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Adaptive estimation and discrimination of Holevo-Werner channels

Thomas P. W. Cope and Stefano Pirandola
Computer Science and York Centre for Quantum Technologies, University of York, York YO10 5GH, UK

The class of quantum states known as Werner states have several interesting properties, which
often serve to illuminate unusual properties of quantum information. Closely related to these states
are the Holevo-Werner channels whose Choi matrices are Werner states. Exploiting the fact that
these channels are teleportation covariant, and therefore simulable by teleportation, we compute
the ultimate precision in the adaptive estimation of their channel-defining parameter. Similarly,
we bound the minimum error probability affecting the adaptive discrimination of any two of these

channels.

In this case, we prove an analytical formula for the quantum Chernoff bound which

also has a direct counterpart for the class of depolarizing channels. Our work exploits previous
methods established in [Pirandola and Lupo, PRL 118, 100502 (2017)] to set the metrological
limits associated with this interesting class of quantum channels at any finite dimension.

I. INTRODUCTION

When asked about the advances quantum information
technology ﬁHﬂ] will make in the future, most commonly
mentioned will be quantum cryptography@@—%or the
potential advances of quantum computing , ]. De-
spite this, one of the fastest growing areas is that of
quantum metrology M], where parameters of phys-
ical systems are estimated with high precision, often us-
ing resources such as entangled or spin-squeezed states to
achieve higher resolution. The two bounds often stated
in metrology are the standard quantum limit, in which
the error variance associated with the parameter estima-
tion scales as n~!, with n being the number of uses, and
the Heisenberg limit, with improved scaling of n=2.

Another important area is that of quantum hypothe-
sis testing ﬂ@@] and its formulation in terms of quan-
tum channel discrimination. The latter is particularly
important in problems of quantum sensing, e.g., in quan-
tum reading [39-146] or in quantum illumination ]
When the discrimination problem is binary (i.e., with two
hypotheses) and symmetric (i.e., with the same Bayesian
costs), the main tool is the Helstrom bound [53] which
reduces the computation of the minimum error proba-
bility to the trace distance ﬂ] Notable lower and up-
per bounds to the probability can also be expressed in
terms of the fidelity [5456] and the quantum Chernoff
bound ﬂ@—@], which are particularly useful when many
copies are considered in the discrimination process.

Recently, Ref. ﬂﬁ] showed how quantum teleporta-
tion @—Ié] is a primitive operation in the fields of quan-
tum metrology and quantum hypothesis testing. First
of all, whenever a quantum channel is teleportation-
covariant @], i.e., it suitably commutes with the random
unitaries of teleportation, it can be simulated by teleport-
ing over its Choi matrix (see Ref. [64] for a review). As
shown in Ref. @], this channel simulation can then be
exploited to re-organise the most general possible adap-
tive protocol of channel estimation/discrimination into a
much simpler block version, where the unknown channel
is probed in an independent and identical fashion up to
some general quantum operation. Thanks to this reduc-

tion, one can compute the ultimate limit in the adaptive
estimation or discrimination of noise parameters encoded
in teleportation-covariant channels. This family includes
Pauli channels (depolarizing, dephasing), erasure chan-
nels, and also bosonic Gaussian channels ﬂﬁ]

In this manuscript, we adopt this recent methodology
to study the ultimate metrological limits of another class
of teleportation-covariant channels: the Holevo-Werner
(HW) channels, defined as those channels whose Choi
matrices are Werner states M] They hold an impor-
tant place in quantum information, since one element of
this class was used to disprove the conjecture of the ad-
ditivity of minimal Reny{ entropy ﬂ@] As with the class
of Werner states, the HW channels can be parametrised
by a real parameter 7 € [—1,1], and we use the notation
Wh.a : Ha = Ha at dimension d.

By using the quantum Fisher information (QFI) and
the quantum Cramer-Rao bound (QCRB) ﬁi, |, we
then compute the ultimate precision in the adaptive es-
timation of the channel-defining parameter n. The ana-
lytical formula is simple and the bound is asymptotically
achievable by a non-adaptive strategy. Then, we consider
the adaptive discrimination of two (iso-dimensional) HW
channels with arbitrary parameters n and ¢. The min-
imum error probability can be bounded by single-letter
quantities in terms of the fidelity, the relative entropy and
the quantum Chernoff bound (QCB) [57]. For the latter,
we show an analytical formula and a corresponding one
for the class of standard depolarizing channels.

