Methodology type	General comments on approach	Details	Advantages	Additional limitations (beyond general approach)			
Reversible oxidation (-SOx)							
Indirect: tag switch	- lysates only - indirect method & multistep	Classic BST: - Block (IAM, MMTS or NEM) - reduce (DTT/TCEP) - label (biotin-HPDP/NEM) - enrich on resin	- In principle widely applicable once optimised.	 Additional steps required for quantification or use label-free. Site ID indirect. Many blocking reagents may crossreact with S-sulfenic acid. 			
		Variant with CysTMT labelling [1] Variant with IodoTMT labelling [2]	Site ID (direct) and quant. (up to 6 samples).	 No enrichment High analytical requirements for TMT. 			
		OxiTRAQ (block, reduce, label, enrich, iTRAQ labelling of eluted peptides) [3]	Site ID (indirect) and quantification.	Protocol with large number of steps.			
		OxiCAT (block, reduce, label with iCAT reagents, enrich, cleave from resin with acid) [4]	 Site ID (direct) and quant. Robust, widely used. 	Only 2 samples can be compared (c.f. TMT).			
		Resin-assisted enrichment variants ("label" step replaced with direct resin capture) [5]	- Site ID (indirect). - Eliminates a step.	Additional steps required for quantification or use label-free.			
Indirect: detect absence of labelling	- cells possible	In cell labelling of free thiols with iodoacetamide-alkyne or similar e.g. caged variant. Click on biotin [6, 7]	- Site ID (direct for free thiol) and quant. possible with isotope-encoded reagent.	- indirect detection of oxidised thiols via loss of labelling			
S-nitrosylation (-S	SNO)						
Indirect: tag switch	 lysates only ascorbate reduction not completely selective indirect method & multi- step 	Classic BST for NO: [8] - Block (IAM, NEM or MMTS) - ascorbate reduction - label (biotin-HPDP/NEM)	- In principle widely applicable once optimised.	 Additional steps required for quantification or use label-free. Site ID indirect or not always possible. 			
		Variant with ICAT at label step.	 Quantification introduced via isotopic ICAT label. Site ID via cleavable ICAT. 				
Semi-direct: block, direct label	- lysates only	Organomercury reagents / resin	- site ID possible	- indirect site ID (elute thiol from resin)			
	 requires blocking of free thiols before direct labelling advantage: no reduction step required 	Phosphine-based reagents e.g. SNOTRAP [9]	- site ID possible	 reagents may react with disulfides too indirect site ID (elute thiol from resin) 			
		S-sulfinic acid reagents [10]	- site ID possible	- reagent has stability issues			

Supplemental Table S3. Comparison of redox proteomics methodologies.

Methodology	General comments on approach	Details	Advantages	Additional limitations (beyond				
S-sulfenylation	S-sulfenvlation							
Indirect: tag- switch	 lysates only indirect method & multistep 	Tag-switch - block (IAM, MMTS, NEM) - reduce -SOH (arsenite) - label (biotin-HPDP/NEM etc)		Selectivity problems: -SOH is susceptible to initial blocking step				
Direct labelling	- lysates - cell permeable tool has been applied for imaging	Strained alkyne (BCN) [11, 12]		Possible cross-reactivity of BCN reagent with thiols?				
Direct labelling	Advantages: - <i>in vivo</i> possible Limitations: - most commonly used reagents (i.e. dimedone- based) react slowly. New reagents in development (see main text).	Dimedone-based biotin probes [13] Dimedone-based click probes [14] Label, click chemistry, enrich (via biotin). Ouantification can be introduced via isotope-	- Can be applied <i>in vivo</i> - Site ID (direct) and quant.	 only in lysates. site ID not straightforward additional steps required for quantification or use label-free. additional step required (click chemistry) 				
		Iabelled click reagents. YAP1 in vivo genetically encoded probe [15]	 click reagents. Direct labelling in cells. Genetically-encoded protein- based probes can be localised to specific organelles. 	 requires genetic manipulation – only possible for some sample types. system could perturb local redox states limited dose and temporal control 				
S-sulfinylation (-SO ₂ H)								
Semi-direct: block then direct labelling	 lysates only requires blocking of free thiols before labelling advantage: no reduction step required 	NO-Bio [16] Biotin-GSNO [10] NEM-based [17]	- reagent is stable	 not yet applied for proteomic analysis reagent has stability issues labelled adduct only stable under acidic conditions 				

