UNIVERSITYW

This is a repository copy of Compositional Assume-Guarantee Reasoning of Control Law
Diagrams using UTP.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/129640/

Monograph:

Ye, Kangfeng, Foster, Simon David orcid.org/0000-0002-9889-9514 and Woodcock,
JAMES Charles Paul orcid.org/0000-0001-7955-2702 Compositional Assume-Guarantee
Reasoning of Control Law Diagrams using UTP. Working Paper. (Unpublished)

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose .
university consortium eprints@whiterose.ac.uk
/,:-‘ Univarsies of Leeds. Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/129640/
https://eprints.whiterose.ac.uk/

Compositional Assume-Guarantee Reasoning of Control Law
Diagrams using UTP

Kangfeng Ye Simon Foster
Jim Woodcock

University of York, UK
{kangfeng .ye,simon.foster, jim. woodcock}@york .ac.uk

April 23, 2018

Abstract

This report is a summary of our work for the VeTSS funded project “Mechanised Assume-
Guarantee Reasoning for Control Law Diagrams via Circus”. Our Assume-Guarantee (AG)
reasoning of control law diagrams is based on Hoare and He’s Unifying Theories of Program-
ming and their theory of designs. In this report, we present developed theories and laws to
map discrete-time Simulink block diagrams to designs in UTP, calculate assumptions and
guarantees, and verify properties for modelled systems. A practical application of our AG
reasoning to an aircraft cabin pressure control subsystem is also presented. In addition, all
mechanised theories in Isabelle/UTP are attached in Appendices. In the end of this report,
we summarise current progress for each work package.

Contents
1 Introduction 4
2 Preliminaries 6
2.1 Control Law Diagrams and Simulink 6
2.2 Unifying Theories of Programming 7
2.2.1 Designs 7
3 Assumptions and General Procedure of Reasoning 9
3.1 Assumptions 9
3.2 General Procedure of Applying Assumption-Guarantee Reasoning 9
4 Semantic Translation of Blocks 10
4.1 State Space 10
4.2 Healthiness Condition: SimBlock 10
4.3 Blocks 11
4.3.1 Pattern e 11
4.3.2 Simulink Blocks 11
4.3.3 Virtual Blocks 12
4.4 Subsystems 12

5 Block Compositions

5.1
5.2
5.3
5.4

Sequential Composition
Parallel Composition
Feedback e

Composition Examples

6 Case Study

6.1
6.2
6.3

6.4

Modelling e
Subsystems Verification L
Requirement Verification
6.3.1 Requirement 3and 4
6.3.2 Requirement 1
6.3.3 Requirement 2 L o
SUMMATY o oo e

7 Conclusions

7.1

Progress Summary

A Block Theories

Al
A2
A3
A4
A5

A6

Additional Laws
State Space
Patterns
Number of Inputs and Outputs
Operators
ABT Id ..o
A.5.2 Parallel Composition
A.5.3 Sequential Composition
Ab5.4 Feedback
ABD5 Split . . .o
Blocks
AB.1 Sourceo

A6.1.1 Constant
A6.2 Unit Delay
A.6.3 Discrete-Time Integrator
AB.4 Sum
A6.5 Product
A6.6 Gain
A.6.7 Saturation L
A6.8 MinMax L
A6.9 Rounding
A.6.10 Logic Operators.

A6.10.1 AND . . . o

A6.10.2 OR

A.6.10.3 NAND

A.6.10.4 NOR

A.6.10.5 XOR

A6.10.6 NXOR

A.6.10.7 NOT
A.6.11 Relational Operator

A6.11.1 Equal ==

12
13
14
15
17

18
18
19
19
20
20
21
21

21
21

A.6.11.2 Notequal = 34

A.6.11.3 Less Than < 34

A.6.11.4 Less Than or Equal to <= 34

A.6.11.5 Greater Than > 35

A.6.11.6 Greater Than or Equalto >= 35

A.6.12 Switch 35
A.6.13 Data Type Conversion i 35
A.6.14 Initial Condition (IC) 38
A.6.15 Router Block 38

B Block Laws 38
B.1 Additional Laws e 38
B.2 SimBlock healthiness 40
B.3 inpsand outps 42
B.4 Operators 46
B4l Id . . . e 46
B.4.2 Sequential Composition oo o 46
B.4.3 Parallel Composition 48
B.4.3.1 mergeB 48

B.4.3.2 sim-paralell 49

B.4.4 Feedback 67
B.4.41 feedback 67

B.4.5 Split 80

B.5 Blocks e 80
B.5.1 Source 80
B.5.1.1 Const e 80

B.5.1.2 Pulse Generator 80

B.5.2 Unit Delay 80
B.5.3 Discrete-Time Integrator 80
B.5.4 Sum 80
B.5.5 Product e 81
B.5.6 Gain 81
B.5.7 Saturation 81
B.5.8 MinMax e 82
B.5.9 Rounding 82
B.5.10 Combinatorial Logic 82
B.5.11 Logic Operators. 82
B.5.11.1 AND . . o 82

B.5.11.2 OR . . . o 83

B.5.11.3 NAND 84

B.5.11.4 NOR o 84

B.5.11.5 XOR o 84

B.5.11.6 NXOR 85

B.5.11.7 NOT . . o oo 85

B.5.12 Relational Operator, 85
B.5.12.1 Equal == 85

B.5.12.2 Notequal = 85

B.5.12.3 Less Than < 85

B.5.12.4 Less Than or Equal to <= 85

B.5.12.5 Greater Than > 85

B.5.12.6 Greater Than or Equal to >= 86

B.5.13 Switch 86
B.5.14 Merge 87
B.5.15 Subsystem 87
B.5.16 Enabled Subsystem o 87
B.5.17 Triggered Subsystem 87
B.5.18 Enabled and Triggered Subsystem 87
B.5.19 Data Type Conversion i 87
B.5.20 Initial Condition (IC) o .. 87
B.5.21 Router Block 87

B.6 Frequently Used Composition of Blocks 88
C Post Landing Finalize 89
C.1 Subsystem: variableTimer 89
C.1.1 Verification e 112

C.2 Subsystem: riseIShot 115
C.2.1 Verification 117

C.3 Subsystem: Latch 117
C.3.1 Verification 127

C.4 System: post-landing-finalizeo 128
C.5 Verification 169
C.5.1 Requirement O1 169
C.5.2 Requirement 02 L 195
C.5.3 Requirement 03 214
C.5.4 Requirement 04 215

1 Introduction

Control law diagrams such as Simulink [1] and OpenModelica [2] are widely used industrial
languages and tool-sets for expressing control laws, including support for simulation and code
generation. In particular, Simulink actually is a de facto standard in many areas in industry. Its
model based design, simulation and code generation make it a very efficient and cost-effective
way to develop complex systems. Though empirical analysis through simulation is an important
technique to explore and refine models, only formal verification can make specific mathematical
guarantees about behaviour, which is crucial to ensure safety of associated implementations.
Whilst verification facilities for Simulink exist [3, 4, 5, 6, 7, 8], there is still a need for asser-
tional reasoning techniques that capture the full range of specifiable behaviour, provide non-
deterministic specification constructs, and support compositional verification. Such techniques
also need to be sufficiently expressive to handle the plethora of additional languages and mod-
elling notations that are used by industry in concert with Simulink, in order to allow formulation
of heterogeneous "multi-models" that capture the different paradigms and disciplines used in
large scale systems [9]. Applicable tool support for these techniques with a high degree of au-
tomation is also of vital importance to enable adoption by industry. Since Simulink diagrams
are data rich and usually have an uncountably infinite state space, model checking alone is
insufficient and there is a need for theorem proving facilities.

Assume-Guarantee (AG) reasoning is a valuable compositional verification technique for reactive
systems [10, 11, 12|. In AG, one demonstrates composite system level properties by decompos-

ing them into a number of contracts for each component subsystem. Each contract specifies
the guarantees that the subsystem will make about its behaviour, under certain specified as-
sumptions of the subsystem’s environment. Such a decomposition is vital in order to make
verification of a complex system tractable, and to allow development of subsystems by sepa-
rate teams. AG reasoning has previously been applied to verification of discrete time Simulink
control law diagrams through mappings into synchronous languages like Lustre [13| and Kahn
Process Networks [5]. However such formalisms, whilst theoretically and practically appealing,
are limited to expressing processes that are inherently deterministic and non-terminating in
nature. Refinement Calculus for Reactive Systems (RCRS) [8] is a methodology that can be
applied to reason about non-deterministic and non-input-receptive systems by treating programs
as predicate transformers. However, it is not able to reason about multi-rate Simulink diagrams
and algebraic loops. Almost all these verification facilities translate Simulink to sequential lan-
guages, synchronous languages or reactive languages [7], and then use verification methods for
these languages to reason about Simulink diagrams. There is a need to develop a reasoning
technique that is based on the semantic understanding of simulation in Simulink as described in
Section 2.1. Thus, it is necessary to translate to several additional notations where AG verifica-
tion can be performed, which hampers both traceability and composition with other languages
of different paradigms. What is needed is a rich unified language capable of AG reasoning, and
supported by theorem proving, into which Simulink and associated notations can be losslessly
translated.

Our proposed approach thus explores development of formal AG-based proof support for discrete-
time Simulink diagrams through a semantic embedding of the theory of designs [14] in Unify-
ing Theories of Programming (UTP) [15] in Isabelle/HOL [16] using our developed tool Is-
abelle/UTP [17]. Initially, we proposed to use Circus [18], a formal modelling language for
concurrent and reactive systems in the style of CSP, to model Simulink diagrams as shown
in [7], and then apply contract-based reasoning to Circus. A Circus model consists of a network
of processes that communicate with one another solely via shared channels that carry typed
data. Internal state variables are encapsulated and not directly observable by other parallel
processes. Circus can capture a variety of languages at the semantic level, and thus supports
the formulation of heterogeneous multi-models [9] by acting as a “lingua franca”. In addition, a
timed version of Circus is used to model multi-rate diagrams. However, a Circus model has more
complex information of blocks in Simulink for AG reasoning. For example, the corresponding
Circus process for a block uses channels to model connections in diagrams, a non-deterministic
internal choice of all input channels to allow an arbitrary input order, and similarly an internal
choice of output channels to allow an arbitrary output order.

In order to reason about the Circus model, we need to take trace information into account
and traces inevitably are more complicated if there are many inputs and outputs for a block.
Eventually, using model checking or theorem proving to verify Circus models becomes more
difficult. According to the semantic understanding of simulation in Simulink in Section 2.1,
actually the order of inputs and outputs is irrelevant. Therefore, we have changed our approach
to use the theory of designs in UTP to enable AG reasoning for Simulink block diagrams.

A design in UTP is a relation between two predicates where the first predicate (precondition)
records the assumption and the second one (postcondition) specifies the commitment. Designs
are intrinsically suitable for modelling and reasoning about state-based programs (such as B
machines [19] and Z notations [20]) but not necessary for reactive programs. For simulation
of Simulink diagrams, we discretise the simulation time and abstract it into steps (natural
numbers), and define inputs and outputs of Simulink blocks as a function from step numbers to
a list of inputs or outputs. In this way, the reactive behaviour is encoded in the step numbers

in functions. Finally, the theory of designs can be used to reason about reactive behaviour of
Simulink diagrams without introduction of detailed implementation information .

Our work presented in this report has multiple contributions. The main contribution is to define
a theoretical reasoning framework for control law block diagrams using the theory of designs
in UTP. Each block or subsystem is translated to a design and then hierarchical connections
of blocks are mapped to a variety of compositions of designs. Additionally, the refinement
relation of designs, monotony of composition operators, and closure laws enable compositional
reasoning of block diagrams using a contract-based methodology. The second contribution is
our mechanisation of theories in the theorem prover Isabelle using our implementation of UTP,
Isabelle/UTP. Then the practical contribution is our industrial case study of a subsystem in a
safety critical aircraft cabin pressure control system.

In the next section, we describe the relevant preliminary background about Simulink and UTP.
Then in Section 3, the assumptions we made are presented and a brief reasoning procedure is
described. Section 4 defines our treatment of blocks in UTP and translations of a number of
blocks are illustrated. Furthermore, we introduce our composition operators and their corre-
sponding theorems in Section 5. Afterwards, in Section 6 we briefly describe the industrial case
study. And we conclude our work in Section 7. Additionally, our mechanised theories, laws and
case studies are attached in appendices.

2 Preliminaries

2.1 Control Law Diagrams and Simulink

Simulink is a model-based design modelling, analysis and simulation tool for signal process-
ing systems and control systems. It offers a graphical modelling language which is based on
hierarchical block diagrams. Its diagrams are composed of subsystems and blocks as well as
connections between these subsystems and blocks. In addition, subsystems also can consists of
others subsystems and blocks. And single function blocks have inputs and outputs, and some
blocks also have internal states.

There is no formal semantics for Simulink. A consistent understanding [21, 22| of the simulation
in Simulink is based on an idealized time model. All executions and updates of blocks are per-
formed instantaneously (and infinitely fast) at exact simulation steps. Between the simulation
steps, the system is quiescent and all values held on lines and blocks are constant. The inputs,
states and outputs of a block can only be updated when there is a time hit for this block. Oth-
erwise, all values held in the block are constant too though at exact simulation steps. According
to this idealized time model, it is inappropriate to assume that blocks are sequentially executed.
For example, for a block it is inappropriate to say it takes its inputs, calculates its outputs and
states, and then outputs the results from this point of view. Simulation and code generation of
Simulink diagrams use sequential semantics for implementation. But it is not always necessary.
Simulink needs to have a mathematical and denotational semantics, which UTP provides.

Based on the idealized time model, a single function block can be regarded as a relation between
its inputs and outputs. For instance, a unit delay block specifies that its initial output is equal
to its initial condition and its subsequent output is equal to previous input. Then connections
of blocks establish further relations between blocks. A directed connection from one block to
another block specifies that the output of one block is equal to the input of another block. Finally,
hierarchical block diagrams establish a relation network between blocks and subsystems.

2.2 Unifying Theories of Programming

UTP is a unified framework to provide a theoretical basis for describing and specifying computer
languages across different paradigms such as imperative, functional, declarative, nondetermin-
istic, concurrent, reactive and high-order. A theory in UTP is described using three parts:
alphabet, a set of variable names for the theory to be studied; signature, rules of primitive state-
ments of the theory and how to combine them together to get more complex program; and
healthiness conditions, a set of mathematically provable laws or equations to characterise the
theory.

The alphabetised relational calculus 23] is the most basic theory in UTP. A relation is defined
as a predicate with undecorated variables (v) and decorated variables (v) in its alphabet. v
denotes the observation made initially and v" denotes the observation made at the intermediate
or final state.

The understanding of the simulation in Simulink is very similar to the concept “programs-as-
predicates” [24]. This is the similar idea that the Refinement Calculus of Reactive Systems
(RCRS) [8] uses to reason about reactive systems. RCRS is a compositional formal reasoning
framework for reactive systems. The language is based on monotonic property transformers
which is an extension of monotonic predicate transformers [25]. This semantic understanding
makes Unifying Theories of Programming (UTP) [15] intrinsically suitable for reasoning of the
semantics of Simulink simulation because UTP uses an alphabetised predicate calculus to model
computations.

Refinement calculus is an important concept in UTP. Program correctness is denoted by S C P,
which means that the observations of the program P must be a subset of the observations
permitted by the specification S. For instance, (z = 2) is a refinement of the predicate (z > 1).
A refinement sequence is shown in (1). S1 is more general and abstract specification than S2 and
thus more easier to implement. The predicate true is the easiest one and can be implemented
by anything. P2 is more specific and determinate program than P1 and thus P2 is more useful
in general. false is the strongest predicate and it is impossible to implement in practice.

trueC S1C S2C P1C P2C false (1)

2.2.1 Designs

Designs are a subset of the alphabetised predicates that use a particular variable ok to record
information about the start and termination of programs. The behaviour of a design is described
from initial observation and final observation by relating its precondition P (assumption) to
the postcondition) (commitment) as P + @ |14, 15] (assuming P holds initially, then Q
is established). Therefore, the theory of designs is intrinsically suitable for assume-guarantee
reasoning [26].

Definition 2.1 (Design)

PFQ2PAok= QAok

A design is defined in 2.1 where ok records the program has started and ok’ that it has termi-
nated. It states that if the design has started (ok = true) in a state satisfying its precondition
P, then it will terminate (ok’ = true) with its postcondition @ established. We introduce some
basic designs.

Definition 2.2 (Basic Designs)

Tp = truet- false = - ok [Miracle|
1lp % falsel false = true [Abort]
(z:=¢) £ (true-z'=eANy =yA--) [Assignment]
I, = (truet 1) [Skip]

Abort (Lp) and miracle (Tp) are the top and bottom element of a complete lattice formed from
designs under the refinement ordering. Abort (L p) is never guaranteed to terminate and miracle
establishes the impossible. In addition, abort is refined by any other design and miracle refines
any other designs. Assignment has precondition true provided the expression e is well-defined
and establishes that only the variable x is changed to the value of e and other variables have
not changed. The skip II, is a design identity that always terminates and leaves all variables
unchanged.

Designs can be sequentially composed with the following theorem:

Theorem 2.1 (Sequential Composition)
(MmFEQ;PoEQ) = (mA-(Qui—P2))F Qs Q) [p1-condition]

A sequence of designs terminates when p; holds and)y guarantees to establish Py provided p;
is a condition. On termination, sequential composition of their postconditions is established. A
condition is a particular predicate that only has input variables in its alphabet. In other words,
a design of which its precondition is a condition only makes the assumption about its initial
observation (input variables) and without output variables. That is the same case for our treat-
ment of Simulink blocks. Furthermore, sequential composition has two important properties:
associativity and monotonicity which are given in the theorem below.

Theorem 2.2 (Associativity, Monotonicity)

Pyi; (Py; P3) = (P1; Pa); P [Associativity]
(P1; Q1) C (P2; @) [Monotonicity]|

Refinement of designs is given in the theorem below.
Theorem 2.3 (Refinement)

(PIFQIC Py @) = (PPCP)AN(QLEPLAQ)
= [P1:>P2]/\[P1/\QQ=>Q1]

Refinement of designs is achieved by either weakening the precondition, or strengthening the
postcondition in the presence of the precondition.

In addition, we define two notations prep and postp to retrieve the precondition of the design
and the postcondition in the presence of the precondition.

Definition 2.3 (prep and postp)
prep (P Q)2 P
postp (P+ Q) 2 (P = Q)

3 Assumptions and General Procedure of Reasoning

3.1 Assumptions

Causality We assume the discrete-time systems modelled in Simulink diagrams are causal where
the output at any time only depends on values of present and past inputs. Consequently, if
inputs to a casual system are identical up to some time, their corresponding outputs must also
be equal up to this time.

Single-rate This mechanised work captures only single sampling rate Simulink models, which
means the timestamps of all simulation steps are multiples of a base period T'. Eventually, steps
are abstracted and measured by step numbers (natural numbers N) and T is removed from its
timestamp.

An algebraic loop occurs in simulation when there exists a signal loop with only direct feedthrough
blocks in the loop, such as instantaneous feedback without delay in the loop. [5, 6, 27| assume
there are no algebraic loops in Simulink diagrams and RCRS [8] identifies it as a future work.
Our theoretical framework can reason about discrete-time block diagrams with algebraic loops:
specifically check if there are solutions and find the solutions.

The signals in Simulink can have many data types, such as signed or unsigned integer, single
float, double float, and boolean. The default type for signals are double in Simulink. This
work uses real numbers in Isabelle/HOL as a universal type for all signals. Real numbers in
Isabelle/HOL are modelled precisely using Cauchy sequences, which enables us to reason in the
theorem prover. This is a reasonable simplification because all other types could be expressed
using real numbers, such as boolean as 0 and 1.

3.2 General Procedure of Applying Assumption-Guarantee Reasoning

Simulink blocks are semantically mapped to designs in UTP where additionally we model as-
sumptions of blocks to avoid unpredictable behaviour (such as a divide by zero error in the
Divide block) and ensure healthiness of blocks. The general procedure of applying AG reasoning
to Simulink blocks is given below.

e Single blocks and atomic subsystems are translated to single designs with assumptions and
guarantees, as well as block parameters. This is shown in Section 4.

e Hierarchical block connections are modelled as compositions of designs (I) by means of
sequential composition, parallel composition and feedback.

e Properties or Requirements of block diagrams (.S) to be verified are modelled as designs
as well.

e The refinement relation (S C I) in UTP is used to verify if a given property is satisfied by
a block diagram (or a subsystem) or not. Our approach supports compositional reasoning
according to monotonicity of composition operators in terms of the refinement relation.
Provided two properties S; and Sy are verified to hold in two blocks or subsystems ; and
I, respectively, then composition of the properties is satisfied by the composition of the
blocks or subsystems in terms of the same operator.

(SIELASCL)= (S 0p S2C 1 op I)

4 Semantic Translation of Blocks

In this section, we focus on the methodology to map individual Simulink blocks to designs in
UTP semantically. Basically, a block or subsystem is regarded as a relation between inputs and
outputs. We use an undashed variable and a dashed variable to denotes input signals and output
signals respectively.

4.1 State Space

The state space of our theory for block diagrams is composed of only one variable in addition
to ok, named inouts. Originally, we defined it as a function from real numbers (time ¢) to a list
of inputs or outputs. Each element in the list denotes an input or output and their order in the
list is the order of input or output signals.

tnouts : R>g — seq R
However, according to our single-rate assumption, the timestamp at time ¢ is equal to multiples

of a basic period T: inouts(t) = inouts(n * T). Then T is abstracted away and only the step
number 7 is related. Finally, it is defined below.

mouts : N — seq R

Then a block is a design that establishes the relation between an initial observation inouts (a
list of input signals) and a final observation inouts’ (a list of output signals). Additionally, this
is subject to the assumption of the design.

4.2 Healthiness Condition: SimBlock

This healthiness condition characterises a block with a fixed number of inputs and outputs.
Additionally it is feasible. A design is a feasible block if there exists at least a pair of inouts
and inouts’ that establishes both the precondition and postcondition of the design.

Definition 4.1 (SimBlock) A design P with m inputs and n outputs is a Simulink block if P
is SimBlock healthy.

(prep(P) A postp(P) # false) N
SimBlock(m,n, P) 2 | ((Vn e # (inouts n) = m) T Dom (prep(P) A postp(P)))
((Vn e # (inouts n) = n) C Ran (prep(P) A postp(P)))

where Dom and Ran calculate the characteristic predicate for domain and range. Their defini-
tions are shown below.

Dom(P) £ (Jinouts’ e P)
Ran(P) = (Finouts e P)

inps and outps are the operators to get the number of input signals and output signals for a
block. They are implied from SimBlock of the block.

Definition 4.2 (inps and outps)
SimBlock(m, n, P) = (inps(P) = m A outps(P) = n)
Provided that P is a healthy block, inps returns the number of its inputs and outps returns the

number of its outputs.

10

4.3 Blocks

In order to give definitions of the corresponding designs for Simulink blocks, firstly we define a
design pattern FBlock. Then we illustrate definitions of two typical Simulink blocks and three
additional virtual blocks using this pattern. The definitions of all other blocks could be found
in Appendix A.

4.3.1 Pattern
We defined a pattern that is used to define all other blocks.
Definition 4.3 (FBlock)

FBlock (fi, m,n, f2)

YV nn e fi (inouts, nn)
}_
a # (inouts(nn)) = m A
B # (inouts’(nn)) = n A
(inouts’(nn) = fa (inouts’'(nn), nn)) A
(Vsigs : N — seq R, nn : N e # (sigs nn) = m = # (fo(sigs,nn)) = n)

Vnn e

FBlock has four parameters: f; is a predicate that specifies the assumption of the block and
it is a function on input signals; m and n are the number of inputs and outputs, and fo is a
function that relates inputs to outputs and is used to establish the postcondition of the block.
The precondition of FBlock states that fi holds for inputs at any step nn. And the postcondition
specifies that for any step nn the block always has m inputs and n outputs, the relation between
outputs and inputs are given by f5, and additionally fo always produces n outputs provided there
are m inputs.

4.3.2 Simulink Blocks
Definition 4.4 (Unit Delay)
UnitDelay (19) = FBlock (trues, 1,1,(Az,n e (g <in = 0> hd (z (n —1)))))

where hd is an operator to get the head of a sequence, and trues = (A z,n e true) that means no
constraints on input signals.

The definition 4.4 of the Unit Delay block is straightforward: it accepts all inputs, has one
input and one output, and produces initial value zy in its first step (0) and the previous input
otherwise.

Definition 4.5 (Product (Divide))
Div2 2 FBlock (Az,n ® hd(tl(z n)) #0),2,1,(Az,n e (hd(z n)/hd(tl(z n)))))

where tl is an operator to get the tail of a sequence.
The definition 4.5 of Divide block is slightly different because it assumes the input value of its

second input signal is not zero at any step. By this way, the precondition enables modelling of
non-input-receptive systems that may reject some inputs at some points.

11

4.3.3 Virtual Blocks

In addition to Simulink blocks, we have introduced three blocks for the purpose of composition:
Id, Split2, and Router. The usage of these blocks is illustrated in Figure 1.

Definition 4.6 (Id)
Id & FBlock (truer, 1,1, (Az,n o (hd (z n))))

The identity block Id is a block that has one input and one output, and the output value is
always equal to the input value. It establishes a fact that a direct signal line in Simulink could
be treated as sequential composition of many Id blocks. The usage of Id is shown in Figure 1a.

Definition 4.7 (Split2)
Split2 & FBlock (trues, 1,2, (Az,n o (hd (z n),hd (z n))))

Split2 corresponds to the signal connection splitter that produces two signals from one and both
signals are equal to the input signal. The usage of Split2 is shown in Figure 1b.

Definition 4.8 (Router)

Router (m, table) = FBlock (truef, m, m, (A x,n e reorder ((x n), table)))

Router corresponds to the crossing connection of signals and this virtual block changes the order
of input and output signals according to the supplied table. The usage of Router is shown in
Figure 1c.

4.4 Subsystems

The treatment of subsystems (no matter whether hierarchical subsystems or atomic subsystems)
in our designs is similar to that of blocks. They could be regarded as a bigger black box that
relates inputs to outputs.

5 Block Compositions

In this section, we define three composition operators that are used to compose subsystems or
systems from blocks. We also use three virtual blocks to map Simulink’s connections in our
designs.

For all definitions and laws in this section, if there are no special notes, we assume the following
predicates.

SimBlock (mq, ny, P)
SimBlock (ma, ny, Ps)
SimBlock (m3, n3, P3)
SimBlock (my, n1, Q1)
SimBlock (my, ny, Qo)
P C O

Py T (e

12

B2
% T i B2
h 7@; d (b) Split (c) Router
o
| | — .
B B2 J B2
(@) Soquential Composttion (&) Paralel Gomposition =

Figure 1: Composition of Blocks

5.1 Sequential Composition

The meaning of sequential composition of designs is defined in Theorem 2.1. It corresponds to
composition of two blocks in Figure 1d where the outputs of By are equal to the inputs of Bs.

Provided

P = (FBlock (trues, mi, na, f1)) SimBlock (my, ny, P)
Q = (FBlock (trues, ni, ng, f2)) SimBlock (n1, na, Q)

The expansion law of sequential composition is given below.

Theorem 5.1 (Expansion)

(P; Q) = FBlock (truer, my, ng, (f2 o fi)) |Expansion]

This theorem establishs that sequential composition of two blocks, where the number of outputs
of the first block is equal to the number of inputs of the second block, is simply a new block with
the same number of inputs as the first block P and the same number of outputs as the second
block @), and additionally the postcondition of this composed block is function composition. In
addition, the composed block is still SimBlock healthy which is shown in the closure theorem
below.

