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ABSTRACT   

Ternary solvent mixtures with two mutually miscible and one immiscible solvent pairings often 

exhibit persistent scattering profiles corresponding to mesoscale structure formation. Despite the 

morphological information on such mesostructures via extensive scattering measurements and 

simulation, the origin of these mesostructures, why they persist over a wide composition range, 

and why they appear around the plait point have remained a mystery. Here we answer all these 

questions through constructing a fundamental molecular thermodynamic theory, synthetizing 

thermodynamic stability, scattering and the fluctuation solution theory. The plait point condition, 

when interpreted via differential geometry, is shown to be the origin of the large structure factor 

persistent over a wide composition range.  

 

1. Introduction 

Long-lived, mesoscale inhomogeneities (aggregates or droplets) have widely been observed in 

ternary mixtures, which contains two immiscible solvents plus a third component which mixes 

perfectly with the first two.1–13 To attain such mesoscale aggregates, whose size can be up to 100 

nm, there is no need to look beyond the most commonplace substances, such as water-octanol-

ethanol or water-cyclohexane-tert-butanol.1–13 Such mesoscale aggregates (which are also called 

surfactant-free microemulsions) has attracted much attention recently due to their unusual 

potential in solubilizing sparingly-soluble substances (“pre-ouzo” or “mesoscale solubilization”). 

1–13 Mesoscale aggregates have also been reported in important classes of liquids and 

solubilizers, such as hydrotropes (weakly-amphiphilic solubilizers)7,11,12,14,15 and ionic liquids, 
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vastly expanding the types of substances that can be used for solubilization via additional 

components.15–22  

Despite its observation in a wide class of solvent mixtures, why mesoscale aggregation takes 

place in principle has long remained a mystery, despite an extensive morphological 

characterization of their size, form and composition via X-ray and neutron scattering3,4,7,8,23 

assisted by computer simulation.8–10,13 Scattering studies have established that the mesoscale 

aggregates are distinct from critical concentration fluctuation;3,4,12,13,24 while the critical 

fluctuations is a featureless change in molecular concentrations, well-defined structural features 

can be observed for mesoscale aggregates in the structure factors from scattering.10  Determination 

of ternary phase diagram has revealed a wide stretch of composition near the plait point (where 

two binodal curves merge) that give rise to mesoscale fluctuation. 3,4,12,13,24 However, the following 

questions have remained answered  

1. What is the origin of the mesoscale aggregation?  

2. Why is it persistent over a wide composition range?  

3. Why is it observed near the plait point?  

Indeed, decades-long controversy has taken place over all these questions, as has been summarized 

expertly in recent reviews.3,4,12,13 The multiplicity of opinions and the lack of consensus evidences 

the lack of a clear knowledge on the fundamentals of mesoscale aggregation.  

 

To the best of our knowledge, the only attempt to address this question is our recent paper,25 

which, through a combination of thermodynamic stability theory,26–28 scattering theory29–31 and 

elementary differential geometry,32,33 have shown that  
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1.  the observation of mesoscale aggregation corresponds to the smallness of mixing free 

energy curvature;25  

2. the stretch of the mesoscale aggregation region (so-called the pre-ouzo region) signifies the 

persistence of the small mixing free energy curvature.25  

Despite these geometrical insights, however, what makes the mixing free energy curvature small 

has remained unclear, hence the fundamental reason for the existence and persistence of 

mesostructures and the corresponding scattering intensity have remained a mystery.  

 

This unresolved mystery, as will be shown in Section 2, has arisen from the lack of utilization 

of the plait point condition,34–37 around which the persistent mesoscale aggregates have been 

reported to occur.1–13 Reformulated fully in the framework of modern differential geometry and 

linear algebra,32,33 the plait point condition itself will be shown in Section 2 to be the origin of the 

smallness of the mixing free energy curvature as well as its persistence, which are the 

thermodynamic basis for the emergence of the mesoscale aggregates. Such a thermodynamic 

explanation has to be interpreted microscopically towards a molecular-based understanding of the 

structure and interaction of the mesoscale aggregates. Hence, we furnish in Section 3 a theoretical 

framework that can readily be exploited to extract the interactions between each molecular species 

(quantified via Kirkwood-Buff integrals (KBIs)38–49) based on mixing free energy data when made 

available, and conversely to gain some information on mixing free energy from the inter-species 

KBIs. KBIs have previously been used to characterize micro-heterogeneity in microemulsions.45–

