
This is a repository copy of Channel Simulation in Quantum Metrology.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/129756/

Version: Published Version

Article:

Laurenza, Riccardo, Lupo, Cosmo orcid.org/0000-0002-5227-4009, Spedalieri, Gaetana et
al. (2 more authors) (2018) Channel Simulation in Quantum Metrology. Quantum 
Measurements and Quantum Metrology. ISSN 2299-114X 

https://doi.org/10.1515/qmetro-2018-0001

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Open Access. © 2018 Riccardo Laurenza et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 License.

Quantum Meas. Quantum Metrol. 2018; 5:1–12

Review Article Open Access

Riccardo Laurenza, Cosmo Lupo, Gaetana Spedalieri, Samuel L. Braunstein, and Stefano

Pirandola*

Channel Simulation in Quantum Metrology

https://doi.org/10.1515/qmetro-2018-0001

Received November 20, 2017; accepted December 23, 2017

Abstract: In this review we discuss how channel simu-

lation can be used to simplify the most general proto-

cols of quantum parameter estimation, where unlimited

entanglement and adaptive joint operations may be em-

ployed. Whenever the unknown parameter encoded in a

quantum channel is completely transferred in an environ-

mental program state simulating the channel, the optimal

adaptive estimation cannot beat the standard quantum

limit. In this setting, we elucidate the crucial role of quan-

tum teleportation as a primitive operation which allows

one to completely reduce adaptive protocols over suitable

teleportation-covariant channels and derive matching up-

per and lower bounds for parameter estimation. For these

channels,wemay express the quantumCramérRaobound

directly in terms of their Choi matrices. Our review consid-

ers both discrete- and continuous-variable systems, also

presenting some new results for bosonic Gaussian chan-

nels using an alternative sub-optimal simulation. It is an

openproblem todesign simulations for quantumchannels

that achieve the Heisenberg limit.

Keywords: quantummetrology, quantum channels

PACS: 03.67.-a, 42.50.-p, 03.65.-w

1 Introduction

Quantum technologies exploit quantum information [1–

4] to develop new powerful devices that aim at solving

long-standing problems as well as providing completely
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novel applications. This is happening in many areas, in-

cluding quantum communication [5–10], secret key distri-

bution [11–21], sensing (e.g., quantum illumination [22–

25]), imaging (e.g., optical resolution [26–28]), andmetrol-

ogy [29–36]. The latter area is particularly active and

promising in terms of practical applications. Quantum

metrology [29], also known as quantumparameter estima-

tion, deals with the estimation of unknown classical pa-

rameters which are encoded in quantum states or quan-

tum transformations, i.e., quantum channels [3]. Here we

are interested in the latter scenario of quantumchannel es-

timation. In this setting, we review techniques of channel

simulation [37–42] that allow one to simplify the structure

of the most general protocols of quantum parameter esti-

mation to a much simpler and treatable version.

To clarify the context, let us formulate the general

problem. Suppose that we are given a black-box imple-

menting a quantumchannelEθ with anunknownclassical

parameter θwithuniformprior.Weare thenasked toprobe

the box n times with the aim of retrieving the best value of

θ. Statistically, this means to generate an estimator θ̃ of θ

such that its error variance δθ2 = 〈(θ̃ − θ)2〉 is the minimal

possible (here the average is assumed over the n probings

of the box). It is clear that δθ2, or the standard deviation

δθ, is expected to decrease as a function of n. Therefore

an important crucial question to answer is the following:

What is the optimal scaling in n?

For certain channels the optimal scaling is δθ ∼ n−1/2,

known as the “standard quantum limit” (SQL) because it

is also what you would aspect with in a completely classi-

cal setting. Remarkably, this limit can be beaten for other

channels, so that they display a fully quantum behaviour.

In fact, it is known that the optimal scaling that is reach-

able in the quantum setting is δθ ∼ n−1, also called the

“Heisenberg limit” (HL) [34]. In order to understand if a

channel Eθ is limited to the SQL or not, it is essential to

adopt the most general quantum protocols of parameter

estimation that are allowed by quantummechanics. These

protocols involve the use of unlimited entanglement and

are inevitably adaptive, i.e., may involve the use of joint

quantum operations where the inputs to the box are op-

timised as a result of all the previous rounds [41–44]. It

is clear that their study is extremely difficult and require
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some techniques that may reduce their complexity. In this

respect, channel simulation is certainly one of the most

powerful tools.

Here we review the most important results for chan-

nel simulation in quantum metrology, plus we present

some new bounds. We start with the discussion of pro-

grammable channels [37, 38], which are those channels

E that can be simulated by a program state πE and some

joint (trace-preserving) quantum operation or “simulator”

S applied to the input state ρ and the program πE, so that

E(ρ) = S(ρ ⊗ πE). When a parameter θ labels the chan-

nel Eθ, it may happen that the previous simulator S re-

mains “universal”, i.e., independent on θ, while the pro-

gram state completely absorbs the label, i.e., it becomes

πEθ
. If this is the case, one may re-organise an adaptive

protocol in a block version and show that the SQL is an

upper bound that cannot be beaten [41, 42].

Recently, Ref. [42] adopted a simple criterion to iden-

tify these channels at any dimension (finite or infinite).

Whenever a quantum channel is teleportation covari-

ant [45], i.e., suitably commuting with teleportation uni-

taries, it can be simulated by teleporting over its Choi ma-

trix, i.e., the simulator S is teleportation and the program

state πEθ
is the channel’s Choi matrix [42]. Thus for these

channels, we have a precise and simple design for their

simulation. Furthermore, this design allows one to show

that the SQL is asymptotically achievable with a prefac-

tor which is completely determined by the Choi matrix

of the channel. Thus, Ref. [42] showed that teleportation-

covariance implies the SQL, elucidating how teleportation

gives a no-go for Heisenberg scaling.

