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Abstract—As the development of traffic detection technology, 

recent research is directed to a new generation of signal control 

system supported by new traffic data. One of these directions is 

dynamic predictive control by incorporating short-term 

prediction capability. This paper focuses on investigating of 

dynamic platoon dispersion models which could capture the 

variability of traffic flow in a cross-sectional traffic detection 

environment. The dynamic models are applied to predict the 

evolution of traffic flow, and further used to produce signal timing 

plans that account not only for the current state of the system but 

also for the expected short-term changes in traffic flows. We 

investigate factors affecting model accuracy including time-zone 

length, position of upstream traffic detection equipment, road 

section length, traffic volume, turning percentages, and 

computation time. The impact of these factors on the model 

performance is illustrated through a simulation analysis, and the 

computation performance of models is discussed. The results 

show that both the dynamic speed-truncated normal distribution 

model (DNDM) and dynamic Robertson model (DRM) with 

dynamics outperform their respective static versions, and that 

they can be further applied for dynamic control. 

 
Index Terms—Traffic Signal; Cross-Sectional Traffic Detection 

Environment; Dynamic Platoon Dispersion Model; Flow 

Distribution; Predictive Control. 

I. INTRODUCTION 

RAFFIC flows are separated by intersections and formed 

into platoons along urban streets. Because of different 

traveling speeds, vehicle operating conditions, and driver 

behaviors, platoons disperse along the street when moving 

downstream. Such a phenomenon is called platoon dispersion. 

When traffic detection is deployed at certain cross-section 

location along the road, it is called cross-sectional traffic 

detection environment. Traffic detectors are widely 

implemented at stop-line and upstream cross-sections to 

support traditional actuated and responsive control. Such 

 
1    Manuscript received on July, 2016; revised on March, 2017; November, 

2017.  

This work was supported by the Cultivation Program for the Excellent 

Doctoral Dissertation of Southwest Jiaotong University (A0920502051703-2). 

L. Shen, Z. Yao (corresponding author), and H. Yang are with School of 

Transportation and Logistics, Southwest Jiaotong University, National United 

Engineering Laboratory of Integrated and Intelligent Transportation,  Chengdu, 

Sichuan 610031, China (e-mail: luoushen@home.swjtu.edu.cn, 

zhyao@my.swjtu.edu.cn, yanghongtai@home.swjtu.edu.cn) 

R. Liu is with Institute for Transport Studies, University of Leeds, Leeds 

LS2 9JT, UK (e-mail: R.Liu@its.leeds.ac.uk) 

W. Wu is with School and Civil and Transportation Engineering, South 

China University of Technology, Guangzhou, Guangdong 510641, China 

(e-mail: ctwtwu@scut.edu.cn) 

detectors generally record vehicles’ existence and passage 

information. Here, we propose that vehicles’ speed data can be 

collected at upstream cross-section as a new function of the 

cross-sectional traffic detection environment. Furthermore, 

based on the flow information gathered at the upstream 

cross-section, the arriving flow distribution at downstream 

stop-line can be predicted using platoon dispersion models 

which is a central part of the new generation of dynamic 

predictive traffic signal control system. As reported in COP [1], 

ALLONS-D [2], LOTC [3], and studies by Gomes [4] and Tan 

[5] these algorithms are based on the prediction of flow arrivals 

at stop-line. 

Most of the conventional platoon dispersion models are 

developed for offline applications, as their parameters is 

calibrated using historically collected static data. Traffic signal 

control strategies based on static traffic data are not able to 

respond timely to disruptions of traffic flow and to anticipate 

changes in the operating environment. As a result, they do not 

pre-emptively consider any change in the constituting signal 

timing plans. There have been studies [6-8] which used the 

historical average speed assumption of traffic flow for real-time 

applications. However, this is unrealistic since vehicles’ 
different traveling speeds lead to platoon dispersion, especially 

in under-saturated traffic conditions.  

Recent development in Vehicle Infrastructure Integration 

(VII) [9-11] technology based on wireless communication 

between vehicle and infrastructure offers a new way for traffic 

detection. This new type of traffic detection is a floating 

environment, which uses two wireless communication channels 

to collect continuously (actually in small time interval) both the 

traffic data and the positioning data between floating vehicles 

and fixed-location communication center. While, comparing to 

this under developing floating traffic detection environment, in 

cross-sectional traffic detection environment, vehicles 

positioning is not needed since the location of the detection 

equipment is already known. 

Therefore, this study particularly investigated the dynamic 

platoon dispersion models in a cross-sectional traffic detection 

environment which can be achieved, for example, by using VII 

technology.  Based on this environment, dynamic predictive 

signal control can be achieved by applying dynamic predictive 

strategies. Furthermore, the cross-sectional traffic detection 

environment could provide additional data such as the traffic 

turnings after vehicles have passed the stop-line cross-section 

and the vehicle delays between the upstream and stop-line 

cross-sections. For example, the city of Chongqing, China has 

installed Radio Frequency Identification (RFID) detection 

roadside units (RSUs) at more than 900 cross-sections, and 

electronic license place has been mandatorily installed for all 
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local vehicles. As only part of the new generation of the traffic 

signal control system, this paper focuses on the development of 

dynamic platoon dispersion models in the cross-sectional 

traffic detection environment, other topics will be examined at 

next step. 