47 In view of the utmost present challenge in accurately interpreting scattering profiles, the 

theoretical link furnished in Section 3 is intended chiefly for paving a way theoretically towards a 

molecular-based elucidation that should emerge with the availability of more experimental data.  
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2. Plait point condition and mixing free energy 

 

Consider a ternary mixture consisting of water (𝑖 = 1), solute (𝑖 = 2) and hydrotrope (𝑖 = 3) under 

a constant temperature 𝑇 and the pressure 𝑃. Under this condition, let  𝐺𝑚𝑖𝑥(𝑁1, 𝑁2, 𝑁3) be the 

mixing free energy of mixing 𝑁1 water, 𝑁2 solute and 𝑁3 hydrotrope molecules.  Let us introduce 

the normalized mixing free energy, 𝑔 = 𝐺𝑚𝑖𝑥𝑁 , where 𝑁 = 𝑁1 + 𝑁2 + 𝑁3 is the total number of 

molecules.25,26,28 Due to the relationship between the mole fractions (𝑥𝑖 for the species 𝑖), 𝑥1 +𝑥2 + 𝑥3 = 1, we choose 𝑥2 and 𝑥3 as independent variables, so that 𝑔 is the function only of 𝑥2 

and 𝑥3, i.e., 𝑔(𝑥2, 𝑥3). Following the classical chemical thermodynamics of phase stability, we 

postulate that 𝑔(𝑥2, 𝑥3) is analytic.26,27 This normalized mixing free energy has a direct link25,28 to 

the concentration-concentration structure factor29–31 measurable by scattering experiments.50  

 

Our goal is to clarify the geometrical properties of a surface, 𝑧 = 𝑔(𝑥2, 𝑥2) in relation to the 

fluctuation and scattering around the point. To this end, let us consider the tie line and its two end 

points 𝐴  and 𝐵  (Figure 1), whose coordinates are (𝑥2𝐴, 𝑥3𝐴)  and (𝑥2𝐵, 𝑥3𝐵) .51 A schematic 

diagram plotting 𝑔 along AB can be found in Figure 2. A plane, which contains the tie line, can be 

tangent to 𝑧 = 𝑔(𝑥2, 𝑥3) at both points, which means that the point (𝑥2𝐵, 𝑥3𝐵) is on a plane which 

is tangent to 𝑧 = 𝑔(𝑥2, 𝑥3) at (𝑥2𝐴, 𝑥3𝐴). This can be expressed as51    𝑔(𝑥2𝐵, 𝑥3𝐵) = 𝑔(𝑥2𝐴, 𝑥3𝐴) + 𝜕𝑔𝜕𝑥2|𝐴 (𝑥2𝐵 − 𝑥2𝐴) + 𝜕𝑔𝜕𝑥3|𝐴 (𝑥3𝐵 − 𝑥3𝐴)    (1) 

under the condition that  𝑔2 ≡ 𝜕𝑔𝜕𝑥2|𝐴 = 𝜕𝑔𝜕𝑥2|𝐵  𝑔3 ≡ 𝜕𝑔𝜕𝑥3|𝐴 = 𝜕𝑔𝜕𝑥3|𝐵      (2) 
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Thus the coordinates (𝑥2𝐴, 𝑥3𝐴) and (𝑥2𝐵, 𝑥3𝐵) can be varied continuously to generate a number 

of tie lines between them. When two such points merge, namely,  (𝑥2𝐵, 𝑥3𝐵) → (𝑥2𝐴, 𝑥3𝐴),  the 

merged point is called the plait point (Figures 1 and 2). Around this point, we introduce 𝑑𝑥2 =𝑥2𝐵 − 𝑥2𝐴 and 𝑑𝑥3 = 𝑥3𝐵 − 𝑥3𝐴 for convenience, and rewrite Eqs. (1) and (2) into the following 

compact form 𝑔(𝑥2𝐴 + 𝑑𝑥2, 𝑥3𝐴 + 𝑑𝑥3) −  𝑔(𝑥2𝐴, 𝑥3𝐴) = 𝑔2𝑑𝑥2 + 𝑔3𝑑𝑥3    (3) 