The structure of this paper is as follows. In Sec.[IIl we
describe Werner states and HW channels, also explain-
ing their teleportation covariance. In Secs. [[IT] and [V
we then derive the ultimate metrological and discrimina-
tion limits associated with these channels, giving explicit
analytical formulas. We then conclude in Sec. [Vl

II. HOLEVO-WERNER CHANNELS AND
THEIR PROPERTIES

Werner states ﬂ@] are defined over two qudits of equal
dimension d. They have the peculiar property that they
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are invariant under local unitaries
(Ug @ Ug)Wyy a(UL @ UL = W, 4. (1)

Whilst there exist several parametrisations of this family,
here we shall use the expectation representation, so that

1 = Tr (Wy 4F) (2)
where F is the flip operator acting on two qudits, i.e.,
d—1
Fe=_ lij) (jil . (3)
i,j=0

with {|i)} being the computational basis. The expecta-
tion n ranges from —1 to 1, with separable Werner states
having nonnegative expectations.

We also have an explicit formula for W, 4 as a linear
combination of the F operator and the d? x d? identity
operator I, i.e., ﬂ@]

d—n)l+ (dn—1)F
B —d ’ (4)

Wya= (

from which Eq. @) is easy to verify. It is known that,
for d > 3, there exist Werner states which are entangled
but yet admit a local model for all measurements @,
@] Also, the extremal entangled Werner state W_; 4
was used to disprove @] the additivity of the relative
entropy of entanglement (REE) |. Werner states
of a given dimension d have a nice property: for any
value 7, they share the same eigenbasis, so that they are
simultaneously diagonalisable. In particular, a Werner
state W, 4 has the following eigenspectrum: d(d + 1)/2
eigenvectors with eigenvalue (1+4n)[d(d+1)]~! and d(d—
1)/2 eigenvectors with eigenvalue (1 —n)[d(d — 1)] 7.
Recall that the Choi matrix of a quantum channel & :
Ha — Ha is defined as yg :=I®E(|P) (P|), where |P) =
d=1/? Z'f;ol liz) is a maximally-entangled state and I is
the d dimensional identity map. Then, the HW channels
are those channels whose Choi matrices are the Werner
states, i.e., x = W,,a. Their action on an input state

W
p is given by ﬂﬂj

(d =X+ (dn—1)p"

Wi () 1= e )

with p” the transposed state. In particular, the extremal
HW channel

Weralp) = =2 ©)

is one-to-one with the extremal Werner state W_; 4. The
latter channel was used as a counterexample of the addi-
tivity of minimal Renyi entropy ﬂ@] whilst the minimal
output entropy of () was proven to be additive [74].

For completeness, recall that closely related to Werner
states are the isotropic states ﬂﬁ], defined by

(d— Q)defd; — )M T

Qa,d =

where M is the maximally entangled operator

d—1
M= i) (il (8)

i,7=0

and a := Tr(Q,,4M) ranges in [0, d]. For a < 1, we have
a separable isotropic state. The latter can be formed by
taking the partial transpose (PT) of a (separable) Werner
state with n = «, i.e.,

Qoa =Wy (a<1). (9)

Isotropic states of a given dimension are also simultane-
ously diagonalisable. Their eigenspectrum has 1 eigen-
vector with eigenvalue 7/d and d? — 1 eigenvectors with
eigenvalue (d —n)[d(d® — 1)]7L.

It is known that the isotropic state €2, 4 is the Choi
matrix of a depolarizing channel D,, 4, whose action is @]

(d—a)I+ (da—1)p
d? -1 '

Da,d (p) = (10)
Representing the isotropic state as @, 4 = pd 21+ (1 —
p)|®) (®| with p € [0,d*/(d* —1)], then we may write
Dyp.a(p) = p% + (1 — p)p. In fact, we may easily convert
between the two forms by using p = d(d — a)(d? — 1)~ 1.
From Eqgs. () and (I0), we see that depolarizing and
HW channels are equivalent up to a transposition, which
is why we may also call the HW channels as “transpose”
depolarizing channels.