The remaining parts of the paper are organized as follows: 

first, literature review is presented; second, dynamic platoon 

dispersion models are proposed and methods for parameter 

calibration are developed; then, factors affecting the 

performance of models are assessed in a microscopic traffic 

simulation environment, and the computation performance of 

models is discussed; and finally, conclusions are provided and 

future work is discussed. 

II. LITERATURE REVIEW 

The diffusion or spreading effect of the traffic platoon as it 

moves downstream along the urban street was pioneered by 

Pacey [12], and the experimental verification was conducted 

under moderate traffic volumes. Grace and Potts [13] further 

investigated this macroscopic model with the assumption that 

the speeds of the vehicles in the platoon follow a normal 

distribution. Later, Hiller and Rothery [14] proposed a delay 

minimization model using the concept of a cyclic traffic 

platoon profile. With the data collected by Hiller and Rothery, 

Robertson [15] developed a platoon dispersion model 

formulated in a recursive fashion, laying the foundation of 

TRANSYT and TRANSYT-7F, and was later used in SCOOT 

[16], SATURN [17], and TRAFLO [18]. Seddon [19] reported 

that Robertson’s model was equivalently based on shifted 
geometric distribution of travel time. Giving a different view, 

Tracz [20] and Polus [21] reported that the distribution of 

vehicle’s travel time is not always a shifted geometric 

distribution as in Robertson’s model, but is more consistent 

with a normal, lognormal, or a gamma distribution. Yu [22] 

presented a methodology to calibrate Robertson’s model with 
the information of link travel time. Farzaneh et al. [23] 

proposed a method to effectively consider the influence of 

speed variability in the calibration process of the Robertson’s 
model using historical data. Day and Bullock [24] discussed the 

calibration of Robertson’s model parameters by using the 

high-resolution signal event data but in a post-event fashion. In 

a recent study, Bie et al. [25] analyzed the impact of the number 

of lanes on the parameters of the static version of Robertson’ 
model. Shen and colleagues [26-28] proposed platoon 

dispersion models with truncated normal distribution of speed, 

and mixed Gaussian distribution for mixed traffic flow. 

However, all these models are developed and calibrated with 

offline data. For online applications, dynamic models are 

needed to capture the changing traffic flow. 

The real-time data collected in the traffic detection 

environment [9] provides opportunities for predictive signal 

control, which was not possible with data from traditional 

traffic detectors. This environment includes onboard units 

(OBUs) and roadside units that communicate with vehicles 

using technology such as Dedicated Short-Range 

Communications [10]. The OBUs serve as virtual detectors in 

the traffic stream. The data that RSUs could collect include 

vehicles’ identification number (ID), speed, timestamp when 

the information was collected, and the position of the RSUs. 

The RSUs can be deployed close to upstream intersection at the 

outgoing approach, at intersection stop-line, or even at several 

cross-sections along the road section. 

By making use of the speed data recorded at upstream 

cross-section during a specified rolling time window, dynamic 

platoon dispersion models can be established to predict the 

future arrival distribution of traffic flow at downstream 

stop-line. Therefore, short-term future vehicle arrivals could be 

estimated based on real-time information of the current 

conditions in addition to the historical data. 

III. DYNAMIC PLATOON DISPERSION MODELS 

In this section, we first introduce the concept of a dynamic 

time window for generating the distribution of traffic 

characteristics. We will then present two dynamic platoon 

dispersion models, as adapted from two established static 

models.   

A. Time window 

The parameters of static traditional platoon dispersion model 

are calibrated using offline data. On the contrary, dynamic 

models reflect the varying characteristics of traffic flow, which 

can be achieved by updating the parameters of flow conditions 

in a small moving time window. There are three typical classes 

of time window: front-, middle-, and back-positioned windows, 

as shown in Fig.1. For a current time   , and time window 

length of   , the corresponding three time windows positioning 

classes are:          ,                  , and          . The model parameters at time    are then calibrated based 

on the data collected in the corresponding time window through 

statistical computing. 

 

tutu-T tutu-0.5T tutu+0.5T tu+T

The front positioned The middle positioned The back positioned

T T T

 
Fig. 1. Three typical time window classes. 

 

Naturally, when the aggregating time window is too long, it 

misses out the varying conditions of traffic flow; on the other 

hand, too short a time window can’t capture sufficient samples 

to ensure reliable statistical results. Since the traffic detection 

environment could collect and transmit real-time data in a small 

time step, such as 1-3 s, moving horizon method can be adopted 

to update the parameters by including the latest data. The 

middle- and back-positioned classes cannot be applied with full 

data for those most current time steps since the data for the 

future period of                  ,           is not 

available. This situation and method for selecting the best time 

window class are further discussed in the later sections. 

