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ABSTRACT

The geometric properties of descriptors derived from the diffusion geometry family have many valu-

able properties for shape analysis. These descriptors, also known as diffusion distances, use the eigen-

values and eigenfunctions of the Laplace-Beltrami operator to construct invariant metrics about the

shape. Although they are invariant to many transformations, non-rigid deformations still modify the

shape spectrum. In this paper, we propose a shape descriptor framework based on a Lagrangian for-

mulation of dynamics on the surface of the object. We show how our framework can be applied to

non-rigid shape retrieval, once it benefits from the analysis and the automatic identification of shape

joints, using a curvature-based scheme to identify these regions. We also propose modifications to

the Improved Wave Kernel Signature in order to keep descriptors more stable against non-rigid defor-

mations. We compare our spectral components with the classic ones and our spectral framework with

state-of-the-art non-rigid signatures on traditional benchmarks, showing that our shape spectra is more

stable and discriminative and clearly outperforms other descriptors in the SHREC’10, SHREC’11 and

SHREC’17 benchmarks.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Designing feature descriptors is crucial in shape analysis.

However, it is not a simple task to describe the important char-

acteristics of the shape and still remain invariant to the com-

plex transformations that the shape may undergo. Spectral de-

scriptors have gained increased attention for their advantageous

properties, mainly because they are intrinsically invariant to

common shape deformations. For example, they are invariant to

Euclidean transformations, which was the main focus of early

research in this field (Belongie et al. (2000); Johnson (1997)),

and relatively stable against non-rigid articulations, where sig-

nificant attention has been given in the past decade. However,

in most recent non-rigid benchmarks (Lian et al. (2010, 2011);

Pickup et al. (2014); Lian et al. (2015)), spectral descriptors

have not performed at their full potential. Shape articulations

have proved to be hard to code into a descriptor since it is diffi-

cult to distinguish an articulated model from a model of a simi-

lar class.

In this paper, we present new methods for composing non-

rigid shape signatures, which are more stable to non-rigid trans-

∗∗Corresponding author: Tel.: +55 55999408899; fax: +44 01904 325599;

e-mail: fredericoal@gmail.com (Frederico A. Limberger)

formations, by computing enhanced spectral signatures from

3D meshes and by modifying how curvature is aggregated in

the Improved Wave Kernel Signature (Limberger and Wilson

(2015)). Our main contributions include:

• Kinetic Laplace-Beltrami Operator (KLBO): Kinetic spec-

tral components computed from 3D triangle meshes. We

compute spectral signatures by weighting the LBO by a

curvature-based kinetic term. This weight removes the in-

fluence of shape’s articulations on shape descriptors. The

weighting is small in areas on the shape where articula-

tions are likely to occur and also stable to rigid and non-

rigid motions. We show how to modify the kinetic density

in the eigensystem to generate a consistent spectrum to de-

formable objects. How we construct this new eigensystem

is primordial to correctly take into account the modifica-

tions of the kinetic energy in the descriptor. More details

are in Section 3.

• Improved Wave Kernel Signature (IWKS): We detail how

to compute a better signature for 3D non-rigid shape re-

trieval based on a different energy scaling (Limberger and

Wilson (2015)). Also, we show how to properly inte-

grate extrinsic information to the signature to make it more
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discriminative over the encoding process and more stable

over shape scaling. More details are in Section 4.

• The integration of KLBO signatures with Fisher Vector

and Super Vector encoding schemes, which use Gaussian

Mixture Models (GMM) to create a feature dictionary. We

show that IWKS signatures can be used with these state-

of-the-art encoding schemes since IWKS descriptors can

be precisely approximated by a probabilistic distribution

function. We also compare the convergence against HKS,

SIHKS and WKS showing that the IWKS presents similar

approximation errors. More details are in Section 4.1.

The remainder of this paper is organized as follows. Sec-

tion 2 describes previous related works in respect to non-rigid

3D shape descriptors. In Section 3, we introduce the enhanced

spectral components based on classical field theory to reduce

the influence of shape motions on descriptors. In Section 4,

we detail how to properly integrate extrinsic information to the

IWKS. Section 4.1 shows how we compute and apply state-of-

the-art encoding schemes to KLBO descriptors. Finally, Sec-

tion 5 shows experiments on the differences of the LBO to the

KLBO and presents evaluation performances on a number of

shape databases, comparing the KLBO signatures against state-

of-the-art techniques.

2. Related Work

In this section, we review works related to different non-

rigid shape descriptors proposed in the literature. We divided

the shape descriptors into three categories: spectral-based,

geometry-based, and learning-based descriptors.

2.1. Spectral-based descriptors

Spectral-based descriptors are based on solutions that rely

on the analysis of the eigensystem (eigenvalues and eigenfunc-

tions) of the Laplace-Beltrami operator. These spectral compo-

nents have many interesting properties which can be combined

to compose an elegant solution to the non-rigid shape retrieval

problem. This technique was first applied to represent shapes

by Reuter et al. (2005). They have used the eigenvalues of the

LBO as shape fingerprints for shape identification and compar-

ison. Right after, Rustamov (2007) created a global shape de-

scriptor using the eigenvalues and eigenfunctions of the LBO to

describe a object.

Following, Sun et al. (2009) proposed the Heat Kernel Sig-

nature (HKS) which is based on the diffusion of heat over the

surface of the model, governed by the heat equation

∆Mu(x, t) =
∂u

∂t
(x, t), (1)

where u is a function in respect to space and time that requires

to satisfy the Dirichlet boundary condition u(x, t) = 0 for all

x ∈ ∂M during all t andM is a Riemannian manifold. Given

a starting heat distribution at time t the purpose is to measure

how the heat is diffused across the shape to compute a heat-

based descriptor. Later, Bronstein and Kokkinos (2010) created

a framework to transform the HKS in a scale-invariant descrip-

tor (SIHKS) (i.e. signature does not depend on the size of the

shape). Then, Aubry et al. (2011) proposed the Wave Kernel

Signature (WKS) based on the Schrödinger equation

i∆Mψ(x, t) =
∂ψ

∂t
(x, t), (2)

which is very similar to the heat equation but it has different in-

duced dynamics. Instead of using different time intervals, they

compute the descriptor at different energy scales. By analyzing

the eigenvalue distributions of same-class shapes, Limberger

and Wilson (2015) proposed the Improved Wave Kernel signa-

ture which has a more informative scaling (power scaling) to the

eigenvalues of the WKS. They also propose to use a curvature

aggregation based on principal curvatures to improve histogram

discrimination.

