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SUMMARY

Underlying the development of malaria parasites
within erythrocytes and the resulting pathogenicity
is a hardwired program that secures proper timing
of gene transcription and production of functionally
relevant proteins. How stage-specific gene expres-
sion is orchestrated in vivo remains unclear. Here, us-
ing the assay for transposase accessible chromatin
sequencing (ATAC-seq), we identified�4,000 regula-
tory regions in P. falciparum intraerythrocytic stages.
The vast majority of these sites are located within
2 kb upstream of transcribed genes and their chro-
matin accessibility pattern correlates positively
with abundance of the respective mRNA transcript.
Importantly, these regions are sufficient to drive
stage-specific reporter gene expression and DNA
motifs enriched in stage-specific sets of regulatory
regions interact with members of the P. falciparum
AP2 transcription factor family. Collectively, this
study provides initial insights into the in vivo gene
regulatory network of P. falciparum intraerythrocytic
stages and should serve as a valuable resource for
future studies.

INTRODUCTION

Malaria, caused by infection with parasites of the Plasmodium

genus, remains a major health and economic burden (Murray

et al., 2012). The parasite’s life cycle is intriguingly complex,

requiring adaptation to several different host cell environments

and transmission between the human host and the mosquito

vector. The approximately 48 hr intraerythrocytic development

of P. falciparum is responsible for most disease symptoms. It

involves the invasion, remodeling, consumption, and rupture of

human red blood cells while the parasite replicates by schi-

zogony, giving rise to 16–32 new parasites (Cowman et al.,
Cell Host & Microbe 23, 557–569, A
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2016). Underlying this development and the pathogenicity of

the parasite is a gene expression program that secures proper

timing of gene transcription and production of functionally rele-

vant proteins. However, despite being a fundamental eukaryotic

process and a potential target of drug-based intervention, our

understanding of gene expression regulation in Plasmodium is

still in its infancy (Painter et al., 2011).

During the intraerythrocytic development cycle (IDC), the ma-

jority of genes are transcribed in a ‘‘just-in-time’’ manner, with

peak mRNA abundances correlating with the need for the prod-

ucts they encode for (Bozdech et al., 2003). Although post-tran-

scriptional and translational control mechanisms operate in this

stage as well (Caro et al., 2014; Foth et al., 2011), the initial pro-

duction of mRNAs, dictated by transcriptional and epigenetic

mechanisms, remains a major and rate-limiting step in the

gene expression process during the blood-stage cycle. In

P. falciparum, epigenetic regulation of gene expression is most

evident in heterochromatin-mediated gene silencing of, for

example, antigenic variation genes, selection of erythrocyte in-

vasion pathways, and control of gametocyte conversion rate

(for review, see Voss et al., 2014). This type of regulation is, how-

ever, limited to genes located in subtelomeric regions and a few

chromosome-internal heterochromatic islands (Flueck et al.,

2009; Salcedo-Amaya et al., 2009), while the largest part of the

parasite genome is in a transcriptionally permissive, euchromatic

state.

These observations collectively point to an important role for

transcriptional control mechanisms in stage-specific gene

expression regulation, including the action of trans-acting tran-

scription factors (TFs) that bind to specific DNA sequences

and stimulate or inhibit the assembly and/or activity of the RNA

polymerase II pre-initiation complex. Such sequence-specific

TFs are, however, relatively low in numbers, constituting roughly

1% of all protein-coding genes (Balaji et al., 2005; Bischoff and

Vaquero, 2010) compared to �3% in yeast or 6% in human.

Despite general scarcity of sequence-specific TFs, the relevance

of the Apicomplaxan AP2 family of TFs in Plasmodium has

become evident over the past decade, mainly through the

use of knockout or knockdown experiments (Flueck et al.,

2010; Iwanaga et al., 2012; Kafsack et al., 2014; Kaneko et al.,
pril 11, 2018 ª 2018 The Author(s). Published by Elsevier Inc. 557
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2015; Modrzynska et al., 2017; Santos et al., 2017; Sinha et al.,

2014; Yuda et al., 2009, 2015; Zhang et al., 2017). While these

functional genomic approaches have been very powerful to

dissect the function of TFs outside of the IDC, they could only

suggest the essentiality of AP2 factors during the IDC. Further-

more, rather little is known about DNA elements that act in con-

cert with these specific TFs. Most of our current understanding

of cis-regulatory DNA elements stems from deletion analyses

of promoters (e.g., López-Estraño et al., 2007; Militello et al.,

2004; Sunil et al., 2008), in silico DNA motif predictions (e.g., El-

emento et al., 2007; Gunasekera et al., 2007; Russell et al., 2015;

Young et al., 2008), and protein-binding microarray studies

defining the in vitro sequence preference of recombinant AP2

domains (Campbell et al., 2010). Although these studies have

certainly been valuable and some of the DNA motif predictions

could indeed be confirmed by chromatin immunoprecipitation

sequencing (ChIP-seq) experiments (Kaneko et al., 2015; Santos

et al., 2017), we still lack an accurate, genome-wide overview of

cis-regulatory DNA elements and their activity in vivo.

The binding of specific trans-factors to the DNA is associated

with the eviction and/or destabilization of nucleosomes, thereby

creating a more ‘‘accessible’’ chromatin environment. As a first

attempt to explore open chromatin structures in P. falciparum,

formaldehyde-assisted isolation of regulatory elements (FAIRE-

seq) has been employed (Ponts et al., 2010). While this study re-

ported increased accessibility at active promoter regions, the

resolution of the data was not sufficient to improve the identifica-

tion of regulatory elements. In a previous study, we applied

MNase sequencing to profile the nucleosome landscape and

provided proof of principle that the chromatin environment of a

predicted regulatory element is depleted of nucleosomes and

that this signature could be used to predict active regulatory el-

ements (Kensche et al., 2016). As a completion of these efforts,

here we set out to identify gene regulatory elements in vivo and

on a genome-wide scale by directly profiling chromatin accessi-

bility using the assay for transposase accessible chromatin

sequencing (ATAC-seq; Buenrostro et al., 2013). We combined

ATAC-seq and directional RNA sequencing (RNA-seq) on eight

tightly synchronized P. falciparum IDC stages to profile gene

regulatory events. Furthermore, we combined bioinformatics,

biochemical, and reporter gene assays to characterize these

cis-regulatory elements and their interactions with TFs. Collec-

tively, this study represents a major step toward dissection of

the transcriptional regulation network of this deadly pathogen

and provides a valuable resource for future studies aiming to

characterize or use gene regulatory elements.

RESULTS

ATAC-Seq Identifies Accessible Chromatin Regions in
the AT-Rich Plasmodium Genome
To identify and profile TF-binding events, we performed ATAC-

seq on synchronized P. falciparum 3D7 parasites at eight

consecutive time points during their IDC (from 5 to 40 hr post-

invasion [hpi]). Considerable signal was detected in coding se-

quences (Figure S1A, purple track ‘‘t40 all’’) and in subtelomeric

regions of the genome (data not shown). We reasoned that this

was likely due to the sequence bias of the enzyme (Goryshin

et al., 1998), in combination with the distinctly higher GC content
558 Cell Host & Microbe 23, 557–569, April 11, 2018
of these sequences as compared to the AT-rich intergenic re-

gions (Gardner et al., 2002). To correct for such biases as well

as biases introduced during library preparation and sequencing,

we performed the same assay on naked, genomic DNA (gDNA).

This control library also showed a distinctly higher read count in

the GC-richer coding sequences (Figure S1A, bottom gray track

‘‘gDNA all’’) and subtelomeric regions. Furthermore, in the chro-

matin context, Tn5 transposition is known to give rise to (sub-)

nucleosomal fragments (<150 bp) as well as fragments corre-

sponding to mono-, di-, and tri-nucleosomes as a result of trans-

position in the vicinity of TF-binding sites and in linker regions

between nucleosomes, respectively (Buenrostro et al., 2013).

We therefore reasoned that selecting reads with a size between

50 and 150 bp could increase the signal-to-noise ratio for the

detection of TF-binding sites. Indeed, compared to the other

insert sizes, a higher proportion of 50–100 bp and 100–150 bp

fragments mapped to intergenic, putative regulatory regions

(Figures S1A and S1B) and to binding sites of an AP2 TF

(AP2-I; Santos et al., 2017; Figure S1B; next paragraph). Based

on the above observations, we decided to use only fragments

with a size between 50 and 150 bp and corrected the derived

read counts with the read counts detected in the gDNA control

library in all follow-up analyses (Figure 1A). Finally, the robust-

ness of the data was assessed by preparing a replicate

ATAC-seq dataset (replicate 2), which showed a high degree

of correlation with the first dataset (Pearson correlation of 0.88

and higher; Figures 1B and S1C). Accordingly, our ATAC-

seq approach enables robust and accurate identification of

accessible chromatin regions despite AT richness of the

P. falciparum genome.

Dynamic Chromatin Accessibility in 50 Intergenic
Regions Highlights TF-Binding Events
Next, we identified local regions of increased accessibility for all

eight time points of the IDC using the model-based analysis of

ChIP-seq 2 (MACS2) algorithm for peak calling (Liu, 2016). The

number of identified accessible regions reflects the overall tran-

scriptional output at the given stage of development (Bártfai

et al., 2010; Lu et al., 2017; Sims et al., 2009), with �500 regions

in ring stages to �3,000 in late trophozoite/early schizonts (Fig-

ure S1D). After merging the peaks for all time points, a total 4,035

regions were identified that show increased accessibility during

one or more stages of the IDC (Table S1), 92% of which were

confirmed by the peaks called on the replicate ATAC-seq data-

set (data not shown). Ninety percent of the accessible regions

locate to intergenic regions containing one or two putative pro-

moter regions (Figure 1C). Within these regions, the majority of

peaks locate up to 2 kb upstream of the ATG and, when a tran-

scription start site (TSS) is known (Kensche et al., 2016), within

1.5 kb upstream of the TSS (Figure 1D). In addition, these

ATAC peaks captured 95% of the AP2-I-binding sites detected

by ChIP-seq (Figures 2A and 2B; Santos et al., 2017). Interest-

ingly, two different clusters of AP2-I-binding sites could be

discriminated based on their accessibility profile during the

IDC. A cluster of 64 regions (linked to 50 genes) becomes acces-

sible in late trophozoites/early schizonts and a cluster of 105

regions (linked to 100 genes) becomes accessible in mature

schizonts and shows increased accessibility in t05 rings (Figures

2C and 2D). This subdivision is also evident at themolecular level
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Figure 1. ATAC-Seq Detects Chromatin Accessibility during Intraerythrocytic Development of P. falciparum

(A) UCSC genome browser screenshot of a 66,700 bp region on chromosome 7 displaying chromatin accessibility profiles from eight time points (t05–t40 hr post-

invasion [hpi]) as a ratio of normalized ATAC-seq tag count over background transposition in naked, genomic DNA (ATAC-seq/gDNA). Black bars below t40 track

depict the peak regions as identified by MACS2 peak calling. Coding sequences are indicted as blue (positive strand) or red (minus strand) bars. GC%, the mean

percentage of GC nucleotides, smoothened over 5 bp windows.

