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Bell Beaker pottery spread across western and central Europe beginning around 2750 99 

BCE before disappearing between 2200–1800 BCE. The mechanism of its expansion is a 100 

topic of long-standing debate, with support for both cultural diffusion and human 101 

migration. We present new genome-wide ancient DNA data from 170 Neolithic, Copper 102 

Age and Bronze Age Europeans, including 100 Beaker-associated individuals. In contrast 103 

to the Corded Ware Complex, which has previously been identified as arriving in central 104 

Europe following migration from the east, we observe limited genetic affinity between 105 

Iberian and central European Beaker Complex-associated individuals, and thus exclude 106 

migration as a significant mechanism of spread between these two regions. However, 107 

human migration did have an important role in the further dissemination of the Beaker 108 

Complex, which we document most clearly in Britain using data from 80 newly reported 109 

individuals dating to 3900–1200 BCE. British Neolithic farmers were genetically similar to 110 

contemporary populations in continental Europe and in particular to Neolithic Iberians, 111 

suggesting that a portion of the farmer ancestry in Britain came from the Mediterranean 112 

rather than the Danubian route of farming expansion. Beginning with the Beaker period, 113 

and continuing through the Bronze Age, all British individuals harboured high 114 

proportions of Steppe ancestry and were genetically closely related to Beaker-associated 115 

individuals from the Lower Rhine area. We use these observations to show that the spread 116 

of the Beaker Complex to Britain was mediated by migration from the continent that 117 

replaced >90% of Britain’s Neolithic gene pool within a few hundred years, continuing the 118 

process that brought Steppe ancestry into central and northern Europe 400 years earlier. 119 

During the third millennium Before the Common Era (BCE), two new archaeological pottery 120 

styles expanded across Europe, replacing many of the more localized styles that preceded them1. 121 

The “Corded Ware Complex” in central, northern and eastern Europe was associated with 122 

people who derived most of their ancestry from eastern European Yamnaya steppe pastoralists2–123 
4. Bell Beaker pottery is known from around 2750 cal BCE5,6 in Atlantic Iberia, although its 124 

exact origin is still a matter of debate7,8. By 2500 BCE, it is possible to distinguish in many 125 

regions the “Beaker Complex”, defined by assemblages of grave goods including stylised bell-126 

shaped pots, distinctive copper daggers, arrowheads, stone wristguards and V-perforated 127 

buttons9. Regardless of the geographic region where it originated (if it did have a single origin), 128 

elements of the Beaker Complex rapidly spread throughout western Europe (and northern 129 

Africa), reaching southern and Atlantic France, Italy and central Europe10–12 where they 130 

overlapped geographically with the Corded Ware Complex, and from there expanding to Britain 131 

and Ireland13,14. A major debate has centred on whether the spread of the Beaker Complex was 132 

mediated by the movement of people, culture, or a combination of these15–18. Genome-wide data 133 

have revealed high proportions of Steppe ancestry in Beaker Complex-associated individuals 134 

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/135962doi: bioRxiv preprint first posted online May. 9, 2017; 



 

 

4 

from Germany and the Czech Republic2–4, consistent with their being a mixture of populations 135 

from the Steppe and the preceding farmers of Europe. However, a deeper understanding of the 136 

ancestry of people associated with the Beaker Complex requires genomic characterization of 137 

individuals across the geographic range and temporal duration of this archaeological 138 

phenomenon. 139 

Ancient DNA data and authenticity 140 

To understand the genetic structure of ancient people associated with the Beaker Complex and 141 

their relationship to preceding, subsequent and contemporary peoples, we enriched ancient 142 

DNA libraries for sequences overlapping 1,233,013 single nucleotide polymorphisms (SNPs) by 143 

hybridization DNA capture4,19, and generated new sequence data from 170 ancient Europeans 144 

dating to ~4700–1200 BCE (Supplementary Table 1; Supplementary Information, section 1). 145 

We also generated 62 new direct radiocarbon dates (Extended Data Table 1). We filtered out 146 

libraries with low coverage (<10,000 SNPs) or evidence of contamination (Methods) to obtain a 147 

final set of 166 individuals: 97 Beaker-associated individuals and 69 from other ancient 148 

populations (Fig. 1b; Extended Data Table 2), including 61 individuals from Neolithic and 149 

Bronze Age Britain. We combined our data with previously published ancient DNA data2–4,20–37 150 

to form a genome-wide dataset of 476 ancient individuals (Supplementary Table 1). The 151 

combined dataset included Beaker-associated individuals from Iberia (n=20), southern France 152 

(n=4), northern Italy (n=1), central Europe (n=56), The Netherlands (n=9) and Britain (n=19). 153 

We further merged these data with 2,572 present-day individuals genotyped on the Affymetrix 154 

Human Origins array22,31 and 300 high coverage genomes sequenced as part of the Simons 155 

Genome Diversity Project38. 156 

Y-chromosome analysis 157 

We determined Y-chromosome haplogroups for the 54 male Beaker-associated individuals 158 

(Supplementary Table 3). Individuals from the Iberian Peninsula carried Y haplogroups known 159 

to be common across Europe during the earlier Neolithic period2,4,20,26,32,39, such as I2a (n=3) and 160 

G2 (n=1) (Supplementary Table 3). In contrast, Beaker-associated individuals outside Iberia 161 

(n=44) largely carried R1b lineages (84%), associated with the arrival of Steppe migrants in 162 

central Europe during the Late Neolithic/Early Bronze Age2,3. For individuals in whom we 163 

could determine the R1b subtype (n=22), we found that all but one had the derived allele for the 164 