Recently, Ye and Yu (2015) proposed a framework specif-

ically for encoding non-rigid geometries by using a context-

aware integral kernel operator on a manifold, taking advantage

of functional operators. Li and BenHamza (2013) introduced

a spectral graph wavelet framework to retrieve shapes in non-

rigid databases, using a multiresolution descriptor which can

capture the global and local geometry of 3D shapes. Masoumi

et al. (2016) improved the work of Li and BenHamza (2013)

by incorporating the vertex area in the computation of the de-

scriptor. Li et al. (2016) computed a descriptor for non-rigid

shape retrieval based on the HKS which is only computed on

assigned key-points to reduce computational complexity and in-

crease descriptiveness. Mohamed and Ben 4 (2016) proposed a

descriptor based on the spectral shape skeleton computed from

the second eigenfunction of the LBO, and used a graph match-

ing framework to compare skeletons.

2.2. Geometry-based descriptors

Geometry-based descriptors use statistics computed on prim-

itive geometric attributes, for instance, distance between any

two points and/or shape histograms, to characterize 3D models.

Many techniques have been proposed to handle non-rigid shape

retrieval.

One way of addressing this problem is by first applying

multidimensional scaling (MDS) to transform models to their

canonical form thus removing the influence of motions, then

computing a shape description. Elad and Kimmel (2003)

computed bending invariant signatures by applying MDS on

the intrinsic geodesic distances between surface points, com-

puted from the fast marching on triangulated domains algo-

rithm. Lian et al. (2013) applied Clock Matching to depth-

buffer images, captured around the 3D objects in their canon-

ical forms (CM-BOF). To compute distances between models

a multi-view shape matching is applied. Li et al. (2014a) pro-

posed a hybrid descriptor (MDS-ZFDR) by combining MDS

with distance-based and curvature-based features. Pickup et al.

(2015) changed the way Lian et al. (2013) computed canonical

forms by using Euclidean distances. Their algorithm has a sim-

ilar accuracy but it has lower computation times. Pickup et al.

(2016) computed a canonical form by unbending the skeleton

of the mesh to perform non-rigid shape retrieval.
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The second way of computing geometric descriptors is by

extracting features from distinct views of 3D objects. In this

sense, Furuya and Ohbuchi (2014) fused SIFTs, computed from

views of the object, using an anchor manifold graph to create a

more powerful descriptor. Later, Furuya and Ohbuchi (2015)

developed a feature aggregation algorithm named Diffusion-

On-Manifold to encode local features into a global descriptor.

They also proposed a new local feature called Position and Ori-

entation Distribution, that describes the oriented-points distri-

bution using a Sphere-Of-Interest.

2.3. Learning-based descriptors

Recently, machine learning methods, mainly convolution

neural networks (CNN), have gained attention of researchers.

In the shape retrieval field, there have been recent works con-

cerned with applying supervised learning methods to geomet-

ric data. These methods require some prior knowledge such as

training data so they can learn class attributes.

Litman et al. (2014) used a supervised construction of the

dictionary in BoF learned via bi-level optimization. Later, Lit-

man and Bronstein (2014) defined a framework to learn an opti-

mized descriptor by taking into account the statistics of shapes.

Boscaini et al. (2015) proposed a localized spectral CNN us-

ing the windowed Fourier transform to represent local shape

structures and created class-specific descriptors for deformable

shapes.

3. Kinetic Laplace-Beltrami operator

The family of spectral methods, exemplified by Sun et al.

(2009) and Aubry et al. (2011) are very attractive for 3D shape

representation because they are isometrically invariant, easy to

make scale invariant, partly resistant to shape deformations, and

easy to calculate even for large meshes. They are also resistant

to some types of noise, which appears in the high-frequency

part of the shape spectrum and can be downweighted. The

essence of these methods is to define a dynamic equation on the

surface of the shape (for example, the heat equation or the wave

equation) and use the solution to extract information about the

shape.

The Kinetic Laplace-Beltrami operator (KLBO) is an opera-

tor designed to reduce the influence of joint motions on shape

descriptors. It does that by modifying the kinetic energy on the

surface of the object, making energy more difficult to move in

articulated regions. Before detailing the KLBO, we briefly re-

view the classical Laplace-Beltrami operator and discuss some

related works.

The Laplace operator generalized to operate on functions de-

fined on a Riemannian manifoldM (2D in our case) is known

as the Laplace-Beltrami operator ∆M. It is a linear operator

defined as the divergence of the gradient taking functions into

functions

∆M f = − ▽ · ▽M f (3)

given that f is a twice-differentiable real-valued function. The

negative sign is simply to respect the standard convention for

graph Laplacians.

Several methods were proposed to deal with the problem of

creating discrete Laplacians for meshes: Taubin (1995); Des-

brun et al. (1999); Meyer et al. (2003); Reuter et al. (2006);

Xu (2006); Levy (2006); Belkin et al. (2008). Meyer et al.

(2003) proposed the cotangent weight scheme which we use in

our construction. Although Xu (2004) showed that the cotan-

gent weight scheme does not converge in general, Belkin et al.

(2008) proposed a new discretization method that converges

even when meshes present imperfections. In this work, we did

not have any convergence problems using Meyer et al. (2003),

however, other discretization methods can also be applied to our

method.

Take f : V → R as a n-dimensional vector where the ith

component f (i) is the function value at the vertex i in V. Us-

ing Meyer et al.’s discretization, the discrete Laplacian (L) is

written as

∆M = L = A−1W (4)

where A is a positive definite diagonal matrix and the elements

of W are given by

W(i, j) =































(cotαi j+cot βi j)

2
if (i, j) ∈ E,

− ∑

k,i

W(i, k) if i = j

0 otherwise.

(5)

where αi j and βi j are internal angles (∠(vivav j) and ∠(vivbv j))

of two adjacent triangles with center vertex vi and E is the edge

set. The diagonal elements Aii are the Voronoi areas associated

to the vertex vi. Figure 1 shows a diagram of this parameteriza-

tion.

αij

βij

va

vb

vj

vi

Fig. 1. Illustration of the angles αi j and βi j, and the Voronoi area (yel-

low polygon) associated to the vertex vi of the cotangent weight scheme of

Meyer et al. (2003).

Recently, Andreux et al. (2014) proposed an anisotropic LBO

which benefits from a more semantically meaningful diffusion

process, being able to favor directions of low or high curvature.