B. A dynamic speed-truncated normal distribution model 

(DNDM) 

We consider a traffic detection environment whereby the 

cross-section is set at an upstream location    as shown in 

Fig.2, from where individual vehicle’s speed is collected. 

Based on such information, models can be developed to predict 

the arrival distribution at a downstream location    (Fig. 2). 

Other than assuming that vehicles travel at constant speed along 

the road section, the speeds are assumed to follow a truncated 
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normal distribution for DNDM, which has the probability 

density function as follows: 

 

 
Fig. 2. Diagram of the cross-sectional traffic detection environment. 

                                            (1) 

 

where   is the coefficient of truncated distribution,    ,    ,     , and      are the average speed, the mean square 

deviation of speed, the minimum, and maximum speed at time    over time window   , respectively. 

If there are total   vehicles passing the upstream 

cross-section during time window   , then the parameters in 

Eq.(1) can be estimated using the following formula: 

            
    (2) 

                   
    (3) 

                 (4) 

                 (5) 

                                        (6) 

 

where    is the spot speed of vehicle   passing the cross-section 

during the time window. Eq.(6) can be solved using the nature 

characteristic equation of probability density function:                  . 

With the above dynamically calibrated model parameter 

values, and following the method proposed in literature [26]  

the upstream flow at time    can be estimated to arrive at the 

downstream location    according to the following conditions: 

 

a) If                   , 
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b) If                    , 
             

 
   
   
    
                                                                      
                                                                                                 

  (8) 

 

where    and    are the upstream and downstream flow rates, 

respectively,    is time interval and         . 

The aggregated arriving flow distribution is computed by 

accumulating the arriving flows at downstream for all upstream 

departing flows. 

                               
          (9) 

 

where      and       are the minimum and maximum speed of 

the road section, respectively, which refers to the minimum and 

maximum travel time along the road section. 

C. A dynamic Robertson model (DRM) 

Similar to the development of dynamic speed-truncated 

normal distribution model, DRM is formed from traditional 

static Robertson model. Following literature [19], the static 

Robertson platoon dispersion model can be presented as: 

                                  
     (10) 

 

where, 

           (11) 

 

where    is the minimum travel time,   is a smoothing factor,   is the platoon dispersion coefficient,   is the travel time 

factor, and     is the average travel time.    and    are usually estimated using historical data. The 

rolling horizon method is a natural choice for modeling 
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dynamic traffic flow. Therefore, these parameters become 

time-dependent variables    and       at time  . 
The departing traffic flow distribution           at time    

has dynamic parameters of    and       . In what follows, we 

discuss how to estimate those parameters in real-time manner. 

Referring to the Robertson model, the arriving flow distribution 

at downstream is expressed as: 

                                                                  (12) 

 

The rational of the DRM model can be illustrated in Fig.3, 

which shows how an upstream departing flow profile is 

discretized and then used to produce the downstream arriving 

flow distribution. 

At the downstream stop-line, the arriving traffic flow 

distribution can be expressed as the sum of the discretized flow 

distributions as follows: 

                         
     (13) 

 

 Eqs.(12) and (13) can be transformed into Eq.(14), and the 

model becomes a dynamic model whereby the model 

parameters vary with time. We term it a dynamic Robertson 

model (DRM) of platoon dispersion. 

 

                             
    (14) 

 

where, 

                                                      (15) 

 

where     and        are the dynamic parameters of upstream 

flow at time step             . 
In a cross-sectional traffic detection environment, a vehicle’s 

spot speed at the upstream cross-section    at time    can be 

detected and we note it   . If there are   passing vehicles in 

time window  , the parameters in Eq. (15) can be estimated as 

follows: 

            
    (16) 

            (17) 

                (18) 

 

where according to TRANSYT-7F manual [29, 30],   is 

usually set as 0.8, and   is set based on the traffic flow 

characteristics, and in central business district (CBD) it is 0.5. 
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Fig. 3. Discretized platoon dispersion in DRM. 
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D. A dynamic average speed model (DAM) and a constant 

speed model (CM) 

In the DAM, the  th
 vehicle’s speed is assumed as the 

average speed of vehicles in time window  . The average 

speed can be estimated by following the DNDM in a similar 

way.  

While, in the CM, the  th
 vehicle’s speed is assumed as its 

spot speed at the upstream traffic detection section, and will 

keep constant till reaching the stop-line. Therefore, the CM has 

both dynamic and static feature. 

E. A static Robertson model (SRM) 

Different to the DRM, in the SRM, the two main model 

parameters: minimum travel time      and smoothing factor   

are estimated using historical data [23-25] which was usually 

collected at field in a certain day. 

IV. EVALUATION OF THE CONTRIBUTING FACTORS 

In this section, we assess the proposed dynamic truncated 

normal distribution model (DNDM) and dynamic Robertson 

model (DRM) and compare them with the dynamic average 

speed model (DAM), the constant speed model (CM) and 

static Robertson model (SRM). The model parameters of the 

DAM are estimated using the process mentioned earlier, while 

the CM can be applied in both offline and dynamic modes. The 

SRM is already discussed in before sections. 