R1b-S116/P312 polymorphism, which defines the dominant subtype in western Europe today40. 165 

Finding this early predominance of the R1b-S116/P312 polymorphism in ancient individuals 166 

from central and northwestern Europe suggests that people associated with the Beaker Complex 167 

may have had an important role in the dissemination of this lineage throughout most of its 168 

present-day distribution. 169 
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Genomic insights into the spread of the Beaker Complex 170 

Principal component analysis (PCA) revealed striking heterogeneity among individuals assigned 171 

to the Beaker Complex (Fig. 1c, Extended Data Fig. 1a). Genetic differentiation in our dataset 172 

was mainly driven by variable amounts of Steppe-related ancestry, with Beaker Complex 173 

individuals falling along the axis of variation defined by Yamnaya steppe pastoralists and 174 

Middle Neolithic/Copper Age European populations. We obtained qualitatively consistent 175 

inferences using ADMIXTURE model-based clustering41 (Extended Data Fig. 1b). 176 

We grouped Beaker Complex individuals based on geographic proximity and genetic similarity 177 

(Supplementary Information, section 4), and used qpAdm
2 to model their ancestry as a mixture 178 

of western European hunter-gatherers (WHG), northwestern Anatolian farmers, and Yamnaya 179 

steppe pastoralists (the first two of which contributed to earlier European farmers; 180 

Supplementary Information, section 6). We find that the great majority of Beaker Complex 181 

individuals outside of Iberia derive a large portion of their ancestry from Steppe populations 182 

(Fig. 2a), whereas in Iberia, such ancestry is absent in all sampled individuals, with the 183 

exception of two (I0461 and I0462) from the Arroyal I site in northern Spain. We detect striking 184 

differences in ancestry not only at a pan-European scale, but also within regions and even 185 

within sites. Unlike other individuals from the Upper Alsace region of France (n=2), an 186 

individual from Hégenheim resembles previous Neolithic populations and can be modelled as a 187 

mixture of Anatolian Neolithic and western hunter-gatherers without any Steppe-related 188 

ancestry. Given that the radiocarbon date of the Hégenheim individual is older (2832–2476 cal 189 

BCE (quoting 95.4% confidence intervals for this and other dates) (Supplementary Information, 190 

section 1) than other samples from the same region (2566–2133 cal BCE), the pattern could 191 

reflect temporal differentiation. At Szigetszentmiklós in Hungary, we find Beaker Complex-192 

associated individuals with very different proportions (from 0% to 74%) of Steppe ancestry but 193 

overlapping dates. This genetic heterogeneity is consistent with early stages of mixture between 194 

previously established European farmers and migrants with Steppe ancestry. An implication is 195 

that, even at a local scale, the Beaker Complex was associated with people of diverse ancestries. 196 

While the Yamnaya-related ancestry in Beaker Complex associated individuals had an origin in 197 

the Steppe2,3, the other ancestry component (from European Neolithic farmers) could potentially 198 

be derived from several parts of Europe, as genetically closely related populations were widely 199 

distributed across the continent during the Neolithic and Copper Age periods2,4,22,25,26,28,32. To 200 

obtain insight into the origin of the Neolithic-related ancestry in Beaker Complex-associated 201 

individuals, we began by looking for regional patterns of genetic differentiation within Europe 202 

during the Neolithic and Copper Age periods. To study genetic affinity to different Early 203 

Neolithic (EN) populations, we computed f4-statistics of the form f4(Outgroup, Test; Iberia_EN, 204 
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LBK_EN) for Neolithic and Copper Age test populations predating the emergence of the Beaker 205 

Complex. As previously described2, there is genetic affinity to Iberian Early Neolithic farmers 206 

in Iberian Middle Neolithic/Copper Age populations, but not in central and northern European 207 

Neolithic populations (Fig. 2b), which could be explained by differential affinities to hunter-208 

gatherer individuals from different regions42 (Extended Data Fig. 2). A new finding that 209 

emerges from our analysis is that Neolithic individuals from southern France and Britain also 210 

show a greater affinity to Iberian Early Neolithic farmers than to central European Early 211 

Neolithic farmers (Fig. 2b), similar to previous results obtained in a Neolithic farmer genome 212 

from Ireland28. By modelling Neolithic populations and WHG in an admixture graph 213 

framework, we replicate these results and further show that they are not driven by different 214 

proportions of hunter-gatherer admixture (Extended Data Fig. 3; Supplementary Information, 215 

section 5). Our results suggest that a portion of the ancestry of the Neolithic farmers of Britain 216 

was derived from migrants who spread along the Atlantic coast. Megalithic tombs document 217 

substantial interaction along the Atlantic façade of Europe, and our results are consistent with 218 

such interactions reflecting movements of people. More data from southern Britain (where our 219 

sampling is sparse) and nearby regions in continental Europe will be needed to fully understand 220 

the complex interactions between Britain and the continent in the Neolithic43. 221 

The distinctive genetic signatures of pre-Beaker Complex populations in Iberia compared to 222 

central Europe allow us to test formally for the origin of the Neolithic farmer-related ancestry in 223 

Beaker Complex individuals in our dataset (Supplementary Information, section 6). We grouped 224 

individuals from Iberia (n=19) and from outside Iberia (n=84) to increase power, and evaluated 225 

the fit of different Neolithic/Copper Age groups with qpAdm under the model: Yamnaya + 226 

Neolithic/Copper Age. For Beaker Complex individuals from Iberia, the best fit was obtained 227 

when Middle Neolithic and Copper Age populations from the same region were used as a 228 

source for their Neolithic farmer-related ancestry, and we could exclude central and northern 229 