Theorem 5.2 (Closure)

SimBlock (my, n2, (P; Q)) [SimBlock Closure]

13

5.2 Parallel Composition

Parallel composition of two blocks is a stack of inputs and outputs from both blocks and is
illustrated in Figure le. It is defined below.

Definition 5.1 (Parallel Composition)

(takem(inps(P) + inps(Q)) inps(P); P)
Pl Q= lg,
(dropm(inps(P) + inps(Q)) inps(P); Q)

where takem and dropm are two blocks to split inputs into two parts and their definitions can
be found in Appendix A, and B); is defined below.

Definition 5.2 (By)

A

By = (ok' = 0.0k A 1.0k) A (inouts’ = 0.inouts ™ 1.in0uts)

The definition of parallel composition 5.1 for designs is similar to the parallel-by-merge scheme [15,
Sect. 7.2| in UTP. Parallel-by-merge is denoted as P ||, @ where M is a special relation that
explains how the output of parallel composition of P and @ should be merged following execu-
tion.

However, parallel-by-merge assumes that the initial observations for both predicates should be
the same. But that is not the case for our block composition because the inputs to the first
block and that to the second block are different. Therefore, in order to use the parallel by merge,
firstly we need to partition the inputs to the composition into two parts: one to the first block
and another to the second block. This is illustrated in Figure 2 where we assume that P has m
inputs and 7 outputs, and @ has n inputs and j outputs. Finally, it has the same inputs (m+n)
and the outputs of P and @ are merged by Bjs to get i + j outputs.

1 1 1 1

o | - P —\

m |7 o
m+ ’ i+

*\ m+1 i+1 /

aes N 4» Q 4» N // aes

m+n — i+]
m+n i+ -

Figure 2: Parallel Composition of Two Blocks

The merge operator Bjs states that the parallel composition terminates if both blocks terminate.
And on termination, the output of parallel composition is concatenation of the outputs from the
first block and the outputs from the second block. takem and dropm are two blocks that have
the same inputs and the number of inputs is equal to addition of the number inputs of P and
the number inputs of (). takem only takes the first part of inputs as required by P, and dropm
takes the second part of inputs as required by Q.

14

Theorem 5.3 (Associativity, Monotonicity, and SimBlock Closure)

Pilg (P2l P3)=(P1lp P2) 5 Ps [Associativity|
(P1llg @) C(P2lg @) [Monotonicity]|
SimBlock (m1 + m2,nl + n2,(P; || 5 P2)) [SimBlock Closure|

inps (P1 || g P2) = m1 + my
outps (P1 ||g P2) = m1 + ng

Parallel composition is associative, monotonic in terms of the refinement relation, and SimBlock
healthy. The inputs and outputs of parallel composition are combination of the inputs and
outputs of both blocks.

Theorem 5.4 (Parallel Operator Expansion) Provided

P = (FBlock (trues, mi, n1, f1)) SimBlock (my, n1, P)
Q = (FBlock (trues, mg, na, f2)) SimBlock (mg, n2, Q)
then,
trueg, my + ma, N1 + ng,
(P ||z Q) =FBlock (fio(Az,n e take (my,z n))) |[Expansion]
Az,ne | X
(20 (Az,n o drop (my,z n)))

SimBlock (m; + mg,n1 + n2, (P |5 Q)) [SimBlock Closure|

Parallel composition of two F'Block defined blocks is expanded to get a new block. Its postcon-
dition is concatenation of the outputs from P and the outputs from @. The outputs from P (or
@) are function composition of its block definition function f; (or fo) with take (or drop).

5.3 Feedback

The feedback operator loops an output back to an input, which is illustrated in Figure 1f.
Definition 5.3 (fp)
P fp (i,0) = (Isig @ (PreFD(sig, inps(P),1i); P; PostFD(sig, outps(P), 0)))

where ¢ and o denotes the index number of the output signal and the input signal, which are
looped. PreFD denotes a block that adds sig into the ith place of the inputs.

Definition 5.4 (PreFD)
PreFD(sig, m,idz) = FBlock (true, m — 1, m, (f_PreFD(sig, idz)))
where f_PreFD(sig,idz) = Az, n e (take(idz, (x n)) ™ ((sig n)) ~ drop(idz, (x n)))

and PostF'D denotes a block that removes the oth signal from the outputs of P and this signal
shall be equal to sig.

15

Definition 5.5 (PostFD)

true
'_
. . # (inouts(nn)) = n A
PostFD(sig, n, idz) = 2 Einouts’((nn)))) 1A
Vnn e

(inouts’(nn) = (f_PostFD(sig, idz, inouts'(nn), nn)) A
sig(nn) = inouts(nn)lidzs

where f_PostFD(idx) = Az,n e (take(idz,(z n)) ™ drop(ide + 1,(z n))) and ! is an operator
to get the element in a list by its index.

The basic idea to construct a feedback operator is to use existential quantification to specify
that there exists one signal sig that it is the ¢th input and oth output, and their relation is
established by the block P. This is illustrated in Figure 3 where m and n are the number of
inputs and outputs of P. PreFD adds a signal into the inputs at ¢ and P takes assembled
inputs and produces an output in which the oth output is equal to the supplied signal. Finally,
the outputs of feedback are the outputs of P without the oth output. Therefore, a block with
feedback is translated to a sequential composition of PreF'D, P, and PostFD.

1 1 1 1

o i-1 o1 o1

—1~ Pre ~[ix|+~| P |~[ow|~Post >
i+1 o+1

m-1 n-1
m n

Figure 3: Feedback

Theorem 5.5 (Monotonicity) Provided

SimBlock (my, ny, P1) SimBlock (my, n1, P2)
P C Py n<m Ao <m

then,

(P1 fp (i1, 01)) C (P2 fp (i1, 01))

The monotonicity law states that if a block is a refinement of another block, then its feedback
is also a refinement of the same feedback of another block.

Theorem 5.6 (Expansion) Provided

P = FBlock (trues, m,n, f) SimBlock (m, n, P)
Solvable_unique(i, 0o, m,n, f) is_Solution(i, 0, m,n, f, sig)

16

then,

(P fp (i, 0))

= FBlock (trues, m — 1,n — 1, (Az,n e (f _PostFD(o) o f o f_PostFD(sig,z,i)) x n))
|[Expansion]

SimBlock(m — 1,n — 1,(P fp (i, 0))) [SimBlock Closure|

In the expansion theorem, where

Definition 5.6 (Solvable_unique)

Solvable_unique (i, 0, m,n, f) =

(i<mAo<mn)A

. (Vnn e # (sigs nn) = (m —1)) =
<V 5198 < (3, sig @ (Vnn e (sig nn = (f (Anl e f_PreFD (sig, 1, sigs,nl),nn))lo)))))

The Solvable_unique predicate characterises a condition that the block with feedback has a
unique solution that satisfies the constraint of feedback: the corresponding output and input
are equal.

Definition 5.7 (is_Solution)

is_Solution (i, 0,m,n, f, sig) =

< (V sigs (E: i ii(;lz; Tgﬁfﬁ_. }))P::eFD (sig, i, sigs,nl),nn))!0)) >>)

The is_Solution predicate evaluates a supplied signal to check if it is a solution for the feedback.

The expansion law of feedback assumes the function f, that is used to define the block P, is
solvable in terms of 7, 0, m and n. In addition, it must have one unique solution sig that resolves
the feedback.

Our approach to model feedback in designs enables reasoning about systems with algebraic
loops. If a block defined by FBlock and Solvable_unique (i, 0, m,n, f) is true, then the feedback
composition of this block in terms of i and o is feasible no matter whether there are algebraic
loops or not.

5.4 Composition Examples

For the compositions in Figure 1, their corresponding maps in our design theory are shown
below.

e Figure la: (B ||z Id); Bs

Figure 1b: Split2; (B ||z B2)

Figure lc: (Split2 || 5 Split2); Router(4,0,2,1,3]); (B1 ||g B2)

Figure 1d: By; Bo

Figure le: By ||z B2

Figure 1f: B fp (0,0)

17

6 Case Study

This case study, verification of a post_landing_finalize subsystem, is taken from an aircraft cabin
pressure control application. The original Simulink model is from Honeywell through our indus-
trial link with D-RisQ. This case is also studied in [28] and the diagram shown in Figure 4 is
from the paper. The purpose of this subsystem is to implement that the output finalize_event is
triggered after the aircraft door has been open for a minimum specific amount of time following
a successful landing.

| door_closed (b, , L) [4] > o »>o—p|in C:J_:;fu
| door_open_time (f, ,L)[3] > g | Ton N
variableTimer i
rise1Shot
IC=0ff (¥0-0)
[mode (u. . L) [1] 1z f——pla , > -
a==
prevStep b Q
{iC=0) R
LANDING

Tatch 1 finalize_event (a) [1

c=uint32(4)

a==b
[k
GROUND
c=uint32(8)
|'ac_on_ground (b, , L) [2] 2c_on_oround 1z 1z
delay1 delay2
{IC=1} {IC=0}

Figure 4: Post Landing Finalize (source: [28])

In order to apply our AG reasoning into this Simulink model, firstly we model the subsystem
in our block theories as shown in Section 6.1. Then we verify a number of properties for
three small subsystems in this model, which is given in Section 6.2. Finally, in Section 6.3 we
present verification of four requirements of this subsystem. To avoid confusion between the
subsystem and three small subsystems, in the following sections we use the system to denote
the post_landing_finalize subsystem to be verified, and the subsystems to denote three small
subsystems.

6.1 Modelling

We start with translation of three small subsystems (variableTimer, rise1Shot and latch) accord-
ing to our block theories.

The subsystem latch is modelled as below. It is shown in Appendix C.3 as well.
((((UnitDelay 0) ||, Id); (LopOR 2)) || (Id; LopNOT)); (LopAND 2); Split2) fp (0,0)

The blocks LopOR, LopNOT and LopAND correspond to the OR, NOT and AND operators
in the logic operator block. Their definitions can be found in Appendix A. Then we apply
composition definitions, expansion and SimBlock closure laws to simplify the subsystem. The
latch subsystem is finally simplified to a design.

latch = FBlock (trues, 2,1, latch_simp_pat_f)

where the definition of latch_simp_pat_f is given in Appendix C.

18

https://www.honeywell.com/
http://www.drisq.com/

Similarly, variableTimer and rise1Shot are modelled and simplified as shown in Appendix C.1
and C.2 respectively.

Finally, we can use the similar way to compose the three subsystems with other blocks in this
diagram to get the corresponding composition of post_landing_finalise_1, and then apply the
similar laws to simplify it further into one block and verify requirements for this system. However,
for the outermost feedback it is difficult to use the similar way to simplify it into one block
because it is more complicate than feedbacks in other three small subsystems (variableTimer,
rise1Shot and latch). In order to use the expansion theorem 5.6 of feedback, we need to find a
solution for the block and prove the solution is unique. With increasing complexity of blocks,
this expansion is becoming harder and harder. Therefore, post_landing_finalise_1 has not been
simplified into one block. Instead, it is simplified to a block with a feedback which can be seen
in the lemma post_landing_finalize_1_simp in Appendix C.

post_landing_finalize_1 = plf _riselshot_simp fp (4,1)

6.2 Subsystems Verification

After simplification, we can verify properties of the subsystems using the refinement relation.

We start with verification of a property for variableTimer: vt_req_00. This property states that
if the door is closed, then the output of this subsystem is always false. The verification of this
property is given in Appendix C.1.1. However, this property can not be verified in absence of
an assumption made to the second input: door_open_time. This is due to a type conversion
block int32 used in the subsystem. If the input to int32 is larger than 2147483647 (that
is, door_open_time larger than 2147483647/10), its output is less than zero and finally the
output is true. That is not the expected result. Practically, door_open_time should be less than
2147483647/10. Therefore, we can make an assumption of the input and eventually verify this
property as given in the lemma vt_req_00. Additionally, we suggest a substitution of int32 by
uint32, or a change of the data type for the input from double to unsigned integer, such as
uint32.

As for the rise1Shot subsystem, we verified one property: riselshot_req_00. This property
specifies that the output is true only when current input is true and previous input is false (see
Appendix C.2.1). It means it is triggered only by a rising edge and continuous true inputs will
not enable the output.

Furthermore, one property for the latch subsystem (a SR AND-OR latch) is verified (see Ap-
pendix C.3.1). The property latch_req_00 states that as long as the second input R is true, its
output is always false. This is consistent with the definition of the SR latch in circuits.

6.3 Requirement Verification

The four requirements to be verified are illustrated in Table 1.

Our approach to cope with the difficulty to simplify this system into one design is to apply com-
positional reasoning. Generally, application of compositional reasoning to verify requirements is
as follows.

e In order to verify the property satisfied by post_landing_finalise_1:
C C post_landing_finalise_1
, that is, to verify
C C (plf _riselshot_simp fp (4,1))

19

Requirement 1

A finalize event will be broadcast after the aircraft door has
been open continuously for door_open_time seconds while
the aircraft is on the ground after a successful landing.

Requirement 2

A finalize event is broadcast only once while the aircraft is
on the ground.

Requirement 3

The finalize event will not occur during flight.

Requirement 4

The finalize event will not be enabled while the aircraft door
is closed.

Table 1: Requirements for the system (source: [28])

)

e We need to find a decomposed contract C’ such that

and

(C' C plf _riselshot_simp)

)

e Then we get

(C" fp (4,1)) C (plf _riselshot_simp fp (4,1))

using the monotonicity theorem 5.5 of feedback;

e Finally, according to transitivity of the refinement relation, it establishes that

C C (plf —riselshot_simp fp (4,1))

6.3.1 Requirement 3 and 4

Requirement 3 and 4 are verified together as shown in Appendix C.5.4. req_04_contract and

req_04_1_contract are C' and C’ described above respectively.

6.3.2 Requirement 1

According to Assumption 3 “door_open_time does not change while the aircraft is on the
ground” and the fact that this requirement specifies the aircraft is on the ground, therefore
door_open_time is constant for this scenario. In order to simplify the verification, we assume it

is always constant. The contract req_01_contract specifies that

e it always has four inputs and one output;

e and the requirement:

— after a successful landing at step m and m + 1: the door is closed, the aircraft is on
ground, and the mode is switched from LANDING (at step m) to GROUND (at step

m+ 1),

20

— then the door has been open continuously for door_open_time seconds from step
m+2+p to m+2+ p+ door_open_time, therefore the door is closed at the previous
stepm+2+p—1,

— while the aircraft is on ground: ac_on_ground is true and mode is GROUND,

— additionally, between step m and m + 2 + p, the finalize_event is not enabled,

— then a finalize_event will be broadcast at step m + 2 4+ p + door_open_time.

As shown in Appendix C.5.1, this requirement has been verified.

6.3.3 Requirement 2
The contract req_02_contract specifies that

e it always has four inputs and one output;
e and the requirement:

— if a finalize event has been broadcast at step m,
— while the aircraft is on ground: ac_on_ground is true and mode is GROUND,

— then a finalize event will not be broadcast again.

As shown in Appendix C.5.2, this requirement has been verified too.

6.4 Summary

In sum, we have translated and mechanised the post_landing_finalize diagram in Isabelle/UTP,
simplified its three subsystems (variableTimer, rise1Shot and latch) and the post_landing_finalize
into a design with feedback, and finally verified all four requirements of this system. In addition,
our work has identified a vulnerable block in variableTimer. This case study demonstrates that
our verification framework has rich expressiveness to specify scenarios for requirement verification
(as illustrated in the verification of Requirement 1 and 2) and our verification approach is useful
in practice.

7 Conclusions

In this report, we present our work for the VeTSS funded project “Mechanised Assume-Guarantee
Reasoning for Control Law Diagrams via Circus” from developed theories and laws as well
as their mechanisation in Isabelle/UTP. In addition, we present practical application of our
theories to reason about a Simulink model in the aircraft cabin pressure control application.
Our mechanisation is also attached to this report.

7.1 Progress Summary

The project wss initially proposed to have four work packages. And a summary of progress is
shown in Table 2.

WP1 — framework: we reviewed current solutions that use contract-based reasoning and Circus-
based program verification for Simulink. Eventually we put forward a new contract-based
assume-guarantee reasoning methodology for Simulink diagrams. The theoretical part of this
approach is based on the theory of design in UTP that is presented in this report.

21

Work Package | Description Progress
WP1 Review current Simulink reasoning solutions and put forward | 100%

a new contract-based methodology (using UTP design the-
ory) to reason about faulty behaviour through assumptions
WP2 Define assumption-guarantee contracts for the Simulink se- | 100%
mantics and mechanise them in Isabelle/UTP, including op-
erators and a limited selection of Simulation discrete blocks
that are used in our case studies, and mechanise in Is-
abelle/UTP

WP3 Mechanise industrial case studies (building case and post | 50%
landing finalize case) in Isabelle/UTP using mechanised
block libraries (produced in WP2), including modelling, con-
tract calculation, and proof

WP4 Investigate the weakest assumption calculus based on the | 25%
examples, in order to automate reasoning about interferences
between blocks and subsystems

Table 2: Project Progress Summary

WP2 — definition and mechanisation: one advantage of using designs for reasoning is its ex-
isting theory and mechanisation in Isabelle/UTP. However, in order to accommodate Simulink
diagrams into designs easily, we have defined three additional virtual blocks (Identity, Split and
Router) and two extra operators (Parallel Composition and Feedback). They correspond to
signal connections and block composition in Simulink. With these new blocks and operators (as
well as existing operators for designs), we could translate Simulink diagrams into composition
of designs. In addition, we have mechanised (in Isabelle/UTP) the three virtual blocks and 14
Simulink blocks (Constant, Unit Delay, Discrete-Time Integrator, Sum, Product, Gain, Satura-
tion, MinMax, Rounding, Logic Operator, Relational Operator, Switch, Data Type Conversion
and Initial Condition) that will be used in our case studies.

WP3 — case studies: using definitions and mechanisation of these blocks and operators, we have
mechanised one of our case study (the post landing finalize) in Isabelle/UTP.

WP4 - Though time did not permit us to consider the weakest assumption calculus for Simulink
in details, in a parallel project we have explored a calculus for weakest reactive rely conditions for
reactive contracts based in UTP. The details of this can be found in a draft journal paper under
review for Theoretical Computer Science [26]. This initial study provides necessary background
for future work with Simulink.

Due to the fact that we started this project two months late since October 2017 because of delays
in receiving funding, therefore we have limited time to finish all proposed work. We have not
verified all requirements of the post landing finalize case, have not started the second building
case study, and have investigaged WP4 partially.

Acknowledgements. This project is funded by the National Cyber Security Centre (NCSC)
through UK Research Institute in Verified Trustworthy Software Systems (VeTSS) [29]. We
thank Honeywell and D-RisQ for sharing of the industrial case.

22

A Block Theories

In this section, we define main theories of block diagrams in UTP.

theory simu-contract-real
imports
~~ /sre/HOL/ Word | Word
utp-designs
begin

syntax
-svid-des :: svid (Vp)

translations
-svid-des => Y p

Defined Simulink blocks using designs directly.

named-theorems sim-blocks

Functions used to define Simulink blocks via patterns.

named-theorems f-blocks

Defined Simulink blocks using functions and patterns.

named-theorems f-sim-blocks

SimBlock healthiness.

named-theorems simblock-healthy

recall-syntax

A.1 Additional Laws

theorem ndesign-composition:
((p1 Fn Q1) 55 (p2 Fy Q2)) = ((p1 A= [Q1 55 (= [p2]<)]<) Fu (Q1 55 Q2))
apply (ndes-simp, simp add: wp-upred-def)
by (rel-simp)

lemma list-equal-size2:
fixes z
assumes length(z) = 2
shows = = [hd(z)]e[last(x)]
proof —
have 1: z = [hd(z)]etl(z)
by (metis append-Cons append-Nil assms hd-Cons-tl length-0-conv zero-not-eg-two)
have 2: ti(z) = [last(z)]
using assms
by (metis One-nat-def 1 append-butlast-last-id append-eg-append-conv append-is-Nil-conv
cancel-ab-semigroup-add-class. add-diff-cancel-left’ length-Cons length-tl list.size(3)
nat-1-add-1 not-Cons-self2)
from 1 and 2 show #%thesis
by auto
qed

23

theorem ndesign-refinement:
(P1F, QI C P2+, Q2) «— (‘P1 = P2° A ‘[Pl]< N Q2 = Q1Y)
by (rel-auto)

theorem ndesign-refinement”:
(P1+, QI CP2tF, Q2)«— (P2C PI ANQ1C ([Pl]l< A Q2))
by (meson ndesign-refinement refBy-order)

lemma assume-Ran: P ;; [Ran(P)]T = P
apply (rel-auto)
done

fun sum-list! where
sum-list] [] = 0 |
sum-list] (z#xs) = (sum-list] zs + x)

A.2 State Space

tnouts: input and output signals, abstracted as a function from step numbers to a list of inputs
or outputs where we use universal real number as the data type of signals.

alphabet sim-state =
nouts :: nat = real list

A.3 Patterns

FBlock is a pattern to define a block with precondition, number of inputs, number of outputs,
and postcondition.

definition FBlock :
((nat = real list) = nat = bool) =
nat = nat =
((nat = real list) = nat = (real list)) =
sim-state hrel-des where
[sim-blocks]: FBlock pre m nn f =
(Y n:nat - («prey (&inouts), («n»)q)::sim-state upred) b,
((V n:nat -
((#u($inouts («n»)y)) =u «m») A
((#u($inouts” («n»)a)) =4 «nn») A
(«f» ($inouts), («n»)q =u (Sinouts” («n»)4))) A
(Vv z - (¥ nunat - (#u(«@» («n9)g) =4 «my») = (Fu(«f> («29) o («n)q) =4 «nn»))))
(* for any inputs, f always produces the same size output. Useful to prove FBlock-seq-comp)

)

lemma pre-true [simp]: (V n:inat -(«Az n. Truey (&inouts), («n»)y)::sim-state upred) = true
by (rel-simp)

A.4 Number of Inputs and Outputs

abbreviation PrePost(P) = prep(P) A postp(P)

SimBlock is a condition stating that a design is a Simulink block if it is feasible, and has m
inputs and n outputs.

definition SimBlock :: nat = nat = sim-state hrel-des = bool
where [sim-blocks]:

24

SimBlock m n P = ((PrePost(P) # false) A (x This is stronger than just excluding abort and miracle,
and also not the same as Hj feasibility *)

(Y na - #,(&inouts(«na»),) =, «m») & Dom(PrePost(P))) A

((V na - #.(&inouts(«na»)y) =, «n») C Ran(PrePost(P)))(x A

(P is N)x))

axiomatization
mps :: sim-state hrel-des = nat and
outps :: sim-state hrel-des = nat
where
inps-outps: (SimBlock m n P) — (inps P = m) A (outps P = n)

A.5 Operators
A5.1 1Id

definition f-Id:: (nat = real list) = nat = (real list) where
[f-blocks]: f-Id z n = [hd(z n)]

Id block: one input and one output, and the output is always equal to the input

definition Id :: sim-state hrel-des where
[f-sim-blocks]: Id = FBlock (Ax n. True) 1 1 (f-Id)

A.5.2 Parallel Composition

definition mergeB ::
((sim-state des, sim-state des, sim-state des) mrg,
sim-state des) urel (Bp;) where
[sim-blocks]: mergeB = (($0k~ =, ($0—0k A $1—0k)) A (
(V nunat « ($vprinouts” («n»),) =u (appendy (30—vprinouts («n»)q)q (31 —vprinouts («n»)q)q))
(*A (#4(3vprinouts< («n»),) =4 2)%))))

takem: a block that just takes the first nr2 inputs and ignores the remaining inputs.

definition takem :: nat = nat = sim-state hrel-des where
[sim-blocks]: takem nrl nr2 = ((«nr2» <, «nri») k,
(V n:nat -
(ucong ((#u($inouts («n»)q)) =y «nrl»)
(uconj ((#u($inouts” («n»)y)) = «nr2y)
(true < («nr2» =, 0) > («takey («nr2»), ($inouts («n»)q)a =« (Binouts” («n»),)))
)))

dropm: a block that just drops the first nr2 inputs and outputs the remaining inputs.

definition dropm :: nat = nat = sim-state hrel-des where
[sim-blocks]: dropm nrl nr2 = ((«nr2» <, «nrix) F,
(V ninat -
(uconj ((#u($inouts («n»)q)) = «nriy)
(ucong ((#4($inouts” («n»)q)) =u «nr2»)
(true @ («nr2» =, 0) > («drop» («nrl—nr2»), ($inouts («n»)a)a =u ($inouts” («n»),)))
)))

We use the similar parallel-by-merge in UTP to implement parallel composition.

definition sim-parallel ::
sim-state hrel-des =
stm-state hrel-des =
sim-state hrel-des (infixl |5 60)

25

where [sim-blocks]: P ||p Q =
(((takem (inps P + inps Q) (inps P)) ;; P)

H mergeB

((dropm (inps P + inps Q) (inps Q)) ;3 Q))

A.5.3 Sequential Composition

It is the same as the sequential composition for designs.

