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Abstract

Small insertions and deletions (INDELs; ≤50bp) are the most common type of variability after SNPs.

However, compared to SNPs, we know little about the distribution of fitness effects (DFE) of new

INDEL mutations and how prevalent adaptive INDEL substitutions are. Studying INDELs has been

difficult partly because identifying ancestral states at these sites is error-prone and misidentification can

lead to severely biased estimates of the strength of selection. To solve these problems, we develop new

maximum likelihood methods, which use polymorphism data to simultaneously estimate the DFE, the

mutation rate, and the misidentification rate. These methods are applicable to both INDELs and SNPs.

Simulations show that they can provide highly accurate results. We applied the methods to an INDEL

polymorphism dataset in Drosophila melanogaster. We found that the DFE for polymorphic INDELs in

protein-coding regions is bimodal, with the variants being either nearly neutral or strongly deleterious.

Based on the DFE, we estimated that 71.5% – 83.7% of the INDEL substitutions that took place along

the D. melanogaster lineage were fixed by positive selection, which is comparable to the prevalence of

adaptive substitutions at non-synonymous sites. The new methods have been implemented in the software

package anavar.

Key words: Distribution of fitness effects, insertions and deletions, single nucleotide polymorphism,
polarisation error

Introduction

New mutations can have a range of effects

on an organism’s fitness, ranging from being

strongly harmful, through being only slightly

deleterious, to being neutral, and finally on to

being either mildly or highly beneficial. The

relative frequencies of mutations with different

selective effects is known as the distribution of

fitness effects (DFE). The DFE is an important

parameter as it is required for addressing

many fundamental questions (Eyre-Walker and

Keightley, 2007). Examples include understanding

determinants of the efficacy of natural selection

(Corcoran et al., 2017; Galtier, 2016), the genetic

basis of polygenic traits (Zuk et al., 2014), and the

evolutionary advantage of sex and recombination

(Hartfield and Keightley, 2012).

Taking advantage of the massive increase

in data availability, many methods have
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been proposed for estimating the DFE using

polymorphism data (Eyre-Walker and Keightley,

2009; Eyre-Walker et al., 2006; Keightley and

Eyre-Walker, 2007; Kim et al., 2017; Kousathanas

and Keightley, 2013; Tataru et al., 2017). Their

development in turn allows more reliable

inferences about other important quantities such

as α, the proportion of adaptive substitutions

(Eyre-Walker and Keightley, 2009). However, all

these methods are concerned with estimating the

DFE for single nucleotide polymorphisms (SNPs).

Consequently, much less is known about the DFE

and α for other types of genetic variation such as

small insertions and deletions (INDELs; ≤ 50bp),

despite the fact that INDELs are the second

most common type of variants (e.g., Montgomery

et al., 2013), and hence represent an important

source of raw materials for selection to act on.

A major difficulty in studying INDELs lies with

ancestral state identification. This requires multi-

species genome alignments. However, INDELs

occur disproportionately in repetitive genomic

regions (Ananda et al., 2013; Montgomery et al.,

2013), where alignment algorithms perform poorly

(Earl et al., 2014). Furthermore, there is evidence

that homoplasy is a significant issue outside

repetitive regions, probably due to the existence of

cryptic INDEL mutation hotspots (Kvikstad and

Duret, 2014). Thus ancestral state identification

can be expected to be particularly error prone for

INDELs. It is well established that misidenfication

of ancestral states can lead to severely biased

estimates of the strength of selection using the

site-frequency spectrum (SFS) (Hernandez et al.,

2007). For SNPs, this difficulty can be avoided

by using the folded SFS (e.g., Eyre-Walker et al.,

2006; Keightley and Eyre-Walker, 2007). However,

to determine whether a length variant is an

insertion or a deletion, we have to know what

the ancestral state is, meaning that the issue of

polarisation error is inherent for INDELs. As a

result, applying existing methods for estimating

the DFE to INDEL data may be liable to biases.

Another challenge is that the SFSs for insertions

and deletions may be affected by polarisation

errors to different extents. This is because when

the ancestral state of an insertion segregating

at low frequency is misidentified, it will be

incorrectly inferred as a deletion segregating

at high frequency (and vice versa). There is

direct experimental evidence that the deletion

mutation rate is higher than the insertion

mutation rate (Besenbacher et al., 2015; Keightley

et al., 2009; Schrider et al., 2013; Yang et al.,

2015). This mutational bias means that there

are more deletions segregating in the population

than insertions. The larger number of deletions

may lead to the SFS for insertions being

disproportionally affected by polarisation errors

(Figure 1). This asymmetry can cause the

insertion SFS to have a more pronounced,

but artificial, uptick at the high-frequency

end, which can be misinterpreted as stronger

positive selection on insertions over deletions. As
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pointed out by Kvikstad and Duret (2014), this

methodological issue can, at least in principle,

compromises the results of previous studies, which

suggest that insertions are more likely to be

under positive selection than deletions to prevent

the genome size from unconstrained contraction

caused by the mutational bias towards deletions

(Parsch, 2003). Similarly, it will make it difficult

to test the possibility that insertions have a higher

fixation probability because they are favoured by

insertion-biased gene conversion (Leushkin and

Bazykin, 2013).

Towards resolving the confounding efforts

ancestral state misidentification have on the

study of INDELs, we propose new maximum

likelihood methods for inferring the DFE using

polymorphism data. These methods are based

on recent studies on SNPs which show that

polymorphism data contains enough information

for simultaneous estimation of the mutation rate,

the DFE, and the polarisation error rate (Glémin

et al., 2015; Tataru et al., 2017). Our methods

are more general than the existing methods in

the following aspects. First, they can handle

both INDELs and SNPs. Second, insertions and

deletions can have different polarisation error

rates, mutation rates, and DFEs. Third, for

both INDELs and SNPs, the new methods allow

the mutation and polarisation error rates to

vary across the genome. Incorporating these

heterogeneities may be particularly important

for INDELs (Kvikstad and Duret, 2014). We
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FIG. 1. The SFSs for insertions and deletions may be
affected to different extents by polarisation errors. We
assume that the population size is constant, that INDELs
are neutral, and that the sample size is 10. In the genomic
region under consideration, the total scaled mutation rate
towards insertions, 4Neum, is 10, where Ne is the effective
population size u is the insertion mutation rate per site per
generation, and m is that size of the focal region. The total
scaled mutation rate towards deletions is 20. The expected
SFSs were generated using standard neutral theory. The
SFSs with polarisation errors were generated by assuming
that the ancestral state of an INDEL was wrongly identified
with probability 0.1.

carried out extensive simulations to examine

the performance of the new methods. As an

example, we applied the methods to an INDEL

polymorphism dataset in Drosophila melanogaster

we obtained by re-analysing the raw short-read

data published by the Drosophila Population

3
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Genomics Project (Pool et al., 2012). Through

model comparisons, we tried to find the DFE that

best described the observed pattern of INDEL

polymorphism within protein-coding regions of

the genome. Finally, using the best-fitting

DFE, we estimated the proportion of INDEL

substitutions fixed by positive selection (α).