Like depolarizing channels, HW channels are also
teleportation-covariant. Recall that a quantum channel £
is called “teleportation covariant” if, for every teleporta-
tion unitary U (i.e., Pauli unitary in finite dimension [60]
and displacement operator in infinite dimension ﬂ@, D,
there exists some unitary V such that

E(UpUT) =VE(p) V. (11)

This concept was discussed in Refs. m@] for discrete
variable systems, and generally formulated in Ref. ﬂ@]
for both the discrete and continuous variables (see also
Ref. [64] for a review). One can check that the HW chan-
nels are teleportation-covariant. For an arbitrary unitary
U, we have I = U*L(U*)" and (UpU")T = U*pT(U*)T.
Therefore, from Eq. (@), we find that

Waa (UpUT) = UWy.a (p) (U1, (12)

which realises Eq. ([I) with V = U*.

Because HW channels are teleportation covariant, they
can be simulated by teleporting over their Choi matri-
ces ﬂ@, @] Let us call 74 the local operations and
classical communication (LOCC) associated with the d-
dimensional teleportation protocol. Then, we may write

Wha.a (p) =Ta (p@ Why.a) . (13)

More precisely, the HW channel W), 4 forms a class of
jointly teleportation-covariant channels with respect to



the parameter 1. This means that W, 4 satisfies Eq. (1))
with the output unitaries V' independent of 7. For this
reason, in the channel simulation in Eq. (I3)), the pa-
rameter 1 only appears as a noise parameter in the Choi
matrix and not in the teleportation LOCC 7j.

Using the simulation in Eq. (I3]), an adaptive protocol
over n uses of the HW channel W, 4 can be reduced to
a block protocol over a tensor product of Werner states
ng. In the literature ﬂ@], this type of adaptive-to-
block simplification was first introduced for the tasks of
quantum/private communications in Ref. [63]. See also
Refs. ]. Later it was extended to quantum metrol-
ogy and channel discrimination [33]. See Ref. [83] for a
review on channel simulation and adaptive metrology.

IIT. QUANTUM PARAMETER ESTIMATION
WITH HOLEVO-WERNER CHANNELS

Consider a HW channel W,, 4 with known dimension d
but unknown parameter 7. The most general parameter
estimation protocol is adaptive and consists of n probings
of the channel, interleaved by quantum operations ﬂﬁ]
In fact, we may assume that we use a register of quan-
tum systems, from which we extract a system for each
transmission through the channel. After each transmis-
sion, the output is re-combined with the register which
is then subject to a global quantum operation. This is
repeated n times, after which the state of the register
py is measured, and the outcome is processed into an
optimal unbiased estimator 7 of 1. The minimum error
probability Var (n) := {(n — 7)?) satisfies the QCRB [23]

Var () > (Iy) ™, (14)

where I, ;18 the QFT optimised over all the adaptive proto-
cols P. More precisely, this optimisation is over all possi-
ble input states and quantum operations for the register,
and over all possible output measurements. In terms of

the Bures’ quantum fidelity F(p, o) := Try/\/opy/o, we

may write the following expression [33]

f" 8 |:1 - F(p:;’, pz+6n):|
n = S17];p 6772 )

(15)

where pj is the output of protocol P.

Because the HW channel W, 4 is (jointly) teleportation
covariant and therefore simulable by teleporting over its
Choi matrix W, 4 (which is a Werner state) with a n-
independent teleportation LOCC Ty as in Eq. [I3]), we
may re-organise any adaptive protocol of parameter esti-
mation into a block protocol so that the output state of
the register takes the form ﬂﬁ]

Py =AWT) (16)

for a trace-preserving quantum operation A not depend-
ing on the parameter 7 (see @] for more details on how

adaptive protocols of quantum metrology may be fully
simplified). This allows us to simplify the QFI, which
becomes a function of the Choi matrix W, 4. Follow-
ing [33], we may remove the supremum in Eq. (I5) and
simplify the formula to the following

7 1-— F(Wn,da Wn+6n7d)

IZ; =8n o

(17)

For the sake of clarity let us briefly repeat the steps
of the proof of Ref. [33] for our specific case. Eq. ([{7)
can be proven by combining Eq. ([I6) with basic prop-
erties of the fidelity, i.e., (i) monotonicity under A and
(i) multiplicativity over tensor products. In fact, we may
write

