. These generators are next subject to
relations coming from the structure maps of P and () separately, together with the
following Boardman—Vogt (interchange) relation:

PRd)(c1®q...,cn ®q¢) =(c®@Q(PRdy,....,pRdy) T
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for p and ¢ as above, and 7 the permutation putting the input colours (¢;,d;) in
the same order.

Here is a picture of the relation, bearing an obvious resemblance to the percola-
tion steps discussed before.

Ny Ny o N
T = N

i T

See [3] for a detailed description.

Every tree T' defines an operad 2(7") whose colours are the edges of 7. There
is exactly one operation in Q(T')(eq, ..., en;e) if there is a subtree of T' with leaves
e1,...,en and root edge e ; and otherwise Q(T)(eq, . .., en; e) is empty. Composition
of operations is given by the grafting of subtrees.

For two trees S and T, there is a diagram of trees indexed by the poset Z from
Remark 5.2, assigning to {A1,..., A,} the tree A; = A;N...N A,. For each of
these trees, there is a injective map of operads

Q(A;) = QS) @y QT)

and in fact, Q(S) ® gy Q(T) is the union of the Q(A)’s indexed by all the shuffles of
S and T ; or more precisely, the colimit of the diagram of operads Q(A;) induced
by the sets I in Z.

5.3. Dendroidal sets. There is a category ) introduced in [11] whose objects are
trees (possibly with stumps), and whose morphisms S — T are maps of operads
Q(S) — Q(T). The category of presheaves of sets on €, i.e., of functors X : QP —
Sets, and natural transformations between them is referred to as the category of
dendroidal sets, and denoted dSets. It carries a tensor product (introduced in [11]),
defined on two representable dendroidal sets Q[S] and Q[T corresponding to trees
S and T by
(QS] @ QT)(R) = Hom(U(R), (S) @pv QT))

where R is any object of Q2 and Hom is in the category of coloured operads. This
tensor product is then extended to arbitrary dendroidal sets in the unique (up
to isomorphism) way so as to preserve colimits in each variable separately. Every
presheaf is a colimit of representables, and for the presheaf Q[S]®Q[T] just defined,
one can check that Q[S] ® Q[T is the colimit of Q[A]’s where A ranges over finite
intersections of shuffles, exactly as in Remark 5.2 above. This fact plays a crucial
role in the analysis of homotopical properties of the tensor product of dendroidal
sets, see e.g. Section 3 and Theorem 6.3.4 in [7]. It follows formally that for
the unique colimit preserving functor B from dendroidal sets to topological spaces
defined on representables by B(Q[T]) = BE(T) (the classifying space of E(T)),
there is a natural homeomorphism

B(X®Y)— B(X)x B(Y)

for any two dendroidal sets X and Y. This property, in turn, is closely related to
the fact that Q is a “test category” in the sense of Grothendieck, cf. [2].
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