European populations (P < 4.69E-03) (Fig. 2c). Conversely, the Neolithic farmer-related 230 

ancestry in Beaker Complex individuals outside Iberia was most closely related to central and 231 

northern European Neolithic populations with relatively high hunter-gatherer admixture (e.g. 232 

Globular_Amphora_LN, P = 0.14; TRB_Sweden_MN, P = 0.29), and we could significantly 233 

exclude Iberian sources (P < 3.18E-08) (Fig. 2c). These results support largely different origins 234 

for Beaker Complex individuals, with no discernible Iberia-related ancestry outside Iberia. 235 

Nearly complete turnover of ancestry in Britain 236 

British Beaker Complex individuals (n=19) show strong similarities to the central European 237 

Beaker Complex both in genetic profile (Extended Data Fig. 1) and in material culture: the great 238 

majority of individuals from both regions are associated with “All Over Corded” Beaker 239 
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pottery. The presence of large amounts of Steppe-related ancestry in the British Beaker 240 

Complex (Fig. 2a) contrasts sharply with Neolithic individuals from Britain (n=35), who have 241 

no evidence of Steppe genetic affinities and cluster instead with Middle Neolithic and Copper-242 

Age populations from mainland Europe (Extended Data Fig. 1). Thus, the arrival of Steppe 243 

ancestry in Britain was mediated by a migration that began with the Beaker Complex. A 244 

previous study showed that Steppe ancestry arrived in Ireland by the Bronze Age28, and here we 245 

show that – at least in Britain – it arrived by the Copper Age / Beaker period. 246 

Among the different continental Beaker Complex groups analysed in our dataset, individuals 247 

from Oostwoud (Province of Noord-Holland, The Netherlands) are the most closely related to 248 

the great majority of the Beaker Complex individuals from southern Britain (n=14). They had 249 

almost identical Steppe ancestry proportions (Fig. 2a), the highest shared genetic drift 250 

(Extended Data Fig. 4b) and were symmetrically related to other ancient populations using f4-251 

statistics (Extended Data Fig. 4a), showing that they are consistent with being derived from the 252 

same ancestral population without additional mixture into either group. We next investigated the 253 

magnitude of population replacement in Britain with qpAdm
2 by modelling Beaker Complex 254 

and Bronze Age individuals as a mixture of continental Beaker Complex (using the Oostwoud 255 

individuals as a surrogate) and the British Neolithic population (Supplementary Information, 256 

section 6). Fig. 3a shows the results of this analysis, ordering individuals by date and showing 257 

excess Neolithic ancestry compared to continental Beaker Complex as a baseline. For the 258 

earliest individuals (between ~2400–2000 BCE), the Neolithic ancestry excess is highly 259 

variable, consistent with migrant communities who were just beginning to mix with the 260 

previously established Neolithic population of Britain. During the subsequent Bronze Age we 261 

observe less variation among individuals and a modest increase in Neolithic-related ancestry 262 

(Fig. 3a), which could represent admixture with persisting populations with high levels of 263 

Neolithic-related ancestry (or alternatively incoming continental populations with higher 264 

proportions of Neolithic-related ancestry). In either case, our results imply a minimum of 265 

93±2% local population turnover by the Middle Bronze Age (Supplementary Information, 266 

section 6). Specifically, for individuals from Britain around 2000 BCE, at least this fraction of 267 

their DNA derives from ancestors who at 2500 BCE lived in continental Europe. An 268 

independent line of evidence for population turnover comes from Y-chromosome haplogroup 269 

composition: while R1b haplogroups were completely absent in the Neolithic samples (n=25), 270 

they represent 95% and 75% of the Y-chromosomes in Beaker Complex-Early Bronze Age and 271 

Middle Bronze Age males in Britain, respectively (Fig. 3b; Supplementary Table 3). 272 

Our genetic time transect in Britain also allowed us to track the frequencies of alleles with 273 

known phenotypic effects. Derived alleles at rs12913832 (SLC45A2) and rs16891982 274 

(HERC2/OCA2), which contribute to reduced skin and eye pigmentation in Europeans, 275 

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/135962doi: bioRxiv preprint first posted online May. 9, 2017; 



 

 

8 

dramatically increased in frequency during the Beaker and Bronze Age periods (Extended Data 276 

Fig. 5). Thus, the arrival of migrants associated with the Beaker Complex significantly altered 277 

the pigmentation phenotypes of British populations. However, the lactase persistence allele at 278 

SNP rs4988235 remained at very low frequencies in our dataset both in Britain and continental 279 

Europe, showing that the major increase in its frequency in Britain, as in mainland Europe, 280 

occurred in the last 3,500 years3,4,39,44. 281 

Discussion 282 

The term “Bell Beaker” was introduced by late 19th-century and early 20th-century 283 

archaeologists to refer to the distinctive pottery style found across western and central Europe at 284 

the end of the Neolithic, initially hypothesized to have been spread by a genetically 285 

homogeneous group of people. This idea of a “Beaker Folk” became unpopular after the 1960s 286 

as scepticism about the role of migration in mediating change in archaeological cultures grew45, 287 

although J.G.D. Clark speculated that the Beaker Complex expansion into Britain was an 288 

exception46, a prediction that has now been borne out by ancient genomic data.  289 

Our results clearly prove that the expansion of the Beaker Complex cannot be described by a 290 

simple one-to-one mapping of an archaeologically defined material culture to a genetically 291 

homogeneous population. This stands in contrast to other archaeological complexes analysed to 292 

date, notably the Linearbandkeramik first farmers of central Europe2, the Yamnaya of the 293 

Pontic-Caspian Steppe2,3, and to some extent the Corded Ware Complex of central and eastern 294 