It should be noted that Eq. (3) holds at any orders of 𝑑𝑥2 and 𝑑𝑥3 in the progression to the plait 

point. Accordingly, the expansion of the l.h.s of Eq. (3) up to the second order yields  ∑ 𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗𝑖,𝑗 = 0          (4) 

where 𝒈 = (𝑔𝑖𝑗) ≡ ( 𝜕2𝑔𝜕𝑥𝑖𝜕𝑥𝑗|𝐴) . Eq. (4) is in fact a quadratic form33   

(𝑑𝑥2 𝑑𝑥3) (𝑔22 𝑔23𝑔23 𝑔33) (𝑑𝑥2𝑑𝑥3) = 0        (5)  

whose geometrical interpretation is that the vector 𝒈(𝑑𝑥2𝑑𝑥3) is perpendicular to (𝑑𝑥2𝑑𝑥3).  (It is easy 

to see that 𝒈(𝑑𝑥2𝑑𝑥3) cannot be a non-zero vector; if it is null, 𝒈 ∝ ( 0 1−1 0) in contradiction to the 

matrix symmetry.) Hence the vector we seek is a null vector,  

(𝑔22 𝑔23𝑔23 𝑔33) (𝑑𝑥2𝑑𝑥3) = (00)         (6)  

and in order that for Eq. (6) to have a non-trivial solution   Γ ≡ |𝑔22 𝑔23𝑔23 𝑔33| = 0         (7) 

must be fulfilled.33 (As will later be explained, this Γ plays a central role in thermodynamic 

stability and has a direct link to the structure factor. See Appendix A.)   
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Note that Eq. (7) is in fact the spinodal condition, which means that at the plait point the binodal 

and spinodal points converge. Hence, noting that Eq. (7) has been derived at the point 𝐴 yet the 

symmetry requires that the same condition be fulfilled also at point 𝐵 as well, Γ should remain 

constant under the (infinitesimal) displacement (𝑑𝑥2, 𝑑𝑥3)  𝑑Γ = 𝜕Γ𝜕𝑥2 𝑑𝑥2 + 𝜕Γ𝜕𝑥3 𝑑𝑥3 = 0        (8)  

Eqs. (6) and (8) in combination yields  

(𝑔22 𝑔23𝑔23 𝑔33𝜕Γ𝜕𝑥2 𝜕Γ𝜕𝑥3)(𝑑𝑥2𝑑𝑥3) = (000)         (9) 

For Eq. (9) to have non-trivial solutions, cofactors of the matrix therein must be zero,33 which leads 

to the following plait-point condition: 

|𝑔23 𝑔33𝜕Γ𝜕𝑥2 𝜕Γ𝜕𝑥3 | = 0          (10) 

Eq. (10) has originally been derived by Gibbs,52 and has subsequently been given rigorous 

mathematical derivations.51,53–55 However, our re-derivation, based on a full exploitation of linear 

algebra, is to the best of our knowledge much simpler. This plait-point condition is well-known 

and has been applied to a number of questions in chemical engineering.34,36,37   

 

Now we aim to establish a link between the plait point condition (Eqs. (7) and (10)) to elucidate 

the origin of mesoscale fluctuations in ternary mixtures, which has been observed around the plait 

point. To this end, building on our previous paper based only on Eq. (7),25 we employ the rudiments 

of differential geometry.32,33 We have previously shown that the zero Hessian (Eq. (7)) means that 

one of the principal curvatures of 𝑔(𝑥2, 𝑥3) is zero at the point.25 In addition, it can be shown easily 
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that the principal direction with zero curvature is along the limiting tie line AB, for the change of Γ is zero along this direction according to Eq. (8).  

 

Let us now take a 𝜉1 axis along the direction corresponding to the smaller curvature, and a 𝜉2 

axis perpendicular to 𝜉1. (In Figure 1, the 𝜉1 axis is parallel to the tie line at the plait point; in 

Figure 2 the horizontal axis is the 𝜉1 axis). Let the curvatures of  𝑔(𝑥2, 𝑥3)  𝜅1 and 𝜅2 along these 

axes, respectively (𝜅1 = 0 at the plait point). Such a coordinate system (𝜉1, 𝜉2) is proven to be 

orthogonal32,33 and will be helpful in interpreting the plait point condition (Eq. (10)), which can be 

rewritten as    

|𝑔12′ 𝑔22′𝜕Γ𝜕𝜉1 𝜕Γ𝜕𝜉2 | = 0          (11)  

where 𝑔𝑖𝑗′ ≡ 𝜕2𝑔𝜕𝜉𝑖𝜕𝜉𝑗|𝐴. Since 𝑔12′ = 0 for off-diagonal elements but 𝑔22′ ≠ 0, Eq. (11) yields the 

following simple relationship:  

𝜕Γ𝜕𝜉1 = 0           (12)  

Thus at the plait point not only Γ = 0 but also its change along the 𝜉1 axis is zero, namely, 
𝜕Γ𝜕𝜉1 =0. This means, taken together with the analytic nature of 𝑔(𝜉1, 𝜉2), that the smallness of Γ persists 

around the plait point, because its increment along the 𝜉1 axis is also zero.  