(B) Heatmap depicting the Pearson correlation of RPKM (reads per kb per million mapped reads) values in peak regions from the above dataset (REPLICATE1)

and an independent eight time point ATAC-seq dataset (REPLICATE2) demonstrating a high degree of reproducibility.

(C) The distribution of accessible regions among different genomic regions. Peaks were called on accessibility profiles of individual time points (t05–t40) and

merged, yielding 4,035 accessible regions. Intergenic regions were categorized based on the direction of transcription of the flanking coding regions (divergent,

green; convergent, orange; tandem, pink).

(D) Peaks located in divergent and tandem intergenic regions were assigned to the closest downstream gene and the distance between the ATAC peak summit

and the ATG or TSS was calculated. The line depicts the smoothened distribution of distances (kernel density estimate).

See also Figure S1 and Table S1.
with genes in cluster 1 being enriched for processes related

to chromatin organization and cell-cycle progression, while clus-

ter 2 genes are clearly involved in host cell invasion (Table S2).
Collectively, these results demonstrate that ATAC-seq de-

tects dynamic chromatin accessibility in promoter regions of

P. falciparum genes during the IDC and that it can capture
Cell Host & Microbe 23, 557–569, April 11, 2018 559
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Figure 2. ATAC-Seq Predicts TF-Binding Events Detected Earlier by ChIP-Seq

(A) UCSC genome browser screenshots of three genomic regions with AP2-I TF-binding sites. Normalized ATAC-seq coverage is plotted as ratio over coverage in

gDNA control. Data of the three AP2-I ChIP-seq replicates from Santos et al. (2017), generated in the P. falciparum Dd2 line, were mapped against the

P. falciparum 3D7 genome. Turquoise bars are AP2-I peaks from Santos et al. (2017).

(B) Overlap between AP2-I peaks and ATAC peaks from t40 time point (165 out of 2,771 peaks overlap with 169 out of 177 AP2-I peaks) plotted as Venn diagram.

(C) Heatmap of non-gDNA corrected ATAC-seq accessibility profiles over AP2-I peaks (midpoint ± 5 kb) that overlap with merged ATAC peaks (n = 169). Profiles

were clustered using Pearson correlation calculated for the middle 100 bp window into 2 clusters by k-means clustering.

(D) Median accessibility profiles for the two clusters of ATAC peaks defined in (C) with the 50th and 90th percentile as a dark- and light-colored shades.

Accessibility is calculated as proportion of sum of quantile normalized RPKM values over the time points.

See also Table S2.
TF-binding events. In addition, it demonstrates that data from

ATAC-seq performed at multiple developmental stages can pro-

vide valuable temporal resolution to TFChIP-seq data performed

at a single time point.

Chromatin Accessibility Patterns Are Predictive for
Gene Expression Dynamics
To assess the relationship between chromatin accessibility and

gene expression, we prepared directional RNA-seq libraries
560 Cell Host & Microbe 23, 557–569, April 11, 2018
from the same parasite cultures as used for ATAC-seq. Overall,

the chromatin accessibility pattern and the transcript abundance

pattern of the downstream gene are positively correlated (see

examples in Figure 3A). To quantify this correlation, accessible

regions were assigned to the closest downstream located

gene, yielding 3,210 accessible region-gene pairs (accessible

regions and/or genes with low signal and hence potentially noisy

patterns were excluded; STAR Methods). Chromatin accessi-

bility patterns during the IDC, which were highly reproducible
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Figure 3. Chromatin Accessibility Positively Correlates with mRNA Abundance of the Downstream Gene

(A) UCSC genome browser screenshot (chr3: 110,000–125,500) of ATAC-seq chromatin accessibility profiles (top) and corresponding RNA-seq profiles (bottom;

only reads mapping to the sense strand are displayed).

(B) Heatmaps displaying relative chromatin accessibility and mRNA abundance profiles of the downstream gene through eight stages of intraerythrocytic

development. Relative accessibility in ATAC-seq peaks located in divergent or tandem intergenic regions was calculated as a proportion of sum of quantile

normalized RPKM values over the time points and clustered by k-means using the 1-Pearson correlation distance metric. The relative transcript abundances of

the downstream located genes, expressed as proportion of sum of sense strand RPKM values over the time points, were plotted in the same order. Color scales

range from the 20th to the 80th percentile for both datasets.

(C) Observed (red line) and 1,000 randomized distributions (1,000 gray lines with mean of all randomizations as black line) of Pearson correlation coefficients

between relative chromatin accessibility and mRNA abundance of the downstream gene (as in B) plotted as smoothened kernel density distribution.
between the two ATAC-seq replicates (Figure S1E; median cor-

relation of r = 0.84), were then used to group accessible regions

by means of k-means clustering. Alignment with the assigned

genes revealed a high degree of similarity between chromatin

accessibility patterns and relative abundance of corresponding

mRNAs (Figure 3B). In fact, the majority of the genes showed a

clear positive correlation between chromatin accessibility and

relativemRNA abundance (Pearson correlation > 0.6; Figure 3C),

demonstrating that chromatin accessibility is highly predictive of

the gene expression pattern for the majority of genes. Moreover,

this observation suggests that the gene regulatory events gov-

erning the IDC of P. falciparum are mainly activating events.
ATAC-Seq Regions Are Sufficient for Regulating Stage-
Specific Gene Expression
To study the potential of the identified accessible regions to drive

stage-specific gene expression, parasite lines were generated

with different accessible regions cloned upstream of the minimal

kahrp promoter (Brancucci et al., 2012) and a gfp-luciferase

(gfp-luc) reporter gene (Figures 4A, S2A, and S2B). The region

upstream of PF3D7_1372200 (hrpIII) has been characterized

before and functioned as a positive control (López-Estraño

et al., 2007) while the accessible regions upstream of

PF3D7_0719000, PF3D7_1200700, and PF3D7_1222700 were

selected based on their stage-specific accessibility and RNA
Cell Host & Microbe 23, 557–569, April 11, 2018 561
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Figure 4. Accessible Regions Are Sufficient in Driving Stage-Specific Reporter Gene Expression

(A) Schematic representation of the DNA constructs inserted into the cg6 locus of attB(+) 3D7 P. falciparum parasites using the site-specific integration system

(Nkrumah et al., 2006). Accessible regions detected by ATAC-seq (light blue) were cloned upstream of theminimal kahrp promoter (yellow) followed by the gfp-luc

fusion gene (green).

(B) Bar plots showing the relative gfp-luc transcript abundance determined by qRT-PCR for ring, trophozoite, and schizont stages from parasites carrying the

reporter construct without accessible region (only the kahrpminimal promoter, yellow), with the accessible region of PF3D7_1372200 (hrpIII, positive control), or

with selected accessible region located upstream of PF3D7_0719000, PF3D7_1200700, or PF3D7_1222700. For the latter three constructs with novel putative

regulatory sequences, reporter gene expression was measured in biological duplicate. Relative gfp-luc transcript abundance was determined based on a

standard reference dilution series (STARMethods). The relative abundances in replicate 2 were scaled to the average of replicate 1. The raw data are depicted in

Figure S2. Transcript abundance (RPKM) of the respective gene as determined by RNA-seq is indicated as a blue line for eight time points (t05–t40).

See also Figure S2.
abundance profiles (Figure S2C, blue framed rectangle). In addi-

tion, for PF3D7_0719000 and PF3D7_1200700 we created

control parasite lines with a neighboring, not-accessible inter-

genic region cloned upstream of the minimal kahrp promoter

(Figure S2C, red framed rectangle; for PF3D7_1222700, integra-

tion of the negative control construct could not be achieved).

Remarkably, for all tested accessible regions, the temporal

expression profile of the reporter genematched the RNA expres-

sion profiles of the respective downstream located genes and

was clearly above the background detected in the control

lines (Figures 4B and S2C). This demonstrates that intergenic

regions displaying dynamic chromatin accessibility are suffi-

cient to induce stage-specific expression of the downstream

located gene.

Specific Sequence Motifs Are Associated with
Dynamics of Accessible Regions
The ATAC-seq data revealed different patterns of accessibility

over the IDC that showed an overall positive correlation with

mRNA abundance. We reasoned that these were likely caused

by the presence of different DNA motifs in promoter regions

that are bound by specific TFs in a stage-specific manner. To
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identify DNAmotifs that could perform this function, we first per-

formed an exhaustive de novo motif search using GimmeMotifs

and seqGL (STAR Methods; Setty and Leslie, 2015; van Heerin-

gen and Veenstra, 2011). These de novo predicted motifs were

combined with previously predicted Plasmodium motifs (Camp-

bell et al., 2010) and known vertebrate, invertebrate, and plant

motifs from the CIS-BP database (Weirauch et al., 2014), yielding

a comprehensive library of putative cis-regulatory sequences.