To find out the best traffic detection environment settings, 

the impact of factors on the model accuracy is evaluated 

through a simulation analysis. These factors include: the 

length of the time window, the cross-section location of 

upstream RSU, the length of the road section, and two traffic 

condition factors: the volume level and the turning percentage. 

A. Simulation model 

1) Development of cross-sectional traffic detection 

environment 

The cross-sectional traffic detection environment is 

modeled in microscopic traffic simulation software PTV 

Vissim [31]. Fig. 4 shows the testing road network. It includes 

an upstream signal intersection (node A) which is set as 

actuated control in order to create the randomness of traffic 

flow due to variable cycle length, at a downstream signalized 

intersection (node B), and the road section in between. The 

downstream signal intersection is set to always run in green 

light for the study approach in order to obtain vehicle’s arrival 
time as shown in Fig.4. 

   

A

∆x

stop line
xu xd

signalized intersection

keep green light

B

 
Fig. 4. The testing cross-sectional traffic detection environment. 

 

To collect the traffic data, RSUs are deployed at two 

cross-sections: one immediately downstream of Node A at 

location   , and the other on approaching the downstream 

Node B at   . As shown in Fig.4, a typical urban arterial 

section was modeled with three lanes in one direction. The 

actuated signal control is applied to the intersection A 

according to the changing traffic flow conditions. As a typical 

case, the intersection A has four approaches and each has three 

turning movements: left-turn, through and right-turn. The 

approach of intersection B includes three through lanes, two 

left-turn lanes, but no right-turn lane, which creates a relatively 

convenient condition in this study. 

Since the purpose of this study is to capture the arriving 

flow distribution at downstream stop-line, the signal for the 

study approach at intersection B is set as always green. Here, it 

is not necessary to consider the vehicle queueing although the 

queueing can be estimated using queueing theory or 

shockwave theory. 

The upstream detectors at location    are used to record the 

simulated vehicle’s ID and spot speed data through Vissim 

COM interface [31, 32]. The detectors at downstream stop-line 

   are used to collect the vehicle’s ID only. The distance 

between the two cross-sections is the travel length   . By 

tracking the vehicles’ ID, and comparing the time-stamps, the 

travel time and turning directions can be easily obtained. 

2) Simulation environment setting 

In Vissim, the simulation time step is set as 1 s, and the 

simulation period is 4200 s including a warm-up period of 300 

s, three 900 s periods with three different levels of traffic 

volume, and a traffic dissipation period of 300 s.  

3) Performance evaluation index 

Model performance can be evaluated by comparing the 

predicted and the actual arriving flow distributions. Usually, 

the root mean square errors (RMSE) are used for distribution 

comparison, but it is affected by the traffic volume value. 

Therefore, when comparing different traffic volumes, the 

coefficient of variation (without unit) is a better choice. But 

the number of time intervals in the field observation and 

calculated number of time intervals in the models are different 

[25], So the comparison is only made during the same time 

intervals.  A more accurate definition for this index is the range 
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of coefficient variation (RCV), and the formula is shown as 

follows: 

                                 (19) 

                                   

 

(20) 

where   is the predicted time range,         and         
represent the predicted and actual number of arriving vehicles 

during a small time unit, such as 5 s, respectively.  

RMSE is selected as the performance index when traffic 

volume is fixed, while both the RMSE and RCV are used for 

evaluating the impact of varied traffic volumes and turning 

percentages. 

B. Simulation analysis 

1) Time window selection 

Dynamic platoon dispersion model reflects the dynamic 

characteristic of traffic flow by separating the time into small 

time windows. Therefore, theoretically the time window 

should be set as small as possible to capture the variability of 

traffic flow. However, as discussed earlier, the number of 

vehicles should be large enough to ensure statistical 

significance. Since the distance between two adjacent signal 

intersections is mostly in the range between 250 and 1500 m in 

the real world, a wide range of the potential time window is 

chosen as 20-70 s. Within this range, simulation analysis is 

carried out to explore the optimal time window length. Besides, 

five platoon dispersion models are evaluated for different time 

window lengths, and the previous defined performance index 

of RMSE is used for comparison as shown in Fig.5. 
 

  
         a) The RMSEs of different time window class and length.          b) The RMSEs of different time window lengths for the front-positioned class. 

 
c) The arrival flow rate of the downstream intersection. 

Fig. 5. The performance of five models for different time windows (in Fig.5a, -1 means the front-positioned time window class, 0 means the middle-positioned 

class, 1 means the back-positioned class; the time interval is 5 s and the time window is 50 s). 