New Approach

For ease of presentation, we will start with a

description of the SNP models. The INDEL

models will be presented later as an extension.

The SNP models

Consider a diploid population with effective size

Ne. The size of the genomic region of interest is

m base pairs, and the sample size is n.

The discrete model:

Assume that there are C different classes of sites in

the focal region. These sites can be different with

respect to their mutation rates, the fitness effects

of new mutations, and polarisation error rates.

This discrete model has several advantages. First,

it does not assume that the DFE follows a specific

probability distribution, and is therefore able to

accommodate complex scenarios such as a multi-

modal DFE (Kousathanas and Keightley, 2013).

Second, by allowing the mutation and polarisation

error rates to vary freely between site classes, the

method can include situations whereby these two

variables co-vary (e.g., hypermutable regions may

have a higher polarisation error rate).

We assume that the mutation process can be

approximated by the infinite-sites model. Let the

total scaled mutation rate for sites of class c

be mθc, where c∈{1,2,...,C} and θc=4Neuc. To

understand uc, consider an alternative formulation

whereby the mutation rate for the cth class of

sites is vc per site per generation, and sites of

class c account for a fraction pc of all sites

in the focal region (i.e.,
∑

cpc=1). We have

mθc=mpc4Nevc, which leads to uc=pcvc. By

using θc, we can perform searches for maximum

likelihood estimates (MLEs) of the parameters

without having to deal with the constraint
∑

cpc=

1. Define

θ=
C
∑

c=1

θc=4Ne

C
∑

c=1

pcvc. (1)

Thus, θ is the average scaled mutation rate per

site, and the total scaled mutation rate is mθ. If

the per-site mutation rate is uniform across the

focal region (i.e., vi=vj for i 6=j and 1≤ i,j≤C),

then θc/θ=pc.

To model selection, we assume that, for

mutations arising at sites of class c, the fitnesses

of the wild-type, heterozygote, and mutant

homozygote genotypes are 1, 1 + sc, and 1

+ 2sc, respectively. The corresponding scaled

selection coefficient γc is defined as 4Nesc. Positive

and negative γc values signify beneficial and

deleterious mutations, respectively.

The site-frequency spectrum (SFS) for the cth

site class, which is defined as the expected number

of polymorphic sites of size i (i.e., sites where the

4
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derived allele is represented i times; 1≤ i<n), is

given by

Ψc,i=mθcτi(γc) (2)

where

τi(γ)=

∫ 1

0

(

n

i

)

xi(1−x)n−i 1−e−γ(1−x)

x(1−x)(1−e−γ)
dx.

(3)

Polarisation errors distort the SFS. Specifically,

when the ancestral state of a polymorphic site

of size i is mis-identified, it will be regarded

as a polymorphic site of size n−i. To model

polarisation errors, we let ǫc be the probability

that the ancestral state of a polymorphic site

of class c is incorrectly identified (Glémin et al.,

2015). The final SFS for sites of class c is then

ψc,i=(1−ǫc)Ψc,i+ǫcΨc,n−i. (4)

In what follows, we refer to the SFS with and

without the correction of polarisation errors as

the corrected and uncorrected SFS, respectively.

The corrected SFS for the focal region is simply

the sum of all the contributions from the sites in

different classes

ψi=
C
∑

c=1

ψc,i. (5)

Existing models either do not model

polarisation error (Eyre-Walker and Keightley,

2009; Keightley and Eyre-Walker, 2007; Kim

et al., 2017) or assume that the error rate is

constant across the focal region (Glémin et al.,

2015; Tataru et al., 2017). The model described

above is therefore more general. Allowing

variation in the polarisation error rate can be

important. For instance, sites under stronger

selective constraints tend to evolve slower, and

are less likely to be polarised incorrectly due

to homoplasy. It should, however, be noted

that, when γc≡γ for ∀c∈{1,2,...,C}, not all

the parameters are identifiable. To see this, we

rewrite (5) as

ψi=m
C
∑

c=1

(1−ǫc)θcτi(γ)+m
C
∑

c=1

ǫcθcτn−i(γ). (6)

Appealing to (1) and defining ǫ∗ such that

ǫ∗θ=
C
∑

c=1

ǫcθc (7)

we can rewrite (6) as

ψi=(1−ǫ∗)mθτi(γ)+ǫ
∗mθτn−i(γ). (8)

Thus, when there is no difference in fitness effects

between mutations arising at sites of different

classes, we cannot detect variation in the scaled

mutation rate and polarisation error rate because

the model reduces to one that depends on θ, γ and

ǫ∗. This result has important implications for data

analysis by pointing out that a model with a small

number of site classes may provide an adequate

description of the data even when the underlying

biological process features complex variation in

the mutation rate across the genome.

The continuous model:

Instead of assuming that the focal region is

composed of several classes of sites, we can

assume that the fitness effects of new mutations

follows a continuous distribution characterised by

parameters Ω. Let θ be the scaled mutation rate

per site, and ǫ be the polarisation error rate. The

5
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uncorrected SFS becomes

Ψi=mθ

∫

τi(γ)f(γ|Ω)dγ (9)

where f(γ|Ω) is the probability density function.

The corrected SFS is analogous to (4) with c in

the subscripts omitted.

Although the modelling framework allows the

DFE to follow arbitrary probability distribution

(including those mixture distributions considered

by Galtier (2016)), here we only consider the

reflected Γ distribution, i.e., −γ∼Γ(a,b), where

γ≤0 and a and b are the shape and scale

parameters, respectively.