(1)
F(pp, pyrsy) = FOWELWES )
(i)

= F(Wn-,dv Wn+5n,d)n- (18)

Note that all the information about the protocol P was
contained in A, which disappears in the inequality above.
We have therefore the upper bound

- 8(1—F"
I,:]l S B(TL) = %, F = F(Wn,du W77+6777d)' (19)

As in Ref. [33], we now show that the upper bound
B(n) is additive. For n = 1 and dn — 0, we have F' =
1 — B(1)6n?/8 implying F"™ = 1 —nB(1)6n?/8 + O(én*).
Up to higher order terms, the latter expansion implies
the additivity B(n) = nB(1), so that we may write

(1-F)

I} <nB(1) =8n 57

(20)

The next step is to show the achievability of the upper
bound in the latter inequality. Consider a block pro-
tocol P where we prepare n maximally-entangled states
®®" = |®) (®|®" and partly propagate them through the
channel, so that the output is equal to pj; = W(gjg. It is
easy to see that this specific protocol achieves the QFI
I'(P) = nB(1), thus I} = nB(1), completing the proof
of Eq. (I). Also note that because P uses independent
input states, the QCRB Var(n)) > [I7(P)]~! is achievable
for large n via local measurements @]

Thus, the problem is reduced to computing the fidelity
between two Werner states. Because these states are di-
agonalisable in the same basis, we may write

F(Wya, Wea) =) v/Pidt (21)

where p; and ¢; are the eigenvalues of W, 4 and W¢ 4
respectively. After some algebra, we find

VIENIEg |, VI=n=0)
2 2 '

F(Wya, Wea) =

(22)



Now it is easy to see that the Taylor expansion of 1 —
F [Wy.4, Witsn,q] around 6n ~ 0 provides

(1-F [Wn,dv Wn+t5n7d]) _ 1 (23)
o> 8(1—n?)
Substituting this into Eq. ([IT), we derive
n n
Iy = =l (24)
so that the QCRB is given by
1— 2
Var (n) > - (25)
n
Here we may make several observations. First of

all, we notice that the QCRB is surprisingly dimension-
independent. Second, as expected from teleportation co-
variant channels, we cannot beat the standard quantum
limit. Third, this bound is also asymptotically achiev-
able for large n. In fact, as already said in the previous
proof, a specific strategy consists in probing the channel
(identically and independently) with part of maximally-
entangled states.

IV. BOUNDS FOR ADAPTIVE CHANNEL
DISCRIMINATION

Consider now the problem of symmetric binary dis-
crimination with two equiprobable (and iso-dimensional)
HW channels & = W, 4 and & = W, 4. The unknown
channel &, (with u = 0,1) is stored in a box which is
probed n times according to an adaptive discrimination
protocol Hﬁ] This protocol is as the one described be-
fore for parameter estimation but tailored for the dif-
ferent task of discrimination. In particular, this means
that the output state p), encodes the bit of information u
associated with the two hypotheses, and is subject to
a dichotomic Helstrom measurement @] The mean
error probability affecting the discrimination is there-
fore expressed in terms of the Helstrom bound @], ie.,
Perr = [1—D(pf, p)]/2 where D is the trace distance [1].
By minimising over all adaptive protocols, we define the
optimal error probability pSPt.

Because the two iso-dimensional HW channels W, 4
and W¢ g are jointly teleportation covariant, i.e., we
may write Eq. ([[I) with exactly the same set of out-
put unitaries V', then the two channels are teleportation-
simulable with exactly the same teleportation LOCC Ty
(but over different Choi matrices W, 4). For this reason,
we may re-organise the adaptive discrimination protocol
into a block protocol with output state pl! = /_X(ng)
for a (u-independent) trace-preserving quantum opera-
tion A. This allows us to write single-letter bounds for

p2Pt. In particular, we have [33)]

1 — y/min{l — F?" nS} < poPt < Q" - L (26)

2 I A

where F := F(W, 4,W¢ q), Q is the quantum Chernoff
bound (QCB)

— s 1-s

‘9--Sgﬁf”'IT{VVh@’VVt@ }, (27)

and S is related to the relative entropy
S == (InvV2) min{S (Wy,al|We,a) , S (We,al[Wn,a)}. (28)