Later, Boscaini et al. (2016) proposed shape descriptors con-

structed from anisotropic oriented diffusion kernels which take

advantage of deep learning techniques.

Choukroun et al. (2016) proposed the use of the Hamilto-

nian H = −∆ + V and the corresponding Schrödinger equation

i~Ψ̇ = HΨ for shape analysis. They analyze the effect of the

potential V on the Hamiltonian eigenfunctions and show how V

can be optimized for particular representational problems. Our

starting point is the Lagrangian and we use the Euler-Lagrange

equations to obtain the dynamics. These are dual approaches;

in the same physical situation they will lead to the same dynam-

ics. The discretization proposed in Choukroun et al. (2016) is
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different to ours, as we add a kinetic energy related term to the

Lagrangian rather than a potential.

The paper suggests that by choosing the right optimization

of the potential it is possible to deal with different shape anal-

ysis tasks. They show how to deal with the problem of mesh-

ing compression by choosing a general optimization method for

solving variational problems. Hamiltonian and Lagrangian me-

chanics are related formulations predicting the dynamics of a

system. The Hamiltonian approach defines the time evolution

of a system via a set of differential equations, whereas the La-

grangian framework proceeds from the principle of least action

applied to the Lagrangian.

Similarly to Choukroun et al. (2016), Melzi et al. (2017) also

have made a modification to the Laplacian via a potential func-

tion. They have created a new operator for computing localized

manifold harmonics on deformable objects using the Laplacian

eigenfunctions framework. Differently from ours, they focus on

the local spectral shape analysis, which means constructing lo-

calized orthogonal bases that removes the global nature of these

bases. On the other hand, we focus on constructing global shape

representation that are invariant to local properties.

In this paper, we define the Lagrangian of the dynamics

on the surface of objects using classical field theory. To be

clear, this is different from a weighted manifold decomposition

Grigor’yan (2006); Andreux et al. (2014). Different from An-

dreux et al. (2014), we do not simply favor directions of high

or low curvature to create an anisotropic diffusion. Instead, we

discount the kinetic term of joint regions, so that these do not

influence the descriptors. Thus, we weight the physical field

using a smooth positive kinetic density. Both methods share

some functional similarities, however, our formulation for the

problem and its outcome are completely different. We begin by

defining the Lagrangian density of the system

L(φ,▽φ, φ̇, x, t) = T − V (6)

where T is the kinetic energy (K.E.) and V is the potential en-

ergy, and φ represents a field defined over the space (i.e. over

the surface of the object). The action of the system is given by

the integral of the Lagrangian density:

S (L) =

∫

Ldxdt (7)

The dynamics of the system can be recovered from Hamilton’s

principle, which states that the action should be stationary for

the true dynamic evolution of the system. This leads to the

Euler-Lagrange equation for the dynamics:

∂L
∂φ
− ▽ · ∂L

∂ ▽ φ −
∂

∂t

(

∂L
∂φ̇

)

= 0 (8)

By defining an appropriate Lagrangian and solving the resulting

Euler-Lagrange equations, we can find a shape signature that

weights kinetic energy differently across the field. The kinetic

energy is generated by different forms of motions. The move-

ment of joint regions can be physically interpreted as transla-

tional (when one part is moved from one place to another), ro-

tational (when the joint is rotated) and/or vibrational (when part

of the shape is also deformed by the motion), depending on the

type of articulation and deformation. Thus, our motivation is

to weight the kinetic energy over the shape surface to remove

joint-articulation’s effect on shape signatures.

In the general scaled Lagrangian:

L = 1

2
φ̇φ̇∗ +

1

2
(φφ̇∗ − φ∗φ̇) − ∇φ · ∇φ∗ − φ∗Vφ (9)

φ is a (possibly) complex field, so there are in fact two “fields”

corresponding to the real part and the imaginary part. In prac-

tice it is easier to consider the field φ and its complex-conjugate

φ∗ which are linear combinations of the real and imaginary parts

and so do not affect the calculations. The first two terms are ki-

netic energy terms, the first corresponding to a standard K.E.

proportional to the square of the velocity. The second is a K.E.

term where the energy increases with the size of the field. The

second two terms are field potentials, the first related to the gra-

dient and the second to some external potential field V .

From this point, we can define the shape descriptor by choos-

ing appropriate terms from (9). To define the heat equation we

choose second and third terms

L = 1

2
(φφ̇∗ − φ∗φ̇) − ∇φ · ∇φ∗ (10)

which applied to (8) gives dynamics

∇2φ = φ̇. (11)

Ultimately this leads to the definition of the family of heat ker-

nel signatures. In the same way, to define the wave equation we

choose first and third terms

L = 1

2
φ̇φ̇∗ − ∇φ · ∇φ∗ (12)

which gives dynamics

∇2φ = φ̈. (13)

which ultimately leads to the wave kernel signature of Aubry

et al. (2011). The final term can be used to introduce a potential

energy weighting term V(x) which varies across the surface but

we do not use that term here. To reduce the effect of object ar-

ticulations, we introduce a kinetic energy weighting term C(x)

(first to the wave equation) into the Lagrangian

L = k

2
C(x)φ̇φ̇∗ − ∇φ · ∇φ∗ (14)

By applying this time (14) to (8) we get

▽2φ = kC(x)φ̈ (15)

where k is a normalization term and C(x) is a spatially varying

weighting function which is small in areas on the shape where

articulations are likely to occur and also stable to non-rigid mo-

tions. Standard separation of variables and discretization gives

Lφ = λKφ (16)

where K is a diagonal matrix where diagonal elements Kii =

C(x) such that i represents the vertex at position x. Putting
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these elements together, following a standard discretization pro-

cedure from (4), the eigenvectors associated with the signature

are solutions of the generalized eigenproblem

Wφ = λAKφ. (17)

The kinetic term can be modified in the heat Lagrangian in

the same way:

L = k

2
C(x)(φφ̇∗ − φ∗φ̇) − ∇φ · ∇φ∗ (18)

and this leads to exactly the same spatial eigenvectors of (17),

although the solution is different due to difference in the time

derivatives. To derive a descriptor which is less variant to non-

rigid motions we merely need to choose an appropriate function

C(x) which is smaller in articulated points than in rigid areas of

the shape.

The weighting function C(x) needs to reduce the effect of ar-

eas which are most different when comparing non-rigid shapes.