Methodology	General comments on	Details	Advantages	Additional limitations (beyond
type	approach			general approach)
S-sumydration Indirect: tag- switch	- lysates only	Tag-switch. Block free thiols (MMTS), react -SSH sites with biotin-HPDP.		unclear if MMTS is truly selective for -SH over -SSH
Semi-direct	- lysates only (possibly parts of workflows adaptable to cells?)	Reduction tag-switch. Alkylation of -SH and -SSH with IAA or MSBT, followed by cleavage (via reduction) and labelling of former -SSH site with biotin. Enrichment and elution. [18]	- site ID (indirect)	Selectivity problem: other disulfides (-SSR) also released by reduction and labelled.
		Alkylation of both free thiols and persulfides with IAM-biotin , enrichment and selective elution of former -SSH site from resin. [19]	 more streamlined than reduction tag-switch method site ID (indirect) 	- selectivity problems if peptide also contains a disulfide site
		Labelling tag-switch. Alkylation of both free thiols and persulfides with MSBT , followed by selective reaction of former -SSH site with CN-biotin reagent. Enrichment and elution. [20]	 site ID overcomes selectivity problem of reduction tag-switch method 	
S-glutathionylatio	n and disulfides			
		Biotin-GSH or -GSSH added to cells. Lysis and enrichment of sites. [21, 22]	 can be performed in cells site identification 	 not measuring endogenous level (mimics increase in oxidative stress)
Direct	- in cells	Metabolic <i>in situ</i> Azido-GSH generation. [23]	- performed in cells - enables endogenous measurement	- requires expression mutant enzyme in cells
Indirect	 in lysates relies on complete blocking	Enzymatic tag-switch for -SSG. Blocking of free thiols; Grx1 enzyme system added to reduce -SSG; newly released free thiols captured on resin or biotinylated. [5] Enzymatic tag-switch for -SSR. Blocking of free thiols; Trx enzyme system added to reduce -SSR; newly released free thiols captured on resin or biotinylated. [24]	- enzymes are highly specific and operate under physiological conditions	- only identifies Grx/Trx-susceptible modified proteins (subset) - multi-step
		Enzymatic capture for -SSR. Blocking of free thiols; capture of Trx-susceptible disulfides via immobilised mutant Trx; elution with DTT. [25]	 enzymes are highly specific and operate under physiological conditions fewer steps 	- only identifies Trx-susceptible modified proteins (subset)

References

[1] Murray, C. I.; Uhrigshardt, H.; O'Meally, R. N.; Cole, R. N.; Van Eyk, J. E. Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay. *Mol Cell Proteomics* **11**:M111 013441; 2012.

[2] Qu, Z.; Meng, F.; Bomgarden, R. D.; Viner, R. I.; Li, J.; Rogers, J. C.; Cheng, J.; Greenlief, C. M.; Cui, J.; Lubahn, D. B.; Sun, G. Y.; Gu, Z. Proteomic quantification and site-mapping of S-nitrosylated proteins using isobaric iodoTMT reagents. *J Proteome Res* **13**:3200-3211; 2014.

[3] Liu, P.; Zhang, H.; Wang, H.; Xia, Y. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method. *Proteomics* **14**:750-762; 2014.

[4] Leichert, L. I.; Gehrke, F.; Gudiseva, H. V.; Blackwell, T.; Ilbert, M.; Walker, A. K.; Strahler, J. R.; Andrews, P. C.; Jakob, U. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. *Proc Natl Acad Sci U S A* **105**:8197-8202; 2008.

[5] Su, D.; Gaffrey, M. J.; Guo, J.; Hatchell, K. E.; Chu, R. K.; Clauss, T. R.; Aldrich, J. T.; Wu, S.; Purvine, S.; Camp, D. G.; Smith, R. D.; Thrall, B. D.; Qian, W. J. Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling. *Free Radic Biol Med* **67**:460-470; 2014.

[6] Abo, M.; Weerapana, E. A Caged Electrophilic Probe for Global Analysis of Cysteine Reactivity in Living Cells. *J Am Chem Soc* **137**:7087-7090; 2015.

[7] Zhou, Y.; Wynia-Smith, S. L.; Couvertier, S. M.; Kalous, K. S.; Marletta, M. A.; Smith, B. C.; Weerapana, E. Chemoproteomic Strategy to Quantitatively Monitor Transnitrosation Uncovers Functionally Relevant S-Nitrosation Sites on Cathepsin D and HADH2. *Cell Chem Biol* **23**:727-737; 2016.

[8] Jaffrey, S. R.; Snyder, S. H. The biotin switch method for the detection of S-nitrosylated proteins. *Sci STKE* **2001**:pl1; 2001.

[9] Seneviratne, U.; Nott, A.; Bhat, V. B.; Ravindra, K. C.; Wishnok, J. S.; Tsai, L. H.; Tannenbaum, S. R. S-nitrosation of proteins relevant to Alzheimer's disease during early stages of neurodegeneration. *Proc Natl Acad Sci U S A* **113**:4152-4157; 2016.