Next we identified gene sets with clear stage-specific accessi-

bility/expression profiles by selecting all accessible regions

that positively correlated with transcript abundance (Pearson

correlation > 0.6; n = 2,118 regions; Table S1) and clustered

those considering both their accessibility and transcript abun-

dance patterns over the IDC into eight clusters using k-means

clustering (Figure 5A).

To identify motifs associated with specific accessibility/

expressionpatterns,weusedanensemble of different regression

andclassificationmethods, as implemented inGimmeMotifs (van

Heeringen and Veenstra, 2011), and searched for motifs from

the above library that were consistently enriched in accessible

regions of a specific cluster (p < 0.01, in at least two out of three

runs; Table S3). After manually removing eight low-information
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contentmotifs (Figure S3A; TableS3), we clustered the remaining

motifs, yielding 41 non-redundant motifs (Figures 5B and S3B;

Table S3; for redundancy filtering, see van Heeringen and Veen-

stra, 2011). Interestingly, for all ATAC/RNA-seq co-clusters we

observed enrichment of at least one predicted AP2motif (in total,

16 motifs predicted for 13 different AP2 proteins; blue font in

Figure 5B), suggesting that the corresponding AP2 TF is likely

relevant in regulating these genes. Additionally, we detectedmo-

tifs similar to the G-box element upstream of heat shock genes

(motif vertebrate.C2H2_ZF_M6240; Militello et al., 2004). Impor-

tantly, in addition to these previously predicted motifs, we identi-

fied 13 de novo motifs with potential regulatory capacity in

P. falciparum (indicated with red font in Figure 5B).

DNA Pull-Down Combined with Quantitative Proteomics
Reveals cis-trans Regulatory Interactions
We selected four motifs and identified their protein interactors

by performing DNA pull-downs using short oligos representing

actual accessible sequences containing the selected motifs

and native nuclear extracts from non-synchronous, asexual

P. falciparum 3D7 cultures. To identify proteins that specifically

bind to the motif, but not to a control oligo with a scrambled

motif, we analyzed pull-down and control samples by quantita-

tive tandem mass spectrometry. (See Table S4 for the complete

list of motifs and identified proteins.)

First, we tested the CA-repeat motif predicted for protein

PF3D7_0802100, which formed a ‘‘motif group’’ with similar

motifs predicted for other AP2 proteins (PF3D7_0420300,

PF3D7_1305200, and PF3D7_1456000; Figure S3B). The DNA

pull-down confirmed the specific recruitment of PF3D7_0802100

and PF3D7_0420300 to the ACACACAT motif when compared

to a scrambled control motif (ATCAAACC), but not the other two

factors (Figure 6A).

Next, we tested three de novo motifs (031, 028, and 050). All

these motifs captured at least one AP2 TF (Figures 6B–6D).

The AP2 factor PF3D7_0420300 was consistently identified

among the interactors of the TTATTACAC motif (de_novo_

motif_031; Figures 6B and S4A). Remarkably, this motif is

more similar to the sequence preference of the second AP2

domain of this factor (TTATTACAC versus GTGTTACA; Camp-

bell et al., 2010), potentially suggesting that this factor can

bind to two different regulatory elements (CACACACA, see

above, and TRTTACAC) using different AP2 domains.

For the second de novo motif (028), we tested three different

probes, and interestingly, partially overlapping sets of chro-

matin-related factors were enriched together with the TF AP2-I

in each of them (Figures 6C, S4B, and S4C). These included

bromodomain proteins (BDP) 1, 2, and 3 (PF3D7_1475600);
Figure 5. DNA Motifs Enriched in Stage-Specific ATAC Regions

(A) Co-clustering of ATAC-seq and RNA-seq data, limited to peak-to-gene pairs w

abundance are expressed as proportion of sum of (qn)RPKM values over the tim

metric into eight clusters. Color scales range from the 20th to 80th percentile per

(B) Heatmap of significance estimates for differential motif enrichment (expres

clustering the ATAC-seq and RNA-seq data by k-means cluster (see A). Each ro

Asterisks indicate that the motif is a representative from a group of similar motifs

reported in blue font with PlasmoDB geneID (name, if known, is in brackets). Whe

reported in brackets behind the representative motif.

See also Figure S3 and Tables S1 and S3.
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HMGB3; and an SWIB/MDM2 domain-containing protein

(SWIB, PF3D7_0611400), but also two conserved unknowns

(PF3D7_0306100 and PF3D7_1124300), NOP5 and IspD. This

suggests that AP2-I is sufficient to recruit these chromatin fac-

tors to target gene promoters, in line with the current study of

Santos et al. (2017). Notably, in two of the three pull-downs

another AP2-factor, SIP2, was enriched with the motif-contain-

ing oligos (Figures S4B and S4C). SIP2 was first predicted to

bind to a motif very similar to AP2-I (Figures S4B and S4C;

Campbell et al., 2010) but was later shown to a bind a longer

sequence named SPE2 (NVTGCA-4(5)-VGTGCR) upstream of

subtelomeric var genes (Flueck et al., 2010). By chance, se-

quences similar to a full SPE2motif can be found in both of these

oligos, including some flanking sequences (Table S5), explaining

the binding of SIP2 to these two, but not the first oligo. Hence,

SIP2 is likely not a genuine interactor of de_novo_motif_028.

Lastly, we tested de_novo_motif_050 (GAGCTCAA) using

DNA probes from two different genomic regions. In this case,

we observed a moderate, but consistent, interaction with the

AP2 factor PF3D7_0613800 (Figures 6D and S4D). This motif is

different from the predicted binding sites of domains 1 and 2 of

PF3D7_0613800 (Campbell et al., 2010) and might be recog-

nized by its third domain for which sequence preference has

not been defined.

Collectively, these experiments indicate that the motifs pre-

dicted from the stage-specific regulatory elements indeed

interact with specific TFs. In addition, they point to a delicate

interplay between DNA elements, and transcription and chro-

matin-modifying factors in regulating intraerythrocytic develop-

ment of malaria parasites.

DISCUSSION

Here we present high-resolution temporal chromatin accessibility

dataduring intraerythrocytic developmentofP. falciparum. ATAC-

seq, used in this study (Figure 1), clearly supersedes other chro-

matin-based technologies such as FAIRE-seq (Harris et al.,

2011; Ponts et al., 2010), MNase-seq (Kensche et al., 2016), or

ChIP-seq (Ubhe et al., 2017) in identifying active regulatory sites

on a global scale, both in terms of the number of sites identified

and in terms of spatial resolution of the data. Furthermore,

ATAC-seq shows a nearly complete overlap with ChIP-seq pro-

files of a TF, AP2-I (Figure 2; Santos et al., 2017). While due to

the bias of the transposase against AT-rich sequences and strin-

gent filtering we might not detect all regulatory events, we identi-

fied an accessible region for at least 60% of all P. falciparum

genes and about 70% of the genes expressed during the IDC

(comprising about 85% of all genes; Otto et al., 2010), providing
ith Pearson correlation > 0.6 (n = 2,118; Table S1). Accessibility and transcript

e points and clustered by k-means using the 1-Pearson correlation distance

dataset.

sed as �log10(p value)). Each column relates to a cluster generated by co-

w refers to a motif or a ‘‘motif group,’’ with logo and name listed on the right.

(Figure S3B; Table S3). Predicted binding sites for P. falciparum AP2 TFs are

n a cluster contains one or more predicted P. falciparum AP2 motifs, these are
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a valuable resource for future studies that could range from

targeted gene studies to predicting functional consequences

for SNPs.

Notably, the coupling between accessible regions and genes

in our analysis was based on the assumption that most genes

in the P. falciparum genome are regulated by the nearest regu-

latory elements. While this assumption might not always be

correct, it is remarkable that temporal accessibility and

mRNA abundance profiles strongly correlate for the majority

of the genes (Figure 3), suggesting functional interactions be-

tween these regulatory elements and the nearby genes.

Furthermore, the DNA sequence of all four tested accessible

regions was sufficient in dictating a stage-specific expression

pattern to a reporter gene that is similar to that of the respective

endogenous gene (Figure 4). Although our data do not exclude

the existence of distant enhancers, at least the majority of iden-

tified regions in this dataset likely operate at close distance to

their target gene. The scarcity of distant regulatory sequences

in P. falciparum is also supported by the fact that long-distance

interactions identified so far in chromosome conformation

studies in this parasite were restricted to centromeres, ribo-

somal DNA loci, and subtelomeric regions (Ay et al., 2014; Le-

mieux et al., 2013). Collectively, our data, together with earlier

studies (e.g., Hasenkamp et al., 2013; Kaneko et al., 2015; Ló-

pez-Estraño et al., 2007; Santos et al., 2017; Ubhe et al., 2017;

Yuda et al., 2015), suggest that most P. falciparum genes

have a compact regulatory unit like other unicellular eukaryotes

(i.e., yeast), with minimal promoter(s) and upstream regulatory

element(s) located within 1 or 2 kb of the target gene. However,

our data, in combination with future high-resolution chromo-

some conformation studies, might reveal distant enhancers, if

they exist.