A.5.4 Feedback

definition f-PreFD :: (nat = real) (x input signal: introduced by exists x)
= nat (x the input index number that is fed back from output. x)
= (nat = real list) = nat
= real list where
[f-blocks]: f-PreFD x idx-fd inouts0 n =
(take idz-fd (inoutsO n)) e (x n) # (drop idx-fd (inoutsO n))

definition f-PostFD ::
nat (x the input index number that is fed back from output. x)
= (nat = real list) = nat
= real list where
[f-blocks]: f-PostFD idx-fd inoutsO n =
(take idz-fd (inoutsO n)) e (drop (idx-fd+1) (inoutsO n))

definition PreFD ::

(nat = real) (x input signal: introduced by exists *)

= nat (x m %)

= nat (x the input index number that is fed back from output. x)

= sim-state hrel-des where
[f-sim-blocks]: PreFD x nr-of-inputs idz-fd = (true b,

(V ninat - (

((#4($inouts («n»)y)) = «nr-of-inputs—1») A
((#u($inouts ™ («n»)y)) =4 «nr-of-inputs») A

($inouts” («n»)q =y («f-PreFD x idz-fd» ($inouts), («n»)q))
)

definition PostFD :: (nat = real) (x input signal: introduced by exists *)
= nat (x m %)
= nat (x the input index number that is fed back from output. x)
= sim-state hrel-des where
[f~sim-blocks|: PostF'D x nr-of-inputs idz-fd =
(true b,
(V nunat - (
((#.($inouts («n»)y)) = «nr-of-inputs») A
((#4($inouts ™ («n»)y)) =y «nr-of-inputs—1») A
($inouts” («n»)q =y («f-PostFD ida-fd» ($inouts), («n»)a)) A
((«nthy ($inouts («n»)a)q («ida-fd»), =, «x n»))

)

The feedback operator sim-feedback is defined via existential quantification.

fun sim-feedback :: sim-state hrel-des

26

= (nat * nat)
= sim-state hrel-des (infixl fp 60)
where
P fp (il,01) = (3 (x) - (PreFD z (inps P) il ;; P ;; PostFD x (outps P) ol))

Solvable checks if the supplied function for feedback is solvable according to the feedback signal
from the output ol to the input 1. A function is solvable if its feedback is feasible. Feedback
may lead to algebraic loops but this condition states that algebraic loops are solvable.

definition Solvable:: nat (x the input index for feedback)
= nat (x the output index for feedback x)
= nat (* how many input signals *)
= nat (x how many output signals *)
= ((nat = real list) = nat = real list) (x function *)
= bool where
Solvable i1 ol m nn f = ((i1 < m A ol < nn) A
(Vinoutsg. (Vz. length(inoutsy) = (m—1)) (x For any (m—1) inputs)
%
(Faz. (x there exists a signal zz that is the ilth input and the olth output *)
(Vn. (zz n = (x the olth output *)
(f (An1. f-PreF'D xzx il inoutsg nl
(x ((take i1 (inoutsg nl))e(zx nl)#(drop il (inoutsy nl))) *)
(* assemble of inputs to make zx as ilth x)
) n)lol

)))

Solvable-unique: the feedback is solvable and has a unique solution.

definition Solvable-unique:: nat (x the input index for feedback)
= nat (x the output index for feedback x)
= nat (x how many input signals *)
= nat (x how many output signals *)
= ((nat = real list) = nat = real list) (x function *)
= bool where
Solvable-unique i1 ol m nn f = ((il < m A ol < nn) A
(Vinoutsg. (V. length(inoutsg) = (m—1)) (x For any (m—1) inputs *)
H
(3! (zz::nat = real). (x there only exists a signal xx that is the ilth input and the olth output x)
(Vn. (zz n = (* the olth output *) (f (Anl. f-PreFD zz il inoutsy nl) n)lol)

)
)
)
)

Solution returns the solution for a feedback block. Here the solution means the signal that could
satisfy the feedback constraint (the related input is equal to the output)

definition Solution:: nat (x the input index for feedback)
= nat (x the output index for feedback x)
= nat (x how many input signals *)
= nat (x how many output signals *)
= ((nat = real list) = nat = real list) (x function *)
= (nat = real list)
= (nat = real) where
Solution il o1 m nn f inoutsy =
(SOME (zz::nat = real).
((%(Vz. length(inoutsg) = (m—1)) (x For any (m—1) inputs x)

27

— %)
(Vn. (zzn =
(f (An1. f~PreFD zz il inoutsy nl
(x ((take i1 (inoutso nl1))e[zz ni]e(drop il (inoutso ni)))x)
) n)lol
)
)

is-Solution checks if the supplied solution for a feedback block is a real solution.

definition is-Solution:: nat (x the input index for feedback x)
= nat (x the output index for feedback x)
= nat (x how many input signals *)
= nat (x how many output signals *)
= ((nat = real list) = nat = real list) (x function %)
= ((nat = real list) = (nat = real))
= bool where
is-Solution i1 o1 m nn faxx = (
(Vinoutsg. (Vz. length(inoutsy) = (m—1))
— (Vn. (zz inoutsg n = (f (Anl. f~PreFD (zz inoutsy) il inoutsg nl) n)lol))))

A.5.5 Split

definition f-Split2:: (nat = real list) = nat = (real list) where
[f-blocks]: f-Split2 x n = [hd(x n), hd(z n))

definition Split2 :: sim-state hrel-des where
[f-sim-blocks]: Split2 = FBlock (Ax n. True) 1 2 (f-Split2)

A.6 Blocks
A.6.1 Source

A.6.1.1 Constant Constant Block: no inputs and only one output.

definition f-Const:: real = (nat = real list) = nat = (real list) where
[f-blocks]: f-Const z0 x n = [20]

definition Const :: real = sim-state hrel-des where
[f-sim-blocks]: Const c0 = FBlock (Axz n. True) 0 1 (f-Const c0)

A.6.2 Unit Delay

Unit Delay block: one parameter (initial output), one input and one output. And the output is
equal to previous input if it is not the initial output; otherwise it is equal to the initial output.
definition f-UnitDelay:: real = (nat = real list) = nat = (real list) where

[f-blocks]: f-UnitDelay z0 x n = [if n = 0 then z0 else hd(z (n—1))]

definition UnitDelay :: real = sim-state hrel-des where
[f-sim-blocks]: UnitDelay 0 = FBlock (Ax n. True) 1 1 (f-UnitDelay x0)

A.6.3 Discrete-Time Integrator

The Discrete-Time Integrator block: performs discrete-time integration or accumulation of sig-
nal. Integration (T=Ts) or Accumulation (T=1) methods: forward Euler, backward Euler, and
trapezoidal methods.

28

DT-int-fw: integration by Forward Euler

fun sum-by-fw-euler :: nat = real = real = real = (nat = real list) = real where
sum-by-fw-euler 0 20 K T © = 20 |
sum-by-fw-euler (Suc m) 20 K Tz =

(sum-by-fw-euler m 20 K T z) + (K * T (hd(z m)))

definition f-DT-int-fw :: real = real = real = (nat = real list) = nat = (real list) where
[f-blocks]: f-DT-int-fw 20 K T x n = [sum-by-fw-euler n 0 K T x]

definition DT-int-fw :: real = real = real =
sim-state hrel-des where
[f-sim-blocks]: DT-int-fw 20 K T = FBlock (Ax n. True) 1 1 (f-DT-int-fw 20 K T)

DT-int-bw: integration by Backward Euler (Initial condition setting is set to State)

fun sum-by-bw-euler :: nat = real = real = real = (nat = real list) = real where
sum-by-bw-euler 0 x0 K Tx = z0 + (K = T x (hd(z 0))) |
sum-by-bw-euler (Suc m) 20 K T z =

(sum-by-bw-euler m 20 K T z) + (K x T * (hd(z m)))

definition f-DT-int-bw :: real = real = real = (nat = real list) = nat = (real list) where
[f-blocks]: f-DT-int-bw 20 K T x n = [sum-by-bw-euler n z0 K T x]

definition DT-int-bw :: real = real = real = sim-state hrel-des where
[f-sim-blocks]: DT-int-bw z0 K T = FBlock (Az n. True) 1 1 (f-DT-int-bw 20 K T)

DT-int-trape: integration by Trapezoidal (Initial condition setting is set to State).

fun sum-by-trape where
sum-by-trape 0 20 K T x = 20 + (K * (T div 2) = (hd(z 0))) |
sum-by-trape (Suc m) =0 K Tz =

(sum-by-trape m z0 K T x) +

(K * (T div 2) * (hd(z m))) +

(K * (T div 2) % (hd(z (Suc m))))

definition f-DT-int-trape :: real = real = real = (nat = real list) = nat = (real list) where
[f-blocks]: f-DT-int-trape 0 K T x n = [sum-by-trape n 20 K T x|

definition DT-int-trape :: real = real = real =

sim-state hrel-des where
[f-sim-blocks]: DT-int-trape z0 K T = FBlock (Ax n. True) 1 1 (f-DT-int-trape 20 K T)

A.6.4 Sum

The Sum block performs addition or subtraction on its inputs.

sum-by-sign: Summation or subtraction of a list according to their corresponding signs.

requires the length of inputs are equal to that of signs (true for +)

fun sum-by-sign where
sum-by-sign [| - = 0 |
sum-by-sign (z#xs) (s#ss) = (if s then (sum-by-sign xs ss +) else (sum-by-sign xs ss — x))

definition f-SumSub:: bool list = (nat = real list) = nat = (real list) where
[f-blocks]: f-SumSub signs x n = [sum-by-sign (x n) signs]

SumSub: summation or subtraction according to supplied signs.

29

It

definition SumSub :: nat = bool list = sim-state hrel-des where
[f-sim-blocks]: SumSub nr signs = FBlock (Ax n. True) nr 1 (f~SumSub signs)

Sum2 is a special case of SumSub and it adds up two inputs
definition f-Sum2:: (nat = real list) = nat = (real list) where
[f-blocks]: f-Sum2 x n = [hd(xz n) + hd(tl(z n))]

definition Sum?2 :: sim-state hrel-des where
[f-sim-blocks]: Sum2 = FBlock (Az n. True) 2 1 (f-Sum?2)

SumSub2 is a special case of SumSub and it is equal to subtract the second input from the first
input.

definition f-SumSub?2 :: (nat = real list) = nat = (real list) where

[f-blocks]: f-SumSub2 z n = [hd(z n) — hd(tl(z n))]

definition SumSub?2 :: sim-state hrel-des where
[f-sim-blocks]: SumSub2 = FBlock (Ax n. True) 2 1 (f-SumSub2)

SubSum2 is a special case of SumSub and it is equal to subtract the first input from the second
input.

definition f-SubSum2 :: (nat = real list) = nat = (real list) where

[f-blocks]: f-SubSum2 x n = [— hd(z n) + hd(tl(z n))]

definition SubSum?2 :: sim-state hrel-des where
[f-sim-blocks]: SubSum2 = FBlock (Ax n. True) 2 1 (f-SubSum?2)

A.6.5 Product
The Product block performs multiplication and division.

not-divide-by-zero is a predicate in assumption. For signs, true denotes * and false for /.

fun not-divide-by-zero where
not-divide-by-zero [| - = True |
not-divide-by-zero (z#xs) (s#ss) =
(HOL.conj (not-divide-by-zero s ss) (if s then True else (z # 0)))

product-by-sign: multiplies or divides by signs.

fun product-by-sign where
product-by-sign [] - = 1 |
product-by-sign (z#xs) (s#ss) =
(if s then (product-by-sign xs ss x x) else (product-by-sign s ss | z))

definition f-ProdDiv :: bool list = (nat = real list) = nat = (real list) where
[f-blocks]: f-ProdDiv signs x n = [product-by-sign (z n) signs]

definition f-no-div-by-zero :: bool list = (nat = real list) = nat = bool where
[f-blocks]: f-no-div-by-zero signs © n = not-divide-by-zero (x n) signs

ProdDiv has additional precondition that assumes all values of the divisor inputs are not equal
to zero.

definition ProdDiv :: nat = bool list = sim-state hrel-des where
[f~sim-blocks|: ProdDiv nr signs = FBlock (Az n. (f-no-div-by-zero signs x n)) nr 1 (f-ProdDiv signs)

Mul2 is a special case of ProdDiv and it multiplies two inputs.

30

definition f-Mul2:: (nat = real list) = nat = (real list) where
[f-blocks]: f-Mul2 z n = [hd(z n) * hd(tl(z n))]

definition Mul?2 :: sim-state hrel-des where

[f-sim-blocks]: Mul2 = FBlock (Az n. True) 2 1 (f-Mul2)

Div2 is a special case of ProdDiv and the first input is divided by the second input.
definition f-Div2:: (nat = real list) = nat = (real list) where

[f-blocks]: f-Div2 x n = [hd(z n) / hd(tl(z n))]

definition Div2 :: sim-state hrel-des where
[f-sim-blocks]: Div2 = FBlock (Az n. (hd(tl(z n)) # 0)) 2 1 (f-Div2)

A.6.6 Gain

definition f-Gain:: real = (nat = real list) = nat = (real list) where
[f-blocks]: f-Gain k x n = [k % hd(z n)]

definition Gain :: real = sim-state hrel-des where
[f-sim-blocks]: Gain k = FBlock (Ax n. True) 1 1 (f~Gain k)

A.6.7 Saturation

definition f-Limit:: real = real = (nat = real list) = nat = (real list) where
[f-blocks]: f-Limit ymin ymaz x n =
[if ymin > hd(x n) then ymin else
(if ymax < hd(z n) then ymax else hd(z n))]

definition Limit :: real = real = sim-state hrel-des where
[f-sim-blocks]: Limit ymin ymax = FBlock (Ax n. True) 1 1 (f-Limit ymin ymax)

A.6.8 MinMax

MinList: return the minimum number from a list of numbers.

fun MinList where
MinList [| minz = minx |
MinList (z#xs) minz =
(if < minz
then MinList zs x
else MinList xs minx)

The input list must not be empty.
abbreviation MinLst = (A Ist . MinList Ist (hd(Ist)))

MazList: return the maximum number from a list of numbers.

fun MaxList where
MazList [| mazz = mazx |
MaxList (z#txs) mazz =
(if £ > mazz
then MaxList xs x
else MazList xs mazz)

The input list must not be empty.
abbreviation MazLst = (X Ist . MazxList lst (hd(lst)))

31

MinN returns the minimum value in the inputs.

definition f-MinN:: (nat = real list) = nat = (real list) where
[f-blocks]: f-MinN x n = [MinLst (z n)]

definition MinN :: nat = sim-state hrel-des where
[f-sim-blocks]: MinN nr = FBlock (Az n. True) nr 1 (f-MinN)

definition f-Min2:: (nat = real list) = nat = (real list) where
[f-blocks]: f-Min2 x n = [min (hd(z n)) (hd(H(z n)))]

definition Min2 :: sim-state hrel-des where
[f-sim-blocks]: Min2 = FBlock (Ax n. True) 2 1 (f-Min2)

MazN returns the maximum value in the inputs.

definition f-MaxzN:: (nat = real list) = nat = (real list) where
[f-blocks]: f-MaxN x n = [MazLst (z n)]

definition MazN :: nat = sim-state hrel-des where
[f-sim-blocks]: MazN nr = FBlock (Az n. True) nr 1 (f-MazN)

definition f-Maz2:: (nat = real list) = nat = (real list) where
[f-blocks]: f-Max2 x n = [maz (hd(z n)) (hd(tl(z n)))]

definition Maz2 :: sim-state hrel-des where
[f-sim-blocks]: Max2 = FBlock (Az n. True) 2 1 (f-Max2)

A.6.9 Rounding

The Rounding Function block applies a rounding function to the input signal to produce the
output signal.

RoundFloor rounds inputs using the floor function.

definition f-RoundFloor:: (nat = real list) = nat = (real list) where
[f-blocks]: f-RoundFloor x n = [real-of-int |(hd(z n))]]

definition RoundFloor :: sim-state hrel-des where
[f-sim-blocks]: RoundFloor = FBlock (Ax n. True) 1 1 (f~-RoundFloor)

RoundCeil rounds inputs using the ceil function.

definition f-RoundCeil:: (nat = real list) = nat = (real list) where
[f-blocks]: f-RoundCeil x n = [real-of-int [(hd(z n))]]

definition RoundCeil :: sim-state hrel-des where
[f-sim-blocks]: RoundCeil = FBlock (Az n. True) 1 1 (f-RoundCeil)

A.6.10 Logic Operators

The Logical Operator block performs the specified logical operation on its inputs.
e [t supports seven operators: AND, OR, NAND, NOR, XOR, NXOR, NOT;
e An input value is TRUE (1) if it is nonzero and FALSE (0) if it is zero;
e An output value is 1 if TRUE and 0 if FALSE;

32

A.6.10.1 AND fun LAnd :: real list = bool where
LAnd || = True |
LAnd (x#xs) = (if x = 0 then False else (LAnd xs))

definition f-LopAND:: (nat = real list) = nat = (real list) where
[f-blocks|: f-LopAND x n = [if LAnd (x n) then 1 else 0]

definition LopAND :: nat = sim-state hrel-des where
[f-sim-blocks]: LopAND m = FBlock (Ax n. True) m 1 (f~LopAND)

A.6.10.2 OR fun LOr : real list = bool where
LOr || = False |
LOr (z#uxs) = (if x # 0 then True else (LOr zs))

definition f-LopOR:: (nat = real list) = nat = (real list) where
[f-blocks]: f-LopOR x n = [if LOr (z n) then 1 else 0]

definition LopOR :: nat = sim-state hrel-des where
[f-sim-blocks]: LopOR m = FBlock (Ax n. True) m 1 (f-LopOR)

A.6.10.3 NAND fun LNand :: real list = bool where
LNand [] = False |
LNand (z#xs) = (if © = 0 then True else (LNand xs))

definition f-LopNAND:: (nat = real list) = nat = (real list) where
[f-blocks]: f-LopNAND z n = [if LNand (x n) then I else 0]

definition LopNAND :: nat = sim-state hrel-des where
[f~sim-blocks|: LopNAND m = FBlock (Ax n. True) m 1 (f~LopNAND)

A.6.10.4 NOR fun LNor : real list = bool where
LNor || = True |
LNor (z#xs) = (if x # 0 then False else (LNand xs))

definition f-LopNOR:: (nat = real list) = nat = (real list) where
[f-blocks]: f-LopNOR x n = [if LNor (z n) then 1 else 0]

definition LopNOR :: nat = sim-state hrel-des where
[f-sim-blocks]: LopNOR m = FBlock (Ax n. True) m 1 (f-LopNOR)

A.6.10.5 XOR fun LXor : real list = nat = bool where
LXor [| t = (if t mod 2 = 0 then False else True) |
LXor (z#uxs) t = (if x # 0 then (LXor zs (t+1)) else (LXor zs t))

lemma LXor [0, 1, 1] 0 = False
by auto

lemma LXor [0, 1, 1, 1] 0 = True
by auto

definition f-LopXOR:: (nat = real list) = nat = (real list) where
[f-blocks]: f-LopXOR z n = [if LXor (z n) 0 then 1 else 0]

definition LopXOR :: nat = sim-state hrel-des where
[f-sim-blocks]: LopXOR m = FBlock (Ax n. True) m 1 (f~LopXOR)

33

A.6.10.6 NXOR fun LNzor :: real list = nat = bool where
LNzor [| t = (if t mod 2 = 0 then True else False) |
LNzor (z#axs) t = (if © # 0 then (LNzor xs (t+1)) else (LNzor zs t))

lemma LNzor [0, 1, 1] 0 = True
by auto

lemma LNzor [0, 1, 1, 1] 0 = False
by auto

definition f-LopNXOR:: (nat = real list) = nat = (real list) where
[f-blocks]: f-LopNXOR x n = [if LNzor (z n) 0 then 1 else 0]

definition LopNXOR :: nat = sim-state hrel-des where
[f-sim-blocks|: LopNXOR m = FBlock (Az n. True) m 1 (f-LopNXOR)

A.6.10.7 NOT definition f~-LopNOT:: (nat = real list) = nat = (real list) where
[f-blocks]: f-LopNOT x n = [if hd(xz n) = 0 then 1 else 0]

definition LopNOT :: sim-state hrel-des where
[f-sim-blocks]: LopNOT = FBlock (Az n. True) 1 1 (f~LopNOT)

A.6.11 Relational Operator
The Relational Operator block performs specified relational operation on inputs.
e [t supports six operators for two-input mode: ==, =, <, <=, >, >=;

e An output value is 1 if TRUE and 0 if FALSE;

A.6.11.1 Equal == definition f-RopEQ:: (nat = real list) = nat = (real list) where
[f-blocks]: f-RopEQ x n = [if hd(xz n) = hd(tl(z n)) then I else 0]

definition RopE(Q :: sim-state hrel-des where
[f-sim-blocks]: RopEQ = FBlock (Az n. True) 2 1 (f-RopEQ)

A.6.11.2 Notequal = definition f~RopNEQ:: (nat = real list) = nat = (real list) where
[f-blocks]: f-RopNEQ x n = [if hd(z n) = hd(tl(z n)) then 0 else 1]

definition RopNEQ :: sim-state hrel-des where
[f-sim-blocks]: RopNEQ = FBlock (Az n. True) 2 1 (f-RopNEQ)

A.6.11.3 Less Than < definition f~RopLT:: (nat = real list) = nat = (real list) where
[f-blocks]: f-RopLT z n = [if hd(z n) < hd(tl(z n)) then I else 0]

definition RopLT :: sim-state hrel-des where
[f-sim-blocks]: RopLT = FBlock (Ax n. True) 2 1 (f~RopLT)

A.6.11.4 Less Than or Equal to <= definition f-RopLE:: (nat = real list) = nat = (real
list) where

[f-blocks]: f-RopLE x n = [if hd(z n) < hd(tl(z n)) then 1 else 0]

definition RopLFE :: sim-state hrel-des where
[f-sim-blocks]: RopLE = FBlock (Ax n. True) 2 1 (f-RopLE)

34

A.6.11.5 Greater Than > definition f~RopGT:: (nat = real list) = nat = (real list) where
[f-blocks]: f-RopGT x n = [if hd(z n) > hd(tl(z n)) then 1 else 0]

definition RopGT :: sim-state hrel-des where
[f-sim-blocks]: RopGT = FBlock (Ax n. True) 2 1 (f-RopGT)

A.6.11.6 Greater Than or Equal to >= definition f~RopGE:: (nat = real list) = nat =
(real list) where
[f-blocks]: f-RopGE x n = [if hd(xz n) > hd(tl(xz n)) then 1 else 0]

definition RopGFE :: sim-state hrel-des where
[f-sim-blocks]: RopGE = FBlock (Ax n. True) 2 1 (f~RopGE)

A.6.12 Switch

The Switch block switches the output between the first input and the third input based on the
value of the second input.

e The first and the third inputs are data inputs;
e The second is the control input.

e Criteria for passing first input: u2 > Threshold, u2 > Threshold, or u2 = 0;

Switchl: criteria is u2 > Threshold

definition f-Switchl:: real = (nat = real list) = nat = (real list) where
[f-blocks]: f-Switchl th x n = [if (x n)!1 > th then (xz n)!0 else (z n)!2]

definition Switchl :: real = sim-state hrel-des where
[f-sim-blocks]: Switchl th = FBlock (Ax n. True) 3 1 (f-Switchl th)

Switch2: criteria is u2 > Threshold

definition f-Switch2:: real = (nat = real list) = nat = (real list) where
[f-blocks]: f-Switch2 th x n = [if (z n)!1 > th then (xz n)!0 else (z n)!2]

definition Switch2 :: real = sim-state hrel-des where
[f-sim-blocks]: Switch2 th = FBlock (Ax n. True) 8 1 (f-Switch2 th)

Switch3: criteria is u2 =0

definition f-Switch3:: (nat = real list) = nat = (real list) where
[f-blocks]: f-Switch3 x n = [if (z n)!1 = 0 then (z n)!2 else (z n)!0)

definition Switch3 :: sim-state hrel-des where
[f-sim-blocks]: Switch3 = FBlock (Ax n. True) 3 1 (f-Switch3)

A.6.13 Data Type Conversion
Data Type Conversion: converts an input signal to the specified data type.

Integer round number towards zero

definition RoundZero :: real = int where
RoundZero © = (if x > (0::real) then |z] else [x])

35

lemma RoundZero 1.1 = 1
apply (simp add: RoundZero-def)
done

lemma RoundZero (—1.1) = —1
apply (simp add: RoundZero-def)
done

mt8: convert int to int8.

definition nt8 :: int = int where
int8 © = ((z+128) mod 256) — 128

int16: convert int to int16.

definition int16 :: int = int where
ntl6 x = ((x+32768) mod 65536) — 32768

mt32: convert int to int32.
definition int32 :: int = int where
nt32 x = ((x+2147483648) mod 4294967296) — 2147483648

lemma int32-eq:
assumes ¢ > 0 N x < 2147483648
shows int32 z =z
apply (simp add: int32-def)
using assms by (smt int-mod-eq)

lemma int8 (—1) = —1
by (simp add: int8-def)

lemma int8 (—128) = —128
by (simp add: int8-def)

lemma int8 (—129) = 127
by (simp add: int8-def)

lemma int8 (129) = —127
by (simp add: int8-def)

lemma int8 (—378) = —122
by (simp add: int8-def)

lemma int§ (378) = 122
by (simp add: int8-def)

uint8: convert int to uint8
definition wint8 :: int = int where

wint8 r = = mod 256

lemma uint8 (—1) = 255
by (simp add: wint8-def)

uintl6: convert int to uintl6

definition wint16 :: int = int where
wintl6 x = x mod 65536

36

wint32: convert int to uint32
definition uint32 :: int = int where
wint82 r = = mod 4294967296

lemma (uint32 4294967296) = 0
by (simp add: wint32-def)

lemma (uint32 4294967295) = 4294967295
by (simp add: wint32-def)

lemma (uint32 (—1)) = 4294967295
by (simp add: wint32-def)

lemma (uint32 (—4294967298)) = 429496729/

by (simp add: wint32-def)
DataTypeConvUint32Zero: convert to uint32 and round number towards zero.
definition f-DTConvUint32Zero:: (nat = real list) = nat = (real list) where
[f-blocks]: f-DTConvUint32Zero x n = [real-of-int (uint32 (RoundZero(hd (x n))))]

definition DataTypeConvUint32Zero :: sim-state hrel-des where
[f-sim-blocks]: DataTypeConvUint32Zero = FBlock (Ax n. True) 1 1 (f-DTConvUint32Zero)

DataTypeConvInt32Zero: convert to int32 and round number towards zero.
definition f-DTConvInt32Zero:: (nat = real list) = nat = (real list) where
[f-blocks]: f-DTConvInt32Zero x n = [real-of-int (int32 (RoundZero(hd (z n))))]

definition DataTypeConvInt32Zero :: sim-state hrel-des where
[f-sim-blocks]: DataTypeConvInt32Zero = FBlock (Ax n. True) 1 1 (f-DTConvInt32Zero)

DataTypeConvUint32Floor: convert to uint32 and round number using floor.
definition f-DTConvUint32Floor:: (nat = real list) = nat = (real list) where
[f-blocks]: f-DTConvUint32Floor x n = [real-of-int (wint32 (|(hd (z n))]))]

definition DataTypeConvUint32Floor :: sim-state hrel-des where
[f-sim-blocks]: DataTypeConvUint32Floor = FBlock (Ax n. True) 1 1 (f~-DTConvUint32Floor)

DataTypeConvInt32Floor: convert to int32 and round number using floor.
definition f-DTConvInt32Floor:: (nat = real list) = nat = (real list) where
[f-blocks]: f-DTConvInt32Floor x n = [real-of-int (int32 (|(hd (z n))]))]

definition DataTypeConvint32Floor :: sim-state hrel-des where
[f-sim-blocks]: DataTypeConvInt32Floor = FBlock (Ax n. True) 1 1 (f~DTConvInt32Floor)

DataTypeConvUint32Ceil: convert to uint32 and round number using ceil.
definition f-DTConvUint32Ceil:: (nat = real list) = nat = (real list) where
[f-blocks]: f-DTConvUint32Ceil x n = [real-of-int (uint32 ([(hd (z n))]))]

definition DataTypeConvUint32Ceil :: sim-state hrel-des where
[f-sim-blocks]: DataTypeConvUint32Ceil = FBlock (Ax n. True) 1 1 (f~DTConvUint32Ceil)

DataTypeConvInt32Ceil: convert to int32 and round number using ceil.

definition f-DTConvint32Ceil:: (nat = real list) = nat = (real list) where
[f-blocks]: f-DTConvInt32Ceil x n = [real-of-int (int32 ([(hd (z n))]))]

37

definition DataTypeConvInt32Ceil :: sim-state hrel-des where
[f-sim-blocks]: DataTypeConvInt32Ceil = FBlock (Ax n. True) 1 1 (f~-DTConvint32Ceil)

A.6.14 Initial Condition (IC)

The IC block sets the initial condition of the signal at its input port. The block does this by
outputting the specified initial condition when you start the simulation, regardless of the actual
value of the input signal. Thereafter, the block outputs the actual value of the input signal.
definition f-IC:: real = (nat = real list) = nat = (real list) where

[f-blocks]: f-IC 0 x n = [if n = 0 then z0 else hd(z n)]

definition IC :: real = sim-state hrel-des where
[f-sim-blocks]: IC z0 = FBlock (Ax n. True) 1 1 (f~IC z0)

A.6.15 Router Block
A new introduced block to route signals: the same number of inputs and outputs but in different
orders.

fun assembleOutput:: real list = nat list = real list where
assembleOutput ins [| =[] |
assembleOutput ins (z#xs) = (inslz)#(assembleOutput ins (xs))

definition f-Router:: nat list = (nat = real list) = nat = (real list) where
[f-blocks]: f-Router routes © n = assembleOutput (x n) routes

lemma f-Router [2,0,1] (Ana. [11, 22, 33]) n = [33, 11, 22]
by (simp add: f-blocks)

definition Router :: nat = nat list = sim-state hrel-des where
[f-sim-blocks]: Router nn routes = FBlock (Az n. True) nn nn (f-Router routes)

end

B Block Laws

In this section, many theorems and laws are proved to facilitate application of our theories in
Simulink block diagrams.