 

Results in Fig.5a show that the difference among the three 

time window classes is small. Considering the real-life 

situation that the future data is not available for the middle-and 

back-positioned classes, the front-positioned time window 

class           is chosen for further analysis. Meanwhile, 

the dynamic truncated normal distribution model has the 

smallest RMSE when compared with other models, which 

appears to provide the best prediction accuracy as shown in 

Fig.5b. When the length of the time window is less than 50 s, 

the difference of RMSE is negligible for different time 

windows. When the length is greater than 50 s, RMSE 

increases significantly for the dynamic average speed model. 

Since the length of the time window cannot be too short or too 

long, the final length of the time window is set as 36 s 

considering that the data updating step is 2 s and it is suitable 
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for the simulation experiment analysis, which is used in the 

following analysis. 

2) Location of upstream cross-sectional traffic detection 

As for the base case, the length of the road section is set as 

750 m, and traffic volume as 500 veh/h/lane. In the field, 

vehicles usually start up when the signal light turns to green, 

and then accelerate to the normal speed after passing the 

intersection some distance along the outgoing approach. The 

distance ranges from 10 to 80 m from the intersection to the 

outgoing approach, which is analyzed to check its influence on 

the model performance. The results are listed in Table I, and 

Fig. 6 shows the performance of the five models. 
 

 

 
Fig. 6. The arrival flow rate of the downstream intersection (the time intervals is 5 s and the location of upstream cross-section at upstream is 30 m). 

 
TABLE I 

THE RMSES FOR DIFFERENT LOCATIONS OF UPSTREAM 

CROSS-SECTION AT UPSTREAM 

The location of upstream 

cross-section (m) 
DNDM DRM SRM CM DAM 

10 1.3564  1.3161  1.3480  1.5230  1.9471  

20 1.3836  1.3521  1.3876  1.4715  1.9516  

30 1.3503  1.3439  1.3796  1.5072  1.9303  

40 1.3335  1.3311  1.3628  1.4869  1.8592  

50 1.3077  1.3040  1.3384  1.4173  1.7797  

60 1.3169  1.3232  1.3522  1.3792  1.7907  

70 1.2865  1.3145  1.3393  1.3529  1.6985  

80 1.2939  1.3271  1.3669  1.3545  1.7358  

Average 1.3286  1.3265  1.3593  1.4366  1.8366  

 

The data in Table I shows that the RMSE decreases as the 

distance increases for all five models except for the location of 

50 and 70 m. This is because it requires some distance for 

vehicles to accelerate to their expected speed from upstream 

stop-line, and merging of traffic flows from different tuning 

directions usually occurs at the beginning of the outgoing 

approach. Meanwhile, the scenario with the distance of 70 m 

has the smallest RMSE when compared with other distances, 

indicating it has the highest prediction accuracy. Therefore, 

the distance of 70 m is suitable for deployment of RSU. In 

terms of model performance, DNDM usually performs better 

than other models for all distances. 

3) Length of the road section 

As for the upstream cross-section location set at 70 m, and 

volume level at 500 veh/h/lane, model performance is 

analyzed for different lengths of road section: 250 m, 300 m, 

400 m, 500 m, 750 m, 1000 m, 1250 m, and 1500 m. Their 

corresponding RMSE index is presented in Fig. 7. 

 

 
a) The RMSEs of different lengths of road section. 
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b) The arrival flow rate of the downstream intersection. 

Fig. 7. The performance of five models for different lengths of road section (the time interval is 5 s and the length of road section is 750 m). 

 

Two patterns can be easily concluded from Fig. 7a: DNDM 

and DRM always perform well for all length scenarios except 

for the length less than 400 m; as for length shorter than 400 m, 

the static speed model has a slightly smaller RMSE when 

compared with DNDM and DRM. This is reasonable since 

vehicles have less flexibility to change speed along a shorter 

road section. However, when the distance between two 

intersections becomes shorter, it is recommended to apply 

coordinated signal timing strategy. 

4) Volume level 

With fixed upstream cross-sectional traffic detection 

location at 70 m, different volume levels are also investigated. 

Five sceneries, 300 veh/h/lane, 400 veh/h/lane, 500 veh/h/lane, 

600 veh/h/lane, 700 veh/h/lane, and 800 veh/h/lane, are 

created to assess the model performance. Fig. 8 shows the 

performance of the five models at different volume levels. 

 

   
a) The RMSEs of different traffic volume levels.                                             b) The RCVs of different traffic volume levels. 

 
c) The arrival flow rate of the downstream intersection. 

Fig. 8. The performance of five models for different traffic volume (the time interval is 5 s and the volume is 400 veh/h/lane). 

 

The data in Fig.8a shows that the RMSEs of all five models 

increase with traffic volume. However, Fig.8b shows the 

RCVs decrease with traffic volume (300-700 veh/h/lane) 

before reaching the lowest point when the volume is 500-600 
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veh/h/lane, and then starts to increase. But when the volume 

reaches 800 veh/h/lane (i.e., close to oversaturated traffic 

condition), the RCVs begins to decrease. This suggests that the 

RCVs have different behavior for oversaturated traffic 

condition. Meanwhile, all models present better performance 

for middle traffic volume level and the DNDM outperforms 

the other models. 