ThemethodologyofRef. [42] applies to quantumchan-

nels of any dimension. As we will explain, the teleporta-

tion simulation of bosonic channels [2] needs a careful

treatment due to the fact that both the ideal maximally-

entangled state and the ideal Bell detection require infi-

nite energy in the setting of continuous-variable systems.

Therefore, suitable limits and truncations of the Hilbert

spaces need to be considered to avoid divergences [42, 45].

Besides specifying these aspects, we also exploit a dif-

ferent sub-optimal simulation of these channels, where

asymptotic maximally-entangled states are not needed,

following a recent approach [46].

The paper is structured as follows. In Sec. 2, we re-

view strategies of quantum parameter estimation giving

themain definitions. In Sec. 3 we discuss the simulation of

programmable channels and their restriction to the SQL.

We also discuss potential extensions of this simulation.

Then, in Sec. 4, we introduce the specific teleportation de-

sign, valid for teleportation-covariant channels, and the

teleportation stretching of the parameter estimationproto-

col. We extend these tools to continuous variable systems

and bosonic channels in Sec. 5. Then, in Sec. 6, we present

some novel bounds based on sub-optimal simulations of

Gaussian channels. Finally, Sec. 7 is for conclusions.

2 Protocols of quantum parameter

estimation

As already mentioned in the introduction, consider the

scenario where we are given a black-box whose input-

output physical transformation can be modelled as a

quantum channel Eθ encoding an unknown parameter θ

with uniform prior distribution (i.e., completely random).

The task is to infer θ with an optimal estimator θ̃, i.e.,

with minimal error variance δθ2. It is clear that the perfor-

mance will depend on the specific probing strategy which

is adopted. The most basic operations to be done are:

(1) Preparing a suitable input state to probe the channel;

and (2) detecting the output of the channel by means of

a suitable measurement or positive operator-valued mea-

sure (POVM). These elementary operations are the only

ones that are exploited in block protocols of parameter es-

timation, which may be “direct” and “assisted”.

Adirect protocol is shown inFig. 1(top). For each of the

n probings of the channel Eθ, we prepare the same input

state σ, so that the total output is a tensor product state

ρ⊗n
θ

= Eθ(σ)
⊗n, which is then detected by a joint POVM.

An assisted protocol is shown in Fig. 1(bottom). In each

probing of the channel we use a joint state σ of the in-

put system and an ancillary system. Therefore, the total

output state has a slightly different tensor product form

ρ⊗n
θ

= [(Eθ ⊗ I)(σ)]⊗n. This state is then jointly measured.

It is clear that an assisted protocol is a direct protocol over

the extended channel Eθ ⊗ I.

The most general protocol of quantum parameter es-

timation involves additional ingredients. Each probing of

the channel may in fact be interleaved with joint quantum

operations. In this way, unlimited entanglement may be

distributed between input and output, and feedback may

also be used to adaptively optimise the inputs of the next

transmissions [41, 42]. We may think to have a quantum

register prepared in some fundamental initial state σ. Af-

ter a first joint operation, one system is picked from this

register and transmitted through the channel. The output

becomes again part of the register, which is collectively

subject to another joint quantum operation. Then, there is

the second probing by transmitting another system of the

register through the channel and so on. After n such adap-

tive probings, we have an output state ρnθ which is subject
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Figure 1: Block protocols for quantum parameter estimation, i.e.,

the direct protocol (top) and the assisted protocol (bottom). In

these protocols, n instances of the quantum channel Eθ are iden-

tically and independently probed with the same input state σ. The

resulting output state is a tensor product which is subject to an

optimal POVM, whose output is post-processed into an (unbiased)

estimator θ̃ of θ.

Figure 2: The most general (adaptive) estimation protocol can be

represented as a quantum comb, i.e., a quantum circuit board with

n slots to plug n instances of the channel Eθ in. The initial state of

the quantum comb is denoted as σ and the output state as ρn
θ
. The

output state is finally detected by a joint POVM whose outcome is

classically post-processed to estimate θ.

to a joint POVM. Note that we may assume that the adap-

tive quantumoperations are trace-preserving, because any

non-trace preserving process can always be delayed and

included in the final POVM by the principle of deferred

measurement [1].

An equivalent way to present this adaptive protocol is

by resorting to the model of quantum comb [47], as shown

in Fig. 2. Indeed, a quantum comb represents a quantum

circuit boardwith n slots to plug in n instances of the quan-

tum channel. The internal structure of the quantum comb

is completely generic and includes any possible quantum

gate. The initial state σ of the quantum comb is trans-

formed into an output state ρnθ after the action of the comb

and the channel. The final state of the comb is then de-

tected by a joint POVM, whose outcome is processed into

an estimator θ̃. Note that this strategy includes the pre-

vious block protocols as particular cases. It also includes

the so-called “sequential” protocols [41], where a state is

transmitted through the entire sequence of n channels be-

fore detection.

Suppose that we implement an optimal adaptive pro-

tocol, i.e., we implicitly optimise over all possible quan-

tum combs and all possible joint POVMs. The ultimate

lower bound for the error variance of any unbiased esti-

mator is the quantum Cramér-Rao bound (QCRB)

δθ2 ≥
1

QFI(ρn
θ
)
, (1)

where QFI denotes the quantum Fisher information [29]

QFI(ρnθ ) = Tr
(

L
2
θρ

n
θ

)

, (2)

and Lθ is the symmetric logarithmic derivative (SLD).