theory simu-contract-real-laws
imports
stmu-contract-real
begin

— timeout in seconds
declare [[smi-timeout = 600)

B.1 Additional Laws

list-len-avail: there always exists some signals that could have a specific size.

lemma list-len-avail:
Va&>0. (3 (zz::nat=real list). ¥V n. length (zx n) = x)

38

rule alll')
auto)

apply
apply
apply (induct-tac x)

apply (rule-tac x = Ana. [] in exl, simp)
apply (auto)

by (rule-tac © = Ana. 0#(zx na) in exl, simp)

A~~~

list-len-avail: there always exists some signals that could have a specific size and the value of
each signal is equal to an arbitrary real number.

lemma list-len-avail "
Vrureal. Va>0. (3 (zz:nat=real list). (Vn. (length (xz n) =) A (Vyunat<z. ((zz n)ly = r))))
apply (rule alll)
apply (auto)
apply (induct-tac x)
apply (rule-tac = Ana. [] in exl, simp)
apply (auto)
apply (rule-tac x = Ana. r#(zz na) in exl, simp)
using less-Suc-eq-0-disj by auto

sum-hd-signal sums up a signal’s current value and all past values.

fun sum-hd-signal:: (nat = real list) = nat = real where
sum-hd-signal x 0 = hd(z 0) |
sum-hd-signal x (Suc n) = hd(z (Suc n)) + sum-hd-signal © (n)

remove-at removes the ith element from a list.

abbreviation remove-at = (Alst i. (take (i) Ist)e(drop (i+1) Ist))
lemma remove-at [| 1 =[] by simp
lemma remove-at [2,3,4] 1 = [2,4] by simp

fun-eq: two functions are equal as long as they are equal in all their domains (total functions).

lemma fun-eq:
assumes Vz. fr =gz
shows f = ¢
by (simp add: assms ext)

fun-eq”: two functions are equal in all their domains then they are equal functions. (total
functions).

lemma fun-eq”:
assumes f = g
shows Vz. (fz = g 1)
by (simp add: assms)

lemma fun-neq:
assumes Vz. - (fz = g)
shows = f = ¢
using assms by auto

ref-eq: two predicates are equal as long as they are refined by each other.

lemma ref-eq:
assumes P C ()
assumes @ C P
shows P = @

39

by (simp add: antisym assms(1) assms(2))

lemma hd-drop-m:
Y (z::nat = real list) n::nat. length(z n) > m — (hd (drop m (z n)) = x nlm)
using hd-drop-conv-nth by blast

lemma hd-take-m:
m > 0 — (V(z:nat = real list) ninat. (hd (take m (z n)) = hd(x n)))
by (metis append-take-drop-id hd-append2 less-numeral-extra(8) take-eq-Nil)

lemma hd-ti-take-m:
m > 1 — (V(z:nat = real list) n:nat. (hd (¢ (take m (z n))) = hd(tl(z n))))
by (metis hd-conv-nth less-numeral-extra(3) nth-take take-eq-Nil ti-take zero-less-diff)

B.2 SimBlock healthiness

lemma SimBlock-FBlock [simblock-healthy):
assumes sI: Jinouts, inouts,’.
Vz. length(inouts,’ ©) = n A
length(inouts,) = m A
f inouts, z = inouts,’ T
assumes s2: YV na. length(z na) = m — length(f z na) = n
shows SimBlock m n (FBlock (Ax n. True) m n f)
apply (simp add: SimBlock-def FBlock-def)
apply (rel-auto)
using s apply blast
by (simp add: s2)

lemma SimBlock-FBlock' [simblock-healthy]:
assumes sI: Jinouts,. (V. pl inouts,) A
(3 inouts,".
Vz. length(inouts,’ ©) = n A
length(inouts,) = m A
f inouts, x = inouts,’)
assumes s2: Yz na. length(z na) = m — length(f z na) = n
shows SimBlock m n (FBlock (p1) m n f)
apply (simp add: SimBlock-def FBlock-def)
apply (rel-auto)
using s! s2 by blast

lemma SimBlock-FBlock-fn [simblock-healthy]:
assumes sI: SimBlock m n (FBlock (Ax n. True) m n f)
shows (Vz za. length(z za) = m — length(f za) = n)
proof —
have 1: PrePost((FBlock (Ax n. True) m n f)) # false
using s SimBlock-def
by blast
then show “thesis
apply (simp add: FBlock-def)
apply (rel-simp)
done
qed

lemma SimBlock-FBlock-fn' [simblock-healthy]:
assumes s1: SimBlock m n (FBlock (p) m n f)
shows (Vz za. length(z za) = m — length(f z za) = n)

40

proof —
have 1: PrePost((FBlock (p) m n f)) # false
using s! SimBlock-def
by blast
then show ?thesis
apply (simp add: FBlock-def)
apply (rel-simp)
done
qged

lemma SimBlock-FBlock-p [simblock-healthy]:
assumes sI: SimBlock m n (FBlock (p) m n f)
shows Jinouts, . Vz. p inouts, x A length(inouts, z) = m
proof —
have 1: PrePost((FBlock (p) m n f)) # false
using sI SimBlock-def
by blast
then show ?thesis
apply (simp add: FBlock-def)
apply (rel-simp)
by blast
qed

lemma SimBlock-FBlock-p-f [simblock-healthy]:
assumes s1: SimBlock m n (FBlock (p) m n f)
shows Jinouts, . V. p inouts, z A
(Finouts,”. YV x. length(inouts,’) = n A length(inouts,) = m A finouts, = inouts,’ z)
proof —
have 1: PrePost((FBlock (p) m n f)) # false
using s! SimBlock-def
by blast
then show ?thesis
apply (simp add: FBlock-def)
apply (rel-simp)
by blast
qed

lemma FBlock-eq:
assumes f1 = f2
shows FBlock p-f m n fl = FBlock p-f m n f2
using assms by simp

lemma FBlock-eq”:
assumes V (z::nat = real list) n. length(zn) = m — flan = f22an
shows FBlock p-f m n fl = FBlock p-f m n f2
apply (simp add: FBlock-def)
apply (rule ref-eq)
apply (rel-simp)
using assms apply simp
apply (rel-simp)
using assms by metis

lemma FBlock-eq’":
assumes sI: YV (z:nat = real list) n. (Vna. length(z na) =m) — flen=f2zn

41

assumes s2: YV (z::nat = real list) na. length(f1 x na) = n
assumes s$3: V (z::nat = real list) na. length(f2 © na) = n
shows FBlock p-f m n fl = FBlock p-f m n f2

apply (simp add: FBlock-def)

apply (rule ref-eq)

apply (rel-simp)

apply (rule congl)

apply (simp add: assms)

using assms apply blast

apply (rel-simp)

using assms by metis

B.3 inps and outps

lemma inps-P:
assumes SimBlock m n P
shows inps P = m
using assms inps-outps by auto

lemma outps-P:
assumes SimBlock m n P
shows outps P = n
using assms inps-outps by auto

lemma SimBlock-implies-not-PQ [simblock-healthy]:
assumes sI: SimBlock m n (P F, Q)
shows ([P« A Q) # false
using SimBlock-def s1 by auto

lemma SimBlock-implies-not-P [simblock-healthy]:
assumes sI: SimBlock m n (P, Q)
shows [P« # false
using SimBlock-def s1
by (metis SimBlock-implies-not-PQ aext-false ndesign-def ndesign-refinement’ true-conj-zero(1)
utp-pred-laws.bot . extremum utp-pred-laws.inf .orderE)

lemma SimBlock-implies-not-P’ [simblock-healthy]:
assumes sI: SimBlock m n (P, Q)
shows P # false
using SimBlock-def s1
by (metis SimBlock-implies-not-PQ aext-false ndesign-def
utp-pred-laws.bot . extremum utp-pred-laws.inf .orderE)

lemma SimBlock-implies-not-P"" [simblock-healthy):
assumes sI: SimBlock m n (P +, Q)
shows Jinouts, inouts,”. [[Pl<]. ((inouts, = inouts,|), (inouts, = inouts,’))
using SimBlock-implies-not-P
by (metis (mono-tags, hide-lams) bot-bool-def bot-uexpr.rep-eq false-upred-def old.unit.exhaust s1
sim-state.cases-scheme surj-pair udeduct-eql)

lemma SimBlock-implies-not-P-cond [simblock-healthy]:
assumes sI: SimBlock m n (P, Q)
assumes s2: outa f P
shows V inouts, inouts,’ inouts,’".
[P]e ((inouts, = inouts,|), (inouts, = inouts,’)) = [P]e ((inouts, = inouts,|), (inouts,
inouts,)

42

using SimBlock-implies-not-P sl s2
by (rel-simp)

lemma SimBlock-implies-not-Q [simblock-healthy]:
assumes sI: SimBlock m n (P +, Q)
shows @ # false
using SimBlock-def s1 by auto

lemma SimBlock-implies-not-Q' [simblock-healthy]:
assumes sI: SimBlock m n (P +, Q)
shows Jinouts, inouts,”. [Q]. ((inouts, = inouts,|), (inouts, = inouts,))
using SimBlock-implies-not-Q
by (metis (mono-tags, hide-lams) bot-bool-def bot-uexpr.rep-eq false-upred-def old.unit.exhaust s1
sim-state.cases-scheme surj-pair udeduct-eql)

lemma SimBlock-implies-not-PQ' [simblock-healthy]:
assumes sI: SimBlock m n (P, Q)
shows Jinouts, inouts,’. ([P]. ((inouts, = inouts,|)) A
[Q]e ((inouts, = inouts,)), (inouts, = inouts,’))))
using s! SimBlock-implies-not-PQ) apply (rel-simp)
done

lemma SimBlock-implies-mP [simblock-healthy]:
assumes sI: SimBlock m n (P, Q)
shows V inouts, inouts,’ .
[P]e ((inouts, = inouts,|)) —
[Q]e ((inouts, = inouts,|), (inouts, = inouts,’)) —
length(inouts, x) = m
proof —
from s! have 1:((V na - #.(&inouts(«nax»),) =, «m») C Dom(PrePost((P b, @Q))))
by (simp add: SimBlock-def)
then show ?thesis
by (rel-auto)
qed

lemma SimBlock-implies-Qn [simblock-healthy]:
assumes sI: SimBlock m n (P +, Q)
shows V inouts, inouts,’ x.
[P]. ((inouts, = inouts,|)) —
[Q]e ((inouts, = inouts,|), (inouts, = inouts,’)) —
length(inouts,’ x) = n
proof —
from s1 have 1:((V na « #,(&inouts(«na»),) =, «n») C Ran(PrePost((P F, @Q))))
by (simp add: SimBlock-def)
then show “thesis
by (rel-auto)
qged

lemma sim-refine-implies-inps-outps-eq:
assumes s1: SimBlock m1 n1 (P)
assumes s2: SimBlock m2 n2 (Q)
assumes s3: (P) C (Q)
assumes s4: (prep(P) A postp(Q)) # false
shows m1 = m2 A nl = n2
proof —

43

have ref-des: prep(Q) C prep(P) A postp(P) T (prep(P) A postp(Q))
using s3
by (simp add: design-refine-thms(1) design-refine-thms(2) refBy-order)
have pred-1: PrePost(P) = (prep(P) A postp(P))
apply (simp)
done
have pred-2: PrePost(Q) = (prep(Q) A postp(Q))
apply (simp)
done
have pred-1-not-false: (prep(P) A postp(P)) # false
using SimBlock-def s1 by force
have pred-2-not-false: (prep(Q) N postp(Q)) # false
using SimBlock-def s2 by force
have ref-inps-1: (V na - #,(&inouts(«na»),) =, «ml») C Dom((prep(P) A postp(P))))
using s! apply (simp add: SimBlock-def)
done
then have ref-inps-12: ... T Dom((prep(P) A postp(Q)))
apply (simp add: ref-des Dom-def)
by (smt ref-des arestr.rep-eq conj-upred-def ex.rep-eq inf-bool-def inf-uexpr.rep-eq upred-ref-iff)
have ref-inps-2: (V na « #4(&inouts(«na»)y) =, «m2») E Dom((prep(Q) N postp(Q))))
using s2 apply (simp add: SimBlock-def)
done
have ref-p2-p1: Dom((prep(Q) A postp(Q))) © Dom((prep(P) A postp(Q))
apply (simp add: Dom-def)
by (smt ref-des aext-mono arestr-and order-refl utp-pred-laws.ex-mono utp-pred-laws.inf .absorb-iff2
utp-pred-laws.inf-mono)
from ref-p2-p1 and ref-inps-2 have ref-inps-2-p1: (VY na - #.(&inouts(«nay),) =, «m2») C
Dom((pren(P) A postn(Q))))
by simp
from ref-inps-2-p1 have P1-Q2-implies-m2: (¥b. [Dom((prep(P) A postp(Q)))]e b — [V na -
#u(&inouts(«na»),) =, «m2»)] b)
apply (simp add: upred-ref-iff)
done
from ref-inps-12 have P1-Q2-implies-m1: (Vb. [Dom((prep(P) A postp(@)))]e b — [(V na -
#u(&inouts(«na»),) =4 «mi»)]e b)
apply (simp add: upred-ref-iff)
done
from P1-Q2-implies-m1 and PI1-Q2-implies-m2 have PI1-Q2-implies-m2-m1:
Vb. [Dom((prep(P) A postp(Q)))]e b — ([(V na - #4(&inouts(«na»)y) =u «m2»)]e b A [(V
na - #,(&inouts(«nay),) =, «mi»)]. b)
by blast
then have P1-Q2-implies-m2-m1-1: ¥ b. [Dom((prep(P) A postp(Q)))]e b — ([(V na - #4(&inouts(«na»),)
=u «m2»)A (V¥ na - #,(&inouts(«na»)y) =, «mi»)]e b)
by (simp add: conj-implies?2)
have forall-comb: (V na - #,(&inouts(«nay)y) =, «m2%)A (¥ na - #.(&inouts(«na»),) =,
«mlx»)) =
(V na - ((#u(&inouts(«na»)y) =u «m2%) A (F#u(&inouts(«na»),) =, «m1»)))
apply (rel-auto)
done
from P1-Q2-implies-m2-m1-1 have P1-Q2-implies-m2-m1-2:
Vb. [Dom((prep(P) A postp(@)))]e b — ([(V na - (#u(&inouts(«na»),) =, «m2») A
(#u(&inouts(«nay)q) =4 «m1»)))]e d)
by (simp add: forall-comb)
have m1-m2-eq: m2 = mi
proof (rule ccontr)

44

assume ss1: m2 # ml
have conj-false: (V na - ((#.(&inouts(«nay)q) =, «m2») A (F4(&inouts(«nay),) =, «ml»)))
= false
using ss! apply (rel-auto)
done
have imp-false: Vb. [Dom((prep(P) A postp(Q)))]e b — ([false]. b)
using PI1-Q2-implies-m2-m1-2
apply (simp add: conj-false)
done
have dom-false: Dom((prep(P) A postp(Q))) = false
by (metis imp-false true-conj-zero(2) udeduct-refinel utp-pred-laws.inf.orderE utp-pred-laws.inf-commute)
have P1-Q2-false: (prep(P) A postp(Q)) = false
by (metis assume-Dom assume-false dom-false seqr-left-zero)
show Fulse
using s4 apply (simp add: P1-Q2-false)
done
qed

have ref-inps-1" (V na - #,(&inouts(«na»)y) =, «nl») E Ran((prep(P) A postp(P))))
using s! apply (simp add: SimBlock-def)
done
then have ref-inps-12": ... T Ran((prep(P) A postp(Q)))
apply (simp add: ref-des Ran-def)
by (smt ref-des arestr.rep-eq conj-upred-def ex.rep-eq inf-bool-def inf-uexpr.rep-eq upred-ref-iff)
have ref-inps-2": (V na - #.(&inouts(«nay)y) =, «n2») C Ran((prep(Q) A postp(Q))))
using s2 apply (simp add: SimBlock-def)
done
have refp2-p1": Ran((pren(Q) A postp(Q))) T Ran((prep(P) A postn(Q)))
apply (simp add: Ran-def)
by (smt ref-des aext-mono arestr-and order-refl utp-pred-laws.ez-mono utp-pred-laws.inf .absorb-iff2
utp-pred-laws.inf-mono)
from ref-p2-p1’ and ref-inps-2’ have ref-inps-2-p1”: (VY na - #,(&inouts(«nay»),) =, «n2») C
Ran((prep(P) A postp(Q))))
by simp
from ref-inps-2-p1’ have PI1-Q2-implies-n2: (¥ b. [Ran((prep(P) A postp(Q)))]e b — [(V na -
#u(&inouts(«na»),) =, «n2»)]. b)
apply (simp add: upred-ref-iff)
done
from ref-inps-12’ have PI1-Q2-implies-n1: (Vb. [Ran((prep(P) A postp(Q)))]e b — [(V na -
#.,(&inouts(«na»)q) =4 «ni»)]. b)
apply (simp add: upred-ref-iff)
done
from P1-Q2-implies-n1 and P1-Q2-implies-n2 have P1-Q2-implies-n2-n1:
Vb. [Ran((prep(P) A postp(@)))]e b — ([(V na - #4(&inouts(«na»)q) =4 «n2»)]e b A [(V na
- #o (&inouts(«nay)q) =4 «ni»)]e b)
by blast
then have P1-Q2-implies-n2-ni-1:
Vb. [Ran((prep(P) A postp(Q))]e b — ([(V na « #.(&inouts(«na»),) =, «n2»)A (¥ na -
#.(&inouts(«na»),) =, «nl»)]. b)
by (simp add: conj-implies?2)
have forall-comb” (V na - #.(&inouts(«na»),) = «n2»)A (¥ na - #.(&inouts(«na»),) =
«nly)) =
(V na - ((#u(&inouts(«na»)y) =u «n2») A (#4(&inouts(«na»)y) =, «ni»)))
apply (rel-auto)
done

45

from P1-Q2-implies-n2-n1-1 have P1-Q2-implies-n2-n1-2:
Vb. [Ran((prep(P) A postp(Q)))]e b — ([(Y na - ((#.(&inouts(«na»)q) = «n2») A (F#4(&inouts(«na»),)
=, «ni»)))]e b)
by (simp add: forall-comb’)
have ni-n2-eq: n2 = ni
proof (rule ccontr)
assume ssl: n2 # nl
have conj-false: (V na - ((#.(&inouts(«na»),) = «n2») A (#.(&inouts(«na»),) =, «ni»)))
= false
using ss! apply (rel-auto)
done
have imp-false: Vb. [Ran((prep(P) A postp(Q)))]e b — ([false]. b)
using PI1-Q2-implies-n2-n1-2
apply (simp add: conj-false)
done
have dom-false: Ran((prep(P) A postp(Q))) = false
by (metis imp-false true-conj-zero(2) udeduct-refinel utp-pred-laws.inf.orderE utp-pred-laws.inf-commute)
have P1-Q2-false: (prep(P) A postp(Q)) = false
by (metis assume-Ran assume-false dom-false seqr-right-zero)
show Fulse
using s/ apply (simp add: P1-Q2-false)
done
qed
show ?thesis
apply (simp add: n1-n2-eq m1-m2-eq)
done
qed

B.4 Operators

B4.1 Id

lemma SimBlock-1d [simblock-healthy]:
SimBlock 1 1 (Id)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (simp add: f-blocks)
apply (metis f-Const-def length-Cons list.size(3))
by (simp add: f-blocks)

lemma inps-id: inps Id = 1
using SimBlock-1d inps-outps by auto

lemma outps-id: outps Id = 1
using SimBlock-1d inps-outps by auto
B.4.2 Sequential Composition

lemma refine-seq-mono:
assumes P! C P2 and QI C Q2
shows P1 ;; Q1 C P2 ;; Q2
by (simp add: assms(1) assms(2) seqr-mono)

lemma F'Block-seq-comp:

46

assumes sI: SimBlock m1 n1 (FBlock (Az n. True) m1 ni f)
assumes s2: SimBlock n1 n2 (FBlock (Ax n. True) nl n2 g)
shows FBlock (Ax n. True) m1 n1 f ;; FBlock (Ax n. True) nl n2 g = FBlock (Ax n. True) m1 n2
(90f)
proof —
show ?thesis
apply (simp add: sim-blocks)
apply (rel-simp)
apply (rule iffT)
apply (clarify)
apply presburger
apply (rel-auto)
proof —
fix ok, inouts, ok,’ inouts,’
assume a0: ok, ’
assume al: (Vz. length(inouts, x) = m1 A length(inouts,’ z) = n2 A
g (f inouts,) z = inouts,’)
show 30k, inouts,’".
(oky — oky," N (V. length(inouts,” ©) = n1 A finouts, x = inouts,"” x)
A (Vz za. length(x za) = m1 — length(f za) = nl)) A
(ok,” — (Vz. length(inouts,” z) = n1 A g inouts,” x = inouts,’)
A Yz za. length(z za) = nl — length(g = Ta) = n2))
apply (rule-tac x = ok, in exl)
apply (rule-tac x = f inouts, in exl, simp)
using SimBlock-FBlock-fn a0 al assms(2) s1 by blast
qed
qed

lemma SimBlock-FBlock-seq-comp [simblock-healthy):
assumes sI: SimBlock m1 n1 (FBlock (Ax n. True) m1 nl f)
assumes s2: SimBlock n1 n2 (FBlock (Ax n. True) nl n2 g)
shows SimBlock m1 n2 (FBlock (Ax n. True) m1 nl f ;; FBlock (Azx n. True) nl n2 g)
apply (simp add: s1 s2 FBlock-seq-comp)
apply (rule SimBlock-FBlock)
proof —
obtain inouts,::nat = real list where P: V na. length(inouts, na) = ml
using list-len-avail by auto
show Jinouts, inouts,’. V. length(inouts,’) = n2 A length(inouts,) = m1 A
(g o f) inouts, © = inouts,’ =
apply (rule-tac x = inouts, in exl)
apply (rule-tac x = (g o f) inouts, in exl)
using P SimBlock-FBlock-fn assms(2) s1 by auto
next
show Yz na. length(z na) = m1 — length((g o f) na) = n2
using SimBlock-FBlock-fn assms(2) sl by auto
qged

lemma FBlock-seq-comp’:

assumes sI: SimBlock m1 n1 (FBlock (p1) m1 nl f)

assumes s2: SimBlock n1 n2 (FBlock (p2) nl1 n2 g)

shows FBlock (Az n. pl z n A length(x n) = m1) mi nl f ;;

FBlock (Ax n. p2xn A length(x n) = nl) nl n2g
= FBlock (Axn.pl zn A (p2 o f)xzn A length(x n) = m1) mi n2 (g o f)
proof —
from s! have 1: Vz n. length(z n) = m1 — length(f z n) = ni

47

using SimBlock-FBlock-fn’ by blast

from s2 have 2: Vz n. length(z n) = nl — length(g z n) = n2
using SimBlock-FBlock-fn’ by blast

show ?thesis
apply (simp add: sim-blocks)
apply (simp add: ndesign-composition-wp wp-upred-def)
apply (rule ref-eq)
apply (rule ndesign-refine-intro)
apply (rel-simp)
using 1 apply fastforce
apply (rel-simp)
apply (rule-tac x = f inouts, in exl)
using 1 2 apply simp
apply (rule ndesign-refine-intro)
apply (rel-simp)
apply (metis ext)
apply (rel-simp)
by presburger

qged

lemma SimBlock-FBlock-seq-comp’ [simblock-healthy]:
assumes sI: SimBlock m1 n1 (FBlock (p1) m1 nl f)
assumes s2: SimBlock n1 n2 (FBlock (p2) nl n2 g)

assumes s3: Vzn. (plzn) — (p2of) zn
shows SimBlock m1 n2 (FBlock (Az n. pl z n A length(x n) = m1) minl f ;;
FBlock (Az n. p2 xn A length(zx n) = nl) nl n2 g)
apply (simp add: sl s2 FBlock-seq-comp”)
apply (rule SimBlock-FBlock”)
proof —
obtain inouts,::nat = real list where P: V na. length(inouts, na) = m1 A pl inouts, na
using list-len-avail s1 SimBlock-FBlock-p by metis
show dinouts,.
(Vz. pl inouts, A p2 (f inouts,) z A length(inouts, x) = ml1) A
(Finouts,’. V. length(inouts,’ ©) = n2 A length(inouts, x) = m1 A (g o f) inouts, x = inouts,’

apply (rule-tac z = inouts, in exl)
apply (rule congl)
using P s3 apply auto[1]
apply (rule-tac x = (g o f) inouts, in exl)
using P assms(2) SimBlock-FBlock-fn' s1 by auto

next

show Vz na. length(z na) = m1 — length((g o f) z na) = n2

using SimBlock-FBlock-fn' assms(2) s1 by auto

qed

B.4.3 Parallel Composition

B.4.3.1 mergeB ThreeWayMerge': similar to Three WayMerge, but it merges 1 and 2 firstly
and then merges 0. Instead, Three WayMerge merges 0 and 1 firstly, then merges 2.

definition Three WayMerge' :: 'a merge = (('a, ‘o, (', ', 'a) mrg) mrg, 'a) urel (M30'(-")) where
[upred-defs]: Three WayMerge’ M = (($0—v~ =, $0—v A $v." =, $v) A (80—v" =, $1—-0—-Vv A
$1—v =, $1-1-—vVASV =, 8v);; M;; Ul);; M

mergeB is associative which means the order of merges applied to 0, 1 and 2 does not matter as

48

long as 0, 1, and 2 are merged in the same order. In other word, M(M(0,1), 2) = M(0, M(1, 2))

lemma mergeB-assoc: ThreeWayMerge (mergeB) = Three WayMerge' (mergeB)
apply (simp add: ThreeWayMerge-def Three WayMerge'-def mergeB-def)
apply (rel-auto)
apply (rename-tac inouts, 0 ok, 0 inouts,1 ok, 1 inouts, 2 ok, 2 inouts,3 inouts, 4 inouts, 5 inouts,6
inouts, 7)
apply (rule-tac x = (ok,1 A 0k,2) in exl)
apply (rule-tac z = X\ na. (inouts, 2 na e inouts,3 na) in exl)
apply (simp)
apply (rule-tac x = X na. (inouts,2 na e inouts,3 na) in exl)
apply (simp)
apply (rename-tac inouts, 0 ok, 0 inouts, 1 ok, 1 inouts, 2 ok, 2 inouts, 3 inouts, inouts,5 inouts,)
apply (rule-tac x = inouts,0 in exl)
apply (rule-tac z = (0ky,0 N 0k, 1) in exl)
apply (Tule tac z = X na. (inouts, I na e inouts,2 na) in exl)
(st
(
(sim,

apply (rule-tac £ = X\ na. (inouts, 1 na e inouts,2 na) in exl)

apply (simp)
done

B.4.3.2 sim-paralell lemma SimParallel-form:
assumes s1: SimBlock m1 nl Bl
assumes s2: SimBlock m2 n2 B2
shows(B! ||p B2) =
(3 (oko, ok, inoutsy, inoutsy) -
(((takem (m14+m2) (m1)) ;; Bl1)[«oko»,«inoutso» /$ok " ,$vprinouts] A
((dropm (m1+m2) (m2)) ;; B2)[«oki»,«inouts1»/$ok ", $vprinouts] A
(V n:nat - ($vpiinouts” («n»), =, («append» («inoutsy n»), (Kinoutsy n»)g))) A
($0k " =, («oko» A «0k1»))))
(is ?lhs = ?rhs)
proof —
have s3: inps BI = ml
using sI by (simp add: inps-outps)
have s/: inps B2 = m2
using s2 by (simp add: inps-outps)
show ?thesis
apply (simp add: sim-parallel-def)
apply (simp add: s3 s4 mergeB-def)
apply (simp add: par-by-merge-alt-def, rel-auto)
apply (rename-tac ok, inouts,’ inouts, 2 inouts, 3 ok,3 inouts,4 ok.,4 ok,5 inouts,5
inouts, 6 ok, 6 inouts,7)
apply blast
by blast
qed

lemma SimBlock-parallel-pre-true [simblock-healthy):
assumes sI: SimBlock m1 nl (true b, Q1)
assumes s2: SimBlock m2 n2 (true b, Q2)
shows SimBlock (m1+m2) (n1+n2) ((true F, Q1) || (true F, Q2))
proof —
— 1. Simplify the parallel operation
have 1: ((true F, Q1) || (true F, Q2)) =
(3 (oko, ok, inoutsg, inoutsy) -
(((takem (m14m2) (ml1)) ;; (true b, Q1))[«oko»,«inoutso»/$ok ", $v prinouts | A
((dropm (m1+m2) (m2)) ;; (true b, Q2))[«ok1»,«inoutsy» /$ok " ,$vp:inouts] A