The marked positive correlation between chromatin acces-

sibility and mRNA abundance (Figure 3) also supports the

notion that activating, rather than repressive, regulatory events

drive gene expression in the IDC of P. falciparum. Alternatively,

ATAC-seq might preferentially detect activator bound chromatin

regions. Yet ATAC-seq has been shown to detect non-transcrip-

tion-related DNA-binding events (e.g., CTCF binding to insulator

elements; Buenrostro et al., 2013) and bivalent promoters (co-

occurrence of activating and repressive histone markings) in

other organisms (Minoux et al., 2017; Xu et al., 2017). Also,

thus far, only two TFs, AP2-G2 and AP2-SP, have been postu-

lated to have repressive properties during blood-stage develop-

ment of P. berghei (Modrzynska et al., 2017; Sinha et al., 2014;

Yuda et al., 2015). Regardless of the presence and specific func-

tions of a few transcriptional repressors, our data suggest that a

cascade of transcription-activating events is mainly responsible

for the stage-specific expression during blood-stage develop-

ment of P. falciparum.
Figure 6. DNA Pull-Downs Identify Potential cis-trans Regulatory Inter

Scatterplots displaying the quantitative proteomic analysis of duplicate DNA pull

motif (ACACACAT) and three de novo predicted motifs (B, de_novo_motif_

de_novo_motif_050, GAGCTCAA). The same probes with a scrambled motif were

based FDR < 5%) are the potential interactors to the motif. Red font indicates tha

but containing the samemotif. Green dots are candidate DNA-binding factors deri

for the identified AP2 factors are show in relation to the motif used in the pull-do

See also Figure S4 and Table S4.
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Since their discovery, the ApiAP2 gene family has been re-

garded as the major family of putative TFs in Plasmodium. How-

ever, even with these 27 putative TFs, the proportion of TFs to

the total number of genes remains low (�50–60 among �5,800

genes compared to, for example, 169 per�6,000 genes in yeast;

Hahn and Young, 2011). Therefore, to our surprise, besides

AP2s, we did not consistently detect any other protein family in

our DNA pull-downs that could function as a sequence-specific

DNA-binding factor. Hence, despite the existence of few other

types of DNA-binding factors in Plasmodium (including C2H2-

type [Bertschi et al., 2017], Myb-type [Gissot et al., 2005], and

HMGB-domain proteins [Briquet et al., 2006]), so far all evidence

suggests that the ApiAP2 family can be regarded as themajor TF

family in Plasmodium, leaving researchers puzzled as to how

such a small number of factors can govern such a delicate

gene expression program. Combinatorial action of multiple TFs

has been suggested to increase the regulatory potential of these

factors in directing development of malaria parasites (e.g., Rus-

sell et al., 2015; van Noort and Huynen, 2006). Such cooperative

interaction between AP2-I and other stage-specific TFs could

explain the different accessibility patterns observed for the

AP2-I-binding sites (Figure 2D). Yet we did not find any DNAmo-

tifs, other than the AP2-I-binding site (GTGCA), strongly enriched

in these clusters that could serve as a binding site for such factor

(data not shown). Alternatively, post-translational modifications

of DNA-binding domains from TFs (Cobbold et al., 2016) or pro-

tein-protein interactions between TFs and cofactors could affect

TF sequence specificities and/or recruitment of TFs to specific

chromatin regions (Levo and Segal, 2014). To this end, we (Fig-

ure 6C) and others (Josling et al., 2015; Santos et al., 2017)

detected a strong interaction between AP2-I and an epigenetic

complex involving, among others, two acetylated histone-

binding proteins (BDP1 and BDP2). However, if and how these

proteins contribute to stage- and/or sequence-specific binding

patterns of AP2-I or enhanced binding of AP2-I to acetylated

chromatin regions remains to be determined. Furthermore,

nearly half of the AP2 TFs have more than one AP2 domain.

Our pull-down data suggest that in fact some of the AP2 factors

could interact with different regulator elements using different

domains (Figure 6). Eventually, it seems conceivable that the

limited number of sequence-specific TFs encoded by the Plas-

modium genome use the combination of the above mechanisms

to achieve the precision of regulation required to drive the

gene expression program underlying blood-stage development.

Collectively, our work provides the in-depth global view of the

in vivo transcriptional regulatory events during intraerythrocytic

development of P. falciparum. It also highlights some intricate

details of the interplay between TFs and cis-regulatory elements

that controls gene transcription, bringing us a big step closer to

understanding and fighting this deadly parasite.
actors

-downs with label swap using (A) 58–60 bp DNA probes with the CA-repetitive

031, TTATTACAC; C, de_novo_motif_028, GCACWWTNNKTGCW; and D,

used as controls. The statistically significant outliers (black diamond, intensity-

t the interaction was confirmed using a probe from a different genomic region,

ved from Table 4 of Bischoff and Vaquero (2010). Earlier predicted binding sites

wn below each plot.
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Thiery, I., Hamid, Z., Bourgouin,C., andVaquero,C. (2006). High-mobility-group

box nuclear factors of Plasmodium falciparum. Eukaryot. Cell 5, 672–682.

Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., and Greenleaf, W.J.

(2013). Transposition of native chromatin for fast and sensitive epigenomic

profiling of open chromatin, DNA-binding proteins and nucleosome position.

Nat. Methods 10, 1213–1218.

Campbell, T.L., De Silva, E.K., Olszewski, K.L., Elemento, O., and Llinás, M.

(2010). Identification and genome-wide prediction of DNA binding specificities

for the ApiAP2 family of regulators from the malaria parasite. PLoS Pathog. 6,

e1001165.

Caro, F., Ahyong, V., Betegon, M., and DeRisi, J.L. (2014). Genome-wide reg-

ulatory dynamics of translation in thePlasmodium falciparumasexual blood

stages. eLife 3, https://doi.org/10.7554/eLife.04106.

Cobbold, S.A., Santos, J.M., Ochoa, A., Perlman, D.H., and Llinás, M. (2016).

Proteome-wide analysis reveals widespread lysine acetylation of major protein

complexes in the malaria parasite. Sci. Rep. 6, 19722.
Cell Host & Microbe 23, 557–569, April 11, 2018 567

https://doi.org/10.1016/j.chom.2018.03.007
https://doi.org/10.1016/j.chom.2018.03.007
http://www.genedb.org/
http://plasmodb.org/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref2
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref2
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref2
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref3
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref3
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref3
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref3
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref3
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref4
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref4
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref4
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref4
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref5
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref5
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref5
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref5
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref5
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref6
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref6
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref6
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref6
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref7
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref7
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref7
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref8
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref8
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref8
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref9
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref9
https://github.com/bmbolstad/preprocessCore
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref11
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref11
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref11
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref12
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref12
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref12
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref12
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref13
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref13
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref13
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref14
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref14
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref14
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref14
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref15
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref15
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref15
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref15
https://doi.org/10.7554/eLife.04106
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref17
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref17
http://refhub.elsevier.com/S1931-3128(18)30136-7/sref17


Cowman, A.F., Healer, J., Marapana, D., andMarsh, K. (2016). Malaria: biology

and disease. Cell 167, 610–624.

Cox, J., and Mann, M. (2008). MaxQuant enables high peptide identification

rates, individualized p.p.b.-range mass accuracies and proteome-wide pro-

tein quantification. Nat. Biotechnol. 26, 1367–1372.

De Silva, E.K., Gehrke, A.R., Olszewski, K., León, I., Chahal, J.S., Bulyk, M.L.,

and Llinás, M. (2008). Specific DNA-binding by apicomplexan AP2 transcrip-

tion factors. Proc. Natl. Acad. Sci. USA 105, 8393–8398.

Elemento, O., Slonim, N., and Tavazoie, S. (2007). A universal framework for

regulatory element discovery across all genomes and data types. Mol. Cell

28, 337–350.

Fidock, D.A., and Wellems, T.E. (1997). Transformation with human dihydrofo-

late reductase renders malaria parasites insensitive to WR99210 but does not

affect the intrinsic activity of proguanil. Proc. Natl. Acad. Sci. USA 94,

10931–10936.

Flueck, C., Bartfai, R., Volz, J., Niederwieser, I., Salcedo-Amaya, A.M., Alako,

B.T., Ehlgen, F., Ralph, S.A., Cowman, A.F., Bozdech, Z., et al. (2009).

Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked

to phenotypic variation of exported virulence factors. PLoS Pathog. 5,

e1000569.

Flueck, C., Bartfai, R., Niederwieser, I., Witmer, K., Alako, B.T., Moes, S.,

Bozdech, Z., Jenoe, P., Stunnenberg, H.G., and Voss, T.S. (2010). A major

role for the Plasmodium falciparum ApiAP2 protein PfSIP2 in chromosome

end biology. PLoS Pathog. 6, e1000784.

Foth, B.J., Zhang, N., Chaal, B.K., Sze, S.K., Preiser, P.R., and Bozdech, Z.

(2011). Quantitative time-course profiling of parasite and host cell proteins in

the human malaria parasite Plasmodium falciparum. Mol. Cell. Proteomics

10, 006411.