Whilst these bounds may seem complicated, we have
analytical formulae for each of these quantities. We have
already seen the fidelity in Eq. (22]) between two Werner
states, which can be used here for the fidelity bounds in
Eq. 28). Then, we may also compute

G (Inv/2) HTn10g2}$Z + anlogQi_TZ Inl = [¢l,
(Inv2) (Hlogy 15 + 15810g,1=5 ) [n| < [¢]-
(29)

To find this, we first calculate the relative entropy be-
tween two Werner states. Diagonalising them in the same
basis, we may write

S(WdeWC,d) = Tr(Wn,dIOg2Wn,d - Wn7d10g2WC,d)

- Zpilog% (30)

where p; are the eigenvalues of W), 4 and ¢; are those of
We.q. This allows us to compute

14+n 1+n 1-—n 1—n
SWn,allWe.a) = —5—loga7 ety OB
(31)

Using Eq. @B1I), we can then evaluate
AS = S(Wy.alWe,a) = S(We.alWn,a)

_ n+¢ 1+n
—<1+ 5 )10g21+<

+ (1 _nt C) log
2
We can see that AS = 0 when n = (. We can study
AS for the valid regions of 7 and ¢, and (numerically)
check that AS < 0 for |n| > |¢|. This implies Eq. (29).
We now compute the QCB. The minimum error prob-

ability in the n-use adaptive discrimination of two ar-
bitrary HW channels W, 4 and W, 4 is bounded by the

QCB as in Egs. ([26) and @27), where Q := Q(Wy,,q, W¢ )
is computed as the QCB between two corresponding
Werner states W), 4 and W, 4. We find

1—n
21_<

(32)

. 1+¢ /1+71)\°
W, a, W, = f |—(—
QWi.a, W a) 561%71][ 5 < n )

1
S -
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FIG. 1: We plot the fidelity-based lower bound and the QCB (upper bound) to the optimal error probability p2i' in Eq. (28]
for two HW channels W, 4 and W; 4 in arbitrary finite dimension d > 2. In panels (a)-(c), we set { = 0 and we plot the bounds
as a function of 7, considering (a) n = 1, (b) n = 10, and (c¢) n = 100. In panels (d)-(f), we repeat the study with the same

parameters as before but setting ¢ = 1/2.

where the infimum is analytically achieved at

1 —
29 n= <a
0t n=+1,
1
n glmﬁ
¢+1 l“i_rcz .
W, otherwise.
B IFOa=m)

In fact, since we may diagonalise two Werner states
in the same basis, Eq. (27)) simplifies to Zipfqil_s, with
Di, ¢; the eigenvalues of Wy, 4 and W¢ 4, respectively. We
then minimise this quantity by finding the unique turning
point in [0, 1] and showing it is indeed a minimum. The
border points need a careful consideration because they
may show discontinuities and one needs to take left or
right limits. This is explicitly done in Appendix [Al In
Fig. [l we show numerical examples on how the fidelity-
based lower bound and the QCB [see Eq. (26])] behave
in terms of n for different values of the channel-defining
parameters 1 and ( for arbitrary finite dimension d > 2.

Using the same approach, we may also find an equiva-
lent result for depolarizing channels and their Choi ma-
trices (isotropic states). The minimum error probabil-
ity in the n-use adaptive discrimination of two arbi-
trary depolarizing channels D, 4 and Dg 4 is bounded
by p2Pt < Q"/2 where Q := Q(Qa,a,Qp,4) is computed

as the QCB between two corresponding isotropic states

Qq,q and Qg q. We find
a\® d—p [(d—a\’
(5) +5°(7=5) |

(35)

. p
Qaa,Qsq) = inf [=
Q(Qa,a,28,a) Jnf {d

where the infimum is analytically achieved at

1 _
2 o = ﬂa
0t a=0,d
b) b)
s = 1~ B =0,d, (36)
d—a
s_aMTF
In| =5 mg
ST otherwise.
5=

See Appendix [Bl for mathematical details. This bound
for two depolarizing channels is tighter than the fidelity-
based upper bound of Ref. [33].

V. CONCLUSION

In this work, for the first time, we have consid-
ered Holevo-Werner channels in the context of quantum
metrology and quantum channel discrimination, employ-
ing the most general (adaptive) protocols. Because these
channels are teleportation-covariant, the optimal estima-
tion of their channel-defining parameter 7 is bounded
by the standard quantum limit, with an asymptotically
achievable scaling of (1 —n?)n~!. Surprisingly this scal-
ing is independent of the dimension of the channel.