49

(V nunat - ($vprinouts” («n»), =, («appendy («inoutsy n»), (Kinoutsy n»)y))) A
($0k " =, («oko» A «0k1»))))
using SimParallel-form s1 s2 by auto
— 2. Get some basic facts from assumptions
from si have Q1 # false
by (simp add: SimBlock-def)
then have QI-not-false: Jinouts, inouts,’. [Q1]. ((inouts, = inouts,|), (inouts, = inouts,’)))
by (rel-simp)
from s2 have Q2 # false
by (simp add: SimBlock-def)
then have Q2-not-false: Jinouts, inouts,’. [Q2] ((inouts, = inouts,|), (inouts, = inouts,”))
by (rel-simp)
from s! have ((V na - #,(&inouts(«na»),) =, «ml») C Dom(PrePost((true b, Q1))))
by (simp add: SimBlock-def)
then have ref-m1: Vinouts, inouts,” x. [Q1]. ((inouts, = inouts,|), (inouts, = inouts,’)) —
length(inouts,) = ml
by (rel-simp)
from s2 have ((V na - #,(&inouts(«na»),) =, «m2») C Dom(PrePost((true b, Q2))))
by (simp add: SimBlock-def)
then have ref-m2: Vinouts, inouts,’” z. [Q2]. ((inouts, = inouts,|), (inouts, = inouts,’)) —
length(inouts, x) = m2
by (rel-simp)
have ((V na - #,(&inouts(«na»),) =, «nl») C Ran(PrePost((true b, Q1))))
using SimBlock-def s1 by auto
then have ref-ni: Vinouts, inouts,” z. [Q1]. ((inouts, = inouts,’), (inouts, = inouts,|)) —
length(inouts, x) = nl
by (rel-simp)
have ((V na - #,(&inouts(«na»),) =, «n2») C Ran(PrePost((true b, Q2))))
using SimBlock-def s2 by auto
then have ref-n2: Vinouts, inouts,” z. [Q2]. ((inouts, = inouts,’), (inouts, = inouts,|)) —
length(inouts, x) = n2
by (rel-simp)
— Subgoal 1 for SimBlock-def
have c1: PrePost((true -, Q1) ||p (true -, Q2)) # false
apply (simp add: 1)
apply (simp add: sim-blocks)
apply (rel-auto)
proof —
obtain inouts, ! and inouts,’! and inouts,2 and inouts,’'2
where P1: [QI]. ((inouts, = inouts, 1), (inouts, = inouts,'1])
and P2: [Q2]. ((inouts, = inouts,2|), (inouts, = inouts,’2))
using @QI-not-false Q2-not-false by blast
show 3 inouts, inouts,’.
(Va aa ab.
(3 ok, oky A
(Finouts,".
(Vz. (m1 = 0 — length(inouts, x) = m2 A inouts,’ z = []) A
(0 <ml —
length(inouts,) = m1 + m2 A
length(inouts,’) = m1 A take m1 (inouts, z) = inouts,’ x)) A
(oky, — a A [Q1]. ((inouts, = inouts,’)), (inouts, = ab))))) —
(Vb. (3 oky. ok, A
(Finouts, .
(Vz. (m2 = 0 — length(inouts, x) = m1 A inouts,’ z = []) A
(0 <m2 —

50

length(inouts,) = m1 + m2 A
length(inouts,’ ©) = m2 A drop m1 (inouts, x) = inouts,’ ©)) A
(oky, — aa A [Q2]e ((inouts, = inouts,”)), (inouts, = b)))))) —
(3z. = inouts,” x = abx @ b)V a A aa)) A
(Fa aa. (3 ok,. ok, A
(Finouts,".
(Vz. (ml1 = 0 — length(inouts,) = m2 A inouts,” © = []) A
(0 <mi —
length(inouts, x) = m1 + m2 A
length(inouts,”) = m1 A take m1 (inouts,) = inouts,’ x)) A
(oky — [Q1]e ((inouts, = inouts,’), (inouts, = aa))))) A
(3b. (3oky. 0ky A
(Finouts,".
(Vz. (m2 = 0 — length(inouts,) = m1 A inouts,” z = []) A
(0 <m2 —
length(inouts,) = m1 + m2 A
length(inouts,’) = m2 A drop m1 (inouts, x) = inouts,’ x)) A
(0ky — a A [Q2]. ((inouts, = inouts,’), (inouts, = b))))) A
(V. inouts,” © = aa x @ b z) A a))
apply (rule-tac = Ana. inouts, 1 na einouts,2 na in exl)
apply (rule-tac = Ana. inouts,’1 na einouts,’2 na in exl)
apply (rule congl)
apply blast
apply (rule-tac x = True in exl)

apply (rule-tac = Ana. inouts,’1 na in exl)
apply (rule congl)

apply (rule-tac x = True in exl)

apply (simp)

apply (rule-tac x = Ana. inouts, 1 na in exl)
using P1 P2 ref-m1 ref-m2 apply fastforce
apply (rule-tac = Ana. inouts,’2 na in exl)
apply (simp)
apply (rule-tac ¢ = True in exl)
apply (simp)
apply (rule-tac x = Ana. inouts, 2 na in exl)
using P1 P2 ref-ml1 ref-m2 by force
qed
— Subgoal 2 for SimBlock-def
have c2: ((V na - #.(&inouts(«na»),) =, «ml+m2») C Dom(PrePost((true b, Q1) ||g (true
e @2))
apply (simp add: 1)
apply (simp add: sim-blocks)
apply (rel-simp)
using assms
by (metis add.right-neutral not-gr-zero)
— Subgoal 3 for SimBlock-def
have ¢3: ((V na « #,(&inouts(«na»),) =, «nl+n2») C Ran(PrePost((true b, Q1) || (true b,
Q2))))
apply (simp add: 1)
apply (simp add: sim-blocks)
apply (rel-simp)
by (simp add: ref-nl ref-n2)

from c1 c2 ¢8 show ?thesis
apply (simp add: SimBlock-def)

51

done
qed

Parallel composition of two SimBlocks (provided that the preconditions of both are condition)
are still SimBlock.

lemma SimBlock-parallel [simblock-healthy]:
assumes sI: SimBlock m1 nl1 (P11, Q1)
assumes s2: SimBlock m2 n2 (P2 +, Q2)
shows SimBlock (m1+m2) (n1+n2) (P1 F, Q1) || (P2 Fn Q2))
proof —
have pform: (P1 +, Q1) || (P2, Q2)) =
(3 (oko, ok, inoutsy, inoutsy) -
(((takem (m1+m2) (m1));; (P1tF, Q1))[«oko»,«inoutse» /$ok ", $vp:inouts] A
((dropm (m14m2) (m2)) ;; (P2 F, Q2))[«ok1»,«inoutsy» /$ok " ,$v prinouts | A
(V ninat - ($vpinouts” («ny)q =, («appendy («inoutsg n»), («inoutsy n»)g))) A
($0k” =, («oko» A «0k1»))))
using SimParallel-form s1 s2 by auto
— Subgoal 1 for SimBlock-def
have c1: PrePost((P1 F, Q1) ||p (P2 b, Q2)) # false
apply (simp add: pform)
apply (simp add: sim-blocks)
apply (rel-auto)
proof —
obtain inouts, I ::nat = real list and inouts,’1::nat = real list and
nouts, 2::nat = real list and inouts,'2::nat = real list where
P1: [P1]. ((inouts, = inouts,1])) and
Q1: [Q1]. ((inouts, = inouts, 1|), (inouts, = inouts,’'1])) and
P2: [P2]. ((inouts, = inouts,2|)) and
Q2: [Q2]. ((inouts, = inouts,2|), (inouts, = inouts,’2)))
using s1 s2 SimBlock-implies-not-PQ’
by blast
have inps1: length(inouts, 1 na) = ml
using P1 Q1 SimBlock-implies-mP s1 by blast
have inps2: length(inouts, 2 na) = m2
using P2 Q2 SimBlock-implies-mP s2 by blast
have outps!: length(inouts,’'l na) = nl
using PI1 Q1 SimBlock-implies-@Qn s1 by blast
have outps2: length(inouts,’2 na) = n2
using P2 Q2 SimBlock-implies-Qn s2 by blast
show Finouts, inouts,’.
(Va aa ab.
(3 oky. 0k, A
(T inouts, .
(Vz. (m1 = 0 — length(inouts,) = m2 A inouts,’ z = []) A
(0 <ml —
length(inouts,) = m1 + m2 A
length(inouts,’) = m1 A take m1 (inouts, x) = inouts,’ z)) A
(oky A [P1]e (inouts, = inouts,’) —
a A [Q1]e ((inouts, = inouts,”)), (inouts, = ab))))) —
(Vb. (3 oky. 0ky A
(Finouts,".
(Vz. (m2 = 0 — length(inouts,) = m1 A inouts,” © = []) A
(0 <m2 —
length(inouts,) = m1 + m2 A
length(inouts,”) = m2 A drop m1 (inouts, x) = inouts,’ x)) A

52

(oky A [P2]e (inouts, = inouts,’) —
aa A [Q2]e ((inouts, = inouts,’)), (inouts, = b))))) —
(z. = inouts,”’ © = abz @ bz)V a A aa)) A
(a aa. (ok,. ok, A
(Finouts,".
(Vz. (m1 = 0 — length(inouts,) = m2 A inouts,’ z = []) A
(0 <mi —
length(inouts,) = m1 + m2 A
length(inouts,’ x) = m1 A take m1 (inouts, z) = inouts,’ z)) A
(oky A [P1]e (inouts, = inouts,’) —
[Q1]. ((inouts, = inouts,’), (inouts, = aal)))) A
(3b. (30ky. 0ky A
(Finouts,".
(Vz. (m2 = 0 — length(inouts, x) = m1 A inouts,’ z = []) A
(0 <m2 —
length(inouts,) = m1 + m2 A
length(inouts,’) = m2 A drop m1 (inouts, x) = inouts,’ x)) A
(oky, A [P2]e (inouts, = inouts,’) —
a A [Q2]e ((inouts, = inouts,”]), (inouts, = b)))))) A
(Vz. inouts,’ T = aa x ® b z) A a))
apply (rule-tac z = Ana . (inouts, I na einouts,2 na) in exl)
apply (rule-tac = Ana . (inouts,’l na einouts,’2 na) in ezxl)
apply (rule congl)
apply (rule alll)+
apply (simp)
apply (rule impl)
apply (rule alll)+
apply (rule impl)
proof —
fix ok, ! and ok, 2 and inouts, 1" :nat = real list and inouts, 2" :nat = real list
assume al: 3ok,. ok, A
(Finouts,".
(Vz. (m1 = 0 — length(inouts, 1 x) + length(inouts,2 x) = m2 A inouts,’ z = []) A
(0 <ml —
length(inouts, 1 x) + length(inouts,2 x) = m1 + m2 A
length(inouts,’) = m1 A
take m1 (inouts, 1 z) e take (m1 — length(inouts,1 x)) (inouts,2 z) =
inouts,’)) A
(oky, A [P1]e ((inouts, = inouts,”)) —
ok, 1 A [Q1]. ((inouts, = inouts,’)), (inouts, = inouts, 1))))
assume a2: 3 0k,. ok, A
(Finouts,".
(Vz. (m2 = 0 — length(inouts, 1 x) + length(inouts,2 x) = m1 A inouts,’ z = [|) A
(0 < m2 —
length(inouts, I x) + length(inouts,2 x) = m1 + m2 A
length(inouts,’) = m2 A
drop m1 (inouts,1 x) e drop (m1 — length(inouts, 1 x)) (inouts,2 z) =
inouts,’ ©)) N
(oky A [P2]e ((inouts, = inouts,”)) —
ok, 2 N [Q2]. ((inouts, = inouts,’)), (inouts, = inouts,2))))
from al have 1: J0k,. ok, A
(Finouts,’.
Vz. (m1 =0 —
length(inouts, 1 x) + length(inouts,2 ©) = m2 A
inouts, 1 © =[] A

93

inouts,” © = []) A
(0 <ml —
length(inouts, 1 x) + length(inouts,2 x) = m1 + m2 A
length(inouts,’) = m1 A
inouts, 1 © = inouts,’ x)) A
(oky A [P1]e ((inouts, = inouts,’)) —
ok, 1 A [Q1]. ((inouts, = inouts,’)), (inouts, = inouts, 1))))
using inps! P1 Q1 SimBlock-implies-mP s1
by (smt append-take-drop-id cancel-comm-monoid-add-class.diff-cancel length-0-conv
length-drop take-eq-Nil)
then have 2: 3 0k,. ok, A
(Finouts,".
(Vz. inouts, 1 © = inouts,’ x A
(ml =0 —
length(inouts, 1 z) + length(inouts,2 x) = m2 A
inouts, 1 z = []) A
(0 <ml —
length(inouts, I x) + length(inouts,2 x) = m1 + m2 A
length(inouts, I x) = m1)) A
(oky A [P1]e ((inouts, = inouts,’)) —
oky,1 A [Q1]. ((inouts, = inouts,’)), (inouts, = inouts,1))))
by (metis (full-types) inpsl length-0-conv length-greater-0-conv)
then have $: d0k,. ok, A
(Finouts,".
(Vz. inouts, 1 © = inouts,” x) A
Vz. (m1 =0 —
length(inouts, 1 x) + length(inouts,2 ©) = m2 A
inouts, I x = []) A
(0 <ml —
length(inouts, 1 x) + length(inouts,2 x) = m1 + m2 A
length(inouts, 1) = m1)) A
(0ky A [P1]e ((inouts, = inouts,’)) —
oky1 A [Q1]e ((inouts, = inouts,”)), (inouts, = inouts,1))))
by smt
then have 4: dok,. ok, A
(Finouts,’.
Vz. (m1 =0 —
length(inouts, 1 x) + length(inouts,2 ©) = m2 A
inouts, 1 x = []) A
(0 <ml —
length(inouts, 1 x) + length(inouts,2 x) = m1 + m2 A
length(inouts, 1 x) = m1)) A
(0ky A [P1]e ((inouts, = inouts, 1)) —
oky1 A [Q1]e ((inouts, = inouts, 1)), (inouts, = inouts,1’))))
by (metis 2 3 append-Nil ext length-append less-not-refl neq0-conv)
then have 5: dok,. ok, A
Vz. (m1 =0 —
length(inouts, 1 x) + length(inouts,2 ©) = m2 A
inoutsy1 T = []) A
(0 <ml —
length(inouts, 1 x) + length(inouts,2 x) = m1 + m2 A
length(inouts, 1) = m1)) A
(oky A [P1]e ((inouts, = inouts, 1)) —
oky1 A [Q1]e ((inouts, = inouts, 1)), (inouts, = inouts,1’)))
by (simp)

54

then have 6:
Vz. (m1 =0 —
length(inouts, 1 x) + length(inouts,2 x) = m2 A
inouts, 1 z = []) A
(0 <ml —
length(inouts, 1 x) + length(inouts,2 z) = m1 + m2 A
length(inouts, I x) = m1)) A
([P1]e ((inouts, = inouts, 1)) —
oky1 A [Q1]. ((inouts, = inouts,1|), (inouts, = inouts,1’)))
by blast
then have 7: ([P1]. ((inouts, = inouts, 1)) —
oky1 A [Q1]. ((inouts, = inouts, 1)), (inouts, = inouts,1’)))
by simp
from a2 have 11: J0k,. ok, A

(Finouts, .
(Vz. (m2 = 0 — length(inouts, 1) + length(inouts,2 x) = m1 A

inouts,” © = [| A inouts, 2z =[]) A
(0 <m2 —
length(inouts, 1 x) + length(inouts,2 x) = m1 + m2 A
length(inouts,’) = m2 A
(inouts, 2 x) = inouts,’ z)) A
(oky A [P2]e ((inouts, = inouts,”)) —
ok, 2 A [Q2]. ((inouts, = inouts,’)), (inouts, = inouts,2))))
using inpsl P2 Q2 SimBlock-implies-mP s2
by (smt P1 Q1 append-self-conv2 cancel-comm-monoid-add-class.diff-cancel drop-0
drop-eq-Nil order-refl s1)
then have 12: Jok,. ok, A
(Finouts,".
(Vz. inouts, 2 © = inouts,’ x A
(m2 = 0 — length(inouts, 1 x) + length(inouts,2 x) = mi A
inouts, 2z = []) A
(0 < m2 —
length(inouts, 1 x) + length(inouts,2 z) = m1 + m2 A
length(inouts, 2 x) = m2)) A
(oky A [P2]e ((inouts, = inouts,”)) —
ok, 2 A [Q2]. ((inouts, = inouts,’)), (inouts, = inouts,2))))
by (metis (full-types) inps2 length-0-conv length-greater-0-conv)
then have 13: Jok,. ok, A
(Finouts,".
(Vz. inouts, 2 © = inouts,” x) A
(Vz. (m2 = 0 — length(inouts, 1 x) + length(inouts,2 x) = m1 A
inouts, 2z = []) A
(0 < m2 —
length(inouts, 1 x) + length(inouts,2 z) = m1 + m2 A
length(inouts, 2 x) = m2)) A
(oky A [P2]e ((inouts, = inouts,”)) —
ok, 2 A [Q2]. ((inouts, = inouts,’)), (inouts, = inouts,2))))
by smt
then have 1/: dok,. ok, A
(Finouts,".
(Vz. (m2 = 0 — length(inouts, 1 x) + length(inouts,2 x) = m1 A
inouts, 2z = []) A
(0 <m2 —
length(inouts, 1 x) + length(inouts,2 z) = m1 + m2 A
length(inouts, 2) = m2)) A

95

(oky A [P2]e ((inouts, = inouts,2])) —
0ky2 A [Q2]e ((inouts, = inouts, 2|), (inouts, = inouts,2’))))
by (metis 12 13 append-Nil ext length-append less-not-refl neq0-conv)
then have 15: Jok,. ok, A
(Vz. (m2 = 0 — length(inouts, I) + length(inouts,2 =) = m1 A
inouts, 2z = []) A
(0 <m2 —
length(inouts, 1 x) + length(inouts,2 x) = m1 + m2 A
length(inouts, 2) = m2)) A
(oky A [P2]e ((inouts, = inouts,2])) —
ok, 2 A [Q2]e ((inouts, = inouts,2)), (inouts, = inouts,2’)))
by (simp)
then have 16:
(Vz. (m2 = 0 — length(inouts, 1) + length(inouts,2 x) = m1 A
inouts, 2z = []) A
(0 < m2 —
length(inouts, 1 x) + length(inouts,2 z) = m1 + m2 A
length(inouts, 2 x) = m2)) A
([P2]e ((inouts, = inouts,2))) —
ok, 2 N [Q2]. ((inouts, = inouts,2|), (inouts, = inouts,2’)))
by blast
then have 17: ([P2]. ((inouts, = inouts,2|)) —
0k, 2 A [Q2]. ((inouts, = inouts,2|), (inouts, = inouts,2’)))
by simp
show (Jz. — inouts,’'l = e inouts,’2 © = inouts, 1’ = e inouts,2’ x) V ok,1 N 0k,2
proof (rule ccontr)
assume aa: — ((3z. - inouts, '] = e inouts,’2 x = inouts, 1’ = e inouts, 2’ z) V ok,1 A
0k, 2)
from aa have b1: (Vz. inouts,’l = e inouts,’2 x = inouts, 1’ x e inouts, 2’ z) N\ (— ok, 1
V = 0k, 2)
by (simp)
from b1 have b2: (Vz. inouts,’l z e inouts,’2 © = inouts, 1’ z e inouts,2’ x)
by (simp)
from b1 have b3: (- ok,1 V = 0k,2)
by (simp)
from 03 7 17 have b4:
= [P2].e ((inouts, = inouts,2)) V
= [P1]. ((inouts, = inouts, 1))
by blast
from s! have b5: [P1]. ((inouts, = inouts, 1))
using P1 SimBlock-implies-not-P-cond
by blast
from s2 have b6: [P2]. ((inouts, = inouts,2]))
using P2 SimBlock-implies-not-P-cond by blast
show False
using b4 b5 b6 by (auto)
qged
next
show Ja aa. (F0k,. ok, A
(Finouts,".
(Vz. (m1 = 0 — length(inouts, 1 = e inouts,2 x) = m2 A inouts,” © =[]) A
(0 <ml —
length(inouts, 1 x e inouts,2 x) = m1 + m2 A
length(inouts,’) = m1 A take m1 (inouts,1 x e inouts,2 z) = inouts,’ z)) A
(oky N [P1]e ((inouts, = inouts,’)) —

56

[Q1]e ((inouts, = inouts,’), (inouts, = aa))))) A
(3b. (Foky. 0ky A
(Finouts,".
(Vz. (m2 = 0 — length(inouts, 1 x e inouts,2 x) = m1 A inouts,” z =[]) A
(0 <m2 —
length(inouts, 1 x e inouts,2 x) = mi1 + m2 A
length(inouts,’) = m2 A drop m1 (inouts,1 x e inouts,2 z) = inouts,’ x)) A
(oky N [P2]e ((inouts, = inouts,’])) —
a A [Q2]. ((inouts, = inouts,’)), (inouts, = b)))))) A
(Vz. inouts,’'] = e inouts,’2x = aa z ® b z) A a)
apply (rule-tac z = True in exl)
apply (rule-tac x = inouts,’! in exl)
apply (rule congl)
apply (rule-tac x = True in exl, simp)
apply (rule-tac z = inouts, 1 in exl)
using P1 P2 Q1 Q2 SimBlock-implies-mP s1 s2
apply (smt add-eg-self-zero append.right-neutral
cancel-ab-semigroup-add-class.add-diff-cancel-left’ order-refl sum-eq-sum-conv
take-all take-eq-Nil)
apply (rule-tac z = inouts,’2 in exl, simp)
apply (rule-tac z = True in exl, simp)
apply (rule-tac z = inouts, 2 in exl)
using PI1 P2 Q1 Q2 SimBlock-implies-mP s1 s2
by (smt add-egq-self-zero append-eq-append-conv-if
cancel-ab-semigroup-add-class.add-diff-cancel-left’ drop-0 list-exhaust-size-eq0
Sum-eq-sum-conuv)
qed
qed
— Subgoal 2 for SimBlock-def
have ¢2: ((V na - #.(&inouts(«na»),) =, «mi+m2») T Dom(PrePost((P1 +, Q1) ||z (P2 F,
Q2))))
apply (simp add: pform)
apply (simp add: sim-blocks)
apply (rel-simp)
using assms
by (metis add.right-neutral not-gr-zero)
— Subgoal 3 for SimBlock-def
have ¢3: ((V na - #.(&inouts(«na»),) =, «nl+n2») C Ran(PrePost((P1 +, Q1) || (P2 F,
02)))
apply (simp add: pform)
apply (simp add: sim-blocks)
apply (rel-simp)
apply (rename-tac inouts,’ inouts, n ok,ql ok,q2 inouts,1’ ok, inouts, 2’ inouts, 1 ok, inouts,2)
proof —
fix inouts,’ inouts, n ok,ql ok,q2 inouts, 1’ ok, imouts,2’ inouts, 1 ok,’ inouts,2
assume al: [P1]. ((inouts, = inouts,1))) — [Q1]. ((inouts, = inouts,1]|), (inouts, = in-
outs, 1))
assume a2: [P2]. (inouts, = inouts,2)) — [Q2]. ((inouts, = inouts, 2|, (inouts, = inouts,2’))
assume a3: Va aa ab.
(3 oky. ok, A
(Finouts,.
(Vz. (ml = 0 — inouts, z =[]) A
(0 < m1 — length(inouts,) = ml1 A inouts,1 & = inouts, x)) A
(oky A [P1]e (inouts, = inouts,|) —
a A [Q1]. ((inouts, = inouts,|), (inouts, = ab)))))) —

o7

(Vb. (3 oky. ok, A
(Finouts,.
(Vz. (m2 = 0 — inouts, z = []) A
(0 < m2 — length(inouts,) = m2 A inouts,2 & = inouts,)) A
(oky A [P2]e (inouts, = inouts,|) —
aa N [Q2]e ((inouts, = inouts,|), (inouts, = b)))))) —
(3z. — inouts, 1’ x e inouts, 2’ x = abx e bx) V a A aa)
assume a4: V. tnouts,’ x = inouts, 1’ x e inouts, 2’ x
assume a5: V. (ml = 0 — length(inouts,) = m2 A inouts, 1 z = []) A
(0 < m1 — length(inouts,) = m1 + m2 A length(inouts,1) = m1 A
take m1 (inouts,) = inouts,1 x)
assume a6: Vz. (m2 = 0 — length(inouts,) = m1 A inouts,2x = []) A
(0 < m2 — length(inouts,) = m1 + m2 A length(inouts,2) = m2 A
drop m1 (inouts, x) = inouts,2 x)
from a5 have 1: length(inouts, 1 na) = ml1
by blast
from a6 have 2: length(inouts, 2 na) = m2
by blast
from a3 have (Va aa ab.
(3 oky. ok, A
(Finouts,.
(Vz. (ml = 0 — inouts, z = []) A
(0 < ml — length(inouts, x) = ml A inouts,1 x = inouts, x)) A
(oky N [P1]e (inouts, = inouts,|) —
a A [Q1]e ((inouts, = inouts,|), (inouts, = ab)))))) —
(Vb. (Foky. oky A
(Finouts,.
(Vz. (m2 = 0 — inouts, z = []) A
(0 < m2 — length(inouts, x) = m2 A inouts,2 x = inouts, x)) A
(oky N [P2]e (inouts, = inouts,|) —
aa A [Q2]e ((inouts, = inouts,|), (inouts, = b)))))) —
(z. = inouts,y 1’ x e inouts,2' x = abx @ b x) V a A aa))
— (Va aa ab.
(IP1]. (inouts, = inouts, 1) —
a A [Q1]e ((inouts, = inouts, 1]), (inouts, = ab)))) —
(Vb. ([P2]e (inouts, = inouts,2)) —
aa A [Q2]e ((inouts, = inouts,2|), (inouts, = b)) —
(Fz. - inouts, 1’ © e inouts, 2’ x = abz @ bx) V a A aa))
apply (simp)
apply (rule alll)+
apply (rename-tac ok, q inouts,1’q inouts,2'q)
apply (rule impl)
apply (rule alll)
apply (rule impl)
by (smt a5 a6 neq0-conv)
then have a3” (Va aa ab.
(IP1]. (inouts, = inouts, 1) —
a A [Q1]e ((inouts, = inouts, 1], (inouts, = ab)))) —
(Vb. ([P2]e (inouts, = inouts,2|) —
aa A [Q2]e ((inouts, = inouts, 2|), (inouts, = b)) —
(Fz. = inouts, 1’ z e inouts, 2’ x = abz @ b z) V a A aa))
using a3 by smt
have PI1: [P1]. (inouts, = inouts, 1]
using a3’ using a2 by blast
then have QI: [Q1]. ((inouts, = inouts, 1), (inouts, = inouts, 1))

o8

using al by auto
then have N1: length(inouts, 1’ n) = nl
using P1 SimBlock-implies-Qn s1 by blast
have P2: [P2]. (inouts, = inouts, 2|
using a3’ using al by blast
then have Q2: [Q2]. ((inouts, = inouts,2|), (inouts, = inouts,2’))
using a2 by auto
then have N2: length(inouts,2’ n) = n2
using P2 SimBlock-implies-Qn s2 by blast
show length(inouts, 1’ n) + length(inouts,2’' n) = nl + n2
using N1 N2 by auto
qed
from c! c2 ¢3 show ?thesis
apply (simp add: SimBlock-def)
done
qed

lemma inps-parallel:
assumes s1: SimBlock m1 n1 (P1 +,, Q1)
assumes s2: SimBlock m2 n2 (P2 b, Q2)
shows inps (P1 +, Q1) || (P2 t, Q2)) = ml + m2
using SimBlock-parallel inps-outps s1 s2 by blast

lemma outps-parallel:
assumes sI: SimBlock m1 n1 (P1 +F, Q1)
assumes s2: SimBlock m2 n2 (P2, Q2)
shows outps (P1 F, Q1) || (P2, Q2)) = nl + n2
using SimBlock-parallel inps-outps
using sI s2 by blast