Fraschka, S.A., Henderson, R.W., and Bártfai, R. (2016). H3.3 demarcates
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Random hexamer primers Roche (Sigma-Aldrich) Cat#11034731001

OligodT12-18 Invitrogen (Thermo Fisher Scientific) Cat#18418012

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

MV163 plasmid (Vos et al., 2015) Robert Sauerwein, Radboud UMC, NL

pDC2 (attB containing plasmid) (Nkrumah et al., 2006) David A. Fidock, Columbia Uni., US

pINT (Nkrumah et al., 2006) David A. Fidock, Columbia Uni., US

pOM1 This manuscript N/A

pOM2 This manuscript N/A

attP_minkahrp This manuscript N/A

attP_minkahrp_PF3D7_0719000 This manuscript N/A

attP_minkahrp_PF3D7_1200700 This manuscript N/A

attP_minkahrp_PF3D7_1222700 This manuscript N/A

attP_minkahrp_PF3D7_1372200 This manuscript N/A

attP_minkahrp_PF3D7_0719000negative This manuscript N/A

attP_minkahrp_PF3D7_1200700negative This manuscript N/A

attP_minkahrp_PF3D7_1222700negative This manuscript N/A

Software and Algorithms

FastQC v0.11.2 (Andrew, 2010) RRID: SCR_014583; http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/

BWA samse (version 0.7.12-r1039) (Li and Durbin, 2010) RRID: SCR_010910; http://bio-bwa.sourceforge.

net/bwa.shtml

BWA-mem (version 0.7.10) (Li, 2013) RRID: SCR_010910; http://bio-bwa.sourceforge.

net/bwa.shtml

Picard tools (version 1.139) Broad Institute RRID: SCR_006525; https://broadinstitute.

github.io/picard/

Samtools (version 1.2 and 1.3.1) (Li et al., 2009) RRID: SCR_002105; http://samtools.

sourceforge.net/

Bedtools suite (version 2.20.1) (Quinlan and Hall, 2010) RRID: SCR_006646; http://bedtools.

readthedocs.io/en/latest/

MACS2 (release 2.7) (Liu, 2016) RRID: SCR_013291; https://github.com/taoliu/

MACS/wiki/Advanced:-Call-peaks-using-

MACS2-subcommands

R package preprocessCore (version 1.36.0) (Bolstad, 2017) https://github.com/bmbolstad/preprocessCore

UCSC Genome Browser (Kent et al., 2002) RRID: SCR_005780; http://genome.ucsc.edu/

Morpheus tool Broad Institute https://software.broadinstitute.org/morpheus/

Trimmomatic (version 0.36) (Bolger et al., 2014) RRID: SCR_011848; http://www.usadellab.org/

cms/?page=trimmomatic

Fluff (Georgiou and van Heeringen, 2016) https://github.com/simonvh/fluff/blob/master/

README.md

maxQuant (version 1.5.3.30) (Cox and Mann, 2008) RRID: SCR_014485; http://www.coxdocs.org/

doku.php?id=maxquant:start

Perseus software package (version 1.4.0.20) (Tyanova et al., 2016) RRID: SCR_015753; http://www.coxdocs.org/

doku.php?id=perseus:start

R package SeqGL (version 1.1.3) (Setty and Leslie, 2015) https://bitbucket.org/leslielab/seqgl/overview

GimmeMotifs package (v0.11.0) (van Heeringen and Veenstra, 2011) RRID: SCR_001146; http://gimmemotifs.

readthedocs.io/en/master/

Other

Plasmodipur filters EuroProxima Cat#8011Filter25u

Agencourt AMPure XP beads Beckman Coulter Cat#A63882

Streptavidin Sepharose High Performance GE Healthcare Cat#17511301

2% E-Gel Size Select agarose gels Invitrogen (Thermo Fisher Scientific) Cat#G6610-02
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CONTACT FOR REAGENT AND RESOURCE SHARING

Requests for resources and reagents should be directed to the Lead Contact, Richárd Bártfai (r.bartfai@science.ru.nl).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Parasite Culture Conditions
Parasites were cultured in RPMI medium supplemented with 10% human serum, 0.2% NaHCO3 and 2.5% or 5% human O+ red

blood cells. Parasite lines were maintained in a shaking semi-automated 37c�C incubator in 10ml total volume and 5% hematocrit.

For the ATAC-seq and RNA-seq parasite collections, the cultures were kept in T75 culture flasks with 20ml total volume and 2.5% or

1.25% hematocrit. For these collections the T75 flasks were placed in candle jars in a steady 37�C incubator, as in Kensche et al.

(2016). For the collections of parasite RNA for RT-qPCR and parasite nuclei for the generation of nuclear protein extract, 20 or

50 mL parasite cultures with 2.5% hematocrit were kept in T75 or T175 flasks in a steady 37�C incubator with gas composition of

3% O2, 4% CO2 and 93% N2.

Parasite and Bacterial Strains
See Table S5 for details on parasite and bacterial strains used in this study.

METHOD DETAILS

Parasite Culture Synchronizations and Collections
For combined ATAC-seq and RNA-seq collections, cultures were selected for var2csa expression, expanded and synchronized as

follows. VAR2CSA panning was performed as in Fraschka et al. (2016). Petri dishes (150 3 15 mm, BD biosciences Falcon 351058)

were coated overnight with Chondroitin sulfate A (0.05%CSA in PBS) and blocked with 1%Casein/PBS solution for at least one hour

and rinsed twice with RPMI. Parasite cultures were centrifuged, resuspended in RPMI with 10% human serum, transferred to the

CSA-coated Petri dishes and incubated for 30 min at 37�C in a candle jar. Afterward, unbound parasites and non-infected erythro-

cytes were removed by gentle RPMI washes. Bound parasites were extensively resuspended in complete medium to detach them

from CSA. Fresh blood was added to these parasites and they were put back in culture medium as described above in the shaking

incubator. This selection was repeated four times before expansion. Before and during expansion of the culture, parasites were syn-

chronized by sorbitol treatment and a Percoll gradient centrifugation. For the sorbitol treatment, parasites were spun down and the

parasite pellet was gently resuspended in 6-7 pellet volumes of 5% D(-)-sorbitol (Merck, #107758) and incubated for 10 min at 37�C
while shaking. Parasites were spun down and new medium and fresh blood were added to 5% hematocrit. For percoll gradients,

parasite cultures were spun down, resuspended in fresh medium to 10% hematocrit and an equal volume of 63% Percoll

(GE Healthcare, #17-0891-01) in PBS was gently layered below the culture. The schizont interface was collected after spinning

the gradient and fresh, Plasmodipur filtered RBCs (EuroProxima, the Netherlands) were added a 1.5 h later which was then set as

time point zero (0 hours post invasion (hpi)) resulting in a synchronicity window of 7 h (i.e., 7h difference between the first and last

invasion). Medium was changed every ten hours but not less than ten hours before collection. Cultures were mixed with every me-

dium change and after 20 hpi kept at 1.25%hematocrit. Parasites were collected from 5 hpi onward every 5 hours and ATAC-seq and

RNA-seq collections were performed from the same synchronized culture. Giemsa stained blood smears were made at each time

point to monitor parasite growth and staging (See Figure S5 for representative microscope images and Table S6 with counts of para-

site stages per time point).

For collections of parasites carrying the attP(+)_minkahrp expression constructs, site-specific integration was first confirmed and

parasites were synchronized using sorbitol treatments and Percoll gradient centrifugations as described above. For each parasite

line ring, trophozoite and schizont stages were collected (PF3D7_0719000 replicate 1 synchronized to a �8 h window, collected

12 hpi, 25 hpi, 39 hpi; PF3D7_0719000 replicate 2 synchronized to a �10 h window, collected 10.3 hpi, 25 hpi, 40.5 hpi;

PF3D7_1200700 replicate 1 synchronized to a �12 h window, collected 14 hpi, 23 hpi, 38 hpi; PF3D7_1200700 replicate 2 synchro-

nized to a�10 h window, collected 12.25 hpi, 23 hpi, 39.5 hpi; PF3D7_1222700 replicate 1 synchronized to a�5 h window, collected

5 hpi, 25 hpi, 35 hpi; PF3D7_1222700 replicate 2 synchronized to a�8 hwindow, collected 6.25 hpi, 24.5 hpi, 41 hpi; PF3D7_1372200

synchronized to a �12 h window, collected 12 hpi, 23 hpi, 36 hpi; kharpminimal promoter only synchronized to a �5 h window,

collected 5 hpi, 25 hpi, 35 hpi; PF3D7_0719000negative replicate 1 synchronized to a �5 h window, collected 8 hpi, 25 hpi,

38.75 hpi; PF3D7_0719000negative replicate 2 synchronized to a �7 h window, collected 10 hpi, 25.5 hpi, 39 hpi;

PF3D7_1200700negative replicate 1 synchronized to a�9 h window, collected 12 hpi, 24 hpi, 41 hpi; PF3D7_1200700negative repli-

cate 2 synchronized to a �10 h window, collected 12.5 hpi, 25 hpi, 41hpi).

ATAC-seq Library Preparation
Native parasite nuclei were isolated as in Bártfai et al. (2010). In short, after lysis of RBCs by 0.05% saponin treatment and separating

nuclei from parasite debris using a cell lysis buffer (CLB: 10mMTris-HCL pH8.0, 10mMNaCl, 3 mMMgCl2, 0.2%NP-40) with 0.25M

sucrose cushion. A 10 mL sized nuclei pellet was resuspended with a cut-off pipet tip in 337.5 mL CLB and for ATAC-seq replicate 1

69 mL of nuclei was used for t05 to t20 and 23 mL of nuclei was used for t25 to t40 (these volumeswere based on previous tests using a
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dilution series of nuclei). For ATAC-seq replicate 2we had to optimize the amount of nuclei again due to the use of a kit from a different

lot and this led us to use 466 mL of nuclei for t05 and t10 and 155 mL for t15 and t20. Nuclei were brought to 10.5 mL in CLB and used in

a 25 mL ATAC reaction based on Lara-Astiaso et al. (2014) with 2 mL Tn5 transposase and 12.5 mL TD buffer (Nextera DNA Library Prep

Kit, #FC-121-1030, Illumina, USA). Reactions were incubated for 1 h in a 37�C heat block. Nuclei were kept in suspension by gently

tapping the tube every 10 minutes. The reaction was stopped by addition of 5 mL clean up buffer (900 mMNaCl, 300 mM EDTA), 2 mL

5%SDS and 2 mL proteinase K (Sigma-Aldrich #P6556) and incubated for 30min at 40�C. Tagmentated DNA fragments were isolated

using 2.4 sample volume of Agencourt AMPure XP beads (Beckman Coulter, #A63882, USA). Half of the isolated DNA was used for

library preparation (the other half was stored as back-up) starting with a size selection using 0.85x volumes of AMPure XP beads to

enrich for fragments of 500 bp and smaller. Size-selected fragments were amplified using the KAPA HiFi HotStart ready-mix (KAPA

Biosystems, #KK2602, US) and Nextera index primers (Nextera DNA Sample Preparation Index Kit, #FC-121-1012) under the

following conditions: 98�C for 2 min; 16 cycles of 98�C for 20 s, and 62�C for 3 min; 62�C for 5 min. Libraries were purified using

1x volumes Agencourt AMPure XP beads. The fragment size distribution of the libraries was evaluated in a High-Sensitivity Bio-

analyzer run (Agilent, #5067-4626, US) and the size selection was repeated when there was a large proportion of fragments longer

than 500 bp (replicate 1 t05, t15, t30, t35, t40). To control for sequence bias, the same ATAC protocol was applied to genomic DNA

from synchronous wild-type 3D7 P. falciparum ring stage parasites using 547.0 ng or 60.8 ng of input DNA. All ATAC-seq libraries

were KAPA quantified (KAPA Library Quantification Kit, #KR0405).