Assuming that the output has spectral decomposition

ρnθ =
∑

j

λj|ej〉〈ej|, (3)

the expression of the SLD is given by [29, 33]

Lθ =
∑

j,k:λj+λk>0

2

λj + λk
〈ej|

dρnθ
dθ

|ek〉 |ej〉〈ek|. (4)

Alternatively, we may express the QFI as [29]

QFI(ρnθ ) =
8[1 − F(ρnθ , ρ

n
θ+dθ)]

dθ2
, (5)

where F(ρ, σ) := Tr
√√

σρ
√
σ is the quantum fidelity [48,

49], which is known to have closed analytical forms, e.g.,

for two arbitrary Gaussian states [50].

It is important to recall two fundamental properties of

the QFI. The first one is its additivity over tensor products.

Given any two parametrised states γθ and γ
′

θ, wemaywrite

QFI(γθ ⊗ γ
′

θ) = QFI(γθ) + QFI(γ
′

θ) . (6)

The second is its monotonicity under completely-positive

and trace preserving (CPTP)maps, i.e., quantumchannels.

Given a quantum channel Λ, we may write

QFI[Λ(γθ)] ≤ QFI(γθ) . (7)

Note that, because the output of a block protocol (di-

rect or assisted) is a tensor product state ρ⊗n
θ

and the addi-

tivity of the QFI impliesQFI(ρ⊗n
θ

) = nQFI(ρθ), we have that

the QCRB associated with this type of protocol becomes

δθ2 ≥
1

nQFI(ρθ)
, (8)

so that it scales according to the SQL.

By contrast, the output ρnθ of an adaptive protocol is

not necessarily a product state. For this reason, the error
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variance may behave differently and potentially beat the

SQL. Indeed, it is known that δθ2 may scale according to

the HL, for instance in the estimation of the phase in a

unitary transformation [34]. However, the possibility to ex-

press the output state ρnθ as a quantum channel applied to

a tensor product, i.e., ρnθ = Λ(γ⊗n
θ

), automatically reduces

the performance of the protocol back to the SQL, because

of the monotonicity and additivity of the QFI. In fact, we

may writeQFI(ρnθ ) ≤ QFI(γ
⊗n
θ

) = nQFI(γθ). In the following

section, we discuss the conditions for this reduction.

3 Programmable channels and

protocol reduction

Here we discuss how the most general adaptive protocol

for quantum parameter estimation (as the comb in Fig. 2)

can be reduced to a block protocol when implemented

over programmable channels. This implies that quantum

metrology with programmable channels is bounded to the

SQL.

The original idea of programmability was introduced

by Nielsen and Chuang [37] in the context of quantum

computation. These authors introduced a model of pro-

grammable quantum gate array (PQGA) for the simulation

of an arbitrary quantum channel by using a universal uni-

tary and a program state. Assuming finite resources (e.g., a

finite number of systems for the program state), the simu-

lation can only be probabilistic. Alternatively, an arbitrary

quantum channel can be simulated if we are allowed to

use an infinite number of systems (note that this is exactly

the limit which needs to be taken in the equivalent formu-

lation of port-based teleportation [51–54] if one wants to

achieve perfect fidelity).

Later in 2008, Ref. [38] considered a variant of the

PQGA where the simulation is deterministic but can only

be applied to a subset of channels, called “programmable”

channels. This tool was used in the context of quantum

metrology but not immediately applied to adaptive proto-

cols. See also Ref. [39]. It was later called “quantum simu-

lation” in Ref. [40]. The first application to simplify adap-

tive protocols was presented in Ref. [41] in the context of

discrete-variable channels. Later, Ref. [42] considered pro-

grammable channels in the context of both discrete- and

continuous-variable channels, also identifying the crucial

connection with quantum teleportation that we will de-

scribe later.

A quantum channel E is called programmable if there

is a “simulator” S (another quantum channel) and a pro-

Figure 3: A programmable channel admits a simulation of the form

E(ρ) = S(ρ ⊗ πE) where S is a simulation channel and πE a program

state. Channels are co-programmable when they have the same S,

but generally different program states.

gram state πE, such that

E(ρ) = S(ρ ⊗ πE). (9)

This is also shown in Fig. 3. Without loss of generality, the

channel simulator can always be dilated into a unitary U

up to introducing extra degrees of freedom in the program

state. Then we also say that an ensemble of channels Ω is

“co-programmable” if the simulator S is universal over Ω.

In other words, for any E ∈ Ω, we may write Eq. (9) with

exactly the same S but generally-different program states

πE.

Let us now apply these notions to parameter estima-

tion. Assume that the parametrised quantum channel Eθ
spans a family of co-programmable channels, so that we

may write the simulation

Eθ(ρ) = S(ρ ⊗ πEθ
), for any θ. (10)

We can then simplify any adaptive protocol over n uses of

this channel. In fact, we may replace each instance of the

channel with its simulation of Fig. 3, so that the quantum

comb in Fig. 2 can be re-organised in the form depicted in

Fig. 4. The idea is to replace each use of the channel Eθ
with its program state πEθ

, and then to “stretch” all the

program states back in time, while collapsing the simula-

tors S and the quantum comb (including its initial state σ)

into a single quantum channel Λ. In this way, the output

of the comb can be decomposed as

ρnθ = Λ(π⊗n
Eθ

) . (11)

Note that the latter decomposition reduces the adap-

tive protocol into a block protocol up to an overall quan-

tum channel Λ. Because of the properties of the QFI, we

know that this is sufficient to restrict the performance of

the protocol to the SQL. In fact, using monotonicity and

additivity of the QFI, we may write

QFI(ρnθ ) = QFI[Λ(π⊗n
Eθ

)] ≤ QFI(π⊗n
Eθ

) = nQFI(πEθ
). (12)

We have thus obtained that for the estimation of a param-

eter θ encoded in a programmable channel Eθ, the QCRB
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Figure 4: Stretching of a quantum comb. First, suppose we have a

quantum comb whose slots are filled by a programmable channel

E. Using the simulation of Fig. 3, we may replace n instances of the

quantum channel E with a collection of n programme states πE.