 

Now we move off the plait point to its surroundings where Γ ≠ 0  yet due to Eq. (12) is 

nevertheless very small, namely  Γ = |𝑔22 𝑔23𝑔23 𝑔33| ≃ 0                                                                                     (13) 
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|𝑔23 𝑔33𝜕Γ𝜕𝑥2 𝜕Γ𝜕𝑥3 | ≃ 0           (14) 

Note that the determinants in Eqs. (13) and (14), albeit small, are not zero, hence Γ can now be 

diagonalized through an appropriate transformation of coordinates,32,33 (𝑥2, 𝑥3) → (𝜉1, 𝜉2), via 

rotation, as   

Γ = |𝑔11′ 00 𝑔22′ | = 𝜅1𝜅2 ≃ 0                                                                                            (15) 

| 𝜕Γ𝜕𝜉1 𝜕Γ𝜕𝜉20 𝑔22′ | ≃ 0                                                                                                              (16) 

where 𝜉1 and 𝜉2 correspond to the directions for minimum and maximum curvatures 𝜅1 and 𝜅2, 

respectively. From Eqs. (15) and (16), it follows that  

𝜕Γ𝜕𝜉1 𝜅2 ≃ 0           (17) 

Since 𝜅2, the maximum curvature, is non-zero and is not vanishingly small, we obtain Γ ≃ 0            (18) 

𝜕Γ𝜕𝜉1 ≃ 0           (19)  

Hence Γ is small and the increment of Γ along the 𝜉1 axis is still very small, meaning that Γ is 

persistently small along the 𝜉1 axis. The focus on this principle direction enabled by differential 

geometry facilitates the argument through the reduced dimensionality (Figure 2) regardless of the 

number of components.     

 

We have thus proven that, due to the continuity of the mixing free energy function, Γ is close to 

zero around the plait point, and its increment is also close to zero. Here we discuss the ramification 

of Eqs. (18) and (19) using the properties of Γ25 (see Appendix A for the background information).  
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1. Thermodynamic stability is governed by the stability function Ψ = 𝑥2𝑥3(𝑘𝐵𝑇)2 Γ.25–27  

2. The stability function is inversely proportional to the concentration-concentration structure 

factor at 𝑞 = 0, 𝑆𝐶𝐶(0), via Ψ = 𝑥2𝑥3𝑆𝐶𝐶(0).25,29–31  

3. From 1 and 2, Γ is inversely proportional to 𝑆𝐶𝐶(0).25,28  

4. From 3 and Eqs. (18) and (19), a persistently small Γ along the 𝜉1 axis is equivalent to a 

persistently large 𝑆𝐶𝐶(0) along the 𝜉1 axis.  

5. Due to the continuity of the function 𝑆𝐶𝐶(𝑞), 𝑆𝑐𝑐(𝑞) is persistently large at small 𝑞 along the 𝜉1 axis.25  

Thus we have proven that the plait point condition is the cause of a persistently large structure 

factor at small 𝑞 observed in ternary fluid mixtures, which has been referred to as mesoscale 

solubilization or the pre-ouzo effect. 1–13  

 

3. Linking the mixing free energy surface to KBIs 

 

The chief aim of this section is to furnish the theoretical foundation for elucidating the molecular 

basis for the persistently small mixing free energy curvature, i.e., to pave a way towards the future 

understanding with the expansion in the availability of experimental data. Indeed, what has made 

the study of mesoscale fluctuations particularly challenging, and even its existence a matter of 

controversy, is the difficulty of separating them from the critical fluctuation, even though 

accumulating evidence show that mesoscale fluctuation is distinct from critical fluctuation.10 This 

difficulty would be a stumbling block in the evaluation of the KBIs (Kirkwood-Buff integrals) that 

characterize the long-range solution fluctuation.1–13 Here we establish a link between KBIs and the 

mixing free energy curvature, with a view that the directional information on mixing free energy 
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curvature, in combination with the approximate location of the plait point, would be helpful in 

uncovering additional information on the solution structure, through a comparison between the 

KBIs and the phase diagram.  