Parameter estimation:

Let X = (x1, x2, ..., xn−1) represent the observed

SFS, where xi is the number of polymorphic

sites of size i in the sample. Let Θ denote all

the parameters in the model (i.e., θc, γc, and ǫc

for c∈{1,2,...,C} for the discrete model and θ,

Ω, and ǫ for the continuous model). To obtain

MLEs of Θ, we use the Poisson random field

model (Bustamante et al., 2001; Sawyer and Hartl,

1992). Omitting constants that have no effects

on the shape of the likelihood surface, the log

likelihood function is defined as

L(Θ|X)=
n−1
∑

i=1

(

−ψi+xi ln(ψi)
)

. (10)

Controlling for demography:

We have so far assumed that the population is

panmictic and of constant size Ne. To control

for demography, we employ the method of Eyre-

Walker et al. (2006). Take the continuous model

as an example. First, we define augmented SFSs

as






Ψ∗
i =riΨi (11a)

ψ∗
i =(1−ǫ)Ψ∗

i +ǫΨ
∗
n−i (11b)

Next, a set of neutral variants is added to

the model, which introduces two additional

parameters θ(0) and ǫ(0), which are the scaled

mutation rate per site and the polarisation error

rate, respectively, for the neutral sites. Let Θ(0)

denote these new parameters and X(0) denote the

neutral SFS. The log likelihood of the observed

data can be calculated as

L(Θ,Θ(0),R|X,X(0))=L(Θ,R|X)+L(Θ(0),R|X(0))

(12)

where R = (r2, r3, ..., rn−1) and the two log

likelihood functions on the right-hand side are

calculated in the same way as (10) with ψi

replaced by ψ∗
i .

The above method for controlling for

demography has been used extensively (Eyre-

Walker et al., 2006; Galtier, 2016; Glémin et al.,

2015; Jackson et al., 2017; Muyle et al., 2011;

Tataru et al., 2017). These previous efforts

have gathered clear theoretical and empirical

evidence that the method is robust against a wide

range of demographic processes, as well as the

effects caused by selection at linked sites (e.g.,

background selection and/or selective sweeps).

For instance, in a recent analysis of selection

on codon usage bias in Drosophila, Jackson

et al. (2017) showed that the estimates of γ

produced by an estimation method that corrects

6
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for demography using the r parameters as set out

above closely matched those produced by another

estimation method that considers an explicit

one-step change in population size (see Figure 4A

in Jackson et al. (2017)).

It should be noted that (12) accommodates

the possibility that the focal region and the

neutral region have different mutation rates. This

is more general than several previous models

(Eyre-Walker and Keightley, 2009; Keightley and

Eyre-Walker, 2007; Kim et al., 2017; Tataru

et al., 2017). However, it may be challenging

to distinguish this model from one in which

the two regions have the same mutation rate,

but a proportion of new mutations in the focal

region are so strongly deleterious that they make

negligible contributions to the observed SFS.

The INDEL models

The discrete model:

First consider insertions. Assume that there are

Cins different classes of sites. The total scaled

mutation rate towards insertions for sites of class

c is mθinsc , and the fitness effect and polarisation

error rate are γins
c and ǫinsc , respectively (1≤c≤

Cins). The uncorrected SFS for insertions of class

c can be calculated using (2), and is denoted

by Ψins
c,i . For deletions, we can similarly assume

that there are Cdel different classes of sites. The

associated parameters are θdeld , γdel
d , and ǫdeld , and

the uncorrected SFS is denoted by Ψdel
d,i (1≤d≤

Cdel).

When the ancestral state of a derived insertion

of size i is misidentified, it will be wrongly

identified as a deletion of size n−i, and vice versa

for deletions (note that size in this context refers

to the frequency of the derived allele, not the

number of base pairs inserted or deleted). Thus,

the corrected SFSs for insertions and deletions are







































ψins
i =

Cins

∑

c=1

(1−ǫinsc )Ψins
c,i +

Cdel

∑

d=1

ǫdeld Ψdel
d,n−i

ψdel
i =

Cdel

∑

d=1

(1−ǫdeld )Ψdel
d,i +

Cins

∑

c=1

ǫinsc Ψins
c,n−i

(13a)

(13b)

The continuous model:

For insertions, define the per-site scaled mutation

rate and the polarisation error rate as θins

and ǫins, respectively. The DFE for insertions is

determined by parameters Ωins. For deletions, we

similarly define the following parameters: θdel, Ωdel

and ǫdel. Finally, the corrected SFSs are











ψins
i =(1−ǫins)Ψins

i +ǫdelΨdel
n−i

ψdel
i =(1−ǫdel)Ψdel

i +ǫinsΨins
n−i

(14a)

(14b)

where Ψins
i and Ψdel

i are the uncorrected SFSs

for insertions and deletions, respectively, and are

calculated in the same way as (9). As in the

SNP case, we only consider cases where the DFE

follows a reflected Γ distribution. The shape and

scale parameters for insertions and deletions are

denoted by ains, bins, adel, and bdel, respectively.

Parameter estimation:

Let X ins = (xins
1 , xins

2 , ..., xins
n−1) and X

del = (xdel
1 ,

xdel
2 , ..., xdel

n−1) be the observed SFSs for insertions

7
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and deletions, respectively. The log likelihood of

the data is calculated as

L(Θ|X ins,Xdel)=
∑

z∈{ins, del}

n−1
∑

i=1

(

−ψz
i +x

z
i ln(ψ

z
i )
)

.

(15)

Controlling for demography:

Take the continuous model as an example. The

augmented SFSs are










































Ψins,∗
i =riΨ

ins
i (16a)

Ψdel,∗
i =riΨ

del
i (16b)

ψins,∗
i =(1−ǫins)Ψins,∗

i +ǫdelΨdel,∗
n−i (16c)

ψdel,∗
i =(1−ǫdel)Ψdel,∗

i +ǫinsΨins,∗
n−i (16d)

As for the neutral reference, we can in principle

use any combinations of SNPs, insertions, and

deletions collected from putatively neutrally

evolving regions. Assume that we have access to

both neutral insertions and neutral deletions, and

the observed SFSs are denoted by X ins,(0) and

Xdel,(0), respectively. The additional parameters

needed to model the neutral variants include

θins,(0), ǫins,(0), θdel,(0), and ǫdel,(0), which are

denoted collectively by Θ(0). The log likelihood is

L(Θ,Θ(0),R|X ins,Xdel,X ins,(0),Xdel,(0))

=L(Θ,R|X ins,Xdel)+L(Θ(0),R|X ins,(0),Xdel,(0))

(17)

where the two terms on the right are calculated

using (15) with ψz
i replaced by ψz,∗

i (z∈

{ins, del}).