Associativity of parallel composition.

lemma parallel-ass:
assumes s1: SimBlock m0 n0 (PO F, QO0)
assumes s2: SimBlock m1 nl1 (P11, Q1)
assumes s3: SimBlock m2 n2 (P2, Q2)
shows (PO -y Q0) 5 (P1 o Q1) 5 (P2 Fu Q2))) = (PO Fu QO) |5 (P1 Fn Q1)) |5 (P2
Fn Q2))
(is ?lhs = ?rhs)
proof —
let ?P12 = 3 (ok1, oka, inoutsy, inoutss) -
(((takem (m14+m2) (m1));; (P1tF, Q1))[«oky»,«inouts1»/$ok " $vp:inouts] A
((dropm (m14m2) (m2)) ;; (P2 F, Q2))[«oka»,«inoutsa» /$ok " ,$v prinouts | A
(V nunat - ($vprinouts” («n»)q =, («append» («inoutsy n»), (Kinoutss n»)q))) A
($0k” =4 («0k1» A «0ka»)))
have Ihs-12: (P1 Fn Q1) |5 (P2 by Q2)) = ?P12
using SimParallel-form s2 s3 by blast
have lhs-12-sim: SimBlock (m1+m2) (n1+n2) ((P1 F, Q1) || (P2 F, Q2))
by (simp add: SimBlock-parallel s2 s3)
then have lhs-sim: ?lhs =
(3 (oko, oky2, inoutsg, inoutsia) -
(((takem (mO+(m1+m2)) (m0)) ;; (PO bk, Q0))[«oko»,«inoutso» /$ok " ,$vp:inouts] A
((dropm (mO0+(m14+m2)) (m14+m2)) ;; ?P12)[«okie»,«inoutsio» /$ok ", $vprinouts] A
(V n:unat - ($vprinouts” («n»)q =y (append» («inoutsy n»), (Kinoutsizs n»)g))) A
($0k”~ =, («okg» A «ok12»))))
using lhs-12-sim lhs-12 SimParallel-form s1 s2 s3 by auto

99

let ?P01 = 3 (okg, oky, inoutsg, inoutsy) -
(((takem (mO+m1) (m0)) ;; (PO k., Q0))[«oko»,«inoutse» /$ok ", $v p:inouts] A
((dropm (m0+m1) (m1)) ;; (P1 F, Q1))[«0k1»,«inoutsy» /$ok " ,$v prinouts’] A
(V ninat - ($vprinouts” («ny)qa =, («appendy («inoutsy n»), («inoutsy n»)g))) A
($0k~ =, («oko» A «0k1»)))
have rhs-01: (PO +, Q0) || (P1 +, Q1)) = ?P01
using SimParallel-form s1 s2 by blast
have rhs-01-sim: SimBlock (m0+m1) (n0+n1) ((PO F, Q0) ||g (P1 F, Q1))
by (simp add: SimBlock-parallel s1 s2)
then have rhs-sim: ?rhs =
(3 (0ko1, oka, inoutsor, inoutss) -
(((takem ((mO+m1)+m2) (m0+m1)) ;; ?2P01)[«oko1»,«inoutsgr»/$ok " ,$v p:inouts]| A
((dropm ((m0+m1)+m2) (m2)) ;; (P2 F, Q2))[«oka»,«inoutsa» /$ok " ,$v prinouts]| A
(V nunat - ($vprinouts” («n»)q =y (append» (inoutsgr n»)q («inoutss n»)g))) A
($ok ™ =, («okg1» N «0ka»))))
using rhs-01-sim rhs-01 SimParallel-form s1 s2 s3 by auto
show ?thesis
apply (simp add: lhs-sim rhs-sim)
apply (simp add: sim-blocks)
apply (rel-simp)
apply (rule iffT)
— Subgoal 1: lhs —> rhs
apply (clarify)
apply (rename-tac ok, inouts, ok,’ inouts,
ok, 12
inouts, 12 ok,’'ql ok, 'q2 inouts,’ql ok,pl inouts,’q2 inouts,pl ok,p2 inouts,p2)
apply (rule-tac x = ok, 'q0 N ok,’ql in exl)
apply (rule-tac x = ok, ’q2 in exl)
apply (rule-tac x = Ana. (inouts,'q0 na e inouts,’ql na) in exl)
apply (rule congl)
apply (rule-tac x = ok, in exl)
(
(
(

" 0k,'q0 aa inouts,’'q0 ok,p0 inouts,’12 inouts,p0

apply (rule-tac x = Ana. (inouts,p0 na e inouts,pl na) in exl)

apply (rule conjI)

apply (clarify)

apply (smt ab-semigroup-add-class.add-ac(1) drop-0 grOI length-append list.size(3)
self-append-conv take-add)

apply (rule-tac x = ok, 'q0 in exl)

apply (rule-tac x = ok, 'ql in exl)

apply (rule-tac x = inouts,’q0 in exI)

apply (rule conjl)

apply (rule-tac x = ok,p0 in exl)

apply (rule-tac = inouts,p0 in exl)

apply (rule congl, simp)

apply (metis grol length-0-conv)

apply blast

apply (rule-tac x = inouts,’ql in exl)

apply (rule congl)

apply (rule-tac © = ok,pl in exl)

apply (rule-tac x = inouts,pl in exl)

apply (rule conjl, simp)

apply (metis append-eg-conv-conj drop-append list.size(3) neq0-conv)

apply blast

apply blast

apply (rule-tac x = inouts,’q2 in exl)

60

apply (rule congl, simp)

apply (rule-tac x = ok, p2 in exl)

apply (rule-tac x = inouts,p2 in exl)
(

apply (rule congl, simp)
apply (metis add-cancel-left-right drop-drop grOI semiring-normalization-rules(24))
apply blast
apply auto[1]
— Subgoal 2: rhs —> lhs
apply (clarify)
apply (rename-tac ok, inouts, ok, inouts,’ a ok,’q2 inouts,’01 ok, 01 inouts,’q2 inouts,01
ok, p2 inouts,p2
ok, 'q0 ok,'ql inouts,'q0 ok,p0 inouts,’ql inouts,p0 ok,pl inouts,pl)
apply (rule-tac x = ok, ’q0 in exl)
apply (rule-tac x = ok,’ql N ok,’q2 in exl)
apply (rule-tac x = Ana. (inouts,’q0 na) in exl)
apply (rule congl)
apply (rule-tac x = ok, in exl)
apply (rule-tac x = Ana. (inouts,p0 na) in exl)
apply (rule conjl, simp)
apply (rule impl)
apply (rule alll)
apply (rule congl)
apply (metis add-cancel-left-left zero-less-iff-neg-zero)
apply (metis append.right-neutral append-take-drop-id diff-is-0-eq le-add1 take-0 take-append)
apply blast
apply (rule-tac x = Ana. (inouts,’ql na e inouts,'q2 na) in exl)
apply (rule congl)
apply (rule-tac x = ok, in exl)
apply (rule-tac x = Ana. (inouts,pl na e inouts,p2 na) in exl)
apply (rule conjl, simp)
apply (rule impl)
apply (rule alll)
apply (rule congl)
apply (smt add.commute append-take-drop-id drop-drop length-append length-greater-0-conv
less-add-same-cancel? neq0-conv take-drop)
apply (rule impl)
apply (rule congl)
apply (metis gr-zerol list.size(3))
apply (metis (no-types, hide-lams) add.left-neutral append-take-drop-id diff-add-zero drop-0
drop-append neq0-conv plus-list-def zero-list-def)
apply (rule-tac x = ok, ’ql in exl)
apply (rule-tac z = ok,’q2 in exl)
apply (rule-tac x = inouts,’ql in exl)
apply (rule congl, simp)
apply (metis grol length-0-conv)
apply (rule-tac x = inouts,’q2 in exl)
apply (rule congl)
apply (rule-tac x = ok,p2 in exl)
apply (rule-tac = inouts,p2 in exl)
apply (rule conjl, simp)
apply (metis append-eg-conv-conj drop-append list.size(3) neq0-conv)
apply blast
apply blast
apply (rule congl, simp)
by blast

61

qed

lemma refinement-implies-r:

assumes s1: (P1 F,. Q1) C (PIr -, QIr)

shows V ok, inouts, ok,’ inouts,’.
(oky N [PIr]e ((inouts, = inouts,|), (inouts, = inouts,’)) —
ok,' A [QIr]. ((inouts, = inouts,|), (inouts, = inouts,’))) —
(oky N [P1]e ((inouts, = inouts,|), (inouts, = inouts,’)) —
oky' AN [Q1]. ((inouts, = inouts,|), (inouts, = inouts,’))))

using s! apply (rel-simp)

by blast

lemma refinement-implies:
assumes sI: (P1 +, Q1) C (PIr +, QIr)
shows V ok, inouts, ok,’ inouts,’.
(oky A [PIr]e ((inouts, = inouts,))) —
oky,' A [QIr]. ((inouts, = inouts,|), (inouts, = inouts,’))) —
(oky N [P1]e ((inouts, = inouts,|)) —
oky' AN [Q1]. ((inouts, = inouts,|), (inouts, = inouts,’))))
using s! apply (rel-simp)
by blast

lemma parallel-mono-r:
assumes sI: SimBlock m1 nl (P1 F, Q1)
assumes s2: SimBlock m2 n2 (P2, Q2)
assumes s3: SimBlock m1 n1 (Pir -, Q1r)
assumes s4: SimBlock m2 n2 (P2r -, Q2r)
assumes s5: (P1 F, Q1) C (Pir F, QIr)
assumes s6: (P2 -, Q2) C (P2r -, Q2r)
shows ((P1 +, Q1) |5 (P2 -, Q2)) C (PIr -, QIr) |5 (P2r -, Q2r))
proof —
have pform: (P1 +, Q1) ||p (P2 . Q2)) =
(3 (oko, ok1, inoutsg, inoutsy) -
(((takem (m14+m2) (m1)) ;; (PI b, Q1))[«oko»,«inoutse»/$ok ,$v p:inouts’] A
((dropm (m1+m2) (m2)) ;; (P2 F, Q2))[«oky»,«inoutsy» /$ok ", $vprinouts] A
(V nunat - ($vp:inouts” («n»), =, («append» («inoutsy n»), (Kinoutsy n»)g))) A
(30k " =4 («0ko» A «0k1%))))
using SimParallel-form s1 s2 by auto

have pform’. ((PIr . QIr) ||p (P2r b, Q2r)) =
(3 (okq, ok1, inoutsy, inoutsy) -
(((takem (m14+m2) (m1)) ;; (PIr k. QIr))[«oke»,«inoutso» /$ok”,$v p:inouts]| A
((dropm (m1+4m2) (m2)) ;; (P2r b, Q2r))[«oky»,«inouts1» /$ok " ,$vprinouts] A
(V n:nat - ($vpiinouts” («n»), =, («append» («inoutsy ny), (Kinouts; n»)g))) A
($0k ™ =, («oko» A «0k1%))))
using SimParallel-form s3 s4 by auto

show ?thesis

apply (simp add: pform pform’)

apply (simp add: sim-blocks)

apply (rel-simp)

apply (rename-tac ok, inouts, inouts,’ ok,qlr ok,q2r inouts,1r’ ok,plr inouts,2r’ inouts, Ir
ok, p2r inouts., 2r)

apply (rule-tac = ok, qlr in exl)

apply (rule-tac = ok, q2r in exl)

apply (rule-tac x = inouts, Ir’ in exl)

62

apply (simp)

apply (rule conjI)

apply (rule-tac x = ok,plIr in exl, simp)
apply (rule-tac x = inouts, Ir in exl)

apply (rule congl)
apply simp
using s5 s1 refinement-implies-r apply (metis)
apply (rule-tac x = inouts,2r’ in exl, simp)
apply (rule-tac x = ok,p2r in exl)
apply simp
apply (rule-tac x = inouts, 2r in exl, simp)
using s6 s2 refinement-implies-r apply (metis)
done
qed

lemma parallel-mono:
assumes sI: SimBlock m1 n1 (P1+F, Q1)
assumes s2: SimBlock m2 n2 (P2 +, Q2)
assumes s8: SimBlock m1 nl (Pir -, QIr)
assumes s4: SimBlock m2 n2 (P2r b, Q2r)
assumes s5: (P! +, Q1) C (PIr F, QIr)
assumes s6: (P2 -, Q2) C (P2r -, Q2r)
shows ((PI F, Q1) ||p (P2 F, Q2)) C ((PIrt, QIr) || (P2r -, Q2r))
proof —
have pform: (P! +, Q1) || (P2 F, Q2)) =
(3 (oko, ok1, inoutsy, inoutsy) -
(((takem (m14m2) (ml1)) ;; (P1t, QI))[«oke»,«inoutse»/$ok ", $vp:inouts] A
((dropm (m1+4m2) (m2));; (P2 k. Q2))[«oky»,«inoutsy» /$ok ", $vp:inouts] A
(V nunat - ($vpiinouts” («n»)q =, («append» («inoutsy ny), (Kinoutsy n»)g))) A
($ok ™ =, («oko» N «0k1%))))
using SimParallel-form s1 s2 by auto
have pform” ((P1r F, QIr) ||p (P2r bk, Q2r)) =
(3 (oko, ok1, inoutsy, inoutsy) -
(((takem (m14+m2) (ml1)) ;; (PIr b, QIr))[«oke»,«inoutso» /$ok " ,$v p:inouts]| A
((dropm (m1+m2) (m2)) ;; (P2r b, Q2r))[«oky»,«inoutsy» /$ok " ,$v prinouts] A
(V nunat - ($vp:inouts” («n»), =, («append» («inoutsy n»), (Kinoutsy n»)g))) A
($0k ™ =, («0ko» A «0k1»))))
using SimParallel-form s3 s/ by auto
show ?thesis
apply (simp add: pform pform’)
apply (simp add: sim-blocks)
apply (rel-simp)
apply (rename-tac ok, inouts, inouts,’ ok,qlr ok,q2r inouts,Ir’ ok,plr inouts,2r’ inouts, Ir
ok, p2r inouts, 2r)
apply (rule-tac x = ok, qlr in exl)
apply (rule-tac x = ok, q2r in exl)
apply (rule-tac © = inouts, Ir’ in exl)
apply (simp)
apply (rule congl)
apply (rule-tac x = ok,plr in exl, simp)
apply (rule-tac x = inouts, Ir in exl)
apply (rule congl)
apply simp
using s si refinement-implies apply (metis)
apply (rule-tac x = inouts,2r’ in exl, simp)

63

apply (rule-tac x = ok,p2r in exl)
apply simp
apply (rule-tac x = inouts,2r in exl, simp)
using s6 s2 refinement-implies apply (metis)
done
qed

lemma FBlock-parallel-comp-id:

assumes s1: SimBlock 1 1 (FBlock (Ax n. True) 1 1 f-Id)
shows (FBlock (Ax n. True) 1 1 f-Id) || (FBlock (Ax n. True) 1 1 f-Id)

= FBlock (Ax n. True) 2 2 (Ax n. (((f-Id o (Azz nn. take 1 (xz nn))) z n)

o ((f-Id o (Azz nn. drop 1 (zz nn)))) = n))

proof —

have inps-1: inps (FBlock (Az n. True) (Suc 0) (Suc 0) f-Id) = 1

using s! by (simp add: inps-P)
have form: ((FBlock (Axz n. True) 1 1 f-Id) ||g (FBlock (Ax n. True) 1 1 f-Id)) =
(3 (oko, ok, inoutsy, inoutsy) -
(((takem (1+1) (1)) ;; (FBlock (Ax n. True) 1 1 f-Id))[«oko»,«inoutsy» /$ok *,$v p:inouts ']

N
((dropm (1+1) (1)) ;; (FBlock (Ax n. True) 1 1 f-Id))[«ok1»,«inouts1» /$ok ", $v prinouts]
A
(V n:nat - ($vpiinouts” («n»), =, («append» («inoutsy n»), (Kinoutsy n»)g))) A
($0k = =, («oko» A «0k1»))))
using sI by (simp add: SimParallel-form)
have 2: (3 (oko, ok1, inoutsg, inoutsy) -
(((takem (1+1) (1)) ;; (FBlock (Az n. True) 1 1 f-Id))[«oko»,«inoutso» /$ok " ,$v prinouts ']
A
((dropm (1+1) (1)) ;; (FBlock (Ax n. True) 1 1 f-Id))[«oky1»,«inouts1» /$0k ", $v p:inouts]
A

(V n:unat - ($vprinouts” («n»)q =y («append» («inoutsy n»), (Kinoutsy n»)q))) A
($0k " =4 («oko» A «0k1»))))
= FBlock (Ax n. True) 2 2 (Ax n. ((f-Id o (A\xzz nn. take 1 (zx nn))) x n)

o ((f-Id o (Azz nn. drop 1 (zz nn)))) = n))

apply (simp add: FBlock-def f-Id-def takem-def dropm-def)

apply (rel-auto)

apply (simp add: f-Id-def)

apply (rule-tac z = ok,’ in exl)

apply (rule-tac x = ok, in exl)

apply (rule-tac x = inouts,’ in exl)

apply (rule conjl)

apply blast

apply (rule-tac x = Ana. || in ex])

apply blast

apply (rule-tac x = ok, in exl)

apply (rule-tac x = ok, in exl)

apply (rule-tac x = Ana. take (Suc 0) (inouts, na) in exl)

apply (rule congl)

apply (rule-tac z = ok,’ in exl)

apply (rule-tac x = Ana. take (Suc 0) (inouts, na) in exl)

apply (metis (no-types, lifting) Nitpick.size-list-simp(2) f-Id-def less-numeral-extra(3)

list.sel(1) pos2 take-Suc take-eq-Nil take-tl)

apply (rule-tac x = Ana. drop (Suc 0) (inouts, na) in exl)

apply (rule congl)

apply (rule-tac x = ok, in exl)

apply (rule-tac x = Ana. drop (Suc 0) (inouts, na) in exl)

64

apply (metis (no-types, lifting) Cons-nth-drop-Suc One-nat-def Suc-le-mono diff-Suc-1
drop-eq-Nil f-Id-def hd-drop-conv-nth le-numeral-extra(4) length-drop lessI numeral-2-eq-2)

by (metis Cons-nth-drop-Suc Suc-1 Suc-eg-plusl add.left-neutral append-take-drop-id drop-0
drop-eq-Nil lessI list.sel(1) order-refl take-Suc zero-less-Suc)

show ?thesis
using form 2
by simp
qged

lemma FBlock-parallel-comp:
assumes sI: SimBlock m1 n1 (FBlock (Az n. True) m1 nl f)
assumes s2: SimBlock m2 n2 (FBlock (Ax n. True) m2 n2 g)
shows (FBlock (Az n. True) m1 nl f) ||p (FBlock (Az n. True) m2 n2 g)
= FBlock (Ax n. True) (m14+m2) (nl1+n2)
Az n. (((f o (A\zz nn. take m1 (zz nn))) zn) e ((g9 o (A\zz nn. drop m1 (zz nn)))) = n))
proof —
have inps-1: inps (FBlock (Ax n. True) m1 nl f) = ml
using s! by (simp add: inps-P)
have inps-2: inps (FBlock (Az n. True) m2 n2 g) = m2
using s2 by (simp add: inps-P)
have form: ((FBlock (Az n. True) m1 nl f) ||p (FBlock (Ax n. True) m2 n2 g)) =
(3 (oko, ok, inoutsy, inoutsy) -
(((takem (m14+m2) (m1));; (FBlock (Axn. True) m1 nl f))[«oko»,«inoutso» /$ok " ,$v p:inouts |

N
((dropm (m1+m2) (m2));; (FBlock (Axn. True) m2n2 g))[«oky»,«inouts1» /$ok ", $v p:inouts ']
N
(V ninat - ($vpiinouts” («n»), =, («append» («inoutsy ny), («inouts; n»)g))) A
($0k " =, («oko» A «0k1»))))
using s1 s2 by (simp add: SimParallel-form)
have 2: (3 (oko, oki, inoutsg, inoutsy) -
(((takem (m14+m2) (m1));; (FBlock (Azn. True) m1 nl f))[«oko»,«inoutso» /$ok " ,$v prinouts |
N
((dropm (m1+m2) (m2));; (FBlock (Azn. True) m2n2 g))[«ok1»,«inoutsy» /$ok ", $v prinouts]
A

(V n:znat - ($vprinouts” («n»)a =y («append» («inoutsy n»), (Kinoutsy n»)g))) A
($0k " =y («oko» A «0k1»))))
= FBlock (Ax n. True) (m14+m2) (n1+n2)
Az n. (((f o (Aaz nn. take m1 (zz nn))) zn) o ((g o (Azz nn. drop m1 (zz nn)))) = n))
apply (simp add: FBlock-def f-I1d-def takem-def dropm-def)
apply (rel-simp)
apply (rule iffT)
apply (clarify)
apply (rule congl, simp)
apply (rule conjl, simp)
proof —
fix ok, inouts, tnouts,’ a aa ab ok,’ b inouts,’::nat = real list and ok,’"’ and
tmouts,'""::nat = real list

assume al: Vz. (ml = 0 — length(inouts, x) = m2 A inouts,” © = []) A
(0 < ml — length(inouts, x) = ml + m2 A take m1 (inouts, x) = inouts,’ z)
assume a2: V. (m2 = 0 — length(inouts,) = m1 A inouts,”’ z = []) A

(0 < m2 — length(inouts,) = m1 + m2 A drop m1 (inouts, x) = inouts,”"’ x)
assume a3: V. length(inouts,”) = m1 A length(ab) = nl A finouts,” = = ab z
assume a4: Vz. length(inouts,'"’) = m2 A length(b) = n2 A g inouts,”" © =bx
from al have I: Vz. take m! (inouts, x) = inouts,"” =

by fastforce

65

then have 11: inouts,” = (\z. take m1 (inouts, x))
using al by force
from a3 have 2: Vz. finouts,” = = ab x
by blast
from /1 and 2 have 3: Vz. f (Az. take m1 (inouts, z)) x = ab x
by blast
from a2 have g1: V. (drop m1 (inouts, z) = inouts,’"’ x)
by fastforce

then have ¢11: inouts,””’ = (Az. drop m1 (inouts, z))
by force

from a4 have ¢g2: Vx. g inouts,”’ z = bz
by blast

from ¢11 and g2 have ¢3: V. g (Az. drop m1 (inouts, z)) z = b x
by blast

show V. length(inouts,) = m1 + m2 A
f (Ann. take m1 (inouts, nn)) = e g (Ann. drop m1 (inouts, nn)) ¢ = abx e bz
apply (rule alll)
apply (rule congl)
using a2 apply auto|1]
by (simp add: 3 ¢3)
next
assume al: Vz za. length(z za) = m1 — length(f x xa) = nl
assume a2: YV z za. length(z za) = m2 — length(g © za) = n2
show Vz za. length(x za) = m1 + m2 —
length(f (Ann. take m1 (z nn)) za) + length(g (Ann. drop m1 (z nn)) za) = nl + n2
using al a2 by simp
next
fix ok, inouts, ok,’ inouts,’
assume al: ok, —
ok, N
(Vz. length(inouts, ©) = ml + m2 A
length(inouts,’) = nl + n2 A
[(Ann. take m1 (inouts, nn)) z e g (Ann. drop m1 (inouts, nn)) = inouts,’ x) A
(Vz za. length(z za) = m1 + m2 —
length(f (Ann. take m1 (z nn)) xza) + length(g (Ann. drop m1 (x nn)) za) = nl + n2)
from al show Ja aa abd.
(3 ok, inouts, .
(ok, —
ok, A
(Vz. (m1 = 0 — length(inouts,) = m2 A inouts,” © = []) A
(0 <ml —
length(inouts, x) = m1 + m2 A length(inouts,’ £) = m1 A take m1 (inouts, =) =
inouts,’ z))) A
(ok," —
a A (Va. length(inouts,” ©) = m1 A length(ab x) = nl A finouts,” z = ab z) A
(Vz za. length(z xza) = m1 — length(f x za) = n1))) A
(3b. (3 ok, inouts,".
(ok, —
oky,' A
(Vz. (m2 = 0 — length(inouts,) = ml A inouts,’ z = []) A
(0 < m2 —
length(inouts, x) = m1 + m2 A
length(inouts,”) = m2 A drop m1 (inouts, x) = inouts,’ x))) A
(ok," —
aa A (Vz. length(inouts,’ ©) = m2 A length(b z) = n2 A g inouts,’ x = b x) A

66

(Vz za. length(z za) = m2 — length(g © za) = n2))) A
(V. inouts,” © = ab xz @ b z) A ok, = (a A aa))
apply (rel-auto)
apply (rule-tac z = ok,’ in exl)
apply (rule-tac z = ok, ' in exl)
apply (rule-tac x = inouts,’ in exl)
apply (rule congl)
apply blast
using take-0 apply blast
apply (rule-tac z = ok, ' in exl)
apply (rule-tac z = ok, ' in exl)
apply (rule-tac & = Ana. f (Anz. take m1 (inouts, nx)) na in exl)
apply (rule congl)
apply (rule-tac x = ok, in exl)
apply (rule-tac x = Anz. take m1 (inouts, nz) in exl)
using SimBlock-FBlock-fn s1 apply auto[!]
apply (rule-tac = Ana. g (Anz. drop m1 (inouts, nz)) na in exl)
apply (rule congl)
apply (rule-tac x = ok, in exl)
apply (rule-tac z = Anz. drop m1 (inouts, nz) in exl)
using SimBlock-FBlock-fn s2 apply auto[1]
by simp
qed
show ?thesis
using 2 form by simp
qed