The corresponding simulators S can be included in the operations

of the quantum comb. In this way, we may collapse the quantum

comb (including its initial state σ) and the simulators into a single

quantum channel Λ applied to the programme states, so that the

output of the comb ρn can be decomposed as Λ(π⊗n
E

). In the setting

of adaptive parameter estimation, the slots of the comb are filled by

a quantum channel Eθ encoding the unknown classical parameter

θ. Assuming that Eθ spans a family of co-programmable channels,

then we may repeat the procedure, and decompose the output state

ρn
θ
as Λ(π⊗n

Eθ
).

must satisfy the condition δθ2 ≥ [nQFI(πEθ
)]−1. Further-

more, note that this bound is not necessarily achievable. It

would be achievable if the program state πEθ
could be gen-

erated by sending some input state through the channel.

For instance, this would be the case if πEθ
were the Choi

matrix of the channel, an extra property which is guaran-

teed if the channel is teleportation-covariant, as explained

in the next section.

Before proceeding, we may ask how the channel sim-

ulation should be modified in order to cover channels that

beat the SQL. One potential idea is to weaken the notion of

co-programmability to involve multi-copy program states.

For instance, suppose that a quantum channel Eθ cannot

be simulated as in Eq. (10) but as

Eθ(ρ) = S(ρ ⊗ π⊗m
Eθ

), for any θ and some m. (13)

This leads to the stretching ρnθ = Λ(π⊗mn
Eθ

) and therefore to

QFI(ρnθ ) ≤ mnQFI(πEθ
). (14)

We know that the HL δθ2 & n−2 cannot be beaten so that

we must have m ≤ n. To get the HL it is sufficient that

the condition in Eq. (13) holds asymptotically, i.e., in trace

norm limit δm := ||Eθ(ρ) − S(ρ⊗ π⊗m
Eθ

)|| m→ 0. Then we may

take this limit jointly with the limit in n for the scaling.

4 Teleportation simulation

Teleportation simulation has been used in the past to re-

duce protocols of quantum communication into entangle-

ment distillation [55–58] and,more recently, to completely

simplify protocols of private communication from adap-

tive to block forms [45], establishing the ultimate limits

of QKD in point-to-point lossy communications [45] and

also multi-point [59] and repeater-assisted scenarios [60].

More recently, Ref. [42] extended the technique to quan-

tum metrology and quantum channel discrimination.

Let us start with discrete-variable systems and, in par-

ticular, qubits (arguments can be easily generalised to any

finite dimension). We first recall the basic ingredients of

teleportation and then we discuss how these can be mod-

ified to implement a tool of channel simulation. The stan-

dard qubit teleportation protocol [5, 61] can be broken

down in three steps:

(1) Resource. Amaximally-entangled state |Φ+〉 = (|00〉+
|11〉)/

√
2 is prepared for qubits A (Alice) and B (Bob).

(2) Bell detection. Alice performs a Bell detection on

qubit A and an input qubit a (in an arbitrary state

ρ). Recall that the Bell detection has four outcomes

α ∈ {0, 1, 2, 3} with POVM elements |Φα〉〈Φα| where
|Φα〉 = (I ⊗ σα)|Φ+〉 and σα are the four Pauli uni-

taries [1]

σ0 = I :=

(

1 0

0 1

)

, σ1 = X :=

(

0 1

1 0

)

, (15)

σ2 = Y :=

(

0 i

−i 0

)

, σ3 = Z :=

(

1 0

0 −1

)

.

(16)

(3) Pauli corrections. Finally, depending on the output

of the Bell measurement α, the conditional Pauli uni-

tary σ−1α is applied on the qubit B, retrieving the input

state ρ.

The standard teleportation protocol simulates the identity

channel. A modification of the protocol is to employ a re-

source statewhich is notmaximally-entangled but an arbi-

trary bipartite state. In this way teleportation implements

not the identity but simulates a noisy channel from the in-

put qubit a to the output qubit B. Suppose that we choose

the resource state to be the Choimatrix of a quantumchan-

nel E, i.e.,

ξE = (E⊗ I)(Φ+). (17)

By teleporting over this state can we simulate channel E?

The answer is yes for so-called teleportation-covariant

channels [45, 57, 58]. By definition a quantum channel E
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is teleportation-covariant if, for any random teleportation

unitary U (corresponding to a Pauli operator in the qubit

case), we may write

E(UρU†) = VE(ρ)V†, (18)

for some other unitary V [45]. This property is a sufficient

condition to ensure that the channel E can be simulated

by teleporting over its Choi matrix or Choi-Jamiolkowski

(CJ) state ξCJ
E
(this is also knownas teleportation-simulable

or Choi-stretchable channel [45]). In other words, we may

write the simulation [42, 45]

E(ρ) = T(ρ ⊗ ξCJ
E
), (19)

where T is teleportation. See Fig. 5 for a visual proof of

Eq. (19). This is clearly a powerful design but only holds for

the teleportation-covariant subset of programmable chan-

nels.

In the setting of quantum parameter estimation, we

are interested in joint teleportation-covariance, where a

parametrised quantum channel Eθ satisfies Eq. (18) with

a θ-independent set of output unitaries, i.e., [42]

Eθ(UρU
†) = VEθ(ρ)V

†, for any θ. (20)

This is exactly the situation when θ is a noise parameter,

i.e., a parameter that can be uniquely associated to an en-

vironment dilating the quantum channel.