Results and Discussion

Simulation results

We evaluate the statistical properties of the new

models using computer simulations. Unless stated

otherwise, the sample size (n) is 50 and the results

are based on 100 replicates. In all cases, we assume

the population size is constant and only analyse

data from the selected region (see Materials and

Methods for justification). For the SNP models,

we only present results for the discrete SNP model

with C>1 site classes, because both the C=1

case and the continuous model have been analysed

before (Glémin et al., 2015; Tataru et al., 2017).

Properties of the discrete SNP model:

First consider a model with C=2 site classes. As

can be seen from Table 1, there is information

in the SFS for simultaneously estimating all the

parameters to a high degree of accuracy. Before

discussing more simulation results, it should be

pointed out that, when C>1, the order of the site

classes is arbitrary. That is, the model considered

in Table 1 is equivalent to one with parameters

θ1=0.01, γ1=−20, ǫ1=0.01, θ2=0.005, γ2=−5,

and ǫ2=0.05. For both cases shown in Table 1,

all the MLEs can be sorted such that θ̂1<θ̂2

and γ̂1>γ̂2. In other words, the MLEs can be

assigned unambiguously to site classes according

to the order given in the “True value” row.

However, if we were to reduce the amount of data,

parameter estimates will become more uncertain,

and cases such as those with θ̂1<θ̂2 and γ̂1<γ̂2

will occur, which makes assigning the MLEs to

site classes impossible. Thus, presenting mean

and standard deviation of the MLEs may give

misleading information about the performance of

the model.

8
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Table 1. Maximum likelihood estimates (MLEs) of the parameters of discrete SNP models with C=2 classes of sites

m θ1 γ1 ǫ1 θ2 γ2 ǫ2

True value – 0.005 -5 0.05 0.01 -20 0.01
Mean (SD) of MLEs 10

6 0.0050 (0.0007) -5.0 (0.4) 0.051 (0.006) 0.010 (0.001) -20.2 (1.9) 0.009 (0.006)

Mean (SD) of MLEs 10
5 0.0044 (0.0017) -4.4 (1.5) 0.042 (0.022) 0.011 (0.001) -20.0 (5.7) 0.016 (0.014)

NOTE.—Simulated data were generated using the parameter values shown in the “True value” row, with two different region sizes, m. For each

parameter combination, 100 samples of size 50 were simulated and analysed to obtain MLEs.

Table 2. Statistical properties of the discrete SNP model

Case Parameters m
Percent significant µ̄

Equal ǫ ǫ=0 C−1 True Full Equal ǫ ǫ=0 C−1

1 Same as Table 1 10
6 93 100 100 0.0113 0.0114 0.0171 >1 0.0022

2 Same as Table 1 10
5 15 92 100 0.0113 0.0158 0.0204 >1 0.0022

3 See notes below 10
7 3 100 100 0.2204 0.2267 0.2613 >1 0.1755

4 Same as Case 3 2×10
6 0 33 55 0.2204 0.2271 0.2580 >1 0.1768

NOTE.—The parameters used in Case 3 were θ1=0.002, γ1=0, ǫ1=0.05, θ2=0.006, γ2=−5, ǫ2=0.02, θ3=0.002, γ3=−30, ǫ3=0.01, and

n=100. A large sample size was used for Cases 3 and 4 due to the inclusion of strongly deleterious mutations (i.e., γ3=−30). Values under

“Percent significant” show how often the full model fitted the data better than the three reduced models (see the main text for more details).

The µ̄ (see (18) in Materials and Methods) obtained under the ǫ=0 model are large because ignoring polarisation error results in the inference

of a site class with a strongly positive γ.

In light of the above discussion, we investigate

the statistical properties of the model using two

alternative methods. First, we compare the full

model to the following reduced models using

the χ2 test: “Equal ǫ” (all site share the same

polarisation error rate), “ǫ=0” (no polarisation

error), and “C−1” (a model with C−1 site

classes, where C is the true number of site

classes). Second, we assess how well these various

models predict the average fixation probability

µ̄ (see (18) in Materials and Methods), which is

essential for estimating the prevalence of adaptive

substitutions (i.e., α and ωa).

Considering the two pairs of cases in Table 2,

and focusing on the data presented under “Percent

significant”, we make the following observations.

First, as the amount of data reduces, the ability

of the model to infer separate ǫ for different site

classes drops more rapidly than its ability to

detect the existence of either polarisation error

or more than one site class. This suggests that

estimating heterogeneity in ǫ may be challenging.

Considering all four cases, it appears that the

tests for detecting the presence of polarisation

error (i.e., the full model versus “ǫ=0”) and for

detecting the existence of more site classes (i.e.,

the full model versus “C−1”) are more powerful,

especially the latter. It should be noted that the

likelihood surface appears to be rather flat when

C=3 such that different parameter combinations

may produce very similar log likelihoods. This

is particularly evident when the amount of data

is limited (Case 3 versus Case 4), leading to

a reduction in power of the tests. A similar

observation was made by Keightley and Eyre-

Walker (2010), who also showed that it can

be partly alleviated by increasing the sample

size. Nonetheless there may well be a limit

as to how many site classes can be included.

This identifiability problem is analogous to that
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Table 3. MLEs of the parameters of several INDEL models

Model m Parameters

Discrete 2×10
6 Name θins

1
γins

1
ǫins

1
θdel
1

γdel

1
ǫdel
1

True 0.0005 -5 0.02 0.001 -15 0.02

Mean MLE 0.00050 -5.0 0.021 0.0010 -15.0 0.020

Continuous 2×10
7 Name θins ains bins ǫins θdel adel bdel ǫdel

True 0.0005 0.5 10 0.08 0.001 0.25 50 0.04

Mean MLE 0.00050 0.51 10.4 0.080 0.0010 0.251 51.2 0.040

Continuous 2×10
6 Name θins ains bins ǫins θdel adel bdel ǫdel

True 0.0005 0.5 10 0.08 0.001 0.25 50 0.04

Mean MLE 0.00054 0.51 144.7 0.082 0.0010 0.253 93.2 0.041

discussed extensively in the context of using SNP-

based methods for estimating past demographic

changes (e.g., Myers et al., 2008).

Interestingly, the reduced model “Equal ǫ”

makes worse predictions of µ̄ than the full model

in all cases presented in Table 2, even when the

full model does not normally provide a better fit

to the data (Cases 2 and 4). The same applies

to the other two reduced models. Thus, despite

the statistical difficulties discussed above, fitting

the full model to the data may be important for

obtaining accurate estimates of α and ωa.