5) Turning direction 

Different turning directions normally exist at an intersection. 

However, the turning direction information is not available 

based on upstream cross-sectional traffic detection data. 

Therefore, it is necessary to examine the model performance 

for downstream traffic flows turning at different directions. 

With the fixed length of road section of 750 m, by tracking the 

vehicles’ ID in the traffic detection environment, traffic flow 

turning direction can be obtained when vehicles cross the 

stop-line. Table II presents the RMSE and RCV values for 

different turning directions. 

 
TABLE II 

THE RMSES FOR DIFFERENT TRAFFIC DIRECTIONS 

Metric Direction DNDM DRM SRM CM DAM 

RMSE Left Turns 0.7788 0.7893 0.8199 0.8597 0.8623 

Through 0.9856 0.9735 1.0208 1.0384 1.0415 

Mixed 1.3836 1.4002 1.5147 1.4715 1.4862 

RCV Left Turns 1.4487 1.4407 1.5242 1.6758 1.6758 

Through 1.1546 1.1858 1.2902 1.2912 1.2912 

Mixed 0.9862 1.0191 1.1246 1.1304 1.1304 

 

Table II shows that the RMSE of left-turn traffic is always 

smaller than that of through traffic. This is because the 

left-turn traffic volume is lower than the through traffic 

volume as concluded in previous section. However, the RCV 

is always larger for the left-turn traffic than the through traffic. 

This is because the left-turn traffic needs the additional 

maneuver of merging into the storage bay. This suggests that 

setting a cross-section at the beginning of the turning bay may 

lead to better prediction. 

6) Computation performance 

In this section, we discuss the complexity of the five 

algorithms. First, we theoretically analyze the complexity of 

those algorithms. Assuming the number of vehicles, the length 

of time window, the length of road segment, minimal and 

maximal travel speed are  ,   ,   ,      , and     , 

respectively. From the Eqs. (1-18), we can get the complexity 

of five algorithms, as shown in Table III. 

 
TABLE III 

THE COMPLEXITY FOR DIFFERENT ALGORITHMS 

Models Complexity 

DNDM                        
DRM                        
SRM                      
CM      
DAM        

 

From Table III, we know the complexity of DNDM is the 

same as DRM, and the complexity of CM is the smallest. The 

five models are implemented in the MATLAB, and the 

computational times are discussed below. 

Those scenarios mentioned in the section of Location of 

upstream cross-sectional traffic detection are chosen to 

compare the computation efficiency of different models. The 

computation time of the five models is recorded on a computer 

with an Intel Core5 @ 3.30GHz with 8GB RAM PC, and 

shown in Table IV.  

 
TABLE IV 

THE COMPUTATIONAL TIME (10-3S) FOR DIFFERENT MODELS 

Scenario DNDM DRM SRM CM DAM 

1 2.8474  0.1139  0.0958  0.0002  0.0272  

2 2.8035  0.1144  0.0917  0.0001  0.0261  

3 2.7727  0.1116  0.0925  0.0002  0.0261  

4 2.8388  0.1119  0.0916  0.0001  0.0256  

5 2.9197  0.1126  0.0925  0.0002  0.0263  

6 2.8065  0.1131  0.0919  0.0003  0.0251  

7 2.9279  0.1130  0.0924  0.0002  0.0251  

8 2.9662  0.1115  0.0918  0.0002  0.0253  

Average 2.8603  0.1127  0.0925  0.0002  0.0258  
Note: The prediction time interval is 200 seconds in Table III. 

 

As shown in Table IV, the computation time of all dynamic 

platoon models is longer than that of static models. The 

computation time of the DNDM is at least twenty times higher 

than that of the other models since it contains many integral 

functions. The DRM has similar computation time as the SRM, 

while, DRM presents smaller prediction error as shown in the 

above analysis. Therefore, the DRM is recommended for 

future test. Compared with other models, both CM and DAM 

have shorter computation time since they only contain some 

simple geometric calculations. 

This means that the computation time of all models is less 

than 0.005 s, which proves its feasibility to be applied in the 

dynamic predictive signal control systems. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, a cross-sectional traffic detection environment 

is proposed for the very first time which is easy for field 

application as the electronic plates have already been 

mandatorily installed in a few China metro cities; later, two 

dynamic platoon dispersion models are developed in the 

cross-sectional traffic detection environment: a dynamic 

speed-truncated normal distribution model, and a dynamic 

Robertson model. The models make use of dynamic out-flow 

profiles from an upstream node, available from the 

cross-sectional traffic detection environment, to predict a 

dynamic arrival profile of traffic to a downstream node. 

Meanwhile, the paper provides the model formulations and 

methods for estimating the dynamic model parameters.  

The cross-sectional traffic detection environment and the 

dynamic platoon dispersion models make it possible for signal 

control system to have short-term prediction capability which 

contributes to a new generation of signal control which is the 

dynamic predictive signal control system. 