When a human model moves its arm, what happens is that the

arm joint region changes its curvature along with its local vol-

ume. At one side it becomes smaller (more negative) and at the

other side it becomes bigger (more positive). After analyzing

the structure of shapes we found a relation between the positive

volume of the local surface patches and their joints. By using

the positive volume, joint regions are consistently less weighted

than other regions. We can compute the volume of a surface

patch, similarly as done by Pottmann et al. (2009), by integrat-

ing a quadric patch, which is a representation of this surface in

the local coordinate system
∫∫

x2+y2<R2

(k1x2 + k2y2 − z)dxdy (19)

Here k1 and k2 are the principal curvatures of the surface patch

since they are the eigenvalues of the symmetric matrix in the

second fundamental form

II =

[

k1 0

0 k2

]

(20)

Figure 3 shows a diagram of the volume of a surface patch.

After integrations of (19), the volume inside the circle with ra-

z-plane

v
i

R

Fig. 3. Diagram of the volume of a surface patch centered at vertex vi

dius R centered at the respective vertex vi is defined as

πR4

2

k1 + k2

2
− πzR2 (21)

where (k1+k2)/2 is the mean curvature (H), πR4/2 is a scaling

factor and z dictates the position of the reference plane defined

by the surface patch’s normal. By removing the scaling factor

and taking z = 0 we find that the volume is proportional to the

mean curvature thus we define the weighting function C(x) as

C(x) = max(ǫ,H(x)), (22)

where H(x) is the mean curvature of the surface patch at po-

sition x and ǫ a very small number (e.g. 10−8). The scaling

factor πR4/2 of Eq. (21) is not significant because a scaling

normalization is performed after this stage. Thus, to facilitate

the volume computation, we directly extract mean curvatures

from shapes by computing a curvature tensor at each vertex,

according to Rusinkiewicz (2004).

With these ingredients, Eq. (16) can be solved as a gener-

alized eigenvalue problem. The resulting eigensystem is then

used to construct a shape signature following the appropriate

method for the particular Lagrangian, i.e. using (14) for either

the WKS or IWKS or (18) for either the HKS or SIHKS.

We call these methods, using modified kinetic energy terms

in the Lagrangian, Kinetic Laplace-Beltrami operator or KLBO

methods. Fig. 2 summarizes the main steps of the KLBO

pipeline for computing spectral signatures.

4. Improved Wave Kernel Signature

The Improved Wave Kernel signature (IWKS), which was

introduced by Limberger and Wilson (2015), presents a differ-

ent energy scaling from the WKS of Aubry et al. (2011). This

scaling is the result of an investigation of how the eigenvalues

of the shapes modify after these being deformed by non-rigid

motions. Further, the IWKS also incorporates extrinsic infor-

mation into the descriptor to make the encoding more discrim-

inative to other classes of objects. The WKS is given by

WKS(x, e) = Ce

∞
∑

k=1

φk(x)2 fE(Λk)2 (23)

fE(Λk)2 = e
−(e−log(Λk ))2

2σ2 e ∈ [log(λ2), log(λmax)] (24)

while the IWKS from Limberger and Wilson (2015) is given by

IWKS(x, e) = Ce

∞
∑

k=1

φk(x)2 fC(Λk)2 + cxα (25)

where cx is the maximum principal curvature, α is a weight that

normalizes cx accordingly to the signature values and

fC(Λk)2 = e
−(e− 3
√
Λk )2

2σ2 e ∈ [ 3
√

λ f ,
3
√

λmax] (26)

where λ f corresponds to the first non-zero eigenvalue.

The problem of using a constant α to balance the curvature

term with the signatures values is that the curvatures will be

different locally if the shape appears in a different scale or if

the shape is deformed by its joints. Thus, we propose a new

weighting term that takes these factors into consideration and

weights the curvature terms in a way that it keeps the average

curvature constant.

S (x) =
β · cx

mean(c)
(27)



6

0 0.5 1 1.5

0

1000

2000

3000

0 2 4 6

0

500

1000

1500

0 500 1000

-0.05

0

0.05

0 0.5 1 1.5

0

1000

2000

3000

0 2 4 6

0

500

1000

1500

0 500 1000

-0.05

0

0.05

0 0.5 1 1.5

0

1000

2000

3000

0 2 4 6

0

500

1000

1500

0 500 1000

-0.05

0

0.05

Mesh

Models

Kinetic Weight

(Curvature Histograms)

Kinetic Signatures

(Histograms)

Kinetic

Shape Signatures

F
ea

tu
re

E
n
co

d
in

g

K
in

et
ic

L
a
p
la

ce
-B

el
tr

a
m

i
o
p

er
a
to

r

C
u
rv

a
tu

re
E

st
im

a
ti

o
n

M
a
n
if

o
ld

R
a
n
k
in

g

Fig. 2. Pipeline proposed for the non-rigid shape retrieval problem for triangle meshes. By weighting the kinetic energy on the Euler-Lagrangian equation

by a specific curvature term, we reduce the effect of shape articulations, causing same-class shapes’ signatures to be closer to each other. Then, by encoding

the kinetic signatures using either Fisher Vector or Super Vector (Section 4.1) we are able to compare shapes efficiently using Manifold Ranking technique.

In equation (27), β is a parameter representing the desired aver-

age curvature to rescale the curvatures and cx is the maximum

principal curvature. This way, the final IWKS is given by

IWKS(x, e) = Ce

∞
∑

k=1

φk(x)2 fC(Λk)2 + S (x) (28)

Fig. 4 shows a plot of S (x) over different deformed shapes. It

is easy to see that S (x) is less weighted on joint regions (mainly

parts near leg joints) and it remains stable across deformations

of the shape (see the tail and the neck).

Fig. 4. Plot of S (x) on different dinosaur models from SHREC’15 bench-

mark using the same colormap. Blue stands for low values and yellow

stands for high values. As can be seen, the positive curvatures remain sta-

ble along non-rigid deformations of the shape. Models are respectively 69,

171, 323 and 393.

This modification normalizes the curvature in a more ro-

bust way, making similar shapes to have more similar curvature

histograms, independent of size or sampling. For same-class

shapes, histograms will have the same mean and very similar

variance, while shapes from different classes will still have the

same mean, however, distinct distributions. We show in Figure

5 that curvature histograms from shapes of the same class are

similar even when these are articulated. The classes we selected

have different curvature histograms to better illustrate the clear

similarity that some classes have, however, there are many other

curvature histograms which are not as similar as in the example,

therefore only a histogram comparison would not be sufficient

to classify those shapes. Figure 6 shows the average similarity

between curvature histograms for each class in SHREC’15. It

is possible to see that there is a correlation between curvature

histograms of same-class shapes since there are dominant sim-

ilarities in the main diagonal of Figure 6 (where we compare

shapes of the same class).