Properties of the INDEL models:

Table 3 contains simulation results based on

a discrete model (with Cins=Cdel=1) and two

continuous models (differing from each other in

terms of the size of the focal region m). The

mutation rates are about 10 times lower than

those used in the SNP cases (Tables 1 and 2), and

polarisation error rates are about 2 times higher.

These choices are to reflect the fact that INDELs

are generally less prevalent than SNPs, and are

potentially more difficult to polarise. As can be

seen, with a reasonable amount of data, all the

parameters can be reliably estimated. Comparing

the two continuous models, we notice that, with

limited data, the scale parameter b of the Γ

distribution may be overestimated, but estimates

of the shape parameter a and the polarisation

error rate remain unbiased.

The true values of µ̄ins and µ̄del for the discrete

model are 0.0339 and 4.59×10−6, respectively.

The mean (SD) of the estimates is 0.0345

(0.0055) for µ̄ins, and 5.27×10−6 (2.91×10−6) for

µ̄del. Thus, the true values are well within the

observed ranges of variability. The true values of

µ̄ins and µ̄del for the two continuous cases are

0.384 and 0.429, respectively. The mean (SD)

of the estimates for the case with more data

is 0.382 (0.012) for µ̄ins and 0.429 (0.008) for

µ̄del. Encouragingly, for the continuous case with

less data, despite the tendency to overestimate

the scale parameter, estimates of the average

fixation probabilities are still highly accurate:

0.388 (0.050) for µ̄ins and 0.418 (0.028) for µ̄del,

suggesting that the reliability of estimates of α

and ωa is unlikely to be compromised.
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Table 4. Summary statistics for the INDEL and SNP data

Data Type Diversity (π) Tajima’s D

INDELs CDS 5.20×10
−5 -1.208

Frameshift 2.06×10
−5 -1.253

Non-frameshift 3.14×10
−5 -1.177

Intron 0.0016 -0.729

Intergenic 0.0017 -0.704

Non-coding 0.0017 -0.718

SNPs Nonsense 5.83×10
−6 -1.510

0-fold degenerate sites 0.0016 -0.868

4-fold degenerate sites 0.0165 -0.210

Application to D. melanogaster data

A summary of the data

Using the variant calling pipeline detailed in

Materials and Methods, a total of 370,217 INDELs

(≤ 50bp) and 1,789,367 SNPs were identified

from the 17 Rwandan individuals. Our analysis

primarily focuses on INDELs because SNPs have

been analysed extensively before (Eyre-Walker

and Keightley, 2009; Keightley and Eyre-Walker,

2007; Schneider et al., 2011). Similar to previous

reports (e.g., Ptak and Petrov, 2002), smaller

INDELs are more prevalent than larger ones

(Figure S1). INDEL diversity is about 30 times

lower in protein-coding (CDS) regions than in

either intronic or intergenic regions (Table 4).

Additionally, frameshift INDELs are rarer than

non-frameshift ones (Table 4; supplementary

Figure S1). Interestingly, nonsense mutations

are somewhat rarer than frameshift INDELs,

an observation also made by Leushkin et al.

(2013). These results indicate strong purifying

selection against INDELs in protein-coding

regions. INDEL diversity patterns appear to be

similar between intronic and intergenic regions.

They are combined and referred to as non-coding

INDELs in what follows to increase statistical

power.

Comparing between INDELs and SNPs, we

notice that INDEL diversity in non-coding regions

is about 10 times lower than π4 (4-fold site

diversity; Table 4), consistent with the fact

that the INDEL mutation rate is lower than

the point mutation rate (Haag-Liautard et al.,

2007; Schrider et al., 2013). However, Tajima’s

D calculated on non-coding INDELs is more

negative than that calculated on 4-fold sites

(Table 4), probably reflecting the fact that

many non-coding DNA in the D. melanogaster

genome are under selection (Andolfatto, 2005).

Furthermore, π0 (0-fold site diversity; Table 4)

is only about 10 times smaller than π4. This

level of reduction is much smaller than the 30-

fold difference observed between CDS and non-

coding INDELs. This suggests that, in protein-

coding regions, INDEL mutations are under

much stronger purifying selection than 0-fold

mutations, which is consistent with the more

negative Tajima’s D value calculated on CDS

INDELs (Table 4).

To further investigate the data, we calculated

dN , substitution rate at nonsynonymous sites,

using PAML and the reference genomes of D.

simulans and D. yakuba (see Materials and

Methods). The genes were then divided into 20

equal-sized bins. For each bin, we calculated

average π0 and πINDEL. Both statistics decrease

as dN decreases (Figure S2), consistent with the
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Table 5. Results based on the best-fitting models for INDELs in the CDS regions of the D. melanogaster genome.

Neutral ref/DFE/mutation rate Parameters for CDS INDELs α

Noncoding INDELs Name θins

1
γins

1
ǫins

1
θdel
1

γdel

1
ǫdel
1

83.7%

Discrete C=2 MLE 1.8×10
−5 1.98 0.023 5.3×10

−5 -1.69 0.016

Uniform mutation rate Name θins

2
γins

2
ǫins

2
θdel
2

γdel

2
ǫdel
2

MLE 7.2×10
−4 -1566.4 3.6×10

−5 0.0011 -642.5 1.6×10
−5

4-fold degenerate sites Name θins

1
γins

1
ǫins

1
θdel
1

γdel

1
ǫdel
1

71.5%

Discrete C=2 MLE 1.6×10
−5 -1.31 0.0092 4.9×10

−5 -3.77 0.0082

Fixed mutation ratios Name θins

2
γins

2
ǫins

2
θdel
2

γdel

2
ǫdel
2

MLE 1.9×10
−4 -284.1 1.2×10

−4 0.0010 -454.8 6.2×10
−5

NOTE.—The DFE for polymorphic INDELs in the CDS regions were inferred using either non-coding INDELs or 4-fold sites as the neutral

reference. A series of different DFEs were fitted to the data, and the best-fitting models presented above were determined by using the Akaike

information criterion (AIC) (see supplementary Tables S1 and S3). When non-coding INDELs were used as the neutral reference, α was

estimated using INDEL divergence in noncoding regions. When 4-fold sites were used as the neutral reference, the mutation rate ratio between

SNPs and INDELs, and that between deletions and insertions, were fixed at values obtained from a mutation accumulation experiment (Schrider

et al., 2013). α was estimated using a method based on divergence in the 8–30bp region of short introns < 66bp long (see the main text).

expectation that mutations are on average more

deleterious in more conserved genes (Jackson

et al., 2015). The results in this and the preceding

paragraphs suggest that our INDEL dataset is of

high quality.