Europe2,3. Instead, or results support a model in which both cultural transmission and human 295 

migration played important roles, with the relative balance of these two processes depending on 296 

the region. In Iberia, the majority of Beaker Complex-associated individuals lacked Steppe 297 

affinities and were genetically most similar to preceding Iberian populations. In central Europe, 298 

Steppe ancestry was widespread and we can exclude a substantial contribution from Iberian 299 

Beaker Complex-associated individuals, contradicting initial suggestions of gene flow between 300 

these groups based on analysis of mtDNA47 and dental morphology48. Small-scale contacts 301 

remain plausible, however, as we observe small proportions of Steppe ancestry in two 302 

individuals from northern Spain. 303 

Although cultural transmission seems to have been the main mechanism for the diffusion of the 304 

Beaker Complex between Iberia and central Europe, other parts of the Beaker Complex 305 

expansion were driven to a substantial extent by migration, with Beaker-associated burials in 306 

southern France, northern Italy, and Britain, representing the earliest occurrence of Steppe-307 

related ancestry so far known in all three regions. This genomic transformation is clearest in 308 

Britain due to our dense genetic time transect. The earliest Beaker pots found in Britain show 309 

influences from both the lower Rhine region and the Atlantic façade of western Europe49. 310 
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However, such dual influence is not mirrored in the genetic data, as the British Beaker Complex 311 

individuals were genetically most similar to lower Rhine individuals from the Netherlands. The 312 

arrival of the Beaker Complex precipitated a profound demographic transformation in Britain, 313 

exemplified by the absence of individuals in our dataset without large amounts of Steppe-related 314 

ancestry after 2400 BCE. It is possible that the uneven geographic distribution of our samples, 315 

coupled with different burial practises between local and incoming populations (cremation 316 

versus burial) during the early stages of interaction could result in a sampling bias against local 317 

individuals. However, the signal observed during the Beaker period persisted through the later 318 

Bronze Age, without any evidence of genetically Neolithic-like individuals among the 27 319 

Bronze Age individuals we newly report, who traced more than 90% of their ancestry to 320 

individuals of the central European Beaker Complex. Thus, the genetic evidence points to a 321 

substantial amount of migration into Britain from the European mainland beginning around 322 

2400 BCE. These results are notable in light of strontium and oxygen isotope analyses of British 323 

skeletons from the Beaker and Bronze Age periods50, which have provided no evidence of 324 

substantial mobility over individuals’ lifetimes from locations with cooler climates or from 325 

places with geologies atypical of Britain. However, the isotope data are only sensitive to first-326 

generation migrants, and do not rule out movements from regions such as the lower Rhine, 327 

which is consistent with the genetic data, or from other geologically similar regions for which 328 

DNA sampling is still sparse. Further sampling of regions on the European continent may reveal 329 

additional candidate sources. 330 

By analysing DNA data from ancient individuals we have been able to provide important 331 

constraints on the processes underlying cultural and social changes in Europe during the third 332 

millennium BCE. Our results raise new questions and motivate further archaeological research 333 

to identify the changes in social organization, technology, subsistence, climate, population 334 

sizes51 or pathogen exposure52,53 that could have precipitated the demographic changes 335 

uncovered in this study.  336 
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Methods 337 

Ancient DNA analysis 338 

We screened skeletal samples for DNA preservation in dedicated clean rooms. We extracted 339 

DNA54–56 and prepared barcoded next generation sequencing libraries, the majority of which 340 

were treated with uracil-DNA glycosylase to greatly reduce the damage (except at the terminal 341 

nucleotide) that is characteristic of ancient DNA57,58 (Supplementary Information, section 2). 342 

We initially enriched libraries for sequences overlapping the mitochondrial genome59 and ~3000 343 

nuclear SNPs using synthesized baits (CustomArray Inc.) that we PCR amplified. We 344 

sequenced the enriched material on an Illumina NextSeq instrument with 2x76 cycles, and 2x7 345 

cycles to read out the two indices60. We merged read pairs with the expected barcodes that 346 

overlapped by at least 15 base pairs, mapped the merged sequences to hg19 and to the 347 

reconstructed mitochondrial DNA consensus sequence61 using the samse command in bwa 348 

(v0.6.1)62, and removed duplicated sequences. We evaluated DNA authenticity by estimating 349 

the rate of mismatching to the consensus mitochondrial sequence63, and also requiring that the 350 

rate of damage at the terminal nucleotide was at least 3% for UDG-treated libraries63 and 10% 351 

for non-UDG-treated libraries64. 352 

For libraries that were promising after screening, we enriched in two consecutive rounds for 353 

sequences overlapping 1,233,013 SNPs (‘1240k SNP capture’)2,19 and sequenced 2x76 cycles 354 

and 2x7cycles on an Illumina NextSeq500 instrument. We processed the data bioinformatically 355 

as for the mitochondrial capture data, this time mapping only to the human reference genome 356 

hg19 and merging the data from different libraries of the same individual. We further evaluated 357 

authenticity by studying the ratio of X-to-Y chromosome reads and estimating X-chromosome 358 

contamination in males based on the rate of heterozygosity65. Samples with evidence of 359 

contamination were either filtered out or restricted to sequences with terminal cytosine 360 

deamination to remove sequences that could have derived from modern contaminants. Finally, 361 

we filtered out from our analysis dataset samples with fewer than 10,000 targeted SNPs covered 362 

at least once and samples that were first-degree relatives of others in the dataset (keeping the 363 

sample with the larger number of covered SNPs) (Supplementary Table 1). 364 

Mitochondrial haplogroup determination 365 

We used the mitochondrial capture bam files to determine the mitochondrial haplogroup of each 366 