In addition to using the KLBO with the IWKS, we can also

use the kinetic shape spectrum to compose other spectral sig-

natures, for example, the Heat Kernel Signature (HKS), the

Scale-Invariant Heat Kernel Signature (SIHKS) and the stan-

dard Wave Kernel Signature (WKS). These computations are

done exactly in the same way, changing the computation of the

eigenvalues and eigenfunctions from the standard LBO to the

KLBO framework. This makes all spectral signatures more ro-

bust to non-rigid deformations of the shape.

4.1. Encoding local spectral descriptors

After computing local descriptors, it is necessary to encode

them into shape signatures to make 3D comparisons. For this,
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Fig. 5. Curvature histograms of three different classes which models were

articulated: dinosaur in the first row (red), glasses in the second row (cyan)

and gorilla in the third row (green). Models are respectively 618, 323, 1007,

624, 697, 500, 1062, 312, 829, 46, 915 and 770, from SHREC’15 Lian et al.

(2015). β was set to 0.5.
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Fig. 6. Average similarity between curvature histograms for each class in

SHREC’15. Black means that the difference between classes are small,

oppositely white means they are big. The distinct diagonal indicates that

the within-class histograms are highly self-similar.

we use two related methods based on the Bag-of-Words frame-

work: the Fisher Vector from Perronnin et al. (2010) and the

Super Vector from Zhou et al. (2010). Both have been applied

to spectral signatures before by Limberger and Wilson (2015).

Standard Bag-of-Word methods, i.e. Histogram encoding

and Kernel codebook encoding, have been first applied to shape

analysis tasks by Toldo et al. (2009) and Bronstein et al. (2011).

Many different schemes were proposed to improve the per-

formance of encodings methods, e.g. Tabia et al. (2013a,b);

Savelonas et al. (2016), however, we have chosen the FV and

SV for their good performances in recent non-rigid shape re-

trieval benchmarks.

In this section, we show the mathematic formulations of the

Fisher Vector and Super Vector encoding methods and then we

focus in showing that the new IWKS also can be used with these

encoding schemes.

FV and SV are based on the differences between descrip-

tor means and the centers of probabilistic distribution functions

(PDF) which act as a dictionary of features. These differences

describe which features are and which features are not present

on the object. When computing FV or SV, a Gaussian Mixture

Model (GMM) is used to represent the vocabulary. Thus, the

better shape features are approximated by a GMM, the more

precise the encoding will be. Let X = {xt, xt ∈ RD, t = 1...T } be

a set of local descriptors of a shape S , where T is the num-

ber of vertices from S and D the descriptor dimension, and

λ = {wk,µk,Σk, k = 1...K} a set of parameters of a GMM pλ
(Eq. (29)), where wk, µk and Σk are respectively the weight,

mean vector and covariance vector of the k-th Gaussian of a

GMM.

pλ(x) =

K
∑

k=1

wkN(x|µk,Σk) :

K
∑

k=1

wk = 1 (29)

The parameters λ can be estimated by computing the Ex-

pectation Maximization (EM) algorithm from Sanchez et al.

(2013). The FV produces three-order-deviation vectors (q,u, v)

from the vocabulary to characterize the set of local descriptors.

The first order is the association strength (soft assignment),

which is computed by the posterior probability

qtk =
exp[− 1

2
(xt − µk)⊤Σ−1

k
(xt − µk)]

ΣK
i=1

exp[− 1
2
(xt − µi)

⊤Σ−1
i

(xt − µi)]
. (30)

Then, the second and third orders are computed w.r.t. the mean

and covariance. For each mode k and each descriptor dimension

j = 1..D, deviation vectors are computed

u jk =
1

T
√

wk

T
∑

i=1

qik

x ji − µ jk

σ jk

, (31)

v jk =
1

T
√

2wk

T
∑

i=1

qik















(

x ji − µ jk

σ jk

)2

− 1















(32)

where σ jk are the square roots of the covariances Σk. In the

end, FV is given by the vectorization and concatenation of the

matrices u jk and v jk.

ΓFV = [...u⊤k ..., ...v
⊤
k ...]

⊤ (33)

On the other hand, the SV only considers two-order-deviation

vectors (q,u) but it adds a component related to the mass of

each cluster (s)

pk =
1

N

N
∑

t=1

qtk sk = s
√

pk

uk =
1
√

pk

N
∑

t=1

qtk(xt − µk)

(34)

where s is a weight to balance sk and uk numerically. Finally,

SV is given by

ΓS V = [s1,u
⊤
1 , ..., sK ,u

⊤
K]⊤ (35)
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The size of the final signature depends on the parameters

used to compute either the FV or SV. For FV, the final size of

the descriptor (ΓFV ) is 2DK and for SV (ΓS V ) is K(D + 1).
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Fig. 7. Fitting Gaussian Mixture Models to randomly-chosen shape fea-

tures computed using the KLBO. Expectation-maximization algorithm

was used to compute the mixture models. Each row represent features

from HKS, SIHKS, WKS and IWKS.

In order to represent shape signatures using a GMM, it is

necessary to determine whether the descriptors have the desir-

able characteristics (smooth histogram with a small number of

peaks) to fit a GMM with a low fitting error. Therefore, we per-

formed an empirical analysis on shape descriptors to determine

the errors of fitting GMMs. We plotted histograms of descrip-

tors frequencies (each descriptor frequency is used as a fea-

ture) and computed errors based on the differences to each bin.

We show in Fig. 7, five different randomly-selected descriptor

frequencies for each spectral signature (HKS, SIHKS, WKS,

IWKS). In every example we fit a GMM with five components

using the iterative Expectation-Maximization (EM) algorithm

to show that is possible to approximate every shape feature his-

togram precisely, even with a small number of components.

The residuals E from the GMM approximation are computed

by summing all errors for each bin and normalizing by the num-

ber of observations

E =

h
∑

i=1

|δi|
v
, (36)

where h is the number of histogram bins, δi is the difference

from the histogram i-th bin value to the GMM sampled in the

x-axis at bin’s midpoint and v is the number of vertices in the

model.

Therefore, we plot the residuals by fitting feature histograms

with different number of components. The residual plots show

that the error decreases (converges to the shape feature his-

togram) as we increase the number of GMM components. As

you can see, the approximation produces small errors which de-

cay as we increase the number of components, thus enabling the

use of GMM dictionaries with KLBO spectral signatures.