Inferring the DFE and α using non-coding
INDELs as the neutral reference

To infer the DFE for INDELs in CDS regions, we

used non-coding INDELs as the neutral reference.

Following previous efforts in estimating the DFE

for SNPs (Eyre-Walker and Keightley, 2009;

Galtier, 2016; Keightley and Eyre-Walker, 2007;

Schneider et al., 2011; Tataru et al., 2017), we also

assumed that the mutation rate towards insertions

and deletions, respectively, were the same between

the neutral and selected regions. The best-fitting

DFE is one with C=2 classes of selected sites

(Table 5 and supplementary Table S1). The

MLEs of γ suggest that polymorphic INDELs are

either nearly neutral or are so strongly deleterious

that they contribute little to polymorphism. This

seems to be consistent with the 30-fold difference

in INDEL diversity level between CDS and non-

coding regions, which is more substantial than the

10-fold difference between 0-fold and 4-fold sites

(Table 4). Fitting the data to a discrete model

with C=3 classes of sites also reveals a bimodal

DFE, suggesting that the conclusion is robust

(supplementary Table S1). With a larger sample

containing hundreds or even thousands of alleles,

and by fitting a DFE with more site classes, it

should be possible to obtain further details of the

relative frequencies and fitness effects of strongly

selected variants, which tend not to segregate

in our current sample of size 17. However, this

additional information about the strongly selected

end of the DFE is unlikely to affect our estimation

of α (see below) because these variants make

effectively no contribution to divergence.

To better understand the effects of length,

we separated the INDELs in CDS regions

into the following length categories: 1bp, 2bp,

3bp, frameshifting (≥4bp), and non-frameshifting

(≥6bp). We analysed the data in each category
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separately. As above, non-coding INDELs with

the same length were used as the neutral reference

and the mutation was assumed to be constant

across neutral and selected sites. Considering the

dearth of variants, we only fitted a DFE with C=1

class of selected sites. Viewing the γ in this model

as the “average” selection coefficient, frameshift

INDELs are consistently more deleterious than

non-frameshift INDELs (supplementary Figure

S3). Consistent with a prevous study (Leushkin

et al., 2013), there is no obvious evidence that

longer INDELs are under stronger selection.

Using the best-fitting DFE (Table 5), the

proportion of INDEL substitutions in the CDS

regions fixed by positive selection in the D.

melanogaster lineage, α, is 83.7% (100% for

insertions and 81.8% for deletions). These α

estimates are comparable to previous estimates

for SNP substitutions in CDS regions (Andolfatto

et al., 2011; Schneider et al., 2011).

As mentioned above, some non-coding INDELs

are probably non-neutral, as suggested by the

negative Tajima’s D value (Table 4). Our use

of these variants as the neutral reference are for

several practical reasons. Although using INDELs

in “dead-on-arrival” transposable elements as

neutral reference may be preferable (Petrov,

2002), calling variants from repetitive regions

using short-read data is highly prone to error (Li,

2014). Using data from the 8-30bp region of short

introns ≤ 65bp, which are also putatively neutral

(Parsch et al., 2010), is also problematic because

of evidence for selection maintaining intron size

(Leushkin et al., 2013; Parsch, 2003; Ptak and

Petrov, 2002). Note that Tajima’s D is more

negative for INDELs in CDS regions than for those

in non-coding regions, suggesting that the latter

are probably under weaker purifying selection

(Table 4). If this is the case, our method tends to

underestimate the strength of purifying selection

on INDELs in CDS regions, as suggested by

the simulation results presented in supplementary

Table S2. This should lead to an overestimation

of µ̄, the average fixation rate (Eq. (18)), which

should in turn put a downward pressure on the

estimation of α (Eq. (19)). However, biases in

α also depend on the way selection on non-

coding INDELs alters divergence. For example, if

fixations of beneficial non-coding INDELs are so

common that dS is greater than the divergence

level expected under neutral evolution, then this

combined with the overestimation of µ̄ can lead to

a substantial underestimation of α. In contrast, if

most non-coding INDELs are selected against and

dS is much smaller than the neutral expectation, it

may offset the effect caused by the overestimation

of µ̄ and result in an overestimation of α.

Inferring the DFE and α using 4-fold degenerate
sites as the neutral reference

To check the robustness of our results, we

conducted a second set of analyses without using

non-coding INDELs. We extended our model

such that it can infer the DFE for INDELs in

CDS regions using 4-fold sites as the neutral
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reference. We chose 4-fold sites instead of the 8-

30bp region of short introns ≤ 65bp because 4-fold

sites are probably not under ongoing selection

on codon usage in D. melanogaster, and are

similar to short introns in multiple aspects of

polymorphism patterns (Jackson et al., 2017).

Considering the parameter richness of the models,

using 4-fold SNPs as the neutral reference should

help statistical inference because they are much

more numerous than short-intron SNPs.

We used the following approach to obtain

neutral divergence for INDELs along the D.

melanogaster lineage. The nucleotide divergence

in the 8-30bp region of short introns ≤ 65bp

is 0.0674 (B. Jackson personal communication).

In a mutation accumulation experiment (Schrider

et al., 2013), it was found that the rate to point

mutations is 12.2 times higher than that to short

INDELs, and that the rate to deletions is 5 times

higher than that to insertions (averaging across

the two genetic backgrounds considered therein).

Thus, an estimate of neutral INDEL divergence

can be obtained as 0.0674/12.2=0.0055, and

the corresponding estimates for insertions and

deletions are 9.2×10−4 and 0.0046, respectively.

Due to the use of 4-fold sites as the neutral

reference, it is no longer appropriate to assume

that the mutation rate is the same between the

selected and neutral regions. Given the evidence

that the DFE for INDELs probably features a

class of strongly deleterious mutations that make

little contribution to polymorphism, allowing the

selected and neutral regions to have their separate

mutation rates is likely to cause the model to

underestimate both the mutation rate in the

selected region and strength of purifying selection,

as confirmed by simulation results presented in

supplementary Table S3. An underestimation of

the strength of purifying selection is likely to cause

an underestimation of α. We observed this in our

dataset – α for all INDELs obtained from the best-

fitting DFE for this analysis (supplementary Table

S4) is only 21.7%, much smaller than the value of

83.7% when non-coding INDELs were used as the

neutral reference (Table 5).