We have then investigated the multi-use optimal er-
ror probability in the adaptive discrimination of two
iso-dimensional Holevo-Werner channels. By using
their teleportation-covariance and the methodology in-
troduced in Ref. @], we have lower- and upper-bounded
this optimal probability by means of single-letter quan-
tities which can be analytically computed from the as-
sociated Werner states. In particular, we have given an
explicit formula for the quantum Chernoff bound, with a
similar counterpart for the case of depolarizing channels.
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Appendix A: Quantum Chernoff Bound for Werner
states

Let us compute the QCB between two arbitrary d-
dimensional Werner states W, 4 and W¢ 4 with n,( €
[—1,1]. By definition

Q= inf Qs s :Tr(

S W), Al
s€[0,1] n,d"V ¢.d ) ( )
Note that we always have Qp = @1 = 1 so that we may
restrict the infimum in the open interval s € (0,1). Then,
because Werner states are simultaneously diagonalisable,

we may reduce the computation to
1—
Qs=>_pja; "
i

with p;,q; being the eigenvalues of W, 4, and W¢ 4, re-
spectively. After simple algebra, we obtain

L+C\ (1+n\", (1-¢\ (1-7n)"
s = . A3
o= () (8) + () (=8) - @
Let us first study singular cases. Firstly, in the scenario
where 1 = (, all values of s give identically Qs = 1, and

so we shall define s = 1/2 as the optimum for this case.
The other cases are:

(A2)

e ( = 1; Qs then simplifies to (HT")S L ¢

[0, 1], the infimum is achieved for s — 1.

e ( = —1; Q; then simplifies to (I_T")S Since 1_7" =

0, 1] as well, the infimum is again for s — 1.

1—s
e 1 = 1; Here @), simplifies to (1‘5—4) , thus imply-

ing the infimum is achieved for s — 0.
1-¢

1—
e = —1; Here Qs simplifies to (T)

the infimum is achieved for s — 0.

S
, and again

Once we have studied the previous singular cases (for
which the infimum is taken at the border), let us find the
minimum of Qg in the open interval, where the function
is continuous. For simplicity, we will define

by = P:= - A4
+ 2 3 1+<7 1_— ( )

so that
Qs =k P4+ k M=k es™P 4k es"M  (A5)

Let us now compute the derivative in s

dis = kylnPe* P 4 k_InMe* MM, (A6)

By setting dQs/ds = 0, we derive
0= kyInPe*™P 4 k_InMes ™M (A7)
kylnPe® P = —k_InMes "M (A8)

sinP

:slnM B f{fg (A9)
os(InP—InM) _ _:;11?1]3\4 (A10)
$(InP —InM) =1In (%) (A11)

In (71@%1%\/[ )
TR o

Substituting our definitions in Eq. (A4]), we obtain

In [ &L ni=¢
n( >~—1+
¢+1 In 7

A+n (=0
1+ (1—n)

=S¢ (A13)
In

It remains to be proven that the critical point s, ¢ is in
[0,1]. First we shall prove that s, ¢ is positive. We shall
start by considering the denominator, in two scenarios:

e —1 < ¢ < n < 1. In this scenario, both fractions
15 and % must necessarily be greater than 1;
thus the overall denominator is the logarithm of
something greater than 1, and therefore positive.

e —1 < n < ¢ < 1. Conversely, in this case both
fractions are 1%‘7 and % are less than one, but
positive, and so too is their product; forcing the
overall denominator to be negative when the loga-

rithm is taken.