 

 The KBIs and the chemical potential 𝜇𝑖 of species 𝑖 obeys the following relationships:38,40,49,56–

58 

𝐴𝑖𝑗 ≡ 𝑉𝑘𝑇 (𝜕𝜇𝑖𝜕𝑁𝑗)𝑇,𝑉,𝑁𝑗′ = 𝑉𝑘𝑇 (𝜕𝜇𝑖𝜕𝑁𝑗)𝑇,𝑃,𝑁𝑗′ + 𝑉𝑖𝑉𝑗𝑘𝑇𝜅𝑇      (20) 

𝐵𝑖𝑗 ≡ 𝑘𝑇𝑉 (𝜕𝑁𝑖𝜕𝜇𝑗)𝑇,𝑉,𝜇𝑗′ = 𝜌𝑖𝜌𝑗𝐺𝑖𝑗 + 𝜌𝑖𝛿𝑖𝑗       (21) 

𝐴𝐵 = 𝐸           (22)  

where 𝐸 is a unit matrix, 𝑉 is the volume of the system, 𝑘 is the Boltzmannn constant, 𝑉𝑖 is the 

partial molar volume of the species 𝑖, and and 𝜅𝑇 is the isothermal compressibility of the solution. 𝐺𝑖𝑗 is the KBI between species 𝑖 and 𝑗, defined in terms of the ensemble average 〈 〉 involving 𝑁𝑖 
(the number of molecules of the species 𝑖 ) as 𝐺𝑖𝑗 = 𝑉 [〈𝑁𝑖𝑁𝑗〉−〈𝑁𝑖〉〈𝑁𝑗〉〈𝑁𝑖〉〈𝑁𝑗〉 − 𝛿𝑖𝑗〈𝑁𝑖〉] , where 𝛿𝑖𝑗  is 

Kronecker’s delta. The matrix 𝐴 is accessible via experiments, while the matrix 𝐵, which is related 

to KBIs, can be obtained via the matrix inversion (Eq. (22)).40,49,57 Note that Eqs (20)-(22) are 

based only on the fundamental principles of classical statistical thermodynamics; no further 

assumptions has been made other than the classical nature of the molecules.40,59    

 

Since isothermal compressibility diverges near the plait point60, the second term in Eq. (20) 

should be negligible, which leads to the following approximation:   

𝐴𝑖𝑗 ≃ 𝑉𝑘𝑇 (𝜕𝜇𝑖𝜕𝑁𝑗)𝑇,𝑃,𝑁𝑗′ ≡ 𝑉𝑘𝑇 𝜇𝑖𝑗         (23) 



 12 

This divergence of isothermal compressibility is evidenced by the experimentally-observed 

divergent scattering intensity at 𝑞 → 0, indicating a divergent structure factor1–13, when combined 

with a rigorous relationship between the structure factor and isothermal compressibility valid even 

for multiple-component solution.61,62  Hence linking KBIs with the Hessian of the normalized 

mixing free energy is now reduced to the variable transformation between (𝑁1, 𝑁2, 𝑁3)  and (𝑥2, 𝑥3, 𝑁), for which the following Jacobians will play a crucial role:33,63  

𝜕(𝑁1,𝑁2,𝑁3)𝜕(𝑥2,𝑥3,𝑁) = ( −𝑁 𝑁 0−𝑁 0 𝑁1 − 𝑥2 − 𝑥3 𝑥2 𝑥3)       (24) 

𝜕(𝑥2,𝑥3,𝑁)𝜕(𝑁1,𝑁2,𝑁3) = 1𝑁 ( −𝑥2 −𝑥3 𝑁1 − 𝑥2 −𝑥3 𝑁−𝑥2 1 − 𝑥3 𝑁)       (25) 

Note that 
𝜕(𝑁1,𝑁2,𝑁3)𝜕(𝑥2,𝑥3,𝑁) 𝜕(𝑥2,𝑥3,𝑁)𝜕(𝑁1,𝑁2,𝑁3) = 𝐸 can easily be proven.  