sample with new data, restricting to reads with MAPQ≥30 and base quality ≥30. First, we 367 

constructed a consensus sequence with samtools and bcftools66, using a majority rule and 368 

requiring a minimum coverage of 2. We called haplogroups with HaploGrep267 based on 369 
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phylotree68 (mtDNA tree Build 17 (18 Feb 2016)). Mutational differences compared to the 370 

rCRS and corresponding haplogroups can be viewed in Supplementary Table 2. 371 

 372 

Y-chromosome analysis 373 

We determined Y-chromosome haplogroups for both new and published samples 374 

(Supplementary Information, section 3). We made use of the sequences mapping to 1240k Y-375 

chromosome targets, restricting to sequences with mapping quality ≥30 and bases with quality 376 

≥30. We called haplogroups by determining the most derived mutation for each sample, using 377 

the nomenclature of the International Society of Genetic Genealogy (http://www.isogg.org) 378 

version 11.110 (21 April 2016). Haplogroups and their supporting derived mutations can be 379 

viewed in Supplementary Table 3. 380 

 381 

Merging newly generated data with published data  382 

We assembled two datasets for population genetics analyses: 383 

 384 

- HO includes 2,572 present-day individuals from worldwide populations genotyped on the 385 

Human Origins Array22,31,69 and 470 ancient individuals. The ancient set includes 103 Beaker 386 

Complex individuals (87 newly reported, 5 with shotgun data3 for which we generated 1240k 387 

capture data and 11 previously published3,4), 68 newly reported individuals from relevant 388 

ancient populations and 298 previously published2–4,20–37 individuals (Supplementary Table 1). 389 

We kept 591,642 autosomal SNPs after intersecting autosomal SNPs in the 1240k capture with 390 

the analysis set of 594,924 SNPs from Lazaridis et al.22. 391 

 392 

-HOIll includes the same set of ancient samples and 300 present-day individuals from 142 393 

populations sequenced to high coverage as part of the Simons Genome Diversity Project38. For 394 

this dataset, 1,054,671 autosomal SNPs were used, excluding SNPs of the 1240k array located 395 

on sex chromosomes or with known functional effects. 396 

 397 

For both datasets, ancient individuals were merged by randomly sampling one read at each SNP 398 

position, discarding the first and the last two nucleotides of each read. 399 

Principal component analysis 400 

We carried out principal component analysis (PCA) on the HO dataset using the smartpca 401 

program in EIGENSOFT70. We computed principal components on 990 present-day West 402 

Eurasians and projected ancient individuals using lsqproject: YES and shrinkmode: YES. 403 
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ADMIXTURE analysis 404 

We performed model-based clustering analysis using ADMIXTURE41 on the HO reference 405 

dataset, including 2,572 present-day individuals from worldwide populations and the ancient 406 

individuals. First, we carried out LD-pruning on the dataset using PLINK71 with the flag --407 

indep-pairwise 200 25 0.4, keeping 306,393 SNPs. We ran ADMIXTURE with the cross 408 

validation (--cv) flag specifying from K=2 to K=20 clusters, with 20 replicates for each value of 409 

K and keeping for each value of K the replicate with highest log likelihood. In Extended Data 410 

Fig. 1b we show the cluster assignments at K=8 of newly reported individuals and other 411 

relevant ancient samples for comparison. This value of K was the lowest for which components 412 

of Caucasus hunter-gatherers (CHG) and European hunter-gatherers were maximized. 413 

f-statistics 414 

We computed f-statistics on the HOIll dataset using ADMIXTOOLS69 with default parameters 415 

(Supplementary Information, section 4). We used qpDstat with f4mode:Yes for f4-statistics and 416 

qp3Pop for outgroup f3-statistics. We computed standard errors using a weighted block 417 

jackknife72 over 5 Mb blocks. 418 

Inference of mixture proportions 419 

We estimated ancestry proportions on the HOIll dataset using qpAdm
2 and a basic set of 9 420 

Outgroups: Mota, Ust_Ishim, MA1, Villabruna, Mbuti, Papuan, Onge, Han, Karitiana. For 421 

some analyses (Supplementary Information, section 6) we added additional outgroups to this 422 

basic set. 423 

Allele frequency estimation from read counts 424 

We used allele counts at each SNP to perform maximum likelihood estimation of allele 425 

frequencies in ancient populations as in ref.4. In Extended Data Fig. 5, we show derived allele 426 

frequency estimates at three SNPs of functional importance for different ancient populations. 427 
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Data availability 428 

All 1240k and mitochondrial capture sequencing data is available from the European Nucleotide 429 

Archive, accession number XXXXXXXX [to be made available on publication]. 430 

Pseudo haploid genotype data is available from the Reich Lab website at [to be made available 431 

on publication]. 432 
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Figure 1. Genetic structure of individuals included in this study. a, Beaker Complex grave 

goods from La Sima III barrow73. Photo: Alejandro Plaza, Museo Numantino. b, Geographic 

distribution of samples with new genome-wide data, with random jitter added for clarity. c, 

Principal component analysis of 990 present-day West Eurasian individuals (grey dots), with 

previously published (pale yellow) and new ancient samples projected onto the first two 

principal components. This figure is a zoom of Extended Data Fig 1a.  
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Figure 2. Investigating the genetic makeup of Beaker Complex individuals. a, Proportion of 

Steppe-related ancestry (shown in black) in Beaker Complex groups, computed with qpAdm 

under the model Yamnaya_Samara + Anatolia_Neolithic + WHG. The area of the pie is 

proportional to the number of individuals (shown inside the pie if more than one). See 