We also evaluate the sensitivities of the factors affecting the 

model performance in a simulation environment. A summary 

of the findings and conclusions is listed below: 

1. The range of 20-50 s for the time window of DNDM 

shows better performance, and 36 s is recommended. 

2. The distance of 50-80 m is suitable for the location of 

upstream cross-sectional RSU. 

3. Both DNDM and DRM have the best performance when 
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the road section is longer than 400 m, and static speed model is 

superior to other models when the road section is shorter than 

400 m. 

4. Dynamic platoon dispersion models work well under 

middle-level volume. 

5. The performance of dynamic platoon dispersion models 

in the upstream cross-section RSU shows lower accuracy for 

left-turning movement than for through movement. 

6. The computation time of all models is less than 0.1 s with 

the prediction time interval as long as 200 s, which can meet 

the requirement for application in dynamic predictive signal 

control. 

We have demonstrated the potential application of the 

DNDM and DRM in a dynamic predictive signal control 

system. Meanwhile, future work should consider studying the 

sensitivity of measurement errors and how these factors affect 

results, multi-cross-sectional traffic detection and feedback 

strategy (by tracking vehicles’ ID) to improve prediction 

accuracy, model calibration using field data, and a mixture of 

traffic detection methods before full “market penetration” of 

VII technology. 

REFERENCES 

[1]  S. Sen and L. Head, “Controlled optimization of phases at an 
intersection,” Transp. Sci., vol. 31, no. 1, pp. 5–17, Feb. 1997. 

[2] I. Porche and S. Lafortune, “Adaptive look-ahead optimization of 

traffic signals” J. Intell. Transp. Syst., vol. 4, no. 3/4, pp. 260–264, 

Apr. 1999. 

[3] S. Samra, A. El-Mahdy, and Y. Wada, "A Linear Time and Space 

Algorithm for Optimal Traffic-Signal Duration at an Intersection," 

IEEE Trans. Intell. Transp. Syst., vol. 16, no. 1, pp. 387-395, Feb. 

2015. 

[4] G. Gomes. "Bandwidth maximization using vehicle arrival functions, 

" IEEE Trans. Intell. Transp. Syst., vol. 16, no. 4, pp.1-12, Aug. 2015. 

[5] C. W. Tan, S. Park, H. Liu, et al. "Prediction of transit vehicle arrival 

time for signal priority control: Algorithm and performance," IEEE 

Trans. Intell. Transp. Syst., vol. 9, no. 4, pp. 688-696, Jan. 2008. 

[6] H. K. Larry, "Event—Based Short—term Traffic Flow Prediction 

Model," Transp. Res. Rec., no. 1510, pp. 125-143, Jan. 1995. 

[7] C. Priemer and B. Friedrich, "A decentralized adaptive traffic signal 

control using v2I communication data" Proc. 12th Int. IEEE ITSC, pp. 

1-6, Nov. 2009 

[8] J. Lee, B. Park, and I. Yun, “Cumulative travel-time responsive 

real-time intersection control algorithm in the connected vehicle 

environment,” J. Transp. Eng., vol. 139, no. 10, pp. 1020–1029, Oct. 

2013. 

[9] S. Peirce and R. Mauri, “Vehicle-Infrastructure Integration (VII) 

Initiative: Benefit-cost analysis: Pre-Testing Estimates,” Intell. 
Transp. Syst. Joint Program Office, U.S. Dept. Transp., Washington, 

DC., USA, Mar. 2007. 

[10] SAE Int. DSRC Committee, “Dedicated short range 
communications(DSRC) message set dictionary,” Soc. Automotive 
Eng., Warrendale, PA,USA, Tech. Rep. J2735_200911, Nov. 2009. 

[11] S. J. Agbolosu-Amison, I. Yun, and B. B. Park, "Quantifying benefits 

of a dynamic gap-out feature at an actuated traffic signalized 

intersection under cooperative vehicle infrastructure system," KSCE 

J. Civil Eng., vol. 16, no. 3, pp. 433-440, Mar. 2012. 

[12] G. M. Pacey, “The progress of a bunch of vehicles released from a 
traffic signal,” Road Res. Lab., Berkshire, U.K., Research Note No. 

Rn 2665GMP, 1956. 

[13] M. J. Grace and R. B. Potts, “A theory of the diffusion of traffic 
platoons,” Oper. Res., vol. 12, no. 2, pp. 255–275, Mar./Apr. 1964. 

[14] J. A. Hillier and R. Rothery, "The synchronization of traffic signals 

for minimum delay," Transp. Sci., vol. 1, no. 2, pp. 81-94, May 1967. 

[15] D. I. Robertson, TRANSYT: A Traffic Network Study Tool. 

Crowthorne,U.K.: Road Res. Lab., 1969. 

[16] P. B. Hunt, D. I. Robertson, R. D. Bretherton, and R. L. Winton, 

“SCOOT:A traffic responsive method of coordinating signals,” 
TRRL, Crowthorne, U.K., Rep. LR1014, 1981. 