We use Efficient Manifold Ranking (EMR) algorithm from

Xu et al. (2011) to compute the distances between the final FV

or SV encodings. EMR works very similar to the standard Man-

ifold Ranking algorithm. However, it is a faster version that al-
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Fig. 8. Convergence of Gaussian Mixture Models to approximate KLBO

spectral descriptors. Each line of each graph represents the fitting error

with different number of components on the five feature descriptors of Fig.

7. The black line represents the average loss of the five approximations.

As can be seen, the error converges in most cases for the four descriptors

when are used in average 5 components or more.

lows out-of-sample retrieval, crucial to real-world retrieval sys-

tems. The Manifold Ranking algorithm leads to a better sep-

aration of features than using a pairwise euclidean distance by

exploiting the global structure of the intrinsic manifold, created

from the feature vectors. It then computes similarity between

descriptors by navigating manifold graph edges, similar to a dif-

fusion process. Therewith, a relative ranking score is assigned

to each feature vector, differently from a pairwise similarity, as

usually employed by dissimilarity measures. MR is becoming

a standard way to compute dissimilarities in large datasets as

shown in the works of Lian et al. (2010), Lian et al. (2011),

Li et al. (2012), Pickup et al. (2014), Li et al. (2014b) and Fu-

ruya and Ohbuchi (2015). We used this method exactly as it is

explained in Xu et al. (2011), using their implementation.

5. Experiments

In this section, we evaluate our descriptors in the most recent

non-rigid benchmarks proposed in the literature. However, first

we show that the eigenfunctions generated by the KLBO are

more stable and suitable for non-rigid shape retrieval since they

are less variant to non-rigid deformations.

Figure 9 show examples of eigenfunctions from three dif-

ferent models which were deformed by their joints. First, we

show the eigenfunctions computed using the classic LBO dis-

cretization by Meyer et al. (2003). Following, we show the

eigenfunctions computed using the KLBO. It is easy to see that

our eigenfunctions are more stable and characterize the same

regions of the shape. This makes local descriptors, first, more

robust since the shape spectra is more stable and informative

and, second, less variant under non-rigid transformations.

To evaluate the capability of retrieving shapes in non-rigid

databases, we perform experiments on three non-rigid datasets:

SHREC’10 by Lian et al. (2010), SHREC’11 by Lian et al.
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Fig. 9. Comparison between eigenfunctions of the LBO (first three rows)

and the KLBO (last three rows) of dinosaurs (6th eigenfunction), armadil-

los and camel (4th eigenfunctions) models. As you can see, the KLBO

is much more stable than the LBO, and it is capable of identifying the

same regions with similar weights, independently of the object’s pose. This

makes the KLBO more suitable for non-rigid shape retrieval.

(2011), and SHREC’15 by Lian et al. (2015). On these bench-

marks, a search query consist of using one object as query and

the remaining objects as retrieval targets. This result in a dis-

similarity square matrix D where the entry (i, j) gives the dis-

tance between models i and j from the database. Computing

statistics over D gives us knowledge of the efficiency of each

method.

To compare our method against other variants, we took the

state-of-the-art descriptors from each one of the datasets of Lian

et al. (2010, 2011, 2015). All the results from other meth-

ods were taken from the respective author’s papers. As re-

trieval scores, we use e-Measure (E) and mean Average Preci-

sion (mAP). The e-Measure gives a score based on the precision

and recall of the first 32 retrieved models even when classes

contain less than 32 models. Additionally, mAP is given by the

area below the precision and recall curve, considering the plot

as a square 1 × 1. This way, mAP varies between 0 and 1.

Table 1 shows a comparison of our best run on SHREC’10

(KLBO-SVWKS, see Table 5) against the best descrip-

tors taken from SHREC’10 benchmark (MR-BF-DSIFT-E,

DMEVD run1, CF) and other state-of-the-art techniques,

where referenced. Our descriptor exhibit the best retrieval

scores when compared to all other methods. SHREC’10 dataset

was one of the first datasets to deal with the problem of non-

rigid shape retrieval. Some of its classes contains models that

are substantially different in nature to the others. SHREC’10

Table 1. Retrieval performances on SHREC’10 Non-rigid dataset.

Descriptor E
mAP

[%]

KLBO-SVWKS 0.7328 99.1

ConTopo++ (Sfikas et al. (2011)) 0.7140 97.6

KLBO-SVIWKS 0.7137 93.2

MR-BF-DSIFT-E 0.7055 95.4

DMEVD run1 0.7012 94.1

MDS-ZFDR (Li et al. (2014a)) - 94.1

FV-IWKS (Limberger and Wilson (2015)) 0.5867 82.8

CF 0.5527 75.2

BOF-SIHKS (Bronstein et al. (2011)) 0.5239 66.1

Best runs from the three groups that performed better on SHREC’10 (MR-BF-

DSIFT-E, DMEVD run1, CF) and other recent descriptors that outperformed

those, against our descriptor (KLBO-SVWKS). In bold are highlighted the best

performances for each retrieval measure.

Table 2. Retrieval performances on SHREC’11 Non-rigid dataset.

Descriptor E
mAP

[%]

KLBO-FVIWKS 0.7451 100.0

3DVFF (Furuya and Ohbuchi (2014)) - 99.1

SD-GDM-meshSIFT 0.7358 98.5

MDS-ZFDR (Li et al. (2014a)) - 97.5

SV-DSIFT (Furuya and Ohbuchi (2015)) - 97.2

FV-IWKS (Limberger and Wilson (2015)) 0.7318 97.1

R-BiHDM-L23 (Ye and Yu (2015)) 0.7300 -

SGWC-BoF (Masoumi et al. (2016)) 0.7290 -

SV-LSF kpaca50 (Furuya and Ohbuchi

(2015))
- 96.2

Geodesic Distances (LS) (Pickup et al.

(2015))
0.7170 -

MDS-CM-BOF 0.7166 95.0

ConTopo++ (Sfikas et al. (2011)) 0.6950 94.7

OrigM-n12-normA 0.7047 94.4

FOG+MRR 0.6958 91.8

BOGH 0.6469 86.7

LSF 0.6327 85.1

Best runs from the six groups that performed better on SHREC’11 (SD GDM-

meshSIFT, MDS-CM-BOF, OrigM-n12-normA, FOG+MRR, BOGH, LSF)

and other recent descriptors that outperformed those, against our

descriptor(KLBO-FVIWKS). In bold are highlighted the best performances for

each retrieval measure.

is also a very challenging benchmark because some classes are

very similar to each other. For these reasons, the IWKS does

not performs at the top performance here since the IWKS as-

sumes smoother transitions between models of the same class,

which does not happen on this dataset for many classes.