 

Firstly, we express 𝑔𝑖𝑗 in terms of the matrix 𝝁 = (𝜇𝑖𝑗) in Eq. (23). Using Eq. (24) and some 

useful relationships obtainable upon first-order differentiation (Appendix B), we obtain the 

following compact result  𝑔𝑖𝑗 = 𝑁𝑣𝑗𝑇𝝁𝑣𝑖           (26) 

where 𝑣𝑖 are defined as  

𝑣2 = ( 1−10 ) 𝑣3 = ( 10−1)         (27) 

This means that when KBIs between all the three species are determinable via Faber-Ziman partial 

structure factors at the 𝑞 → 0 limit,50 the inverse of the KBIs, namely 𝝁 via Eq. (23), can yield the 

Hessian of the normalized mixing free energy, thereby providing useful information on the mixing 

free energy surface.  
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Secondly, we establish a route to KBIs from the mixing free energy Hessian using Eq. (25). By 

virtue of the useful first-order differentiation results in Appendix B, we obtain the following 

compact results  𝑁𝜇𝑖𝑗 = 𝑢𝑗𝑇𝒈𝑢𝑖           (28) 

where  

𝑢1 = (−𝑥2−𝑥3)  𝑢2 = (1 − 𝑥2−𝑥3 )  𝑢3 = ( −𝑥21 − 𝑥3)    (29) 

This means that the local curvature information on 𝑔(𝑥2, 𝑥3) can directly be used as an input for 

the KBIs.  

 

We have thus obtained the direct relationships that link 𝒈 to 𝝁 and 𝝁 to 𝒈. Noting that 𝝁 is the 

inverse matrix of the KBIs, we conclude that two-way translation between the KBIs and the mixing 

free energy curvature has been established, which will link the phase diagram and scattering 

approaches to mesoscale fluctuations. At present, there is no experimental dataset available in the 

literature that could be used to evaluate the KBIs; to this end, extensive mixing free energy 

measurements should be conducted. Likewise, determining KBIs from simulation is still a 

challenging problem even for simple fluid mixtures, for which an efficient approach is actively 

investigated.64 Nevertheless, the significance of the theory here is in the unification of fluctuation-

based and curvature-based perspectives in the understanding of mixing inhomogeneities.  

 

 

4. Conclusion 
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Simple ternary mixtures that consist of two miscible and one immiscible pairs of solvents often 

exhibit anomalous and persistent scattering profiles corresponding to mesoscale structures.1–13 

Extensive scattering measurements, conducted over the last few decades, are revealing the 

morphology of the aggregates and droplets within the solution,3,4,7,8,23 and computer simulations 

are providing insights into the subtle balance of forces that leads to such structures.8–10,13 However, 

the fundamental questions remained unaddressed. What is the origin of these mesostructures? Why 

do they persist over a wide composition range?  Why do they appear around the plait point?  

   

This paper provided a clear answer to these questions, combining the insights from the 

thermodynamic theory of phase stability,26–28 elementary differential geometry,32,33 scattering 

theory29–31 and statistical thermodynamics of fluctuation.38–40,43,44,48 Through a simple re-

derivation of plait point condition by exploiting the fundamental properties of linear space and 

differential geometry,32,33,63 we have shown that the behaviour of mixing free energy around the 

plait point inevitably leads not only to the zero curvature of the mixing free energy surface along 

a principal direction but also to a zero derivative of curvature along the same axis, leading to a 

persistently small free energy curvature. Since the concentration-concentration structure factor is 

inversely proportional to this curvature,25 our finding have thus revealed the origin of the strong 

and persistent scattering intensity coming from this region in the phase diagram.  

 

In addition, in view of the difficulty in the characterization of aggregate and droplet structures 

solely from scattering, we have provided a general theoretical framework upon which mixing free 

energy information can directly be linked to the Kirkwood-Buff integrals that quantify the potential 

of mean force interactions between each species.38–40,43,44,48 This new link will generalize our 
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earlier theory of hydrotropy in its link between solubilization and scattering15–22,25 and will 

hopefully provide a complementary route to the elucidation of mesostructures.  

 

Appendix A 

Here we briefly summarize the background knowledge on the relationship between 

thermodynamic stability, structure factor and curvature. Let 𝑔𝑚𝑖𝑥(𝑥2, 𝑥3, … , 𝑥𝑀) be the free energy 

of mixing in the M-component system, where 𝑥𝑖 is the mole-fraction of the component 𝑖. Note that 

there are only 𝑀− 1 variables due to ∑ 𝑥𝑖𝑖 = 1. Gazzillo28 defined the following matrix 

𝑔𝑖𝑗 = (𝜕𝑔𝑚𝑖𝑥𝜕𝑥𝑖𝜕𝑥𝑗)𝑇,𝜌𝑘  for 𝑖 ≥ 2, 𝑗 ≥ 2      (A1) 

and the following stability function via the Hessian determinant, Γ = det 𝑔 (Eq. (7)), as   Ψ = ∏ 𝑥𝑖𝑖(𝑘𝐵𝑇)𝑀−1 Γ           (A2) 