If Eq. (20) holds, then we can write Eθ(ρ) = T(ρ ⊗ ξCJ
Eθ
)

and repeat the stretching of a quantum comb as before. In

this way, we may decompose the output state of an adap-

tive parameter estimation protocol as [42]

ρnθ = Λ
[

(ξCJ
Eθ
)⊗n
]

, (21)

for some quantum channel Λ. As a result, we get

QFI(ρnθ ) ≤ nQFI(ξ
CJ
Eθ
). (22)

This means that the estimation of a noise parameter of

a teleportation-covariant channel is limited to the SQL

with a pre-factor given by its Choi matrix, i.e., the QCRB

reads [42]

δθ2 ≥ [nQFI(ξCJ
Eθ
)]−1. (23)

The teleportation simulation not only allows us to

compute explicitly the upper bound, but also yields

a matching lower bound. As a matter of fact, an

optimal strategy that saturates the bound employs a

block (assisted) estimation protocol where the maximally-

entangled state Φ+ is used at the input of the channel in

an identical and independent way. This strategy provides

a QFI exactly equal to nQFI(ξCJ
Eθ
). As a result, the QCRB in

Eq. (23) is asymptotically achievable for large n.

Figure 5: (Top) Consider a qubit teleportation protocol where an

input state ρ is teleported to the input of a quantum channel E.

This is achieved by applying a Bell detectionB to the input ρ and

a maximally-entangled state Φ+, followed by the classical com-

munication of the outcome α which triggers a conditional Pauli

correction σ−1α . (Bottom) Assume that E is teleportation covariant as

in Eq. (18). The Pauli corrections can be pushed at the output of the

channel where they become generally-different unitary corrections

V−1
α (depending on the channel these may again be Pauli operators

or not). Now the application of the channel E on Φ+ creates the Choi

matrix ξCJ
E

= (E ⊗ I)(Φ+) as a resource state for the next teleporta-

tion protocol T. As a result the channel E is simulated by teleporting

over its Choi matrix as in Eq. (19). We also say that a teleportation-

covariant channel E is a Choi-stretchable channel [45].

Let us compute the QCRB for specific examples. It is

known that erasure, dephasing and depolarizing chan-

nels are teleportation-covariant [45]. More precisely, these

channels satisfy the condition of joint teleportation covari-

ance of Eq. (20) with θ being their channel-defining prob-

ability parameter p. Recall that an erasure channel is rep-

resented by [1]

E
erase
p (ρ) = (1 − p)ρ + p |e〉 〈e| , (24)

where |e〉 is an orthogonal erasure state and p is the era-

sure probability. A dephasing channel is defined as [1]

E
phase
p (ρ) = (1 − p)ρ + pZρZ†, (25)

where p is the probability of phase flip. Finally, a depolar-

izing channel with probability p is defined as [1]

E
depol
p (ρ) = (1 − p)ρ + pπ, (26)

where π is the maximally-mixed state.

For each family of these channels Ep (i.e., erasure, de-

phasing or depolarizing), we compute the Choi matrix ξCJ
Ep

and the associated QFI, finding QFI(ξCJ
Ep
) = [p(1 − p)]−1
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for each of the families. Then, using Eq. (23), we find that

the adaptive estimation of p is bounded by the following

asymptotically-achievable QCRB [42]

δp2 ≥ p(1 − p)n−1. (27)

5 Extension to continuous

variables

5.1 Teleportation simulation of bosonic

channels

In this section we consider bosonic channels and their

teleportation simulation. We start by reviewing the tele-

portation of bosonic states à la Vaidman [6] and then à

la Braunstein and Kimble [7]. We then discuss how the

latter protocol can be modified to simulate bosonic chan-

nels and, in particular, bosonic Gaussian channels [42,

45, 62, 63]. The optimal simulation of bosonic channels is

asymptotic and requires a careful treatment of the simula-

tion error by introducing a suitable energy-bounded dia-

mond norm. We therefore follow the formalism developed

inRefs. [42, 45]which rigorously accounts for these aspects

(see also Ref. [64]).

Consider a bosonic mode with quadrature operators

q̂, p̂ satisfying the commutation relation [q̂, p̂] = i (we put

~ = 1). A bosonic channel is a CPTP map between an in-

put and an output mode. Vaidman’s teleportation proto-

col [6] considers an ideal (infinite-energy) EPR state ΦEPR

of modes A (Alice) and B (Bob). An input mode a, pre-

pared in some finite-energy state ρ, is then mixed in a

balanced beam-splitter with mode A and the two output

modes “±” are homodyned with outcomes q− and p+. This

detection realises the ideal continuous-variable Bell detec-

tionB (which projects on displaced EPR states). The com-

plex variable α = q−+ ip+ is then sent to Bob,who applies a

displacement [2] D(−α) on his mode B, thus retrieving the

input state ρ.

The Braunstein-Kimble protocol [7] removes the sin-

gularities from the previous description, therefore allow-

ing for a realistic and practical implementation of the

idea [65]. The main point is to use a two-mode squeezed

vacuum (TMSV) state Φµ as resource for teleportation.

This is a two-mode Gaussian state [2] with zero mean and

µ-dependent covariance matrix. Its parameter µ quanti-

fies both the amount of two-mode squeezing (or entangle-

ment) between modes A and B, and the variance of the

thermal noise in each individualmode. The ideal EPR state

can be defined by taking the limit for infinite squeezing,

i.e., we may define the asymptotic state ΦEPR := limµ Φµ

in terms of a diverging sequence of TMSV states. Similarly,

the same relaxation can be done for the Bell detection.

One may consider a sequence of Gaussian POVMs [2] Bµ

which are (quasi-)projections on displaced TMSV states

Φµ,α := D(α)ΦµD(−α). The ideal case is obtained by taking

the limit of µ → ∞, i.e., the ideal Bell detection is formally

defined asB := limµ Bµ.

It is clear that, using a realistic Braunstein-Kimblepro-

tocolwith finite squeezing µ (for both resource andBell de-

tection), we cannot achieve perfect teleportation fidelity.