Supplementary Information, section 6 for mixture proportions and standard errors. b, f-statistics 

of the form f4(Mbuti, Test; Iberia_EN, LBK_EN) computed for European populations before the 

emergence of the Beaker Complex. Error bars represent ±1 standard errors. c, Testing different 

populations as a source for the Neolithic farmer ancestry component in Beaker Complex 

individuals. The table shows the P-values (highlighted if >0.05) for the model: 

Yamnaya_Samara + Neolithic farmer population. BC, Beaker complex.  
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Figure 3. Population transformation in Britain associated with the arrival of the Beaker 

Complex. a, Modelling Beaker Complex and Bronze Age individuals from Britain as a mixture 

of continental Beaker Complex (red, represented by Beaker Complex samples from Oostwoud) 

and Britain_Neolithic (blue). Individuals are ordered chronologically (oldest on the left) and 

included in the plot if represented by more than 100,000 SNPs. See Supplementary Information, 

section 6 for mixture proportions and standard errors. b, Y-chromosome haplogroup distribution 

in males from Britain. EBA, Early Bronze Age; MBA, Middle Bronze Age. BC, Beaker 

complex.  
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Supplementary Tables 

Supplementary Table 1. Ancient individuals included in this study. 

Supplementary Table 2. Mitochondrial haplogroup calls for individuals with newly reported 

data. 

Supplementary Table 3. Y-chromosome calls for males with newly reported data . 
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Extended Data Figure 1. Population structure. a, Principal component analysis of 990 

present-day West Eurasian individuals (grey dots), with previously published (pale yellow) and 

new ancient samples projected onto the first two principal components. b, ADMIXTURE 

clustering analysis with k=8 showing ancient individuals. E/M/MLN, Early/Middle/Middle Late 

Neolithic; W/E/S/CHG, Western/Eastern/Scandinavian/Caucasus hunter-gatherers. 
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Extended Data Figure 2. Hunter-gatherer affinities in Neolithic/Copper Age Europe. 

Differential affinity to hunter-gatherer individuals (LaBraña136 from Spain and KO139 from 

Hungary) in European populations before the emergence of the Beaker Complex. See 

Supplementary Information, section 6 for mixture proportions and standard errors computed 

with qpAdm. 
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Extended Data Figure 3. Modelling the relationships between Neolithic populations. a, 

Admixture graph fitting a Test population as a mixture of sources related to both Iberia_EN and 

Hungary_EN. b, Likelihood distribution for models with different proportions of the source 

related to Iberia_EN (green admixture edge in (a)) when Test is Great Britain_Neolithic or 

France_MLN. 
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Extended Data Figure 4. Genetic affinity between Beaker complex individuals from 

southern Great Britain and the Netherlands. a, f-statistics of the form f4(Mbuti, Test; 

BB_Netherlands_Tui, BB_Great Britain_SOU). Negative values indicate that Test is closer to 

BB_Netherlands_Tui than to BB_Great Britain_SOU, and the opposite for positive values. 

Error bars represent ±3 standard errors. b, Outgroup-f3 statistics of the form f3(Mbuti; BB_Great 

Britain_SOU, X) measuring shared genetic drift between BB_Great Britain_SOU and other 

Beaker Complex groups. Error bars represent ±1 standard errors. 
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Extended Data Figure 5. Derived allele frequencies at three SNPs of functional 

importance. Error bars represent 1.9-log-likelihood support interval. The red dashed lines show 

allele frequencies in the 1000 Genomes GBR population (present-day people from Great 

Britain). BC, Beaker Complex; BA, Bronze Age. 
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Extended Data Table 1. 62 Newly reported radiocarbon dates 
 