Py

lemma SimBlock-FBlock-parallel-comp [simblock-healthy]:
assumes sI: SimBlock m1 n1 (FBlock (Az n. True) m1 nl f)
assumes s2: SimBlock m2 n2 (FBlock (Az n. True) m2 n2 g)
shows SimBlock (m14+m2) (n14n2) ((FBlock (Ax n. True) m1 nl f) || (FBlock (Ax n. True) m2
n2 g))
apply (simp add: s1 s2 FBlock-parallel-comp)
apply (rule SimBlock-FBlock)
proof —
obtain inouts,::nat = real list where P: ¥V na. length(inouts, na) = mi1 + m2
using list-len-avail by auto
show Jinouts, inouts,’.
Vz. length(inouts,’ ©) = nl + n2 A
length(inouts, ©) = m1 + m2 A
f (Ann. take m1 (inouts, nn)) x & g (Ann. drop m1 (inouts, nn)) x = inouts,’ x
apply (rule-tac z = inouts, in exl)
apply (rule-tac x = Ana. (f (Ann. take m1 (inouts, nn)) na & g (Ann. drop m1 (inouts, nn))
na) in exl)
using P SimBlock-FBlock-fn s1 s2 by auto
next
show Vz na. length(z na) = m1 + m2 —
length(f (Ann. take m1 (x nn)) na ® g (Ann. drop m1 (z nn)) na) = nl + n2
using SimBlock-FBlock-fn s1 s2 by auto
qed

B.4.4 Feedback

B.4.4.1 feedback lemma feedback-mono:
fixes mI :: nat and n! :: nat and i :: nat and ol :: nat
assumes sI: SimBlock m1 n1 P1

67

assumes s2: SimBlock m1 n1 P2

assumes s3: P1 C P2

assumes s4: 11 < ml

assumes $5: 0l < nl

shows (P1 fp (il,01)) C (P2 fp (il,01))
apply (simp add: f-sim-blocks)

using s! s2 apply (simp add: inps-P outps-P)
apply (rel-simp)

apply (auto)

apply (metis s3 upred-ref-iff)
apply (rule-tac z = = in exl)
apply (rule-tac x = ok,"" in exl)
apply (rule-tac x = inouts,’” in exl)
apply (rule-tac x = ok, """ in exI)
apply (rule-tac z = inouts,”’ in exl)
apply (metis s3 upred-ref-iff)

apply (rule-tac = = in exl)

apply (rule-tac x = True in exl)
apply (rule-tac z = inouts,” in exl)
apply (rule conjI)

apply blast

apply (rule-tac & = False in exl)
apply (rule-tac x = inouts,’”’ in exl)
apply (meson s3 upred-ref-iff)

apply (rule-tac z = = in exl)

apply (rule-tac z = True in exI)
apply (rule-tac x = inouts,’ in exl)
apply (rule congl)

apply blast

apply (rule-tac x = ok,""" in exl)
apply (rule-tac z = inouts,”” in exl)
by (metis s3 upred-ref-iff)

lemma sol-f-id: Solvable 0 0 1 1 f-Id
by (simp add: Solvable-def f-Id-def f-PreFD-def)

lemma sol-f-ud: Solvable 0 0 1 1 (f-UnitDelay z0)
apply (simp add: Solvable-def f-UnitDelay-def f-PreFD-def)
by (auto)

— The function which output is equal to its input plus 1 is not solvable
lemma — Solvable 0 0 1 1 (Az n. [hd(z n) + 1])

apply (simp add: Solvable-def f-PreFD-def)

by (auto)

lemma sol-f-id-ud: Solvable 0 0 1 1 ((f-UnitDelay xz0) o (f-Id))

apply (simp add: Solvable-def f-UnitDelay-def f-Id-def f-PreFD-def)
by (auto)

68

lemma sol-f-integrator:
Solvable 1 1 2 2 (Az n. [if n = 0 then z0 else (x (n—1)10) + (z (n—1)!1),
if n = 0 then z0 else (z (n—1)!10) + (x (n—1)!1)])
apply (simp add: Solvable-def f-PreFD-def)
apply (clarify)
apply (rule-tac x = Ana. (if na = 0 then x0 else (x0+sum-hd-signal inoutsy (na—1))) in exl)
apply (simp, clarify)
apply (rule congl)
apply (clarify)
apply (metis Nil-is-append-conv One-nat-def add.commute hd-append2 hd-conv-nth list.size(3)
nth-append-length zero-neg-one)
apply (clarify)
proof —
fix inoutsg::nat = real list and n::nat
assume al: Vz. length(inoutsg) = Suc 0
assume a2: - n < Suc 0
have 1: (inoutsy (n — Suc 0) e [20 + sum-hd-signal inoutsy (n — Suc (Suc 0))])!(0)
= hd(inoutsy (n — Suc 0))
using al a2
by (metis One-nat-def hd-conv-nth le-numeral-extra(4) less-numeral-extra(1) list.size(8)
not-one-le-zero nth-append)
have 2: (inoutsg (n — Suc 0) e [z0 + sum-hd-signal inoutse (n — Suc (Suc 0))])!(Suc 0)
= 20 + sum-hd-signal inoutsg (n — Suc (Suc 0))
using al a2
by (metis nth-append-length)
have 3: (n — (Suc 0)) = Suc (n — (Suc (Suc 0)))
using a2 by linarith
show z0 + sum-hd-signal inoutsy (n — Suc 0) =
(inoutsg (n — Suc 0) e [x0 + sum-hd-signal inoutsy (n — Suc (Suc 0)))1(0) +
(inoutsg (n — Suc 0) o [x0 + sum-hd-signal inoutsy (n — Suc (Suc 0))])!(Suc 0)
apply (simp add: 1 2)
using al a2 3
by simp
qed

lemma Solvable-unique-is-solvable:
assumes Solvable-unique i1 o1 m n (f)
shows Solvable i1 01 m n (f)
using assms apply (simp add: Solvable-unique-def Solvable-def)

apply (clarify)
by blast

unique-solution-integrator: the integrator diagram has a unique solution.

lemma unique-solution-integrator:
fixes inoutsg::nat = real list
assumes s1: Vn. length(inoutsy n) = 1
shows lzz. (Vn. (n =0 — 2z 0 = 20) A
(0 < n — 2z n = hd((inoutsy (n — Suc 0))) + zx (n — Suc 0)))
apply (rule ex-ex1I)
apply (rule-tac z = Ana. (if na = 0 then z0 else (z0+(> 1 € {0..(na—1)}. hd((inoutsy 7))))) in
exl)
apply (simp)
apply (rule alll)
proof —
fix n:nat

69

show - n < Suc 0 —
(3>i=0.n — Suc 0. hd (inoutsg i)) =
hd (inoutsy (n — Suc 0)) + (. i = 0..n — Suc (Suc 0). hd (inoutsy 7))
proof (induct n)
case (
thus ?case by auto
next
case (Suc n) note IH = this
{ assume Suc n = 1
hence ?case by auto
}
also {
assume Suc n > 1
{
assume Sucn = 2
hence ?case by auto
}
also {
assume Suc n > 2
have ?case

by (smt One-nat-def Suc-diff-Suc (I < Suc n) sum.atLeastO-atMost-Suc)

}
}

ultimately show ?case

by (smt One-nat-def Suc-1 Suc-lessI cancel-comm-monoid-add-class.diff-cancel
diff-Suc-1 not-less sum.atLeastO-atMost-Suc)
qed
next
fix zz:: nat = real and y:: nat = real

assume al:Vn. (n =0 — 2z 0 = 20) A (0 < n — zz n = hd (inoutsy (n — Suc 0)) + zz (n
— Suc 0))

assume a2:Vn. (n =0 — y 0 =20) A (0 <n — yn = hd (inoutsg (n — Suc 0)) + y (n —
Suc 0))
have 1:Vn.zzn=yn
apply (rule alll)
proof —
fix n:nat
show zzn =y n
proof (induct n)
case 0
then show ?case
using al a2 by simp
next
case (Suc n) note IH = this
then show ?case
using al a2 by simp
qed
qed
show zz =y
using 1 fun-eq by (blast)
qed

lemma F'Block-feedback:
assumes s1: SimBlock m n (FBlock (Axz n. True) m n f)

70

assumes s2: Solvable-unique i1 0ol m n (f)
shows (FBlock (Az n. True) mn f) fp (i1, ol)
= (FBlock (Ax n. True) (m—1) (n—1)
(Az na. ((f~PostFD o1) o f o (f-PreFD (Solution il ol mn fz) il)) z na))
proof —
have inps-1: inps (FBlock (Ax n. True) mn f) = m
using s! by (simp add: inps-P)
have outps-1: outps (FBlock (Ax n. True) m n f) = n
using s! by (simp add: outps-P)
have i1-lt-m: i1 <m
using s2 by (simp add: Solvable-unique-def)
have o1-lt-n: 01 < n
using s2 by (simp add: Solvable-unique-def)
have 1: (FBlock (Ax n. True) mn f) fp (i1, o1) = (true k-, (3 z -
(V n - #u(Sinouts(«n»)y) =4 «m — Suc 0» A
#u($inouts " («n»)q) =o «m» A $inouts («n»)q =y «f-PreFD x il»($inouts),(«n»),)

((V na - #4(Sinouts(«na»),) =, «m» A
#u($inouts " («na»)q) =4 «n» A «f»($inouts),(«nay), =, $inouts («na»)y) A
(V z -V na - #,.(«xnay) =, «m» = #,(«f znay) =, «n»)) ;;
(V na « #4($inouts(«na»)y) =4 «n» A
#.u($inouts " («na»),) =4 «n — Suc 0» A
$inouts “(«na»)q =y «f-PostFD ol»($inouts),(«na»), A
«uapply» ($inouts(«na»)q)q(01%)q =y «T nay)))
apply (simp add: inps-1 outps-1)
apply (simp add: PreFD-def PostF'D-def FBlock-def Solution-def)
apply (simp add: ndesign-composition-wp wp-upred-def)
by (rel-simp)
have 2: (true b, (3 = -
(VY n - #u(Sinouts(«n»)y) =4 «m — Suc 0» A
#.u(Sinouts " («n»)q) =u «m» A Sinouts («n»), =, «f-PreFD x il»($inouts)q(«n»)q)

((V na « #4($inouts(«na»),) =, «m» A
#u(Sinouts " («na»)y) =4 «n» A «f»($inouts)q(«na»), =, $inouts («na»)y) A
(V z -V na - #,(«xnay) =, «m» = #,(«f 2 nay) =, «n»)) ;;
(VY na - #4($inouts(«na»)y) =4 «n» A
#.($inouts " («na»),) =4 «n — Suc 0» A
$inouts " («na»), =4 «f-PostF'D ol ($inouts),(«na»), A
«uapply» ($inouts(«na»)q)q(«01%)q =y «T nax)))
= (FBlock (Ax n. True) (m—1) (n—1)
(Az na. ((f~PostFD o1) o f o (f-PreFD (Solution il ol m n fx) il)) x na))
apply (simp add: FBlock-def Solution-def)
apply (rule ref-eq)
apply (rule ndesign-refine-intro, simp+)
apply (rel-simp)
apply (rule-tac x = (SOME zx. ¥ n. zx n = f (f-PreFD xz il inouts,) nl(ol)) in exl)
apply (rule-tac z = Ana. f-PreFD (SOME zz. ¥V n. zx n = f (f~PreF'D xzx il inouts,) n!(ol))
il inouts, na in exl, simp)
apply (rule congl)
apply (simp add: f-PreFD-def)
using iI-lt-m apply linarith
apply (rule-tac x = Ana. (f (f~PreFD (SOME zz. ¥ n. zx n = f (f-PreFD zz il inouts,) n!(ol))
il inouts,) na) in exl, simp)
apply (rule congl)
apply (simp add: f-PreFD-def)

71

apply (rule congl)
using 1-lt-m apply linarith

defer

apply (rule congl)

using SimBlock-FBlock-fn s1 apply blast
apply (rule alll, rule conjI)

defer
defer
apply (rule ndesign-refine-intro, simp+)
apply (rel-simp)
apply (rule conjI)
defer
apply (simp add: f-PreFD-def f-PostFD-def)
using ol-lt-n apply linarith
prefer 3
proof —
fix inouts,::nat = real list and inouts, ::nat = real list and z::nat
assume al: Vz. length(inouts, x) = m — Suc 0 A
length(inouts,” ©) = n — Suc 0 A
f-PostFD ol (f (f-PreFD (SOME zx.¥n. zx n = f (f-PreFD zz il inouts,) nl(o1)) il inouts,))
T = inouts,’
let ?P= A\zxz. Vn. zxn = f (f~PreFD zx il inouts,) n!(ol)
have 1: (P (SOME zx. ?P zx))
apply (rule somel-ex[of ?P])
using s2 apply (simp add: Solvable-unique-def)
using al by blast
show f (f-PreFD (SOME zx. ?P zx) il inouts,) z!(ol) = (SOME xz. 7P xz) x
by (simp add: 1)
next
fix inouts, inouts,’
assume al: Vz. length(inouts, x) = m — Suc 0 A
length(inouts,’ z) = n — Suc 0 A
f-PostFD o1 (f (f~PreFD (SOME zx. ¥ n. zx n = f (f~PreFD xz il inouts,) n!(o1)) il inouts,))

Tr =
inouts,’ x
assume a2: Vz za. length(z za) = m — Suc 0 —
length(f-PostFD ol (f (f-PreFD (SOME zx.¥n. zxn = f (f-PreFD zx il z) nl(ol)) il z))
za) =
n — Suc 0
from a! have a1’ Vz. length(inouts,) = m — Suc 0
by (simp)

have V na. length((f-PreF'D (SOME zx. ¥ n. xz n = f (f~PreFD xz il inouts,) nl(ol1)) il inouts,)
na) = m
using al’ f-PreFD-def apply (simp)
using iI-lt-m by linarith
then show Vz. length(f (f-PreFD (SOME xz.¥n. zx n = f (f~PreFD zz il inouts,) n!(ol)) il
nouts,)) = n
using SimBlock-FBlock-fn s1 by blast
next
fix tnouts, tnouts,’ x
assume al: Vz. length(inouts, x) = m — Suc 0 A
length(inouts,’) = n — Suc 0 A
f-PostFD ol (f (f-PreFD (SOME zx.¥n. zx n = f (f-PreFD zz il inouts,) nl(o1)) il inouts,))

72

inouts,’
assume a2: Vz za. length(z xza) = m — Suc 0 —
length(f-PostFD ol (f (f-PreFD (SOME xx.¥n. zxn = f (f~PreFD zz il z) nl(ol)) il z))

n — Suc 0
from al have a1’ Vz. length(inouts, z) = m — Suc 0
by (simp)
have V na. length((f-PreFD (SOME zx. ¥V n. zx n = f (f-PreFD zz il inouts,) n!(ol1)) il inouts,)
na) = m
using al’ f-PreFD-def apply (simp)
using I-lt-m by linarith
then show length(f (f-PreFD (SOME xx. Vn. xz n = f (f-PreFD xzz il inouts,) n!(ol)) il
inouts,)) = n
using SimBlock-FBlock-fn s1 by blast
next
fix inouts,::nat = real list and inouts, " :nat = real list and z::nat = real and
inouts, ":nat = real list and inouts,’::nat = real list
assume al: Vza. length(inouts, za) = m — Suc 0 A inouts,” xa = f-PreFD x il inouts, za
assume a2: V za. length(f-PreFD x il inouts, xa) = m A finouts,” xa = inouts,”’ xa
assume a3: Vza. length(inouts,’” za) = n A length(inouts,’ za) = n — Suc 0 A
inouts,’ za = f-PostFD ol inouts,’"” xa A inouts,”’ zal(ol) = x za
have unique-sol:
(3! (zz::nat = real).
(Vn. (zzn = (f (Anl. f~PreFD xz il inouts, nl) n)lol)))
using s2 al by (simp add: Solvable-unique-def)
from al a2 have V za. inouts,’”’ xa = f inouts,’ za
by simp
then have V za. inouts,””" za = f (f-PreFD x il inouts,) za
using al by presburger
then have 0: inouts,”"" = f (f-PreFD z il inouts,)
by (rule fun-eq)
have 1: (SOME zz.Vn. xzx n = f (f-PreF'D xz il inouts,) nl(ol)) =z
apply (rule some-equality)
using 0 a8 unique-sol by auto
then have 2: Vn. f-PostFD ol (f (f-PreFD (SOME zx.Vn. xzx n = [(f-PreFD zx il inouts,)
nl(ol)) il inouts,)) n
= f-PostFD ol (f (f~PreF'D x il inouts,)) n
by blast
then have 3: Vn. f-PostFD ol (f (f-PreFD (SOME zx. ¥V n. zx n = f (f-PreFD xz il inouts,)
nl(ol1)) il inouts,)) n
= f-PostFD ol inouts,”"’ n
using 0 by blast
show V z. length(f-PostFD ol inouts,”"’) = n — Suc 0 A
f-PostFD o1 (f (f~PreFD (SOME zx. ¥ n. zx n = f (f~PreFD xz il inouts,) n!(o1)) il inouts,))

x
= f-PostFD ol inouts,”” x
apply (rule alll, rule conjl)
apply (simp add: f-PostFD-def)
using a8 ol-lt-n apply auto[!]
using 3 by blast

qed
show ?thesis
using ! by (simp add: 2)
qed

73

lemma unique-solution:
assumes sI: Solvable-unique i1 ol m n (f)
assumes s2: is-Solution il ol m n (f) (az)
assumes s3: Vn. length(ins n) = m—1
shows zz ins = (Solution i1 ol m n f ins)
using s! s2 apply (simp add: Solution-def Solvable-unique-def is-Solution-def)
apply (clarify)
proof —
assume al: Vinoutsg. (Vz. length(inoutsy ©) = m — Suc 0) —
(Vn. zzinoutso n = f (f-PreF'D (zx inoutsy) il inoutsg) n!(ol))
assume a2: Vinoutsy. (Vz. length(inoutsy ©) = m — Suc 0) —
(Flazz. Vn. zz n = f (f-PreFD xz il inoutsg) n!(ol))
have (SOME zx. Vn. 2z n = f (f~PreFD xz il ins) nl(o1)) = zx ins
apply (rule some-equality)
using al s3 apply simp
using a2 apply (simp add: Ex1-def)
proof —
fix zza
assume a3: Vn. zza n = f (f-PreFD zza il ins) n!(ol)
assume a4: Vinoutsg.
(Vz. length(inoutsg) = m — Suc 0) —
(Fz. Vn.zn = f (f-PreFD z il inoutsg) nl(ol)) A
Vy. (Yn.yn=f (f~PreFD y il inoutsy) nl(ol)) — y = z))
from aj s3 have 1: (3z. (Vn. zn = f (f~PreFD x il ins) nl(ol)
Vy. (Yn.yn=f (f~PreFD y il ins) nl(ol)) — y = x))
by simp
from s2 have 2: Vn. (zz ins) n = f (f-PreF'D (zx ins) il ins) nl(ol)
using al s3 by simp
show zza = zz ins
using a3 a4 s3 1 2 by blast
qed
then show zz ins = (SOME zz. ¥V n. zx n = f (f-PreF'D zx il ins) n!(ol))
by simp
qged

lemma FBlock-feedback’:
assumes sI: SimBlock m n (FBlock (Ax n. True) m n f)
assumes s2: Solvable-unique i1 o1 m n (f)
assumes s3: is-Solution il o1 m n (f) (2x)
shows (FBlock (Az n. True) mn f) fp (i1, ol)
= (FBlock (Ax n. True) (m—1) (n—1)
(Az na. ((f~PostFD o1) o f o (f-PreFD (zz z) il)) z na))
using s! s2 FBlock-feedback apply (simp)
proof —
have i1-lt-m: il < m
using s2 by (simp add: Solvable-unique-def)
have o1-lt-n: 01 < n
using s2 by (simp add: Solvable-unique-def)
show FBlock (Ax n. True) (m — Suc 0) (n — Suc 0)
(Ax. f-PostFD ol (f (f-PreFD (Solution il ol m n fz) il z))) =
FBlock (Ax n. True) (m — Suc 0) (n — Suc 0) (Az. f~PostFD ol (f (f-PreFD (zz z) il x)))
apply (simp (no-asm) add: FBlock-def)
apply (rel-simp)
apply (rule iffI, clarify)

74

defer
apply (clarify)
defer
proof —
fix ok, inouts, ok,’ inouts,’
assume al: Vz. length(inouts, x) = m — Suc 0 A
length(inouts,’ z) = n — Suc 0 A
f-PostFD ol (f (f-PreFD (Solution il ol m n f inouts,) il inouts,)) x = inouts,’
assume a2: Vz za. length(z za) = m — Suc 0 —
length(f-PostFD ol (f (f~PreFD (Solution il ol m n fx) il x)) za) = n — Suc 0
have 1: Vz. length(inouts,) = m — Suc 0
using al by simp
have 2: zz inouts, = (Solution il ol m n f inouts,)
apply (rule unique-solution)
using s2 apply (simp)
using s3 apply (simp)
using 1 by (simp)
show (Vz. length(inouts, x) = m — Suc 0 A length(inouts,” £) = n — Suc 0 A
f-PostFD ol (f (f-PreFD (zz inouts,) il inouts,)) & = inouts,’ x) A

(Vz za. length(z za) = m — Suc 0 — length(f~PostFD ol (f (f-PreFD (zz x) il z)) za)

n — Suc 0)
apply (rule conjl)
using 2 al apply simp
apply (rule alll)
apply (clarify)
proof —
fix z::nat = real list and za::nat
assume all: length (z za) = m — Suc 0
have 1: length((f-PreFD (xzz x) il x) za) = m
using all apply (simp add: f-PreFD-def)
using iI-lt-m by linarith
have 2: length((f (f-PreFD (zz) il z)) za) = n
using 1 SimBlock-FBlock-fn s1 by blast
show length(f-PostFD ol (f (f-PreFD (zx z) il z)) za) = n — Suc 0
apply (simp add: f-PostFD-def f-PreFD-def)
using 1 2 ol-lt-n by linarith
qed
next
fix ok, inouts, ok,’ inouts,’
assume al: Vz. length(inouts, x) = m — Suc 0 A length(inouts,’ ©) = n — Suc 0 A
f-PostFD ol (f (f-PreFD (zz inouts,) il inouts,)) & = inouts,’ x

assume a2: Vz za. length(z za) = m — Suc 0 — length(f-PostFD ol (f (f-PreFD (xx z) il

z)) za) = n — Suc 0
have 1: Vz. length(inouts,) = m — Suc 0
using al by simp
have 2: zz inouts, = (Solution il ol m n finouts,)
apply (rule unique-solution)
using s2 apply (simp)
using s3 apply (simp)
using 1 by (simp)
show (Vz. length(inouts, x) = m — Suc 0 A length(inouts,”) = n — Suc 0 A
f-PostFD ol (f (f-PreFD (Solution i1 o1 m n finouts,) il inouts,)) © = inouts,’ x) A
(Vz za. length(z za) = m — Suc 0 —>
length(f-PostFD ol (f (f-PreFD (Solution il ol m n fz) il z)) za) = n — Suc 0)
apply (rule conjl)

75

using 2 al apply auto[1]
apply (rule alll)
apply (clarify)
proof —
fix z::nat = real list and za::nat
assume all: length (z za) = m — Suc 0
have 1: length((f-PreFD (Solution il ol m n fz) il) za) = m
using all apply (simp add: f-PreFD-def)
using iI-lt-m by linarith
have 2: length((f (f-PreFD (Solution il ol mn fz) il x)) za) = n
using 1 SimBlock-FBlock-fn s1 by blast
show length(f-PostF'D o1 (f (f-PreF'D (Solution il ol m n fz) il z)) za) = n — Suc 0
apply (simp add: f-PostFD-def f-PreFD-def)
using 1 2 ol-lt-n by linarith
qed
qed
qed

lemma FBlock-feedback-ref:
assumes s1: SimBlock m n (FBlock (Ax n. True) m n f)
assumes s2: Solvable i1 o1 m n (f)
shows (FBlock (Axz n. True) mn f) fp (i1, ol)
C (FBlock (Ax n. True) (m—1) (n—1)
(Az na. ((f~PostFD o1) o f o (f-PreFD (Solution il ol m n fx) il)) x na))
proof —
have inps-1: inps (FBlock (Az n. True) mn f) = m
using s! by (simp add: inps-P)
have outps-1: outps (FBlock (Az n. True) mn f) = n
using sI by (simp add: outps-P)
have i1-lt-m: il < m
using s2 by (simp add: Solvable-def)
have o1-lt-n: 01 < n
using s2 by (simp add: Solvable-def)
have 1: (FBlock (Ax n. True) mn f) fp (i1, ol) = (true -, (3 z -
(V n - #u(Sinouts(«n»)y) =, «m — Suc 0» A
#u(Sinouts " («n»),) =4 «m>» A Sinouts («n»)q =, «f-PreFD z il»($inouts),(«n»),)

((V na » #4($inouts(«na»)y) =, «m» A
#u(Sinouts " («na»)y) =4 «n» A «f»($inouts)q(«na»), =, $inouts («na»)y) A
(V z -V na - #.(«xnay) =, «m» = #,(«f 2 nay) =, «n»)) ;;
(VY na - #4($inouts(«na»)y) =4 «ny» A
#.($inouts " («na»)y) =4 «n — Suc 0» A
$inouts " («na»), =4 «f-PostF'D ol ($inouts),(«na»), A
«uapply» ($inouts(«na»)q)q(«01%)q =y «T nay)))
apply (simp add: inps-1 outps-1)
apply (simp add: PreFD-def PostFD-def FBlock-def Solution-def)
apply (simp add: ndesign-composition-wp wp-upred-def)
by (rel-simp)
have 2: (true -, (3 = -
(V n - #u(Sinouts(«n»)y) =4 «m — Suc 0» A
#Hu(Sinouts " («n»)) =4 «m» A $inouts («n»)q =, «f-PreFD z il»($inouts)q(«n»),)

((V na « #4($inouts(«na»),) =, «m» A

#u(Sinouts " («na»)y) =4 «n» A «f»(Sinouts),(«na»), =, $inouts («na»),) A
(V 2 -V na -« #4,(«x nay) =, «m» = #,(«f £ nay) =, «n»)) ;;

76

(V na - #4($inouts(«na»),) =, «n» A
#u($inouts " («na»)y) =4 «n — Suc 0» A
$inouts "(«na»), =, «f-PostFD ol»($inouts),(«na»), A
«uapply» ($inouts(«na»)q)q(€01%)q =y «T na»)))
C (FBlock (Ax n. True) (m—1) (n—1)
(Az na. ((f-PostFD o1) o f o (f-PreFD (Solution il ol m n fx) il)) x na))
apply (simp add: FBlock-def Solution-def)
apply (rule ndesign-refine-intro, simp+)
apply (rel-simp)
apply (rule-tac x = (SOME zz. ¥ n. xzx n = f (f-PreFD xz il inouts,) nl(ol)) in ezl)
apply (rule-tac x = Ana. f-PreF'D (SOME zz. ¥ n. zx n = f (f-PreFD zx il inouts,) n!(ol))
i1 inouts, na in exl, simp)
apply (rule conjl)
apply (simp add: f-PreFD-def)
using ¢I-lt-m apply linarith
apply (rule-tac x = Ana. (f (f~PreFD (SOME zx. ¥V n. xzz n = f (f-PreFD xz il inouts,) n!(ol))
il inouts,) na) in exl, simp)
apply (rule conjI)
apply (simp add: f-PreFD-def)
apply (rule congl)
using i1-lt-m apply linarith

defer

apply (rule conjI)

using SimBlock-FBlock-fn s1 apply blast
apply (rule alll, rule conjI)

defer
proof —
fix inouts,::nat = real list and inouts, ::nat = real list and z::nat
assume al: Vz. length(inouts, =) = m — Suc 0 A
length(inouts,” ©) = n — Suc 0 A
f-PostFD ol (f (f-PreFD (SOME zx.¥n. zx n = f (f~PreFD xz il inouts,) nl(o1)) il inouts,))
inouts,’
let ?P= A\zxz. Vn.zxn = f (f~PreFD zx il inouts,) n!(ol)
have 1: (P (SOME zx. ?P zx))
apply (rule somel-ex[of ?P])
using s2 apply (simp add: Solvable-def)
using al by blast
show f (f-PreFD (SOME zx. ?P zx) il inouts,) z!(o1) = (SOME xz. ?P xz) x
by (simp add: 1)
next
fix inouts, inouts,’
assume al: Vz. length(inouts, x) = m — Suc 0 A
length(inouts,’) = n — Suc 0 A
f-PostFD o1 (f (f~PreFD (SOME zx. ¥ n. zx n = f (f~PreFD xz il inouts,) n!(o1)) il inouts,))

inouts,’ x
assume a2: Vz za. length(z za) = m — Suc 0 —
length(f-PostFD ol (f (f-PreFD (SOME xz. ¥ n. zx n = f (f~PreFD zz il z) nl(ol)) il z))

n — Suc 0
from a! have al” Vz. length(inouts,) = m — Suc 0

by (simp)
have V na. length((f-PreF'D (SOME zx. ¥ n. xz n = f (f-PreFD xz il inouts,) nl(ol1)) il inouts,)

7

na) = m
using al’ f-PreFD-def apply (simp)
using i1-lt-m by linarith
then show Vz. length(f (f-PreFD (SOME xx.Vn. zx n = f (f~PreFD zz il inouts,) n!(ol)) il
nouts,)) = n
using SimBlock-FBlock-fn s1 by blast
next
fix inouts, tnouts,’ x
assume al: Vz. length(inouts, x) = m — Suc 0 A
length(inouts,” ©) = n — Suc 0 A
f-PostFD ol (f (f-PreFD (SOME zx.¥n. zxn = f (f~PreFD xz il inouts,) nl(o1)) il inouts,))

Tr =
nouts,’ T
assume a2: Vz za. length(z za) = m — Suc 0 —
length(f-PostFD o1 (f (f-PreFD (SOME zx. ¥ n. xx n = f (f-PreFD zx il z) n!(ol)) il x))
za) =
n — Suc 0
from a! have a1’ Vz. length(inouts,) = m — Suc 0
by (simp)
have V na. length((f-PreFD (SOME zx. ¥V n. zx n = f (f-PreFD zz il inouts,) n!(ol1)) il inouts,)
na) = m

using al’ f-PreFD-def apply (simp)
using I-lt-m by linarith
then show length(f (f-PreFD (SOME xx. Vn. xz n = [(f-PreFD xzz il inouts,) n!(ol)) il
inouts,)) = n
using SimBlock-FBlock-fn s1 by blast
qed
show ?thesis
by (metis 1 2)
qed

lemma SimBlock-FBlock-feedback [simblock-healthy]:
assumes sI: SimBlock m n (FBlock (Ax n. True) m n f)
assumes s2: Solvable i1 ol m n (f)
shows SimBlock (m—1) (n—1) ((FBlock (Az n. True) m n f) fp (i1, ol))
proof —
have m1-ge-0: (m — (Suc 0)) > 0
using s2 by (simp add: Solvable-def)
have m1-gt-0: m > 0
using s2 by (simp add: Solvable-def)
have inps-1: inps (FBlock (Ax n. True) mn f) =m
using inps-outps s1 by blast
have outps-1: outps (FBlock (Az n. True) mn f) = n
using inps-outps s1 by blast
have i1-le-m: i1 < m — Suc 0
using s2 apply (simp add: Solvable-def)
by linarith
have ol-le-n: 01 < n — Suc 0
using s2 apply (simp add: Solvable-def)
by linarith
obtain inoutsg::nat = real list where P0: V x. length(inoutsg x) = (m — 1)
using m1-gt-0 list-len-avail
by blast
have (Vinoutsg. (Vz. length(inoutsg x) = (m—1))
— (Jaz.