The phase stability condition for the mixture, using Eq, (A2), is Ψ > 0; spinodal line is the 

collection of points (𝑥2, … , 𝑥𝑀)  that satisfy Ψ(𝑥2, … , 𝑥𝑀) = 0 .28 Gazillo has shown that the 

stability function Ψ can be related to the concentration-concentration structure factor at 𝑞 = 0, 𝑆𝐶𝐶(0), as28 Ψ = ∏ 𝑥𝑖𝑖𝑆𝐶𝐶(0)           (A3)  

Based on Eqs. (A3) and (A4), 𝑆𝐶𝐶(0) and Γ has the following reciprocal relationship:  

𝑆𝐶𝐶(0) = (𝑘𝐵𝑇)𝑀−1Γ            (A4) 

In our previous paper,25 we have gone so far as to show that  the Hessian determinant Γ can be 

expressed as the product of its principal curvatures, 𝛼𝑖 along the principal axes32, such that  𝑆𝐶𝐶(0) = (𝑘𝐵𝑇)𝑀−1∏𝛼𝑖           (A5)  
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Thus the divergence of 𝑆𝐶𝐶(0) at a given composition comes from at least one of the principal 

curvatures being close to zero. Yet what makes the curvature so small has not been identified in 

our previous paper, but has been linked directly to the plait point condition in this paper (Section 

2).  

 

Appendix B 

 

Here we derive Eqs. (26)-(29). To do so, we will present some useful relationships for linking the 

mixing free energy Hessian to KBIs. Throughout the derivation here, the variables 𝑇 and 𝑃 have 

been omitted.  

 

Our first goal is to derive Eqs. (26) and (27). To do so, we must start from the first order 

derivatives of 𝜇𝑖 with respect to the mole fractions. Using the Jacobian,33,63 we have  

( 
 𝜕𝐺𝜕𝑥2𝜕𝐺𝜕𝑥3𝜕𝐺𝜕𝑁) 

 = ( −𝑁 𝑁 0−𝑁 0 𝑁1 − 𝑥2 − 𝑥3 𝑥2 𝑥3)( 
 𝜕𝐺𝜕𝑁1𝜕𝐺𝜕𝑁2𝜕𝐺𝜕𝑁3) 

 
       (B1)  

Noting that 𝜇𝑖 = ( 𝜕𝐺𝜕𝑁𝑖) and 𝐺 = 𝑁𝑔(𝑥2, 𝑥3), Eq. (B1) can be rewritten as  

𝜕𝑔𝜕𝑥2 = 𝜇2 − 𝜇1           (B2) 

𝜕𝑔𝜕𝑥3 = 𝜇3 − 𝜇1           (B3) 𝑔 = 𝑥2𝜇2 + 𝑥3𝜇3 + (1 − 𝑥2 − 𝑥3)𝜇1        (B4)  

We have thus established the first order derivatives of 𝑔 with respect to 𝑥2 and 𝑥3 via Eqs. (B2) 

and (B3).  
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We then calculate 𝑔𝑖𝑗, i.e., the second order derivatives of 𝑔 with respect to 𝑥2 and 𝑥3. using the 

same Jacobian (Eq. (24)). To this end, combining Eqs. (B2), (B3) and (24) yields 

𝜕2𝑔𝜕𝑥22 = 𝜕(𝜇2−𝜇1)𝜕𝑥2 = −𝑁(𝜇21 − 𝜇11) + 𝑁(𝜇22 − 𝜇21)      (B5) 

𝜕2𝑔𝜕𝑥2𝜕𝑥3 = 𝜕(𝜇2−𝜇1)𝜕𝑥3 = −𝑁(𝜇21 − 𝜇11) + 𝑁(𝜇32 − 𝜇31)     (B6) 

𝜕2𝑔𝜕𝑥32 = 𝜕(𝜇3−𝜇1)𝜕𝑥3 = −𝑁(𝜇31 − 𝜇11) + 𝑁(𝜇33 − 𝜇13)      (B7) 

Simple yet tedious algebra shows that Eqs. (B5)-(B7) can be expressed in a more compact manner 

summarized by Eqs. (26) and (27).  