[17] M. Hall and L. WILLUMSEN, "SATURN-a simulation-assignment 

model for the evaluation of traffic management schemes," Traffic 

Eng. Control, vol. 21, no. 4, pp. 168-176, Apr. 1980. 

[18] E. B. Lieberman, and B. J. Andrews, “TRAFLO – A New Tool to 

Evaluate Transportation Management Strategies,” Transp. Res. Rec., 

no. 772, pp. 9-15, Jan. 1980. 

[19] P. Seddon, "Another look at platoon dispersion: 3. The recurrence 

relationship," Traffic Eng. Control, vol. 13, no. 10, pp. 442-444, Jan. 

1972. 

[20] M. Tracz, "The prediction of platoon dispersion based on rectangular 

distribution of journey time," Traffic Eng. Control, vol. 16, no. 11, pp. 

490-492, Jan. 1975. 

[21] A. Polus, "A study of travel time and reliability on arterial routes," 

Transp., vol. 8, no. 2, pp. 141-151, May. 1979. 

[22] L. Yu, "Calibration of platoon dispersion parameters on the basis of 

link travel time statistics," Transp. Res. Rec., no. 1727, pp. 89-94, Jan. 

2000. 

[23] M. Farzaneh, H. Rakha, A. Chair, M. Trani, K. Abbas, P. Ahn, et al., 

"Modeling traffic dispersion," Nov. 2005. 

[24] C. M. Day and D. M. Bullock, "Calibration of platoon dispersion 

model with high-resolution signal event data," Transp. Res. Rec., no. 

2311, pp. 16-28, Jan. 2012. 

[25] Y. Bie, Z. Liu, D. Ma, and D. Wang, "Calibration of platoon 

dispersion parameter considering the impact of the number of lanes," 

J. Transp. Eng., vol. 139, pp. 200-207, Dec. 2013. 

[26] L. Shen, W. Jin, and M. Wei, "Platoon density dispersion model 

considering the speed range limit," J. Jilin Univ., vol. 42, no. 6, pp. 

1465-1469, Nov. 2012. 

[27] W. Wu, W. Jin, L. Shen, "Mixed platoon flow dispersion model based 

on speed-truncated Gaussian mixture distribution," J. Appl.Math, 

2013, 9 Article ID 480965. 

[28] W. Wu, L. Shen, W. Jin, and R. Liu, "Density-based mixed platoon 

dispersion modelling with truncated mixed Gaussian distribution of 

speed," Transportmetrica B, vol. 3, no. 2, pp. 1-17, May 2015. 

[29] C. E. Wallace, K. G. Courage, D. P. Reaves, G. W. Shoene, G. W. 

Euler, and A. Wilbur,TRANSYT-7F User’s Manual. Gainesville, FL, 

USA: Univ. Florida, 1984. 

[30] C. E. Wallace, K. G. Courage, M. A. Hadi, and A. C. 

Gan,TRANSYT-7F User’s Guide. Gainesville, FL, USA: Univ. 

Florida, 1998. 

[31] A. PTV, VISSIM 5.40 user manual. Karlsruhe, Germany, 2011. 

[32] Tettamanti, T., and I. Varga. Development of Road Traffic Control by 

Using Integrated VISSIM-MATLAB Simulation Environment. 

Period. Polytech. Civ. Eng., vol. 56, no. 1, p. 43-49, Sep. 2012,. 

 

 

 

 

 

First Author: Luou Shen received the 

B.Sc. in civil engineering from Tongji 

University, Shanghai, China, and the Ph.D. 

degree in transportation engineering from 

Florida International University, Miami, 

USA in 2008. He is currently an associate 

professor with the School of Transportation 

and Logistics, Southwest Jiaotong 

University, Chengdu, China. His research 

interests include traffic signal control, 

freeway operation and data mining. 

 

Ronghui Liu received her B.Sc. from 

Peking University, China and Ph.D. from 

Cambridge University, UK. She is an 

Associate Professor with the Institute for 

Transport Studies, University of Leeds, 

U.K. Her main research lies in developing 

traffic micro-simulation models to analyze 

the dynamic and complex travel behavior 

and interactions in transport networks. 



 11 

 

Corresponding Author: Zhihong Yao is 

a Ph.D. candidate at School of 

Transportation and Logistics, Southwest 

Jiaotong University, Chengdu, China. He is 

currently working in National United 

Engineering Laboratory of Integrated and 

Intelligent Transportation. His research 

interests include traffic signal control, data 

mining and traffic simulation. 
  

Weitiao Wu received the Ph.D. degree in 

transportation engineering from South 

China University, Guangzhou, China. He is 

currently working in the same university. 

His research interests include traffic 

simulation and transit optimization. 

 

  

Hongtai Yang is an assistant professor in 

the School of Transportation and Logitics 

at Southwest Jiaotong University at 

Chengdu, China. He earned his Ph.D. 

Degree in transportation engineering in 

2013 from The University of Tennessee at 

Knoxville, USA. His research area includes 

flexible transit planning, travel behavior, 

transportation safety, and transportation 

planning. 

 