Table 2 compares the performance of the KLBO-FVIWKS

against the best methods on SHREC’11 benchmark (SD-GDM-

meshSIFT, MDS-CM-BOF, OrigM-n12-nrmA, FOG+MRR,

BOGH, LSF) and other state-of-the-art techniques, where ref-

erenced. As shown, our method clearly outperforms all oth-

ers, achieving an excellent retrieval score (mAP 100.0%). Our

method is not based on any kind of supervised feature learn-

ing and it is able to acknowledge important characteristics of
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Table 3. Retrieval performances on SHREC’15 Non-rigid dataset.

Descriptor E
mAP

[%]

SV-LSF kpaca50 (Furuya and Ohbuchi

(2015))
0.8357 99.8

KLBO-FVIWKS 0.8269 99.2

HAPT run1 0.8150 97.7

FV-IWKS (Limberger and Wilson (2015)) 0.8102 96.9

SPH SparseCoding 1024 0.8047 96.8

SGWC-BoF (Masoumi et al. (2016)) 0.7470 -

CompactBoHHKS10D 0.7465 90.1

SRG (Mohamed and Ben 4 (2016)) 0.7390 -

FV-WKS 0.7242 87.5

EDBCF NW 0.7076 85.0

Best runs from the six groups that performed better on SHREC’15 (SV-

LSF kpaca50, HAPT run1, SPH SparseCoding 1024, CompactBoHHKS10D,

FV-WKS, EDBCF NW) and other recent descriptors in the literature against

our descriptor (KLBO-FVIWKS). In bold are highlighted the best performances

for each retrieval measure.

the shapes just by inspecting its enhanced spectral components.

Therefore, KLBO-FVIWKS is capable of retrieving all 19 cor-

rect matches for all 30 classes, i.e. if any object from these

classes is taken as query it will retrieve all remaining shapes

from the same class at first. We show in Fig. 10 an example

of a very challenging class. The snakes example was chosen

because of the difficulty that other methods that do not use dif-

fusion geometry have to retrieve this sort of shape.

On SHREC’15 dataset, our method performs closely to

the top performing method (see Table 3). Although KLBO-

FVIWKS does not achieve the first position, it is very stable

along other benchmarks. Differently than SV-LSF kpaca50,

which achieves a very good retrieval score on SHREC’15 but

has a lower performance on SHREC’11.

We also show the performance of our method applied to an-

other problem. We use the benchmark of Biasotti et al. (2017)

to test the retrieval accuracy of similar relief patterns. Consid-

ering the entire dataset, our method is the best achieving a mAP

of 0.339. In second place is LBPI with mAP 0.283. The entire

dataset consist of meshes that are deformed in different ways:

sampling, size, shape bending. In total, there are 15 different

relief patterns (classes) and 720 different models. In Table 4

are shown different evaluation measures for the four best de-

scriptors in this benchmark. The curvature weighting makes it

possible to describe the relief patterns of the surfaces and re-

trieve similar patterns with a good accuracy. Retrieval statistics

were taken from the benchmark paper of Biasotti et al. (2017).

Table 4. Retrieval performances on SHREC’17 Relief Patterns dataset.

Descriptor E
mAP

[%]

KLBO-FVIWKS 0.332 0.339

LBPI 0.232 0.283

CMC-2 0.261 0.271

IDAH-1 0.145 0.174

Table 5 shows experiments on the KLBO comparing with the

classical LBO (Limberger and Wilson (2015)) to compute well

known spectral signatures from the literature (HKS, SIHKS,

WKS) and our IWKS. In the sixth column, we also show re-

sults when applying EMR to compute the dissimilarity ma-

trix, differently from Euclidean distance. The last two columns

show the respective improvements when applying the KLBO

and EMR+KLBO over the LBO. In all cases, the method im-

proves the results of the signatures when using EMR+KLBO,

in some cases by more than 20%.

Table 6 shows detailed running times to compute KLBO. We

show average times to compute one model from each database.

In the second row, we show running times for the KLBO to

compute the Laplacian matrix and its respective eigendecom-

position. The following columns show running times for com-

puting each spectral local descriptor. SV and FV represent the

average time to compute the encoding for one model. At the

last two columns it is shown the total time to compute each

benchmark, using either FV or SV.

Our method is not designed for benchmarks that transform

shape topologies, like deformable shapes with missing parts

from Rodola et al. (2017), since we use curvatures to guide

the kinetic-energy flow. Once parts of the model are removed,

the curvatures are changed in the borders of the missing parts.

We believe that our method could be modified to account for

missing parts, using the techniques described in Rodola et al.

(2017) and should perform well, but this is another research

project. With a naive application of our method, we get better

performance that the methods which do not explicitly account

for missing parts, but not as good as those that do.

In overall, it is difficult to have one descriptor that behaves

well in different kinds of data (different examples). As it can

be seen, ConTopo++ performs very well in SHREC’10 how-

ever its accuracy in SHREC’11 is not in the top tier. On the

other hand, our descriptors can achieve a high performance on

all benchmarks tested in this paper, having more than 99% of

accuracy in retrieving non-rigid shapes.

Settings For computing shape encodings, we use a dictio-

nary of the first 29 models of the respective dataset. Then,

we compute GMMs with 38 components. The IWKS is im-

plemented as in Limberger and Wilson (2015) with the modifi-

cation described in Eq. (28), using m = 0.3 and iwksvar = 5

for SHREC’10; m = 0.5 and iwksvar = 2.5 for SHREC’11;

m = 0.5 and iwksvar = 3.75 for SHREC’15; and m = 0.5

and iwksvar = 5 for SHREC’15. We use wksvar = 6 in all

datasets. To compute EMR, we use 100, 220, 500 and 70 land-

marks, respectively, for each benchmark, using authors’ imple-

mentation Xu et al. (2011). For computing shape signatures,

we compute the first 300 eigenvalues for the KLBO and LBO.