To resolve the above problem, we again

made use of the information reported in

the aforementioned mutation accumulation

experiment (Schrider et al., 2013). Specifically, we

further extended our model, so that the mutation

rate ratio between SNPs and INDELs, and that

between deletions and insertions, were fixed at

12.2 and 5, respectively. As shown in Table 5 (see

also supplementary Table S5), the best-fitting

DFE has C=2 class of sites, with one under

weak selection, and the other being strongly

deleterious. The α estimates for all INDELs,

insertions and deletions are, respectively, 71.5%,

59.7%, and 81.3%.

To make sure that the above results are not

dependent on our use of the mutation rate

ratios estimated by Schrider et al. (2013), we

repeated the analysis using ratios obtained by

either Petrov and Hartl (1998) (SNP/INDEL
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= 6.9 and deletion/insertion = 8.7) or Haag-

Liautard et al. (2007) (SNP/INDEL = 4.2

and deletion/insertion = 3.0) (supplementary

Table S6). In both cases, the best-fitting DFE

has C=2 classes of selected sites, under weak

and strong selection, respectively (supplementary

Tables S7 and S8). Furthermore, estimates of

the strength of purifying selection acting on

sites in the weakly selected class are almost

identical regardless of the choice of mutation

rate ratios (supplementary Table S9). Thus,

unsurprisingly, all three analyses also produce

very similar α estimates (supplementary Table

S9). Overall, these results are consistent with

those based on non-coding INDELs and suggest

that a substantial fraction of INDEL substitutions

were fixed by positive selection.

Materials and Methods

Numerical details

We used numerical routines provided

by the GNU Scientific Library (GSL;

https://www.gnu.org/software/gsl/) to

perform the integration in (3) numerically. For

the continuous model (e.g., (9)), the integral was

evaluated using Gaussian quadrature, which was

implemented based on a routine included in the

R package statmod (https://cran.r-project.

org/web/packages/statmod/index.html).

Maximum likelihood estimates of the model

parameters were obtained by both gradient-based

and derivative-free optimization algorithms

implemented in the NLopt package (http://

ab-initio.mit.edu/wiki/index.php/NLopt).

To ensure the global maximum was found, we

initialised the search algorithm using multiple

randomly selected starting points.

Simulations

We performed parameter estimation

using our program, anavar, on random

samples simulated using Mathematica

(http://www.wolfram.com/). Because the

generation of simulated data is separate from the

numerical routines we used to implement

anavar, this set-up can help verify the

numerical robustness of anavar. Note that,

in all simulations, we only used the models to

analyse variants from selected regions because

we wanted to find out how much information we

could obtain by analysing them alone. Including

neutral variants, as routinely done in real data

analysis, may help to increase the accuracy

of parameter estimation. So our choice should

give us a rather conservative assessment of the

methods’ performance.

In addition to testing whether the data

contained enough information for all the

parameters to be estimated, we also assessed how

well a model could predict the average fixation

rate, µ̄ (expressed in units of 2Ne generations).

As an example, if nonsynonymous polymorphism

data are fitted to the discrete SNP model, µ̄ can

be estimated as

µ̄=
1

θ̂

C
∑

c=1

θ̂cγ̂c
1−e−γ̂c

(18)
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where Ẑ signifies the MLE of parameter Z and

θ is defined by (1). Understanding the ability

to accurately estimate µ̄ is important because

it is needed for estimating α, the proportion of

substitutions fixed by positive selection, which can

be written as,

α=
dN−dSµ̄

dN
(19)

where dN and dS are the numbers of selected (e.g.,

nonsynonymous) and neutral (e.g., synonymous)

substitutions per site, respectively (Eyre-Walker

and Keightley, 2009).

We did not generate simulated data from models

with demographic changes and selection at linked

sites because the effectiveness of the method of

Eyre-Walker et al. (2006) in controlling for these

confounding factors have been studied extensively

(Eyre-Walker et al., 2006; Galtier, 2016; Glémin

et al., 2015; Jackson et al., 2017; Muyle et al.,

2011; Tataru et al., 2017).

The Drosophila melanogaster dataset

This dataset consisted of 17 Rwandan individuals

as described in Jackson et al. (2015, 2017) and

made available by the Drosophila Population

Genomics Project (Pool et al., 2012).

Variant calling:

INDEL realigned BAM files were obtained

from Jackson et al. (2017). Initial

genotype calling was performed with the

HaplotypeCaller and GenotypeGVCF (with

the -includeNonVariantSites flag to output

genotype calls at both variant and non-variant

positions) tools from GATK 3.7 (DePristo

et al., 2011; Van der Auwera et al., 2013).

Variant quality score recalibration (VQSR)

requires one ‘truth set’ for SNPs and one

for INDELs. To generate the truth sets, we

intersected the raw variants called from GATK

with variants called from SAMtools (version

1.2) (Li et al., 2009). The consensus data was

further filtered using the GATK best practice

hard filters (for SNPs: QD < 2.0, MQ < 40.0,

FS > 60.0, SOR > 3.0, MQRankSum < -12.5,

ReadPosRankSum < -8.0; for INDELs: QD < 2.0,

ReadPosRankSum < -20.0, FS > 200.0, SOR >

10.0; see https://software.broadinstitute.

org/gatk/guide/article?id=3225). Variants

with coverage more than twice, or less

than half, the mean coverage of 20X

were excluded, along with variants falling

into regions identified by RepeatMasker

(http://www.repeatmasker.org). Multiallelic

sites were excluded along with SNPs falling

within INDELs and INDELs greater than 50bp.

We ran VQSR separately for SNPs and INDELs,

retaining variants that fell within the 95% tranche

cut-off as in Jackson et al. (2017). The passing

variants were then re-filtered as above with the

exception of the GATK hard filters which were

not reapplied.

Multi-species alignments and polarisation:

Multi-species alignments were generated between

D. melanogaster (v5.34), D. simulans (Hu et al.,
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2013) and D. yakuba (v1.3) using D. melanogaster

as reference. Firstly pairwise alignments were

created using LASTZ (Harris, 2007). These

were then chained and netted using axtChain

and chainNet, respectively (Kent et al., 2003).

Single coverage was ensured for the reference

genome using single cov2.v11 from the MULTIZ

package (Blanchette et al., 2004) and the pairwise

alignments were aligned with MULTIZ.