In order for s to be positive in all scenarios, this means
we require:

e For —1 < ¢ < n < 1, the numerator is positive;
equivalently we require that:

1-n

¢—1n=

ESE > (A14)
14+¢

Since (+1 > 0, and }i—g > 1, we have the denomi-

nator of Eq. (A14) is positive, so the equation can
be rearranged to give:

1+n

1—n
1-¢

(=1 (A15)



e Similarly we require the numerator to be negative
if =1 < n < ¢ < 1, which is equivalent to

-1 1n1—_77
C+11n}jrg = b (A16)

This time, although ¢ + 1 is still positive, we have
that iig < 1, and therefore the denominator of
Eq. (AI6) is negative. This means, when we mul-

tiply out the denominator of (AI6]) we obtain

L+n
1+¢

—(¢C+1)In

(¢ - l)lni > 0. (A17)

We see that, regardless which of 7, is greater, we
require the same statement. First note that Eq. (A17) is
true if and only if

1-¢ 14¢
(;;)m@§>+(%§)m@ﬁ>zo<M&
D) 2

We then make a substitution of variables p, = HT” and
pe = HC , so that left hand side becomes
L —p¢ P¢

1—pe)n + peln— A19

(1= p¢)n— p, el (A19)

and p,,pc € (0,1). This is simply the classical relative
entropy, or Kullback-Leibler (KL) divergence, in a differ-
ent logarithmic base, of two biased coin flips. However,
Gibbs inequality states that, for any logarithmic basis,
the KL-divergence is always non-negative. Thus we have
necessarily that s, ¢ is non-negative for all value of 7, (.
To show that s, ¢ < 1, we shall instead prove a stronger
result, that s, ¢ + s¢, = 1. Since both terms are non-
negative, this is a sufficient statement.
Using our formula in Eq. (AT3]), we may write

1—n 1+¢
ﬂlnﬁ n+1 lnm
In (C'i‘l ln%z) In (77 1lni f])
+ . (A20)

Ip A+ (A=¢) A+ (A=¢)
A+¢)(1—n) (I+¢O)(1-n)

Since they share a denominator, we shall look at the nu-
merator, which can be simplified as follows

1— 1+
In —<_1IHTZ +In 77_|_11n1+f7
(F1init =T

Sn,¢ T+ 8¢ = n

14+¢
1 1-
= 1nw7 (A21)
1+ @ —=n)
where we have used 1 = —12, and absorbed the minus

signs into either the brackets or logarithms.

Thus we must conclude that s, ¢ + s¢,, = 1, and with
that, we may conclude that for all valid values of 7, ¢, our
given s, ¢ is within the region [0, 1]. Moreover, it satisfied

2
% s=s,. = 0. We need only that %h:%{ > 0, to

show it is a minima. To do this, we return to Eq. (Af).
Differentiating again, we see that

d*Qs
ds?

_ k+[1 (P)]2esln(P) +/€_[1n(M)]2681n(M).

(A22)

When 7,¢ € (0,1), we have that ki, k; are strictly pos-
itive, and when n # ¢ that In(P),In(M) # 0 and thus
their squares are positive too. Finally, e to the power

of any real value is strictly positive, and thus we have

ddSQS > 0 for all values of s, including s, ¢. Thus we

have proven, in combination w1th the special cases stated
above, that our stated s truly minimises the QCB.

Appendix B: Quantum Chernoff Bound for Isotropic
states

Let us compute the QCB between two arbitrary d-
dimensional isotropic states Q. 4 and Qg 4 with o, €
[0, d]. By restricting definition of QCB to the open inter-
val s € (0,1), we write

Q= inf Q. Q,:=Tx( ad,Ql )

B1
s€(0,1) ( )

As a consequence of the isotropic states being simultane-
ously diagonalisable, we may rewrite Qs as

B« S od—=pB(d—a\’
QS—E(E> + (d_ﬂ) : (B2)

First of all, let us study the singular cases. We have:

e f=d= infimum at s — 1~
e f=0= infimum at s — 1~
e o =d = infimum at s — 0%.
e o =0 = infimum at s — 0%.
e o = = minimum at s = 1/2.

We then compute the derivative, which is given by

dQs
(i — 1, InPoe™ P 4 1_InMaesm Mo, (B3)
where we have set
15} d—p « d—«
l.==,l_=—= Py=—, Mqg= . B4
L= g e Ik Q=a= 3 (B4)

ing

s = I =!5,5 (B5)
Bd—c)
Unfortunately s is dimension-dependent. We may

transform « B to dlmensmn independent variables by set-
ting n = 2274 € [-1,1] and ¢ = 257d € [-1,1]. When
these are substituted into s a3 We ﬁnd 5% af = s77 ¢, where

$p,c is the one defined in Eq. (A13]) that we already know
to be a minimum in the open interval.
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