Sample Date Location Country 

I4145 2279–2033 calBCE (3740±35 BP, Poz-84460) Kněževes Czech Republic 
I1392 2832–2476 calBCE (4047±29 BP, MAMS-25935) Hégenheim Necropole, Haut-Rhin France 
I4144 2572–2512 calBCE (3955±35 BP, Poz-84553) Osterhofen-Altenmarkt Germany 
E09537_d 2471–2300 calBCE (3909±29 BP, MAMS 29074) Unterer Talweg 58-62, Augsburg, Bavaria Germany 
I4249 2336-2141 calBCE (3802±26 BP, BRAMS1217) Irlbach LKR Germany 
E09538 2464–2212 calBCE (3870±30 BP, MAMS 29075) Unterer Talweg 58-62, Augsburg, Bavaria Germany 
I3592 2458-2204 calBCE (3844±33 BP, BRAMS-1218) Alburg-Lerchenhaid, Spedition Häring, Bavaria Germany 
I4250 2434-2150 calBCE (3825±26 BP, BRAMS1219) Irlbach LKR Germany 
I3593 2398-2146 calBCE (3817±26 BP, BRAMS-1215) Alburg-Lerchenhaid, Spedition Häring, Bavaria Germany 
I3590 2339-2143 calBCE (3802±26 BP, BRAMS-1217) Alburg-Lerchenhaid, Spedition Häring, Bavaria Germany 
I2657 3952–3781 calBCE (5052±30 BP, SUERC-68701) Macarthur Cave Great Britain 
I2633 3766-3642 calBCE (4911±32 BP, SUERC-68634) Tulloch of Assery B Great Britain 
I2659 3762–3644 calBCE (4914±27 BP, SUERC-68702) Distillery Cave Great Britain 
I2691 3701–3640 calBCE (4881±25 BP, SUERC-68704) Distillery Cave Great Britain 
I2796 3706–3536 calBCE (4856±33 BP, SUERC-69074) Point of Cott, Orkney Great Britain 
I2634 3704–3535 calBCE (4851±34 BP, SUERC-68638) Tulach an t'Sionnach Great Britain 
I2635 3653–3390 calBCE (4796±37 BP, SUERC-68639) Tulloch of Assery A Great Britain 
I2636 3520–3362 calBCE (4651±33 BP, SUERC-68640) Holm of Papa Westray North Great Britain 
I2988 3517–3362 calBCE (4645±29 BP, SUERC-68711) Clachaig Great Britain 
I2660 3514–3353 calBCE (4631±29 BP, SUERC-68703) Distillery Cave Great Britain 
I2650 3500–3360 calBCE (4754±36 BP, SUERC-68642) Holm of Papa Westray North Great Britain 
I2637 3510–3340 calBCE (4697±33 BP, SUERC-68641) Holm of Papa Westray North Great Britain 
I2605 3632–3373 calBCE (4710±35 BP, Poz-83483) Eton Rowing Course Great Britain 
I2980 3361–3102 calBCE (4530±33 BP, SUERC-69073) Point of Cott, Orkney Great Britain 
I2651 3330–3090 calBCE (4525±36 BP, SUERC-68643) Holm of Papa Westray North Great Britain 
I3085 3339–3027 calBCE (4471±29 BP, SUERC-68724) Isbister, Orkney Great Britain 
I2978 3336–3024 calBCE (4464±29 BP, SUERC-68725) Isbister, Orkney Great Britain 
I2934 3327–3036  calBCE (4466±33 BP, SUERC-69071) Isbister, Orkney Great Britain 
I2935 3336–3012 calBCE (4451±29 BP, SUERC-68723) Isbister, Orkney Great Britain 
I2979 3334–2942 calBCE (4447±29 BP, SUERC-68726) Isbister, Orkney Great Britain 
I2631 3098–2907 calBCE (4384±36 BP, SUERC-68633) Quoyness Great Britain 
I2933 3011–2886 calBCE (4309±29 BP, SUERC-68722) Isbister, Orkney Great Britain 
I2977 3009–2764 calBCE (4275±33 BP, SUERC-69072) Isbister, Orkney Great Britain 
I2630 2581–2464 calBCE (3999±32 BP, SUERC-68632) Isbister, Orkney Great Britain 
I2932 2571–2348 calBCE (3962±29 BP, SUERC-68721) Isbister, Orkney Great Britain 
I2612 2465–2209 calBCE (3865±35 BP, Poz-83492) Hasting Hill, Sunderland, Tyne and Wear Great Britain 
I2416 2470-2285 calBC (3830±30 BP, Beta-432804) Amesbury Down, Wiltshire Great Britain 
I2418 2440–2200 calBCE (3835±25 BP, NZA-32788) Amesbury Down, Wiltshire Great Britain 
I2565 2470–2140 calBCE (3829±38 BP, OxA-13562) Amesbury Down, Wiltshire Great Britain 
I2459 2460–2140 calBCE (3829±30 BP, SUERC-54823) Amesbury Down, Wiltshire Great Britain 
I2457 2480-2280 calBCE (3890±30 BP, SUERC-36210) Amesbury Down, Wiltshire Great Britain 
I2457 2200-2031 calBCE (3717±28 BP, SUERC-69975) Amesbury Down, Wiltshire Great Britain 
I2453 2289–2041 calBCE (3760±35 BP, Poz-83404) West Deeping Great Britain 
I2445 2137–1930 calBCE (3650±35 BP, Poz-83407) Yarnton Great Britain 
I2596 2280–2030 calBCE (3739±30 BP, NZA-32484) Amesbury Down, Wiltshire Great Britain 
I2566 2210–2030 calBCE (3734±25 BP, NZA-32490) Amesbury Down, Wiltshire Great Britain 
I2452 2195–1920 calBCE (3700±30 BP, Beta-444979) Dairy Farm, Willington Great Britain 
I2452 2277–2030 calBCE (3735±35 BP, Poz-83405) Dairy Farm, Willington Great Britain 
I2598 2140–1940 calBCE (3664±30 BP, NZA-32494) Amesbury Down, Wiltshire Great Britain 
I2460 2030–1820 calBCE (3575±27 BP, SUERC-53041) Amesbury Down, Wiltshire Great Britain 
I2609 2023–1772 calBCE (3560±40 BP, Poz-83423) Hexham Golf Course, Northumberland Great Britain 
I2610 1936–1746 calBCE (3515±35 BP, Poz-83498) Summerhill,Blaydon, Tyne and Wear Great Britain 
I1775 1693–1600 calBCE (3344±27 BP, OxA-14308) Great Orme Mines, Llandudno, North Wales Great Britain 
I2574 1415–1228 calBCE (3065±36 BP, SUERC-62072) North Face Cave, Llandudno, North Wales Great Britain 
I2786 2459–2206 calBCE (3850±35 BP, Poz-83639) Szigetszentmiklós,Felső Ürge-hegyi dűlő Hungary 
I2787 2458–2202 calBCE (3840±35 BP, Poz-83640) Szigetszentmiklós,Felső Ürge-hegyi dűlő Hungary 
I2741 2458–2154 calBCE (3835±35 BP, Poz-83641) Szigetszentmiklós,Felső Ürge-hegyi dűlő Hungary 
I4229 2289–2135 calBCE (3775±25 BP, PSU-1750) Cova da Moura Portugal 
I0826 2833–2480 calBCE (4051±28 BP, MAMS-25940) Paris Street, Cerdanyola, Barcelona Spain 
I0257 2571–2350 calBCE (3965±29 BP, MAMS-25937) Paris Street, Cerdanyola, Barcelona Spain 
I0462 2566–2346 calBCE (3950±26 BP, MAMS-25936) Arroyal I, Burgos Spain 
I0825 2474–2300 calBCE (3915±29 BP, MAMS-25939) Paris Street, Cerdanyola, Barcelona Spain 
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Extended Data Table 2. Sites with new genome-wide data reported in this study. 
Site N Approx. date range (BCE) Country 