 

Our second goal is to derive Eqs. (28) and (29). The Jacobian of Eq. (25) yields the following 

useful relationship between the chemical potential and the first-order derivative of 𝑔(𝑥2, 𝑥3) as  

( 
 𝜕𝐺𝜕𝑁1𝜕𝐺𝜕𝑁2𝜕𝐺𝜕𝑁3) 

 = 1𝑁 ( −𝑥2 −𝑥3 𝑁1 − 𝑥2 −𝑥3 𝑁−𝑥2 1 − 𝑥3 𝑁)( 
 𝜕𝐺𝜕𝑥2𝜕𝐺𝜕𝑥3𝜕𝐺𝜕𝑁) 

 
       (B8) 

Noting again that 𝜇𝑖 = ( 𝜕𝐺𝜕𝑁𝑖) and 𝐺 = 𝑁𝑔(𝑥2, 𝑥3), we obtain  

𝜇1 = −𝑥2𝑔2 − 𝑥3𝑔3 + 𝑔         (B9) 𝜇2 = (1 − 𝑥2)𝑔2 − 𝑥3𝑔3 + 𝑔         (B10) 𝜇3 = −𝑥2𝑔2 + (1 − 𝑥3)𝑔3 + 𝑔        (B11) 

 

Now we differentiate Eqs. (B9)-(B11) once more with respect to 𝑁1, 𝑁2 and 𝑁3. The derivative 

with respect to 𝑁𝑖 is transformed to those with respect to 𝑥2, 𝑥3 and 𝑁 via the Jacobian (Eq. (25)). 

Note that the following relationships (for 𝑗 = 2,3) will play the key role in the derivation:  
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𝜕𝜇1𝜕𝑥𝑗 = −𝑥2𝑔2𝑗 − 𝑥3𝑔3𝑗         (B12) 

𝜕𝜇2𝜕𝑥𝑗 = (1 − 𝑥2)𝑔2𝑗 − 𝑥3𝑔3𝑗         (B13) 

𝜕𝜇3𝜕𝑥𝑗 = −𝑥2𝑔2𝑗 + (1 − 𝑥3)𝑔3𝑗         (B14) 

The derivation of Eq. (28) requires a tedious algebra. Using Eq. (25) for the differentiation of 𝜇1, 

and with the help of Eqs. (B12)-(B14), we obtain  

(𝜇11𝜇12𝜇13) = ( 
 𝜕𝜇1𝜕𝑁1𝜕𝜇1𝜕𝑁2𝜕𝜇1𝜕𝑁3) 

 = 1𝑁 ( −𝑥2 −𝑥3 𝑁1 − 𝑥2 −𝑥3 𝑁−𝑥2 1 − 𝑥3 𝑁)(−𝑥2𝑔22 − 𝑥3𝑔32−𝑥2𝑔23 − 𝑥3𝑔330 )    (B15) 

(𝜇21𝜇22𝜇23) = ( 
 𝜕𝜇2𝜕𝑁1𝜕𝜇2𝜕𝑁2𝜕𝜇2𝜕𝑁3) 

 = 1𝑁 ( −𝑥2 −𝑥3 𝑁1 − 𝑥2 −𝑥3 𝑁−𝑥2 1 − 𝑥3 𝑁)((1 − 𝑥2)𝑔22 − 𝑥3𝑔32(1 − 𝑥2)𝑔23 − 𝑥3𝑔330 )   (B16) 

(𝜇31𝜇32𝜇33) = ( 
 𝜕𝜇2𝜕𝑁1𝜕𝜇2𝜕𝑁2𝜕𝜇2𝜕𝑁3) 

 = 1𝑁 ( −𝑥2 −𝑥3 𝑁1 − 𝑥2 −𝑥3 𝑁−𝑥2 1 − 𝑥3 𝑁)(−𝑥2𝑔22 + (1 − 𝑥3)𝑔32−𝑥2𝑔23 + (1 − 𝑥3)𝑔330 )   (B17) 

Through straightforward yet tedious algebra, Eqs. (B15)-(B17) can be shown to be summarized 

compactly by Eqs. (28) and (29).   
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Figures  

 

Figure 1. A schematic representation of a ternary phase diagram. The plait point is where the two 

end points (A and B) of the tie line (orange) merges into a single point. The principal axes have 

been indicated in green.  
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Figure 2. A schematic diagram showing the mixing free energy (𝑔𝑚𝑖𝑥) along the tie line direction 

(orange). The end points A and B gets closer towards the plait point, at which the two points merge 

into a single point.  
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