However, wemay asymptotically approximate perfect tele-

portation for large values of µ for any energy-bounded al-

phabet at the input [7, 66]. In other words, consider the

compact set of energy-constrained single-mode bosonic

statesD1
N := {ρ : Tr(ρN̂) ≤ N}where N̂ is the photon num-

ber operator. For any input ρ ∈ D
1
N , we write the output

of the Braunstein-Kimble µ-protocol Tµ as ρµ := E
BK
µ (ρ),

where E
BK
µ is an associated teleportation channel. In the

limit of large µ, one has

||ρµ − ρ||
µ→ 0, (28)

for any finite N. This result may be extended to the pres-

ence of an ancillary systemandmapped into a correspond-

ing convergence in energy-bounded diamond distance.

Let us define the set of energy-constrained bipartite

states

DN := {ρra : Tr(N̂raρra) ≤ N}, (29)

where r is an arbitrary ancillary multi-mode system and

N̂ra is the total number operator. One can check thatDN is

a compact set [67]. Then, for two bosonic channels, E1 and

E2, we may define the energy-bounded diamond distance

as [42, 45]

‖E1 − E2‖⋄N := sup
ρra∈DN

‖Ir ⊗ E1(ρra) − Ir ⊗ E2(ρra)‖ . (30)

(See Ref. [68] for a slightly different definition of energy-

constrained diamond norm). For any energy constraint

N, consider the distance between the Braunstein-Kimble

channel EBKµ and the identity channel I associated with

perfect teleportation (à la Vaidman). From the point-wise

trace-norm limit in Eq. (28) and the compactness of DN ,

we derive the vanishing simulation error

δ(µ, N) :=
∥

∥

∥
E
BK
µ − I

∥

∥

∥

⋄N

µ→ 0, for any finite N. (31)

Here it is important to remark that the latter convergence to

zero is not guaranteed ifwe consider unconstrained alpha-

bets, i.e., we remove N < +∞. It is in fact easy to construct

a sequence of input states with diverging energy N such

that the joint limit of the error simulation δ(µ, N) in N and
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µ is not defined. For this counter-example see discussions

in Ref. [64].

Consider now a teleportation-covariant bosonic chan-

nel. This means that the channel must satisfy the prop-

erty [45]

E[D(α)ρD(−α)] = D(α̃)E(ρ)D(−α̃) (32)

where the output amplitudes α̃ are functions of the input

ones α. This is certainly the case for single-mode Gaussian

channels [2]. Because of this property, we may write the

continuous-variable version of the simulation in Eq. (19).

In fact, by simulatingEwith afinite-squeezingBraunstein-

Kimble protocol Tµ, we generate the approximated chan-

nel

Eµ(ρ) = Tµ(ρ ⊗ ξ
µ
E
), (33)

where Tµ is based on a finite-squeezing Bell detection Bµ

and ξ
µ
E
is generated by a TMSV state Φµ as

ξ
µ
E
:= (E⊗ I)(Φµ). (34)

The latter defines the asymptotic Choi matrix in the limit

ξCJ
E

:= limµ ξ
µ
E
. Note that we may write the composition

Eµ = E ◦ E
BK
µ . Therefore, for any bounded alphabet with

energy N, we have the channel simulation error [42, 45]

‖Eµ − E‖
⋄N ≤

∥

∥

∥
E
BK
µ − I

∥

∥

∥

⋄N
:= δ(µ, N) . (35)

5.2 Teleportation stretching of a comb in

continuous variables

Assume now that the quantum channel E fills n slots of a

quantum comb with output ρn. Then, assume to replace E

with its imperfect simulation Eµ so that the output is ρ
n
µ.

We may bound the simulation error on the output state

||ρnµ − ρn|| in terms of the channel simulation error. In

fact, by adopting a peeling argument [42, 45] based on

basic properties of the trace distance (i.e., its monotonic-

ity under CPTP maps and the triangle inequality), we may

write [45]

||ρnµ − ρn|| ≤ n ‖Eµ − E‖
⋄N ≤ nδ(µ, N) . (36)

Then, we also observe that we may stretch the approxi-

mated channel Eµ by using the teleportation simulation of

Eq. (33). Therefore, for the simulated output we may write

the decomposition [45]

ρnµ = Λµ

[

(ξ
µ
E
)⊗n
]

, (37)

where Λµ is a global quantum channel associated with the

quantum comb and also the teleportation protocol Tµ.

Thus, combining Eqs. (36) and (37), we may write [45]
∥

∥

∥
ρn − Λµ(ξ

µ⊗n
E

)
∥

∥

∥
≤ nδ(µ, N) , (38)

which goes to zero for large µ and finite N (and n).

The latter Eq. (38) represents the rigorous stretching of

an adaptive protocol (quantum comb) performed over a

teleportation-covariant bosonic channel.

As discussed in Ref. [64] in relation to the use of

channel simulation in quantum/private communications,

other approaches that neglect the energy constraint on the

input alphabet and do not explicitly describe the propaga-

tion of the simulation error from the channels to the output

state may be affected by technical issues and divergences

in the results.