Eton Rowing Course 1 3700–3300  Great Britain 
Banbury Lane 3 3360–3100  Great Britain 
Totty Pot, Cheddar, Somerset 1 2900–2400  Great Britain 
Abingdon Spring Road cemetery, Oxfordshire 1 2500–2200 Great Britain 
Hasting Hill, Sunderland, Tyne and Wear 2 2500–1700  Great Britain 
Amesbury Down, Wiltshire 10 2500–1400  Great Britain 
Windmill Fields, Ingleby Barwick, County Durham 2 2400–1900  Great Britain 
Yarnton 4 2400–1900  Great Britain 
Staxton Beacon, Staxton, North Yorkshire 1 2400–1600  Great Britain 
West Deeping 1 2300–2000  Great Britain 
Dairy Farm, Willington, Bedfordshire 1 2300–1900  Great Britain 
Over Narrows, Needingworth Quarry, Cambridgeshire 2 2300–1900  Great Britain 
Porton Down, Wiltshire 1 2200–1900  Great Britain 
Reaverhill, Barrasford, Northumberland 1 2200–1900  Great Britain 
Trumpington Meadows 2 2200–1900  Great Britain 
Hexham Golf Course, Northumberland 1 2100–1700  Great Britain 
Summerhill, Blaydon, Tyne and Wear 1 2000–1700  Great Britain 
Thanet, Kent 3 2000–1600  Great Britain 
Boscombe Airfield, Wiltshire 1 1800–1600  Great Britain 
Canada Farm, Sixpenny Handley, Dorset 1 1500–1300  Great Britain 
Macarthur Cave 1 4000–3700  Great Britain 
Distillery Cave 3 3800–3300  Great Britain 
Raschoille Cave, Oban, Argyll and Bute 6 3800–3200  Great Britain 
Tulach an t'Sionnach 1 3700–3500  Great Britain 
Tulloch of Assery A 1 3700–3300  Great Britain 
Point of Cott, Orkney 2 3700–3100  Great Britain 
Clachaig 1 3600–3300  Great Britain 
Holm of Papa Westray North 4 3600–3000  Great Britain 
Isbister, Orkney 10 3400–2300  Great Britain 
Quoyness 1 3100–2900  Great Britain 
Dryburn Bridge 2 2300–1800  Great Britain 
Eweford Cottages 1 2200–1900  Great Britain 
Stenchme, Lop Ness, Orkney 1 2000–1400  Great Britain 
Longniddry, Evergreen 3 1500–1300  Great Britain 
Pabbay Mor 1 1500–1200  Great Britain 
Great Orme Mines, Llandudno 1 1700–1600  Great Britain 
North Face Cave, Llandudno 1 1500–1200  Great Britain 
Kněževes 2 2500–1900  Czech Republic 
Augsburg, Bavaria 2 2800–1800  Germany 
Osterhofen-Altenmarkt, Bavaria 1 2600–2000  Germany 
Unterer Talweg 58-62, Augsburg, Bavaria 2 2500–2200  Germany 
Manching-Oberstimm, Bavaria 1 2500–2000  Germany 
Irlbach, County of Straubing-Bogen, Bavaria 2 2500–2000  Germany 
Bruck, City of Künzing, Bavaria 2 2500–2000  Germany 
Hugo-Eckener-Straße, Augsburg 3 2500–2000  Germany 
Unterer Talweg 85, Augsburg, Bavaria 1 2400–2100  Germany 
Alburg, Lerchenhaid-Spedition Häring, Bavaria 11 2300–2150  Germany 
Budakalász, Csajerszke (M0 Site 12)  2 2500–2200  Hungary 
Szigetszentmiklós,Felső Ürge-hegyi dűlő 4 2500–2100  Hungary 
Budapest-Békásmegyer 2 2500–2000  Hungary 
Samborzec 3 2600–2100  Poland 
De Tuithoorn, Oostwoud, Noord-Holland 9 2300–1600  The Netherlands 
Via Guidorossi, Parma 1 2200–1900  Italy 
Clos de Roque, Saint Maximin-la-Sainte-Baume 3 4700–4400  France 
Collet Redon, La Couronne-Martigues 1 3500–3100  France 
Hégenheim Necropole, Haut-Rhin 1 2900–2400  France 
Dolmen of Villard, Lauzet-Ubaye 2 2459–2242  France 
Sierentz, Les Villas d'Aurele, Haut-Rhin 2 2600–2200  France 
La Fare, Forcalquier 1 2500–2200  France 
Marlens, Sur les Barmes, Haute-Savoie 1 2500–2100  France 
Mondelange, PAC de la Sente, Moselle 2 2500–1900  France 
Rouffach, Haut-Rhin 1 2400–2100  France 
Galeria da Cisterna, Almonda 2 2500–2200  Portugal 
Cova da Moura 1 2300–2100  Portugal 
Paris Street, Cerdanyola, Barcelona 10 2900–2200  Spain 
Camino del Molino, Caravaca, Murcia 4 2900–2100  Spain 
Camino de las Yeseras, San Fernando de Henares 2 2280–1790  Spain 
Arroyal I, Burgos 5 2600–2200  Spain 
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