RNA-seq Library Preparation
Parasite cultures were immediately placed on ice and washed once with ice-cold PBS. Pelleted cultures were resuspended in RLT

buffer (QIAGEN, #74106) supplemented with 1% b-mercaptoethanol and snap-frozen in liquid nitrogen. Total RNA was extracted

using the RNeasy Mini Kit (QIAGEN, #74106; including RNA clean-up and two on-column DNase treatments) and RNA concentration

wasmeasured using the Qubit RNAHS Assay Kit (Invitrogen, #Q32852). RNAwas then polyA-selected using the Oligotex mRNAMini

Kit (QIAGEN, #70022) according to manufacturer’s instructions. Subsequently, 2000 ng of polyA-selected total RNA equivalent were

fragmented by alkaline hydrolysis (40 mM Tris acetate pH 8.2, 100 mM potassium acetate,30 mMmagnesium acetate) for 1 min 45 s

at 85�C in a 150 ml volume and precipitated as previously described in Hoeijmakers et al. (2013). Next, polyA-selected RNA was

cleaned from remaining genomic DNA (detected by qPCR) by two additional TURBO DNase treatments (Ambion, #AM2238).

Strand-specific RNA-seq was performed as in Kensche et al. (2016). Accordingly, first strand cDNA synthesis was performed

with AT-corrected RandomN9 primers (76%AT) in the presence of 0.2 mg Actinomycin D (Thermo Fisher Scientific #11805017). Dur-

ing second strand synthesis dTTPs were substituted with dUTPs to preserve strand-specific information. Next, 10 ng of each double

stranded cDNA library was end repaired, extended with 30 A-overhangs, barcoded with NextFlex adapters (Bio Scientific, #514122)

and treatedwith USER enzyme (NEB, #M5505L) to specifically degrade the dUTP-containing second strand. Libraries were amplified

by PCR (98�C for 2 min; 4 cycles of 98�C for 20 s, 62�C for 3 min; 62�C for 5 min) using KAPA HiFi HotStart ready mix (KAPA Bio-

systems, #KM2602) and NEXTflex primer mix (Bio Scientific, #514122) and subsequently gel size-selected for 300 - 400 bp using

2% E-Gel Size Select agarose gels (Invitrogen, #G6610-02). After an additional eight cycles of amplification (see above), libraries

were purified and adaptor dimers depleted using 1x volume of Agencourt AMPure XP beads (Beckman Coulter, #A63880).

Parasite Transfection
Parasite transfections were performed as in Fidock andWellems (1997) using a BTX electroporation system. Synchronized ring stage

3D7 P. falciparum attB(+) parasites were pelleted by centrifugation and 100% hematocrit packed cells were mixed with 75 mg of the

pINT and 75 mg of the desired attP(+)_minkahrp plasmid in cytomix (120 mM KCl, 0.15 mM CaCl2$2H2O, 5mMMgCl2$6H2O, 25 mM

HEPES, 2mMEGTA, 10mMK2HPO4, 10mMKH2PO4) in 450 mL total volume in a 2mmelectroporation cuvette (BTX, #45-0125). After

transfection, parasites were resuspended in warm culture medium and cultured at 2.5% hematocrit in the presence of 2.6 nM

WR99210 (Jacobus Pharmaceutical Company), 2.5 mg/ml Blasticidin S HCl (GIBCO, #R210-01) and 250 mg/ml Geneticin (GIBCO,

#11811-031). After seven days, culturingwas continuedwithout Geneticin.When the parasite cultures became blood-smear, positive

site-specific integration of the attP-containing plasmid into the parental line was confirmed by performing PCR using the primer com-

binations ‘p1_for’/‘p1_rev’ and ‘p2_for’/‘p2_rev’ (Table S7) on extracted genomic DNA (QIAGEN, #51106). Genomic DNA of the non-

transfected parental 3D7 line was used as negative control (Figures S2A and S2B). Afterward parasites were cultured at a three week

on/off schedule of 2.6 nM WR99210 and 2.5 mg/ml Blasticidin S HCl.

Plasmid DNA Cloning
To examine the regulatory potential of the identified accessible several parasite lines were generated: four parasite lines with an in-

tegrated plasmid containing an accessible region detected by ATAC-seq upstream of a minimal kahrp promoter and a gfp-luc re-

porter gene (Figures 4A and S2A), two parasite lines with a not-accessible, control region instead of the accessible region (a third

line did not show successful integration) and one parasite with an integrated plasmid containing the minimal promoter followed

by the reporter gene. To generate these parasites, we applied the Bxb1 integrase-mediated site-specific attP/attB integration system

from Nkrumah et al. (2006) which results in directional integration of an attP-site containing plasmid into the cg6 locus of a parental

attB site-containing P. falciparum line. To generate the specific attP-plasmids, the pDC2 plasmid (Nkrumah et al., 2006) wasmodified

on several points. (All primers used for cloning, integration checking and RT-qPCR are listed in Table S7). The orientation of the

50cam-snf7-gfp-30hsp86 cassette was reversed using the primers ‘50Pfcam-F’ and ‘30hsp86-R’, PstI/ApaI digestion and ligation by
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the T4 ligase (Promega, #M1804) resulting in plasmid pOM1. The snf7-gfp element was replaced by the gfp-luc sequence from the

MV163 plasmid (Vos et al., 2015) using the primers ‘GFPLuc-F’ and ‘GFPLuc-R’, AvrII/XhoI digestion and ligation by the T4 ligase

resulting in plasmid pOM2. Finally, the 50camwas replaced by the kahrpminimal promoter (Brancucci et al., 2012) using the primers

‘kahrp-F’ and ‘kahrp-R’, digestion by AvrII/AgeI and T4 ligation resulting in plasmid attP(+)_minkahrp. Accessible or control regions

located upstream of the genes PF3D7_0719000, PF3D7_1200700 and PF3D7_1222700 or the accessible region upstream of

PF3D7_1372200 were amplified and inserted upstream of the kahrp minimal promoter using their respective primers listed in

Table S7 and BglII/NotI digestion and ligation by the T4 ligase. These accessible regions were selected because they showed clear,

distinct, stage-specific accessibility patterns; the downstream gene showed amatching gene expression pattern; we favored acces-

sible regions located in tandem intergenic regions (i.e., containing a single promoter) for clarity of the assignment between genes and

accessible regions; and we excluded ATAC regions and parts of the peak that overlapped with a TSS.

RNA Extraction, cDNA Synthesis and qPCR
Total RNAwas extracted as described in ‘‘RNA-seq library preparation’’ andwas checked for genomic DNA contamination by qPCR.

If needed, the sample was additionally treated once or twice with TURBO DNase (Ambion, #AM2238). For each sample 500 to

1000 ng of total RNA was mixed with random hexamer primers (0.5 mg, Roche #11034731001), OligodT12-18 (0.5mg, Invitrogen

#18418012) and dNTPs (0.5mM in the final volume of 20ml, Invitrogen 10297-018) and incubated for 5min at 70�C. First strand syn-

thesis was performed for 1h at 42�C in First Strand Buffer (Invitrogen) supplemented with DTT (10 mM), Superscript III (200 units,

Invitrogen, #18080044) and RNasin Plus RNase inhibitor (40 units, Promega, #N261B), after which superscript III was inactivated

by incubation at 70�C for 15min. For all samples, a negative control reaction was performed in which Superscript III was replaced

by water (RT minus control) under identical conditions. For each parasite line the same amount of RNA was used as template

from the different time points.

Tomeasure the relative gfp-luciferase (gfp-luc) transcript abundance, a qPCRwas performed using SYBRgreen supermix (BioRad)

and primers which were mixed according to the manufacturer’s instructions. The qPCR was preformed using the CFX96 Real Time

Systems C1000 Touch Thermal Cycler (Bio-Rad) with the following program: 95�C for 3min, (94�C for 10 s, 52�C for 30 s, 68�C for

30 s) 39 cycles, 95�C for 1min, 65�C for 1min and a gradient from 65�C to 94.5�Cwith a 0.5�C increase every 10s. Primers specific for

gfp-luc served to assess the relative abundance of the reporter transcript (‘GFP-1’, ‘GFPLuc’, ‘Luc-1’. ‘Luc-2’) and primers for blas-

ticidin and actin (‘BSD-1’, ‘BSD-2’, ‘actin’) controlled for successful cDNA synthesis (data not shown). All -RT controls reported ‘not

detectable’ (NA) or in Cq values in the range of the H2O control, which was included for all primer pairs (data not shown). The relative

gfp-luc transcript abundancewasmeasured against a standard dilution series prepared from P. falciparum 3D7 attB(+) genomic DNA

and pOM2 plasmid DNAmixed in a close to 1molar ratio (10-fold dilution series of genomic DNA ranging from 5 pg – 5000 pg, 10-fold

dilution series of plasmid DNA ranging from 0.005pg - 5pg). As different standard series were used for the positive replicate 1 and

replicate 2, the data of replicate 2 was scaled to the average of replicate 1 for Figure 4. The raw data for each replicate are depicted

in Figure S2B.