Variants were polarised using the whole

genome multi-species alignment and a parsimony

approach, where either the alternate or the

reference allele had to be supported by all

outgroups in the the alignment to be considered

ancestral. The site-frequency spectra for insertions

and deletions in different genomic regions are

presented in supplementary Figure S4.

Annotation:

Variants were annotated as either intronic,

intergenic or CDS using the D. melanogaster

GFF annotation file (version 5.34, available from:

ftp://ftp.flybase.net/genomes/Drosophila_

melanogaster/dmel_r5.34_FB2011_02/gff/).

Fourfold degenerate and zerofold degenerate

SNPs in CDS regions were annotated using

coordinates obtained from the D. melanogaster

CDS fasta sequences (version 5.34, available from:

ftp://ftp.flybase.net/genomes/Drosophila_

melanogaster/dmel_r5.34_FB2011_02/fasta/

dmel-all-CDS-r5.34.fasta.gz).

Summary statistics:

Nucleotide diversity (π) (Tajima, 1983),

Watterson’s θ (Watterson, 1975) and Tajima’s

D (Tajima, 1989) were calculated for variants in

non-coding (intronic and intergenic) and coding

regions, as well as for 0-fold and 4-fold degenerate

SNPs. The numbers of callable sites used to

obtain per-site estimates was taken to be the

number of sites in each region that were called

in the “all sites” VCF file and passed the filters

described previously. Additionally for polarised

variants the number of callable sites was reduced

to those that could be polarised by our parsimony

approach.

To obtain rates of divergence at nonsynonymous

and synonymous sites, denoted by dN and dS,

CDS regions were extracted from the multi-

species alignment using the coordinates from the

D. melanogaster CDS fasta alignment file. CDS

alignments were removed if they were not in

frame, did not start with a start codon, did not

end with a stop codon or contained premature

stop codons. Additionally any codons with missing

data were dropped. For each gene we retained

only the longest transcript. This data was then

analysed using codeml in PAML (Yang, 2007)

with a one ratio model to obtain dN and dS.

Supplementary Material

The new models have been implemented in a

user-friendly package anavar, which is freely

available at http://zeng-lab.group.shef.ac.
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uk. In addition to the models developed

herein, anavar also contains implementations of

several other widely-used models for estimating

the DFE (i.e., Eyre-Walker et al., 2006)

and for studying GC-biased gene conversion

(gBGC) (i.e., Glémin et al., 2015). All scripts

used for the anavar simulation analyses are

available at https://github.com/henryjuho/

anavar_simulations. Additionally, all scripts

used in the D. melanogaster analyses can

be found at https://github.com/henryjuho/

drosophila_indels.
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S., Yadav, R., Rubio-Garćıa, A., Lescai, F., Demontis,

D., Rao, J., Ye, W., Mailund, T., Friborg, R. M.,

Pedersen, C. N. S., Xu, R., Sun, J., Liu, H., Wang,

O., Cheng, X., Flores, D., Rydza, E., Rapacki, K.,

Damm Sørensen, J., Chmura, P., Westergaard, D.,

Dworzynski, P., Sørensen, T. I. A., Lund, O., Hansen,

T., Xu, X., Li, N., Bolund, L., Pedersen, O., Eiberg,

H., Krogh, A., Børglum, A. D., Brunak, S., Kristiansen,

K., Schierup, M. H., Wang, J., Gupta, R., Villesen, P.,

and Rasmussen, S. 2015. Novel variation and de novo

mutation rates in population-wide de novo assembled

danish trios. Nat Commun, 6: 5969.

Blanchette, M., Kent, W. J., Riemer, C., Elnitski, L., Smit,

A. F. A., Roskin, K. M., Baertsch, R., Rosenbloom, K.,

Clawson, H., Green, E. D., Haussler, D., and Miller,

W. 2004. Aligning multiple genomic sequences with the

threaded blockset aligner. Genome Res, 14(4): 708–15.

Bustamante, C. D., Wakeley, J., Sawyer, S., and Hartl,

D. L. 2001. Directional selection and the site-frequency

spectrum. Genetics, 159(4): 1779–88.

Corcoran, P., Gossmann, T. I., Barton, H. J., Great Tit

HapMap Consortium, Slate, J., and Zeng, K. 2017.

Determinants of the efficacy of natural selection on

coding and noncoding variability in two passerine

species. Genome Biol Evol , 9(11): 2987–3007.

DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V.,

Maguire, J. R., Hartl, C., Philippakis, A. A., del Angel,

G., Rivas, M. A., Hanna, M., McKenna, A., Fennell,

T. J., Kernytsky, A. M., Sivachenko, A. Y., Cibulskis,

K., Gabriel, S. B., Altshuler, D., and Daly, M. J. 2011. A

framework for variation discovery and genotyping using

next-generation dna sequencing data. Nat Genet , 43(5):

491–8.

Earl, D., Nguyen, N., Hickey, G., Harris, R. S., Fitzgerald,

S., Beal, K., Seledtsov, I., Molodtsov, V., Raney, B. J.,

Clawson, H., Kim, J., Kemena, C., Chang, J.-M., Erb,

I., Poliakov, A., Hou, M., Herrero, J., Kent, W. J.,

18

Downloaded from https://academic.oup.com/mbe/advance-article-abstract/doi/10.1093/molbev/msy054/4960016
by University of Sheffield user
on 24 April 2018



Inferring the DFE for INDELs and SNPs · doi:10.1093/molbev/ MBE

Solovyev, V., Darling, A. E., Ma, J., Notredame, C.,

Brudno, M., Dubchak, I., Haussler, D., and Paten, B.

2014. Alignathon: a competitive assessment of whole-

genome alignment methods. Genome Res, 24(12):

2077–89.

Eyre-Walker, A. and Keightley, P. D. 2007. The

distribution of fitness effects of new mutations. Nat Rev

Genet , 8(8): 610–8.

Eyre-Walker, A. and Keightley, P. D. 2009. Estimating

the rate of adaptive molecular evolution in the presence

of slightly deleterious mutations and population size

change. Mol Biol Evol , 26(9): 2097–108.

Eyre-Walker, A., Woolfit, M., and Phelps, T. 2006. The

distribution of fitness effects of new deleterious amino

acid mutations in humans. Genetics, 173(2): 891–900.

Galtier, N. 2016. Adaptive protein evolution in animals and

the effective population size hypothesis. PLoS Genet ,

12(1): e1005774.
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