5.3 Teleportation stretching of adaptive

metrology in continuous variables

To apply the methodology to adaptive parameter estima-

tion, we need joint teleportation covariance for the family

of channels Eθ spanned by varying the parameter θ. If this

is the case, thenwemay repeat the previous procedure and

decompose the output state ρnθ by using [42]
∥

∥

∥
ρnθ − Λµ(ξ

µ⊗n
Eθ

)
∥

∥

∥
≤ nδ(µ, N) , (39)

for any θ, finite number of uses n and finite energy N. To

evaluate theQFI of ρnθ , we now exploit the connectionwith

the Bures distance dB and the trace distance D. In fact, we

may write

QFI(ρnθ ) =
4d2B(ρ

n
θ , ρ

n
θ+dθ)

dθ2
, (40)

where

dB(ρ, σ) :=
√

2[1 − F(ρ, σ)]

≤
√

2D(ρ, σ) =
√

||ρ − σ||. (41)

Using the triangle inequality for the Bures distance

and properties of the fidelity (monotonicity under CPTP

maps and multiplicativity over tensor products), we may

write [42]

dB(ρ
n
θ , ρ

n
θ+dθ) ≤

√

2[1 − (F
µ
θ
)n] + 2

√

nδ(µ, N), (42)

where F
µ
θ
:= F(ξ

µ
Eθ
, ξ

µ
Eθ+dθ

). For any finite n and N, we may

take the limit for large µ and write

dB(ρ
n
θ , ρ

n
θ+dθ) ≤ limµ

√

2[1 − (F
µ
θ
)n] =

√

2[1 − (F∞
θ
)n] , (43)

where F∞θ := limµ F
µ
θ
. In other words, we have

QFI(ρnθ ) ≤
8[1 − (F∞θ )

n]

dθ2
. (44)
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It is easy to check [42] that the upper bound is additive, so

that

QFI(ρnθ ) ≤ n
8[1 − F∞θ ]

dθ2
:= nQFI∞θ . (45)

It is important to note that the upper bound does not

depend on the specifics of the adaptive protocol and also

on energy constraint N. Therefore, the bound is valid for

all possible adaptive protocols, both constrained and un-

constrained (i.e., we can safely remove the energy con-

straint at the end of the calculations). Also notice that the

upper bound is asymptotically achievable by an uncon-

strainedblock (assisted) protocol,where n TMSV statesΦµ

are used to probe the channel, so that one collects the out-

put product state ξ
µ⊗n
Eθ

. By making an optimal measure-

ment, we achieve

QFI(ξ
µ⊗n
Eθ

) = n
8[1 − F

µ
θ
]

dθ2
, (46)

whose limit for large µ coincides with the upper bound in

Eq. (45). Because, this protocol uses independent probing

states, the QCRB is achievable for large n.

In conclusion, Eq. (45) is indeed the ultimate QFI

achievable with adaptive estimation protocols. Thus, we

may say that the optimal adaptive estimation of a noise

parameter θ encoded in a teleportation-covariant bosonic

channel Eθ (so that the family is jointly tele-covariant) is

limited to the SQL. In fact, it satisfies the asymptotically

achievable QCRB [42]

δθ2 ≥ (nQFI∞θ )
−1 , (47)

where QFI∞θ is related to the asymptotic Choi matrix of the

channel ξCJ
Eθ

according to the limit in Eq. (45).

5.4 Results for bosonic Gaussian channels

Consider a single bosonicmodewith quadrature operators

x̂ = (q̂, p̂)T . A Gaussian state is completely characterised

by its mean value x̄ and covariance matrix (CM) V [2]. A

single-modeGaussian channel transforms these statistical

moments as follows

x̄ → Tx̄ + d, V → TVTT + N, (48)

where d is a displacement vector, T and N = NT are 2 × 2

real matrices satisfying the conditions N = NT ≥ 0 and

detN ≥ (detT − 1)2/4 [2, 69]. Phase-insensitive Gaussian

channels have diagonal matrices

T =
√
η I, N = νI (49)

where η ∈ R is a transmissivity parameter (loss or ampli-

fication), while ν ≥ 0 represents noise [2]. Typically, they

also have d = 0, i.e., they do not add displacements to the

input.

One of the most important is the thermal-loss chan-

nel Elossη,n̄ , which is defined by transmissivity η ∈ [0, 1]

and noise ν = (1 − η)(n̄ + 1/2) with thermal number

n̄. This channel can be realised by a beam-splitter (of

transmissivity η) mixing the input with an environmen-

tal thermal mode with n̄ mean number of photons. It is

clearly teleportation-covariant. More strongly, it is jointly

teleportation-covariant in the thermal number n̄. There-

fore, consider the adaptive estimation of parameter n̄ > 0

(e.g., this canbe related to ameasurement of temperature).

ByusingEq. (47) one computes [42]QFI∞n̄ = [n̄(n̄+1)]−1 and

therefore the QCRB

δn̄2 ≥
n̄(n̄ + 1)

n
. (50)

We see that the QCRB does not depend on the loss param-

eter η, as long as it is less than 1. This implies that, for any

η < 1, we achieve the same accuracy as we would get in a

direct measurement of the environment (η = 0).

Consider now a noisy quantum amplifier Eamp
η,n̄ which

is defined by a gain η > 1 and noise ν = (η − 1)(n̄ + 1/2)

with thermal number n̄. This is teleportation covariant and

jointly tele-covariant in the parameter n̄. For the adap-

tive estimation of n̄ > 0, one gets [42] the same QCRB

of Eq. (50). Finally, consider an additive-noise Gaussian

channel Eaddν which is defined by η = 1 and ν ≥ 0. This

is joint teleportation covariant in the added noise ν, whose

optimal adaptive estimation is boundedby [42]QFI∞ν = ν−2

and therefore the QCRB

δν2 ≥ ν2/n . (51)

6 Sub-optimal simulation of

bosonic Gaussian channels

Here we present an alternative simulation for single-mode

bosonic Gaussian channels which does not need to con-

sider the limit of an asymptotic Choi matrix (but still re-

quires the limit of an ideal Bell detection). Consider a two-

mode Gaussian state with zero mean and generic CM

VAB =

(

A C

CT B

)

. (52)

By teleporting over this Gaussian resource using a

Braunstein-Kimble protocol with gain g we obtain a Gaus-

sian teleportation channel such that [46] x̄ → gx̄ and

V → g2V + g2ZAZ + B − g(ZC + CTZ) , (53)
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where Z = diag(1, −1). Therefore, a phase-insensitive

Gaussian channel Eη,ν with parameters η and ν [see

Eqs. (48) and (49) with d = 0] can be simulated by using

the gain g =
√
η and using a CM VAB with the choice

A = aI, B = bI, C = cZ, (54)

so that ν = ag2 − 2cg + b [46].