We evaluate local signatures (HKS,SIHKS,WKS and IWKS)

with the respective parameters: HKS and SIHKS time interval

[4 ln(10)/λ300, 4 ln(10)/λ2] logarithmic scaled; WKS every in-

terval [log(λ2), log(λ300)]; IWKS energy interval [ 3
√

λ f ,
3
√
λ300];

λi represent the eigenvalues and λ f is the first nonzero eigen-

value. Then, signatures are sampled 100 times in these inter-

vals. In the SIHKS, we sample the first 15 frequencies after

computing scale normalization. These parameters were chosen

because they were the best ones when testing in a training set (a
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Fig. 10. Retrieval of the model 235 (snake shown in the red square) from SHREC’11 dataset. Differently from other descriptors in Lian et al. (2010) which

fail on the identification of snakes, the KLBO method is capable of identifying all 19 correct matches at first from this repository. Furthermore, the KLBO

framework also retrieves all snakes given any snake as query from either SHREC’10 or SHREC’15 datasets.

Table 5. Experiments of the KLBO applied to different spectral descriptors and encodings on different benchmarks.

Benchmark Encoding Descriptor
LBO

(e-Measure)

KLBO

(e-Measure)

EMR+KLBO

(e-Measure)

Improvements

(KLBO)

Improvements

(EMR+KLBO)

SHREC’10

FV HKS 0.6570 0.6910 0.7043 1.0 % 7.2 %

FV SIHKS 0.6173 0.6651 0.7045 7.8 % 14.1 %

FV WKS 0.6738 0.7225 0.7148 7.2 % 6.1 %

FV IWKS 0.5793 0.6863 0.6767 18.4% 16.8 %

SV HKS 0.6017 0.6125 0.6878 1.8 % 14.3 %

SV SIHKS 0.6313 0.6776 0.7052 7.3 % 11.7 %

SV WKS 0.6455 0.7073 0.7328 9.6 % 13.5 %

SV IWKS 0.5957 0.6629 0.7137 11.3% 19.8 %

SHREC’11

FV HKS 0.6996 0.7161 0.7426 2.4 % 6.2 %

FV SIHKS 0.7229 0.7418 0.7425 2.6 % 2.7 %

FV WKS 0.7210 0.7430 0.7451 3.1 % 3.3 %

FV IWKS 0.7318 0.7420 0.7441 1.4 % 1.7 %

SV HKS 0.6523 0.6580 0.7361 0.9 % 12.9%

SV SIHKS 0.7189 0.7383 0.7451 2.7 % 3.6 %

SV WKS 0.7129 0.7425 0.7439 4.2 % 4.4 %

SV IWKS 0.7283 0.7413 0.7451 1.8 % 2.3 %

SHREC’15

FV HKS 0.6661 0.6400 0.7225 -3.9 % 8.5 %

FV SIHKS 0.7102 0.7587 0.7988 6.8 % 12.5%

FV WKS 0.7511 0.7795 0.7925 3.8 % 5.5 %

FV IWKS 0.8102 0.8255 0.8269 1.9 % 2.1 %

SV HKS 0.5564 0.5514 0.6918 -0.9% 24.3%

SV SIHKS 0.6698 0.7458 0.8019 11.3% 19.7%

SV WKS 0.6842 0.7452 0.7858 8.9 % 14.9%

SV IWKS 0.7649 0.8028 0.8232 5.0 % 7.62%

In bold are highlighted the best retrieval performances for each benchmark and method. LBO and KLBO columns use euclidean distance to compute dissimilarities

between descriptors. Improvements of KLBO over LBO are shown in the seventh column. The final improvements over the LBO descriptor due the weighting of the

Kinetic energy (KLBO) and EMR are given at the last column (with respect to e-Measure).

Table 6. Average computation times (in seconds) for computing one signature for an average-sized model from each dataset.

Benchmark KBLO HKS SIHKS WKS IWKS FV SV EMR Total-FV Total-SV

SHREC’10 24.74 0.10 5.39 0.05 0.06 1.51 7.22 0.07 6,390 7,533

SHREC’11 12.73 0.06 3.62 0.04 0.06 0.98 4.24 0.27 10,668 12,625

SHREC’15 15.24 0.07 3.77 0.04 0.05 1.26 8.73 0.58 25,239 34,205

KLBO stands for computation of curvatures, eigenvectors and eigenvalues. HKS, SIHKS, WKS and IWKS stand for time to compute respective signatures. FV and

SV stand for computation times of Fisher Vector and Super Vector. EMR represents the time to perform retrieval of one model. Total times to compute signatures and

retrieve all models using either FV or SV are shown in Total-FV and Total-SV columns. The average computation times of Fisher Vector approach is considerably

lower because we use VLfeat implementation Vedaldi and Fulkerson (2008), while Super Vector is completely implemented on Matlab. Complexities of FV and SV

are similar, thus SV would have similar computation time if it was implemented in like manner.
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subset of Lian et al. (2010)). All experiments were computed

on Matlab, PC Intel Core i7 3.4GHz, 8GB RAM.

Limitations Joint regions, estimated by the curvature-based

kinetic term, might not be precise when models exhibit high

levels of noise. One solution is to blur the curvature or use dif-

ferent maps over the surface. For the benchmarks analyzed in

this paper, noise was not a problem for computing signatures.

When it comes to computation time, although our technique

provides outstanding results it takes a considerable time to com-

pute all signatures and encodings. There exist other methods

which are designed to deal with time performance and scalabil-

ity Sipiran et al. (2015). Another limitation of the KLBO is that

most discrete LBO do not guarantee convergence when trian-

gles in the mesh are not well-shaped Sun et al. (2009). When

spectral signatures are computed from triangle meshes, they re-

quire the 3D model to have a manifold data structure, which is

not easy to find in most Internet shape databases, as stated by Li

Li et al. (2015). In this case, when meshes are not well-shaped,

we recommend using another discretization for the Laplace-

Beltrami operator, for example from Belkin et al. (2008), or

reshaping the model to a watertight mesh version.

6. Conclusion

In this paper, we proposed to compute enhanced non-rigid

spectral signatures for 3D objects. This way, we proposed the

Kinetic Laplace-Beltrami operator (KLBO), based on a modifi-

cation to the dynamic systems on the mesh (kinetic energy). By

introducing a new curvature-based kinetic term we were able

to improve significantly the retrieval performance of spectral

descriptors by making energy more difficult to move in articu-

lated regions. Furthermore, we proposed modifications to the

Improved Wave Kernel signature in order to weight curvature

in a more robust way, keeping it more stable over shape defor-

mations. By combining the KLBO with spectral signatures and

computing robust distances between descriptors we clearly out-

perform the state-of-the-art in two non-rigid benchmarks and in

a relief patterns benchmark. We show that our method is consis-

tent over different examples since it achieves excellent retrieval

performances considering non-rigid databases.
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