Nuclear Protein Extract Generation and DNA Pull-down
For collections, asynchronous asexual P. falciparum 3D7 cultures were put on ice immediately and filtered over Plasmodipur filters

(EuroProxima, Netherlands) to remove human white blood cells. Infected RBCs were washed once in PBS and resuspended in PBS

with Protease Inhibitor Cocktail (PI at 1:100, Roche, #04693132001) and 0.05% saponin to a maximum of 6.25% hematocrit for a

maximum of 15 minutes. Nuclei were isolated over a double sucrose gradient in CLB with PI (PI at 1:50, bottom layer of 0.25 M

sucrose, top layer 0.1 M sucrose) and resuspended in CLB with 20% glycerol, pelleted by centrifugation, snap-frozen and stored

at �80�C until the generation of the nuclear protein extract. Nuclear protein extract was generated as in Kensche et al. (2016)

with two rounds of extraction in High Salt Extraction Buffer (50 mM HEPES pH7.5, 20% glycerol, 420 mM NaCl, 1.5 mM MgCl2,

1 mM DTT, 0.4% NP-40, PI). Protein concentration was measured using a Qubit fluorometer (Qubit Protein Assay Kit, Thermo Fisher

Scientific, #Q33212). Nuclear protein extract was snap-frozen in aliquots and stored at �80�C. Right before the pull-down, nuclear

protein extracts were diluted to 0.909 mg/ml protein concentration in 50 mM HEPES pH7.5, 10% glycerol, 150 mM NaCl,

1.5mMMgCl2, 1mMDTT, 0.125%NP-40, PI at 1:25, 9 ng/ml yeast tRNA (Sigma-Aldrich, #R5636), 9 ng/ml poly(dI:dC) (Sigma-Aldrich,

#P4929) and 9 ng/ml poly(dA:dT) (Sigma-Aldrich, #P0883). Diluted extracts were spun once at 17000 x g for 25 minutes at 4�C to re-

move precipitates.

DNA pull downs were performed as in Hubner et al. (2015) and Kensche et al. (2016). Probes for DNA pull downs (ordered from

Integrated DNA Technologies, US; Table S7) were dissolved in TE (10 mM Tris, 0.1 mM EDTA, pH 8.0) to 200 mM. 1000 pmoles

of biotinylated forward probe was annealed to 1500 pmoles of reverse probe in annealing buffer (10 mM HEPES pH 8.0,

0.05 M NaCl, 1 mM EDTA, in DNase free water). For each pull-down, 50 pmoles of dsDNA probe was coupled to 10 mL of washed

Sepharose beads slurry (GE Healthcare, #17511301) in DNA Binding Buffer (DBB: 10 mM HEPES pH 8.0, 1 M NaCl, 10 mM EDTA,

0.05%NP-40 in DNase freewater) in a total volume of 350 mLwhile rotating at RT for at least 1 h. Excess probes were removed by two

washeswith 500 mLDBBand twowith 500 mL Protein Binding Buffer* (PBB*: 50mMHEPESpH 8.0, 150mMNaCl, 0.1%NP-40, 1mM

DTT, PI at 1:25). After the last wash, PBB* was removed almost completely for each reaction and 550 mL of diluted nuclear protein

extract with 500 mg protein content was added and incubated for 1.5 h while rotating at 4�C. Reactions were spun at 400 x g and

supernatants were discarded. Beads (with probes and bound proteins) were then washed by once with 1 mL PBB*, twice with

1 mL PBB (PBB* without PI) and twice with 1 mL Wash Buffer (WB: 50 mM HEPES pH 8.0, 150 mM NaCl). After the last wash
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with PBB and the washes with WB, supernatants were removed as much as possible. Disulfide bonds were reduced by incubating

the beads with 5 mM TCEP (Sigma-Aldrich, #C4706-2G dissolved to 100 mM in mass-spec grade Milli-Q and stored at �20�C) in
100 mM TEAB (Sigma-Aldrich, #T7408-100 ml) for 1 h in a 37�C shaking heat block. Beads were briefly spun down and incubated

with 10mM (final concentration) of MMTS (Thermo Scientific, #23011, dissolved to 200 mM in isopropanol and stored at �20�C) to
alkylate disulfide bonds in a 37�C shaking heat block for 10min. Beads were briefly spun down and 0.4 mg Trypsin/LysC (dissolved to

0.4 mg/ml in Resuspension buffer (50 mM acetic acid (pH < 3), Promega, #V5072) was added and incubated for 1 h in a 37�C shaking

heat block. Beads were spun for 1 min at 200 x g at RT and supernatants were collected in a new Eppendorf tube. 50 mL of 100 mM

TEAB was added to the beads and these were incubated for another 5 min in a 37�C shaking heat block and supernatants were

added to the previously collected supernatants. Trypsin digestion in the supernatants was continued by overnight incubation in a

37�C waterbath. Each probe was tested twice per experiment and peptides were labeled by dimethyl labeling (Boersema et al.,

2009). NaBH3CN (Merck, #818053) and CH2O were used for ‘light’ labels and NaBD3CN (Sigma-Aldrich, #190020-1G) and CD2O

for the ‘heavy’ labels. Labeling reactions were incubated for 1 h at RT while shaking and labeling was stopped by addition of

16 mL of 1% ammonia. Reactions of wild-type and mutated probes with different labels were then pooled and acidified by addition

10 mL of 100% trifluoroacetic acid (TFA, Biosolve BV, the Netherlands, #20234131). Samples were then cleaned and concentrated on

C18 stage tips (Rappsilber et al., 2007) and stored at 4�C until measurement.

QUANTIFICATION AND STATISTICAL ANALYSIS

ATAC-seq Data Analysis
The ATAC-seq libraries were sequenced for 75 bp, paired-end on aNextSeq500 system (Illumina) usingNextSeq500/550 HighOutput

kit V2 (75 cycles) reagents (Illumina). Raw fastq reads were first evaluated using FastQC before continuing (Andrew, 2010) and reads

obtained from the two gDNA control libraries were combined after sequencing. Paired-end libraries were mapped with BWA-mem

(version 0.7.10; Li, 2013) against the P. falciparum 3D7 reference genome (PlasmoDB release 26; Aurrecoechea et al., 2009; Logan-

Klumpler et al., 2012) and filtered for mapping quality > = 30 (samtools version 1.3.1; Li et al., 2009). Duplicate reads were removed

using Picard tools (version 1.139; Broad Institute, https://broadinstitute.github.io/picard/) and reads mapping to the apicoplast and

mitochondrial DNAwere removed aswell as supplementary alignments (FLAG 2048). Finally, an in silico size selection was performed

to select for read pairs with insert sizes between 50 and 150 bp (or different when indicated) and these libraries were used for further

analysis (between 5.9 and 9.7 million reads for replicate 1; between 3.6 and 6.4 million per library for replicate 2; 36.9 million for the

merged gDNA control library). For visualization, these libraries were converted to bedgraph files using bedtools genomecov (version

2.20.1; Quinlan and Hall, 2010) with the option ‘-pc’ for paired end data and scaled per million reads (RPM). Alternatively, for genomic

DNA-corrected tracks, the coverage in each of the t05 to t40 libraries (with an offset of +0.1) was divided by the coverage in the gDNA

library (with an offset of +0.1). Bedgraph files were visualized in the UCSC genome browser (Kent et al., 2002).

Downstream analyses were performed using the data fromATAC-seq replicate 1. Peak calling we used theMACS2 subcommands

‘macs2 pileup’, ‘macs2 bdgcmp’ and finally ‘macs2 bdgpeakcall’ (MACS2 release 2.7; Liu, 2016). Because some MACS2 subcom-

mands cannot handle paired end data, we first binned the libraries based on the insert size in steps of 5 bp. Next, the start site of reads

aligning to the positive strand were shifted with +4 bp and those aligning to theminus strand with�5 bp to represent the center of the

Tn5 transposon binding event as in Buenrostro et al. (2013). Then a pileup track for each (binned) ATAC library was calculated by

MACS2 pileup with–extsize set to half the mean insert size. The pileup tracks of the binned libraries were then summed, scaled

per million of reads and a pseudocount of 0.1 was added to every position. Regions of local enrichment were identified with

macs2 bdgcmp using the gDNA pileup track as background and scored in qvalues (-m qpois). Finally, macs2 bgpeakcall was

used to identify regions with qvalue below 0.001 (-c 3.0). To prevent calling many small ‘peaks’ we allowed regions to be merged

when they were within the maximum insert size of 150 bp (-g 150) and we set the minimum length of a peak to 100 bp (-l 100).

Peaks for all time points were merged and the highest scoring summit was selected as summit for the merged peak (4035 merged

peaks in total). Peaks with a summit located in a coding region (209 merged peaks) or more than 3kb away from the first/last gene on

each chromosome (71 merged peaks) were removed from further analyses. To assign the remaining 3755 intergenic peaks to genes

we only selected peaks in intergenic regions flanking the 50 of a gene. For this purpose, intergenic regions (IGs) were categorized

based on the flanking coding sequences: ‘tandem IGs’ are flanked by two genes both in 50/ 30 or in 30)50 orientation; ‘divergent
IGs’ have a downstream gene with 30)50 orientation and an upstream gene in 50/30 orientation; ‘convergent IGs’ have a down-

stream gene in 50)30 orientation and the upstream gene in 30/50 orientation (Figure 1C). Peaks with their summit located in ‘tandem

IGs’ and ‘divergent IGs’ (3647 peaks) were assigned to the closest downstream gene using bedtools closest (version 2.20.1; Quinlan

and Hall, 2010). To calculate accessibility per stage, tags were counted for each of themerged peaks in tandem or divergent IGs. Tag

counts were offset by +1 and normalized to the number of reads per kb per million mapped reads (RPKM). For each peak the

maximum RPKM value was determined across the stages and peaks with the lowest 10% of maximum values were removed.