We are interested in finding a finite-energy resource

state σν that can simulate a phase-insensitive Gaussian

channel Eη,ν according to

Eη,ν(ρ) = Tη(ρ ⊗ σν) , (55)

where Tη is the Braunstein-Kimble protocol with ideal

Bell detection and gain g =
√
η. More precisely, we may

write Tη = limµ T
η
µ , where T

η
µ is the Braunstein-Kimble µ-

protocol with gain g =
√
η. A possible choice for σν is a

Gaussian state with zero mean and CM

V(σν) =

(

aI cZ

cZ bI

)

, (56)

with the following elements

a =
1

2
cosh2r, b =

|1 − η|
2

+
η

2
cosh2r, c =

√
η

2
sinh2r ,

(57)

where

r = −
1

2
ln

[

2ν − |1 − η|
2η

]

. (58)

It is worth remarking that there exist many finite-

energy resource states that can simulate a given channel.

A different family of resource states has been obtained

in Ref. [46] to characterise the teleportation fidelity. This

family of resource states has also been exploited in quan-

tum communication [70] to derive weak converse upper

bounds for the secret key capacity of phase-insensitive

Gaussian channels. These bounds closely approximate the

ideal and tightest bounds obtained for infinite energy [45].

In what follows we use the sub-optimal simulation of

Eq. (55) with the finite-energy resource state specified by

Eqs. (56)-(58). It is the first time that this finite-resource ap-

proach is used in quantummetrology.

Note that the form of the simulation in Eq. (55) is

such that the noise parameter ν only appears in the re-

source state σν or, in other words, the teleportation LOCC

Tη does not depend on ν. For this reason, the family of

channels Eη,ν with fixed η but varying ν is a family of

jointly teleportation-simulable channels (which is a con-

dition implied by the joint teleportation covariance). As a

result, the adaptive estimation of the parameter ν can be

completely simplified, so that the n-use output state of a

comb reads ρnν = Λη(σ
⊗n
ν ) for some global quantum chan-

nel Λη which is independent from the unknownparameter

ν. As a consequence, we may simplify the QFI of the out-

put state ρnν and write the following QCRB for the adaptive

estimation of ν

δν2 ≥
1

nQFI(σν)
. (59)

As an example consider the additive-noise Gaussian

channel Eaddν . This channel can be simulated by exploit-

ing a resource state σν whose CM is given by Eq. (56)-(58)

with η = 1 (see also Refs. [71, 72]). We may then compute

the QFI from the quantum fidelity [50], and find the QCRB

δv2 ≥ v2/n. Note that this exactly coincides with the tight

achievable bound of Eq. (51) which is obtained by simulat-

ing the channel via its asymptotic Choi matrix.

Consider now the adaptive estimation of the thermal

number n̄ of a thermal-loss channel Elossη,n̄ assuming the

sub-optimal simulation. Putting ν = (1 − η)(n̄ + 1/2) in

Eq. (59) we compute the QCRB for δn̄2. We do not find the

tight achievable bound of Eq. (50) but a larger bound given

by

δn̄2 ≥ n̄2/n . (60)

For comparison, in Fig. 6weplot theQFI for the asymptotic

and finite-energy resource state. It is a open problem to

findafinite-energy resource that canmatch the asymptotic

bound. Finally, one may easily check that Eq. (60) also

holds for a noisy amplifier Eamp
η,n̄ assuming its sub-optimal

simulation.

0 2 4 6 8 10
n

0.5

1.0

1.5

2.0
QFI

Figure 6: Quantum Fisher information QFI(σn̄) associated with

the adaptive estimation of the thermal number n̄ of a thermal-

loss channel Eη,n̄. Assuming the sub-optimal simulation we find

QFI(σn̄) = n̄−2 (upper red line). Compare this with QFI∞n̄ =

[n̄(n̄ + 1)]−1 which is computed using the asymptotic simulation

(lower blue line).

7 Conclusions

Channel simulation is a powerful tool for completely sim-

plifying protocols of adaptive parameter estimation, for in-

stance represented as a quantum comb. This technique
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allows one to compute the ultimate precision in estimat-

ing noise parameters that are encoded in discrete- or

continuous-variable channels. The tool easily applies to

any programmable channel whose unknown parameter

is encoded in its program (environmental) state. One can

then reduce an adaptive protocol and show that the QCRB

is limited to the SQL.

When a programmable channel is teleportation-

covariant (such as an erasure, a Pauli or a Gaussian chan-

nel), we can exploit a precise design for its simulation

which is based on a simple modification of the telepor-

tation protocol. In this way, we may show that the QCRB

is limited to the SQL with the QFI being computed on

the Choi matrix of the channel (in an asymptotic fashion

for bosonic Gaussian channels). Furthermore, the QCRB is

shown to be achievable by a block (i.e., non-adaptive) pro-

tocol based on entanglement-assistance.

As a consequence of the previous results, a quan-

tum channel able to beat the SQL and potentially

reach the Heisenberg scaling must be necessarily non-

programmable in the sense discussed in this review, i.e.,

it cannot be perfectly simulated by means of a single-copy

program state. A potential approach to cover this type of

channel is therefore considering an extended definition of

multi-programmability where the simulation is achieved

by using a multi-copy resource state.

In conclusion, we have reviewed the state-of-the-art

in the theory of channel simulation within the context of

quantum parameter estimation. The reader interested in

similar applications in quantum channel discrimination

may consult Ref. [42] and a forthcoming review paper [73].

The reader interested in applications to quantum and pri-

vate communications (e.g., for establishing two-way ca-

pacities)may consult Ref. [64] andalsooneof the founding

papers [45].
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