[10] Majmudar, J. D.; Konopko, A. M.; Labby, K. J.; Tom, C. T.; Crellin, J. E.; Prakash, A.; Martin, B. R. Harnessing Redox Cross-Reactivity To Profile Distinct Cysteine Modifications. *J Am Chem Soc* **138**:1852-1859; 2016.

[11] Poole, T. H.; Reisz, J. A.; Zhao, W.; Poole, L. B.; Furdui, C. M.; King, S. B. Strained cycloalkynes as new protein sulfenic acid traps. *J Am Chem Soc* **136**:6167-6170; 2014.

[12] McGarry, D. J.; Shchepinova, M. M.; Lilla, S.; Hartley, R. C.; Olson, M. F. A Cell-Permeable Biscyclooctyne As a Novel Probe for the Identification of Protein Sulfenic Acids. *ACS Chem Biol* **11**:3300-3304; 2016.

[13] Poole, L. B.; Klomsiri, C.; Knaggs, S. A.; Furdui, C. M.; Nelson, K. J.; Thomas, M. J.; Fetrow, J. S.; Daniel, L. W.; King, S. B. Fluorescent and affinity-based tools to detect cysteine sulfenic acid formation in proteins. *Bioconjug Chem* **18**:2004-2017; 2007.

[14] Yang, J.; Gupta, V.; Carroll, K. S.; Liebler, D. C. Site-specific mapping and quantification of protein S-sulphenylation in cells. *Nat Commun* **5:**4776; 2014.

[15] Takanishi, C. L.; Ma, L. H.; Wood, M. J. A genetically encoded probe for cysteine sulfenic acid protein modification in vivo. *Biochemistry* **46**:14725-14732; 2007.

[16] Lo Conte, M.; Lin, J.; Wilson, M. A.; Carroll, K. S. A Chemical Approach for the Detection of Protein Sulfinylation. *ACS Chem Biol* **10**:1825-1830; 2015.

[17] Kuo, Y. H.; Konopko, A. M.; Borotto, N. B.; Majmudar, J. D.; Haynes, S. E.; Martin, B. R. Profiling Protein S-Sulfination with Maleimide-Linked Probes. *Chembiochem* **18**:2028-2032; 2017.

[18] Wedmann, R.; Onderka, C.; Wei, S.; Szijarto, I. A.; Miljkovic, J. L.; Mitrovic, A.; Lange, M.; Savitsky, S.; Yadav, P. K.; Torregrossa, R.; Harrer, E. G.; Harrer, T.; Ishii, I.; Gollasch, M.; Wood, M. E.; Galardon, E.; Xian, M.; Whiteman, M.; Banerjee, R.; Filipovic, M. R. Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation. *Chem Sci* **7**:3414-3426; 2016.

[19] Doka, E.; Pader, I.; Biro, A.; Johansson, K.; Cheng, Q.; Ballago, K.; Prigge, J. R.; Pastor-Flores, D.; Dick, T. P.; Schmidt, E. E.; Arner, E. S.; Nagy, P. A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems. *Sci Adv* **2**:e1500968; 2016.

[20] Zhang, D.; Macinkovic, I.; Devarie-Baez, N. O.; Pan, J.; Park, C. M.; Carroll, K. S.; Filipovic, M. R.; Xian, M. Detection of protein S-sulfhydration by a tag-switch technique. *Angew Chem Int Ed Engl* **53**:575-581; 2014.

[21] Sullivan, D. M.; Wehr, N. B.; Fergusson, M. M.; Levine, R. L.; Finkel, T. Identification of oxidant-sensitive proteins: TNF-alpha induces protein glutathiolation. *Biochemistry* **39**:11121-11128; 2000.

[22] Brennan, J. P.; Miller, J. I.; Fuller, W.; Wait, R.; Begum, S.; Dunn, M. J.; Eaton, P. The utility of N,N-biotinyl glutathione disulfide in the study of protein S-glutathiolation. *Mol Cell Proteomics* **5**:215-225; 2006.

[23] Samarasinghe, K. T.; Munkanatta Godage, D. N.; VanHecke, G. C.; Ahn, Y. H. Metabolic synthesis of clickable glutathione for chemoselective detection of glutathionylation. *J Am Chem Soc* **136**:11566-11569; 2014.

[24] Marchand, C.; Le Marechal, P.; Meyer, Y.; Decottignies, P. Comparative proteomic approaches for the isolation of proteins interacting with thioredoxin. *Proteomics* **6**:6528-6537; 2006.

[25] Perez-Perez, M. E.; Mauries, A.; Maes, A.; Tourasse, N. J.; Hamon, M.; Lemaire, S. D.; Marchand, C. H. The deep thioredoxome in Chlamydomonas reinhardtii: new insights into redox regulation. *Mol Plant*, 2017.