To correct for signal intensity differences among the time points we normalized the data on quantiles (using the normalized.quantiles

command from the R package preprocessCore version 1.36.0; Bolstad, 2017). Then, for each peak we calculated the proportion of

signal per time point compared to the summed signal over all time points. This proportion-of-sum value was used to calculate the

accessibility pattern in each peak region over the time course (t05 – t40).
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Directional RNA-sequencing
Strand-specific RNA-seq libraries were sequenced on the Illumina NextSeq 500 system to obtain 75 bp single-end reads

(NextSeq500/550 HighOutput kit V2 (75 cycles) reagents (Illumina)). Reads were evaluated using FastQC (Andrew, 2010) and map-

ped against the annotated P. falciparum 3D7 transcriptome from PlasmoDB release 26 (Aurrecoechea et al., 2009; Logan-Klumpler

et al., 2012) using BWA samse (version 0.7.12-r1039; Li and Durbin, 2010). Single-end reads were filtered to mapping quality R 15

(samtools version 1.2; Li et al., 2009) and only uniquely mapped reads (between 9.2 and 11.6 million per library) were used for further

analysis. To visualize RNA-seq data in the UCSC Genome browser, 75bp reads were additionally mapped against the annotated

P. falciparum 3D7 genome from PlasmoDB version 26 (Aurrecoechea et al., 2009; Logan-Klumpler et al., 2012), filtered for uniquely

mapped reads and mapping quality R 15. Reads were separated according to the strand they mapped to (sense strand FLAG16,

antisense strand FLAG0) and normalized to the number of mapped reads per million (RPM). Bedgraph files were generated (version

2.20.1; Quinlan and Hall, 2010) and visualized in the UCSC genome browser (Kent et al., 2002).

To assess RNA abundance per gene, reads mapped against the transcriptome were separated based on alignment to the sense

(FLAG 16) or antisense strand (FLAG 0) respectively. Only reads aligning to the sense strand of each transcript were used for further

analysis. Tags were counted for all transcripts (excluding mitchochondrial RNA and apicoplast RNA) and offset by +1. Transcript

counts were normalized to the number of reads per kb per million mapped reads (RPKM) and the maximum RPKM value was deter-

mined per transcript. Low abundant transcripts with their maximum RPKM value across the stages were discarded (lowest 10

percentile). Relative transcript abundance to assess stage-specific expression patterns over the time course (t05 – t40) was calcu-

lated by dividing the RPKM value of each time point through the sum of RPKM values of all time points (proportion of sum).

Comparison of ATAC-seq and RNA-seq Data
To compare accessibility and transcript abundance patterns, accessibility (proportion-of-sum) was clustered using the web-based

Morpheus tool from the Broad Institute (https://software.broadinstitute.org/morpheus/) into eight clusters by k-means clustering with

the 1-pearson correlation coefficient as distancemetric and 20.000 iterations. Relative transcript abundances (proportion-of-sum) of

the downstream genewere then plotted in the same order. Accessibility andmRNA abundance profiles were visualized on a heatmap

using color scale covering the 20th to 80th percentile of values. The Pearson correlation coefficient was calculated for each peak-to-

transcript pair. Randomized correlations were calculated for 1000 shuffled peak-to-transcript matches.

For co-clustering of accessibility and transcript abundance patterns, peak-to-transcript matches were first filtered for a Pearson

correlation coefficient above 0.6. The resulting matrix of accessibility and transcript abundance data (n = 2118 matches) was up-

loaded in Morpheus and again clustered into 8 k-means with the same settings as before.

Comparison with AP2-I ChIP-sequencing Data
For visualization purposes, the AP2-I ChIP-sequencing data from Santos and co-workers wasmapped against the P. falciparum 3D7

genome with settings as in Santos et al. (2017). In short, reads were trimmed with Trimmomatic (version 0.36; Bolger et al., 2014),

mapped with BWA-mem (version 0.7.10; Li, 2013) against the P. falciparum 3D7 genome (PlasmoDB release 26; Aurrecoechea

et al., 2009; Logan-Klumpler et al., 2012) and filtered for not being the primary alignment (FLAG 256), being a duplicate (FLAG

1024), being a supplementary alignment (FLAG 2048) and for mapping quality of 30 and higher. The MACS2 callpeak command

was used to generate bedgraph files of the ChIP and input libraries (settings–m 5 50–extsize 250–call-summits -B -q 0.05 -g

2.2e7). These bedgraph files were used tomake log2 ChIP-over-input tracks that were uploaded in the UCSC genome browser. Bed-

tools intersect (version 2.20.1; Quinlan and Hall, 2010) was used to define the overlap between the ATAC-seq peaks with the trimmed

AP2-I peaks (in 3D7 coordinates) reported in Santos et al. (2017). Fluff was used to generate the heatmap of accessibility over the

AP2-I peaks that overlap with ATAC-seq peaks (Georgiou and van Heeringen, 2016). We used the build-in Gene Ontology tool of

PlasmoDB with default settings to identify enriched GO terms (Aurrecoechea et al., 2009).

Motif Identification and Enrichment Analyses
For de novomotif identification we used gimmemotifs from the GimmeMotifs package (v0.11.0; van Heeringen and Veenstra, 2011).

Numerous de novomotif searches were performed on individual time points and using different number of clusters ranging from 4 to

16 in regions of 200 or 300 bp around the summit. The background consisted of either shuffled peak regions or the other clusters.

Searches were performed for large (6 - 15 bp) or xl (6 - 20 bp) motifs. Motifs identified in these various searches were clustered using

gimme cluster (-t 0.9) yielding a non-redundant list of de novomotifs. To identify motifs differentially enriched in one of the 8k means

co-clusters of the ATAC-seq and RNA-seq data compared to other co-clusters, we run an ensemble of different regression and clas-

sification methods, as implemented in GimmeMotifs (van Heeringen and Veenstra, 2011). As input motif library we used the clustered

de novo motifs, predicted Plasmodium motifs (Campbell et al., 2010; De Silva et al., 2008), and motifs from plants, vertebrates and

invertebrates reported in CISBP (Weirauch et al., 2014), motifs from each subgroup were first clustered with gimme cluster at -t 0.9).

Gimmemaelstromwas ran three times and we selectedmotifs that had a P value = < 0.01 in at least two runs. From this list wemanu-

ally removed eight low information content motifs. The remaining 70motifs were grouped based on their similarities by gimme cluster

(-t 0.9), resulting in 41 ‘motif groups’.
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Mass Spectrometry and MS Data Analysis
Loaded C18 stage tips were rehydrated with 25 mL buffer A (0.1% formic acid) and peptides were eluted in PCR tubes using 30 mL

buffer B (80%acetonitrile, 0.1% formic acid). Acetonitrile was evaporated by a 15min vacuum spin at room temperature and samples

were reconstituted to 12 mL with buffer A of which 5 mL measured on a QExactive or Orbitrap Fusion mass spectrometer (Thermo

Fisher Scientific). In both cases, the sample was separated over a 30cm C18-reverse phase column (1.8 mm Reprosil-Pur

C18-AQ, dr. Maisch 9852) and eluted using an Easy-nLC 1000 (Thermo Fisher Scientific). For the QExactive, elution was preformed

over a 94 min gradient (5.6% acetonitrile/0.1% formic acid - 25.6% acetonitrile/0.1% formic acid) and directly injected into the mass

spectrometer. Data on the QExactive was acquired in TOP10 data-dependent acquisition mode with dynamic exclusion enabled for

20 s. Resolution for MS was set at 70.000 at m/z = 400 and for MS/MS at 17.5000. For the Fusion, elution was performed over a

114min gradient (7.2%Acetonitrile/0.1% formic acid- 25.6% acetonitrile/0.1% formic acid) and directly injected into themass spec-

trometer. Data on the Fusion was acquired in data-dependent top speed mode in a 3 s cycle with dynamic exclusion set at 60 s.

Resolution was set at 120.000.

RawMS spectra were analyzed as in Kensche et al. (2016) using MaxQuant (version 1.5.3.30; Cox andMann, 2008). In short, stan-

dard settings were applied with the following modifications. Multiplicity was set at 2, adding a mass of 28.03 Da (light-labeled) or

36.08 Da (heavy-labeled) to the peptides N terminus and lysine residues. Trypsin/P was set as the specific digestion mode with

maximum 2 missed cleavages. Analyses were run with re-quantify set to ‘match from and to’. MMTS (added mass of 45.99 Da)

was specified as fixed modification of cysteines. The match-between-runs option was activated (with 0.7 min match time window

and 20 min alignment time window) and calculation of iBAQ values was enabled. Peptide masses were searched against the Plas-

modium falciparum 3D7 annotated proteome (PlasmoDB release 9.3; Aurrecoechea et al., 2009; Logan-Klumpler et al., 2012) with the

entire human proteome included in the contaminants list using the integrated Andromeda search engine. Mass tolerance was set at

4.5 ppm for precursor ions and 20 ppm for fragment ions, and peptides and proteins were accepted with an 0.01 FDR cut-off. Protein

quantification was set to minimally require a single peptide-ratio, but a more stringent downstream filtering on minimally 2 peptides

(of which at least 1 unique) was applied for generation of scatterplots and determination of significance.

Downstream analyses were performed using the Perseus software package (version 1.4.0.20; Tyanova et al., 2016). Normalized

H/L-ratios were log2-transformed and intensity values were log10-transformed. Significant outliers were determined using the inten-

sity-based Significance B option (two-sided Benjamini-Hochberg test) with a FDR cut-off set to 0.05. The protein list was filtered for

reverse hits, proteins that are only identified by site and potential contaminants. In addition, proteins required a minimum of 2 pep-

tides of which at least 1 unique in order to be considered as a hit in both the forward and reverse experiment. Data was plotted in R

and significant outliers were labeled. Candidate TFs were retrieved from Table 4 in Bischoff and Vaquero (2010) and highlighted

as well.

DATA AND SOFTWARE AVAILABILITY

The accession number for the ATAC-seq and RNA-seq data reported in this paper is GEO: GSE104075.
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