78

(Vn. (zzn =
(f (An1.
((take i1 (inoutsy nl))e(xx nl)#(drop il (inoutsy nl)))
) n)lol
)

)
using s2 by (simp add: Solvable-def f-PreF'D-def)

then have 1: Jaz. (Vn. (zzn = (f (Anl. ((take il (inoutsy nl))e(zx nl)#(drop il (inoutsy nl))))
n)lol))
apply (simp)
using P0 by simp
obtain zz::nat = real
where P1: (Vn. (zz n = (f (Anl. ((take il (inoutsy nl))e(zx nl)#(drop il (inoutsg nl1)))) n)lol
)
using 1 PO by blast
have 2: Suc (m — Suc 0) = m
using m1-gt-0 by simp
show ?thesis
apply (simp add: SimBlock-def inps-1 outps-1 PreFD-def PostFD-def)
apply (simp add: FBlock-def)
apply (rel-auto)
apply (simp add: f-blocks)

apply (rule-tac x = inoutsy in exl)
apply (rule-tac * = Ana.
(remove-at (f (Anl. ((take il (inoutsy nl))e[zx nl]e(drop il (inoutsg nl1)))) na) ol) in exl)
apply (rule-tac z = zz in exl)
apply (rule-tac = True in exl, simp)
apply (rule-tac x = Ana. (
(An1. ((take i1 (inoutsy nl))e[zx ni]e(drop il (inoutsy nl)))) na) in exl)
apply (simp)
apply (rule congl)
apply (rule alll)
apply (rule conjI)
using P0 apply (simp)
apply (simp add: 2 P0)
apply (rule-tac x = True in exl, simp)
apply (rule-tac x = Ana.
((f (Anl. ((take il (inoutsg nl))e[zx n1]e(drop il (inoutsy nl)))) na)) in exl)
apply (simp)
apply (rule conjl)
using 2 P0 SimBlock-FBlock-fn s1
apply (smt One-nat-def add-Suc-right append-take-drop-id length-Cons length-append)
apply (rule congl)
using SimBlock-FBlock-fn s1 apply blast
apply (rule alll)
apply (rule congl)
using SimBlock-FBlock-fn sl1
apply (smt 2 One-nat-def PO add-Suc-right append-take-drop-id length-Cons length-append)
apply (rule conjI)
defer
using PI apply metis
proof —
fix z
have 1: length(f (Anl. take il (inoutsy nl) e zx nl # drop il (inoutsy nl)) z) = n

79

using 2 P0 SimBlock-FBlock-fn s1
by (smt One-nat-def add-Suc-right append-take-drop-id length-Cons length-append)
show min (length(f (Anl. take il (inoutsy nl) e xx nl # drop il (inoutsy nl)) x)) ol +
(length(f (Anl. take i1 (inoutsy nl) e xx nl # drop il (inoutsy nl)) z) — Suc ol) =
n — Suc 0
apply (simp add: 1)
using ol-le-n by linarith
qed
qged

B.4.5 Split

lemma SimBlock-Split2 [simblock-healthy]:
SimBlock 1 2 (Split2)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (simp add: f-blocks)
apply (rule-tac x = Ana. [1] in exl)
apply force
by (simp add: f-blocks)

B.5 Blocks

B.5.1 Source

B.5.1.1 Const lemma SimBlock-Const [simblock-healthy):
SimBlock 0 1 (Const c0)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (simp add: f-blocks)
apply (rule-tac x = Ana. [] in exl)

apply force
by (simp add: f-blocks)

B.5.1.2 Pulse Generator

B.5.2 Unit Delay

lemma SimBlock-UnitDelay [simblock-healthy]:
SimBlock 1 1 (UnitDelay z0)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (simp add: f-blocks)
apply (rule-tac = Ana. [1] in exl)
apply (rule-tac = Ana. [if na = 0 then z0 else 1] in exI)
apply (simp)
by (simp add: f-blocks)

B.5.3 Discrete-Time Integrator

B.5.4 Sum

lemma SimBlock-Sum?2 [simblock-healthy]:
SimBlock 2 1 (Sum?2)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (simp add: f-blocks)

80

apply (rule-tac x = Ana. [1,1] in exl)
apply (rule-tac x = Ana. [2] in exl)
apply (simp)

by (simp add: f-blocks)

B.5.5 Product

lemma SimBlock-Mul2 [simblock-healthy]:
SimBlock 2 1 (Mul2)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (simp add: f-blocks)
(1] in exl)
(] in exl)

apply (rule-tac x = Ana. |
apply (rule-tac x = Ana. |
apply (simp)

by (simp add: f-blocks)

1
1

lemma SimBlock-Div2 [simblock-healthy]:
SimBlock 2 1 (Div2)
apply (simp add: f-sim-blocks)
apply (simp add: SimBlock-def FBlock-def)
apply (rel-auto)
apply (rule-tac x = Ana. [1,1] in ex])
apply (simp)
apply (rule congI)
apply (rule-tac = Ana. [1] in exl)
apply (simp add: f-blocks)
by (simp add: f-blocks)

B.5.6 Gain

lemma SimBlock-Gain [simblock-healthy):
SimBlock 1 1 (Gain k)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (simp add: f-blocks)
apply (rule-tac = Ana. [1] in exl)
apply (rule-tac x = Ana. [k] in exl)
apply (simp)
by (simp add: f-blocks)

B.5.7 Saturation

lemma SimBlock-Limit [simblock-healthy]:
assumes ymin < ymax
shows SimBlock 1 1 (Limit ymin ymaz)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (simp add: f-blocks)
apply (rule-tac x = Ana. [ymin] in exl)
apply (rule-tac x = Ana. [ymin] in exl)
using assms apply (simp)
by (simp add: f-blocks)

81

B.5.8 MinMax

lemma SimBlock-Min2 [simblock-healthy):
shows SimBlock 2 1 (Min2)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (simp add: f-blocks)
apply (rule-tac x = Ana. [1,2] in ex])
apply (rule-tac x = Ana. [1] in exl)
apply (simp)
by (simp add: f-blocks)

lemma SimBlock-Max2 [simblock-healthy]:
shows SimBlock 2 1 (Maz2)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (simp add: f-blocks)
apply (rule-tac x = Ana. [1,2] in ex])
apply (rule-tac x = Ana. [2] in exl)
apply (simp)
by (simp add: f-blocks)

B.5.9 Rounding

lemma SimBlock-RoundFloor [simblock-healthy):
shows SimBlock 1 1 (RoundFloor)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (simp add: f-blocks)
apply (rule-tac x = Ana. [1] in exl)
apply (rule-tac z = Ana. [1] in exl)
apply auto[1]
by (simp add: f-blocks)

lemma SimBlock-RoundCeil [simblock-healthy]:
shows SimBlock 1 1 (RoundCeil)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (simp add: f-blocks)
apply (rule-tac x = Ana. [1] in exl)
apply (rule-tac x = Ana. [1] in exl)
apply auto[1]
by (simp add: f-blocks)

B.5.10 Combinatorial Logic

B.5.11 Logic Operators

B.5.11.1 AND lemma LAnd [1,1] = True
by auto

lemma LAnd [1,1,0] = False
by auto

lemma LAnd-and-not: LAnd [a,b] = (a # 0 A'b # 0)
by (simp)

82

lemma LAnd-not-or: LAnd [a,b] = (= (a =0V b= 0))
by (simp)

lemma SimBlock-LopAND [simblock-healthy]:
assumes si: m > 0
shows SimBlock m 1 (LopAND m)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
proof —
obtain inouts,::nat = real list
where P: ¥V na. length(inouts, na) = m A (Yz<m. ((inouts, na)lz = 0))
using list-len-avail’ by fastforce
have 1: (Vaz<m. ((inouts, na)lz = 0))
using P by blast
have 2: length(inouts, na) = m
using P by blast
from 1 2 have 3: (LAnd (inouts, x) = False)
using P sI by (metis LAnd.simps(2) hd-Cons-tl length-0-conv neq0-conv nth-Cons-0)
show Finouts, tnouts,’.
Y z. length(inouts,” ©) = Suc 0 A length(inouts,) = m A f-LopAND inouts, © = inouts,’ x
apply (rule-tac z = inouts, in exl)
apply (simp add: f-blocks)
apply (rule-tac x = Ana. [0] in exl)
using P 3
by (metis (full-types) LAnd.simps(2) hd-Cons-tl length-0-conv length-Cons nth-Cons-0 s1)
next
show Vz na. length(z na) = m — length(f-LopAND z na) = Suc 0
by (simp add: f-blocks)
qed

B.5.11.2 OR lemma LOr [0,0] = False
by auto

lemma LOr [0,1,0] = True
by auto

lemma SimBlock-LopOR [simblock-healthy]:
assumes si: m > 0
shows SimBlock m 1 (LopOR m)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
proof —
obtain inouts,::nat = real list
where P: ¥V na. length(inouts, na) = m A (Yz<m. ((inouts, na)lz = 1))
using list-len-avail’ by fastforce
have 1: (Yz<m. ((inouts, na)lz = 1))
using P by blast
have 2: length(inouts, na) = m
using P by blast
from 1 2 have 3: (LOr (inouts, x) = True)
using P si
by (metis LOr.elims(3) length-0-conv neq0-conv nth-Cons-0 zero-negq-one)
show Jinouts, tnouts,’.
Vz. length(inouts,’ ©) = Suc 0 A length(inouts, x) = m A f-LopOR inouts, x = inouts,’
apply (rule-tac z = inouts, in exl)

83

apply (simp add: f-blocks)

apply (rule-tac x = Ana. [1] in exl)

using P 3

by (metis (full-types) LOr.simps(2) hd-Cons-tl length-0-conv length-Cons nth-Cons-0 s1)
next

show Yz na. length(z na) = m — length(f-LopOR = na) = Suc 0

by (simp add: f-blocks)

qged

B.5.11.3 NAND lemma LNand [1,1] = False
by auto

lemma LNand [1,1,0] = True
by auto

lemma SimBlock-LopNAND [simblock-healthy]:
assumes si: m > 0
shows SimBlock m 1 (LopNAND m)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
proof —
obtain inouts,::nat = real list
where P: ¥V na. length(inouts, na) = m A (Yz<m. ((inouts, na)lz = 0))
using list-len-avail’ by fastforce
have 1: (Va<m. ((inouts, na)lz = 0))
using P by blast
have 2: length(inouts, na) = m
using P by blast
from 1 2 have 3: (LNand (inouts, =) = True)
using P si
by (metis LNand.elims(3) length-0-conv neq0-conv nth-Cons-0)
show Jinouts, tnouts,’.
Y z. length(inouts,’) = Suc 0 A length(inouts,) = m A f-LopNAND inouts, x = inouts,’ =
apply (rule-tac z = inouts, in exl)
apply (simp add: f-blocks)
apply (rule-tac x = Ana. [1] in exl)
using P 3
by (metis (full-types) LNand.simps(2) hd-Cons-tl length-0-conv length-Cons nth-Cons-0 s1)
next
show Vz na. length(z na) = m — length(f-LopNAND z na) = Suc 0
by (simp add: f-blocks)
qged

B.5.11.4 NOR lemma LNor [1,0] = False
by auto

lemma LNor [0,0,0] = True
by auto

B.5.11.5 XOR lemma LXor [1,0] 0 = True
by auto

lemma LXor [1,0,1] 0 = False
by auto

84

B.5.11.6 NXOR lemma LNzor [1,0] 0 = False
by auto

lemma LNzor [1,0,1] 0 = True
by auto

B.5.11.7 NOT lemma SimBlock-LopNOT [simblock-healthy]:
shows SimBlock 1 1 (LopNOT)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (rule-tac x = Ana. [0] in exl)
apply (rule-tac = Ana. [1] in exl)
apply (simp add: f-LopNOT-def)
by (simp add: f-blocks)

B.5.12 Relational Operator

B.5.12.1 Equal == lemma SimBlock-RopEQ [simblock-healthy]:
shows SimBlock 2 1 (RopEQ)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (rule-tac x = Ana. [0,0] in exl)
apply (rule-tac = Ana. [1] in exl)
apply (simp add: f-RopEQ-def)
by (simp add: f-blocks)

B.5.12.2 Notequal = lemma SimBlock-RopNEQ [simblock-healthy:
shows SimBlock 2 1 (RopNEQ)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (rule-tac x = Ana. [0,0] in exl)
apply (rule-tac x = Ana. [0] in exl)
apply (simp add: f-RopNEQ-def)
by (simp add: f-blocks)

B.5.12.3 Less Than < lemma SimBlock-RopLT [simblock-healthy]:
shows SimBlock 2 1 (RopLT)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (rule-tac x = Ana. [0,0] in ex])
apply (rule-tac x = Ana. [0] in exl)
apply (simp add: f-RopLT-def)
by (simp add: f-blocks)

B.5.12.4 Less Than or Equal to <= lemma SimBlock-RopLE [simblock-healthy]:
shows SimBlock 2 1 (RopLE)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (rule-tac = Ana. [0,0] in ex])
apply (rule-tac x = Ana. [1] in exl)
apply (simp add: f-blocks)
by (simp add: f-blocks)

B.5.12.5 Greater Than > lemma SimBlock-RopGT [simblock-healthy]:
shows SimBlock 2 1 (RopGT)

85

stmp add: f-sim-blocks)

rule SimBlock-FBlock)

apply (rule-tac x = Ana. [0,0] in ex])
apply (rule-tac x = Ana. [0] in exl)
apply (simp add: f-blocks)

by (simp add: f-blocks)

apply
apply

A~~~

B.5.12.6 Greater Than or Equal to >= lemma SimBlock-RopGE [simblock-healthy):
shows SimBlock 2 1 (RopGE)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (rule-tac x = Ana. [0,0] in ex])
apply (rule-tac x = Ana. [1] in exl)
apply (simp add: f-blocks)
by (simp add: f-blocks)

B.5.13 Switch

lemma SimBlock-Switch1 [simblock-healthy):
shows SimBlock 3 1 (Switchl th)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (rule-tac x = Ana. [0,th,1] in exl)
apply (rule-tac x = Ana. [0] in exl)
apply (simp add: f-blocks)
by (simp add: f-blocks)

lemma SimBlock-Switch2 [simblock-healthy):
shows SimBlock 8 1 (Switch?2 th)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (rule-tac = Ana. [0,th+1,1] in exl)
apply (rule-tac x = Ana. [0] in exl)
apply (simp add: f-blocks)
by (simp add: f-blocks)

lemma SimBlock-Switch3 [simblock-healthy):
shows SimBlock 3 1 (Switch3)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (rule-tac x = Ana. [0,1,1] in ex])
apply (rule-tac x = Ana. [0] in exl)
apply (simp add: f-blocks)
by (simp add: f-blocks)

86

B.5.14 Merge

B.5.15 Subsystem

B.5.16 Enabled Subsystem

B.5.17 Triggered Subsystem

B.5.18 Enabled and Triggered Subsystem

B.5.19 Data Type Conversion

lemma SimBlock-DataTypeConvUint32Zero [simblock-healthy]:
shows SimBlock 1 1 (DataTypeConvUint32Zero)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (rule-tac x = Ana. [3294967295.5] in exl)
apply (rule-tac © = Ana. [3294967295] in exl)
apply (simp add: f-blocks RoundZero-def wint32-def)
by (simp add: f-blocks)

lemma SimBlock-DataTypeConvint32Zero [simblock-healthy]:
shows SimBlock 1 1 (DataTypeConvInt32Zero)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (rule-tac x = Ana. [—4.5] in exl)
apply (rule-tac z = Ana. [—4] in exl)
apply (simp add: f-blocks RoundZero-def int32-def)
by (simp add: f-blocks)

B.5.20 Initial Condition (IC)

lemma SimBlock-IC [simblock-healthy]:
shows SimBlock 1 1 (IC z0)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
apply (rule-tac x = Ana. [20] in ex])
apply (rule-tac x = Ana. [20] in ex])
apply (simp add: f-blocks)
by (stmp add: f-blocks)

B.5.21 Router Block

lemma assembleOQutput-len:
Yz na. length(assembleOutput (x na) routes) = length(routes)
apply (auto)
proof (induction routes)
case Nil
then show ?case
by simp
next
case (Cons a routes)
then show ?case
by (simp)
qed

lemma SimBlock-Router [simblock-healthy]:
assumes s1: length(routes) = m

87

shows SimBlock m m (Router m routes)
apply (simp add: f-sim-blocks)
apply (rule SimBlock-FBlock)
proof —
obtain inouts,::nat = real list
where P: ¥V na. length(inouts, na) = m A (Yaz<m. ((inouts, na)lz = 0))
using list-len-avail’ by fastforce
have 1: (Va<m. ((inouts, na)lz = 0))
using P by blast
have 2: length(inouts, na) = m
using P by blast
have 3: Vx. length(assembleOutput (inouts,) routes) = length(routes)
by (simp add: assembleOutput-len)
then have J: Vz. length(assembleOutput (inouts,) routes) = m
using s! by simp
show I inouts, inouts,’.
V. length(inouts,’) = m A length(inouts,) = m A f-Router routes inouts, © = inouts,’ =
apply (rule-tac x = inouts, in exl)
apply (rule-tac x = f-Router routes inouts, in exl)
apply (simp add: f-blocks)
using 4 si
by (simp add: P)
next
show Vz na. length(z na) = m — length(f-Router routes x na) = m
apply (simp add: f-blocks)
using s1 by (simp add: assembleOutput-len)
qed

B.6 Frequently Used Composition of Blocks

lemma UnitDelay-Id-parallel-comp:
(UnitDelay 0 || Id) = (FBlock (A\x n. True) (2) (2)
(Ax n. [if n = 0 then 0 else hd(z (n—1)), hd(t(z n))]))
proof —
have f1: (UnitDelay 0 ||p Id) = (FBlock (Az n. True) (2) (
(Az n. ((((f-UnitDelay 0) o (Azz nn. take 1 (zz nn))) zn
o ((f-Id o (Azx mn. drop 1 (xx nn)))) z n)))
using SimBlock- UnitDelay SimBlock-Id apply (simp add: FBlock-parallel-comp f-sim-blocks)
by (simp add: numeral-2-eq-2)

2)
)

then have f1-0: ... = (FBlock (Az n. True) (2) (2)
()\xfn‘ [if n = 0 then 0 else hd(z (n—1)), hd(tl(z n))]))
proof —

have V (f::nat = real list) (n::nat).
((Az n. ((((f-UnitDelay 0) o (Azx nn. take 1 (zz nn))) z n)
o ((f-Id o (Azz mn. drop 1 (zx nn)))) xzn)) fn =
((Az n. [if n = 0 then 0 else hd(z (n—1)), hd(tl(z n))]) fn))
using f-Id-def f-UnitDelay-def apply (simp)
by (metis drop-0 drop-Suc list.sel(1) take-Nil take-Suc)
then show ?%thesis
by auto
qed
then show ?thesis
by (simp add: f1 f1-0)
qged

end

88

C Post Landing Finalize

This is a case study of a subsystem named post landing finalize that is used in aircraft cabin
pressure control application. It is from Honeywell through D-risQ. This case is published in [28]
and the diagram of this subsystem is shown in Figure 2 of the paper.

theory post-landing-finalize-1
imports

stmu-contract-real
simu-contract-real-laws
begin

recall-syntax

sledgehammer-params|
timeout = 200,
verbose = false,
strict = true

]

C.1 Subsystem: variable Timer

This subsystem has a rate parameter which is equal to 10.

abbreviation Rate = 10

This subsystem is composed of two small parts: variable Timerl and variable Timer2.

abbreviation variable Timerl =
((Min2 ;5 UnitDelay 0) ||p (Const 1)) ;5 Sum2) ||g Id |p (Const 0)) ;; (Switchl 0.5) ;; Split2

variable Timerl is simplified by variable Timer1-simp to a simple design.

lemma variable Timer1-simp:
variableTimer! = (FBlock (Az n. True) (3) 2 (Az n. [if (zn)!2 > 0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1) else 0,
if (zxn)!2>0.5
fthen ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(t(z (n—1)))))) + 1) else 0]))
proof —

have f1: (Min2 ;; UnitDelay 0) = (FBlock (Axz n. True) (2) (1) ((f-UnitDelay 0) o f~-Min2))
using SimBlock-Min2 SimBlock-UnitDelay apply (simp add: FBlock-parallel-comp f-sim-blocks)
by (simp add: FBlock-seq-comp)

then have f1-0: ... = (FBlock (Az n. True) (2) (1)
()\faf: n. [if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))]))
proof —

have FBlock (Af n. True) 2 1 (f-UnitDelay 0 o f~-Min2) = FBlock (\f n. True) 2 1
(M n. [if n = 0 then 0 else min (hd (f (n — 1))) (hd (¢ (f (n — 1))))]) V
(Vf n. (f-UnitDelay 0 o f-Min2) fn = [if n = 0 then 0 else
min (hd (f (n — 1)) (hd (8 (f (0 — 1))
by (simp add: f-Min2-def f-UnitDelay-def)
then show ?%thesis
by meson
qed
have simblock-f1: SimBlock 2 1 (FBlock (Azx n. True) (2) (1)
Az n. [if n = 0 then 0 else (min (hd(xz (n—1))) (hd(tl(z (n—1)))))]))
by (metis (no-types, lifting) Min2-def SimBlock-Min2 SimBlock-F Block-seq-comp

89

https://www.honeywell.com/
http://www.drisq.com/

SimBlock-UnitDelay UnitDelay-def f1 f1-0)

have 1: ((Az n. [if n = 0 then 0 else (min (hd(z (n—1))) (hd(t(z (n—1)))))]) o
(Azx nn. take 2 (zz nn)))
= (;‘\x n. [if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))])
proof —
have Vz n. ((Az n. [if n = 0 then 0 else (min (hd(z (n—1))) (hd(t(z (n—1)))))]) o
(Axz nn. take 2 (zx nn))) z n
= (Az n. [if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))]) = n)
apply (rule alll)+
proof —
fix x :: 'c = 'dlistand n :: ¢
have f1: Vds. ds =[] V (hd ds::'d) = ds!(0::nat)
using hd-conv-nth by blast
have f2: ~x (n — 1) =[] — - take 2 (z (n — 1)) =[]
by simp
have f3: take (Suc 0) (¢l (z (n — 1))) = tl (take (Suc (Suc 0)) (z (n — 1)))
by (simp add: tl-take)
have f/: take 2 (z (n — 1)) = take (Suc (Suc 0)) (z (n — 1))
using numeral-2-eq-2 by presburger
have f5: hd (tl (z (n — 1))) = tl (z (n — 1))1(0::nat) A
hd (tl (take 2 (z (n — 1)))) = tl (take 2 (x (n — 1)))!/(0:nat) A
—x(n—1)=1 — min (hd (take 2 (z (n — 1))))
(hd (tl (take 2 (z (n — 1))))) = min (hd (x (n — 1))) (hd (t (z (n — 1))))
using f3 f2 f1 by (metis One-nat-def less-numeral-extra(1) nth-take numeral-2-eq-2 pos2)
have f6: = tl (take 2 (x (n — 1)) =[] — " Suc 0 =0 A=t (z(n—1)) =]
using f/ f8 by fastforce
have f7: = Suc 0 = 0
by blast
{ assume - ((Af c. [if ¢ = 0 then 0 else min (hd (f (¢ — 1))) (hd (H (f (¢ — 1))))]) o (Afe.
take 2 (f ¢))) xn = [if n = 0 then 0 else min (hd (z (n — 1))) (hd (¢t (z (n — 1))))]
{ assume — (if n = 0 then 0 else min (hd (z (n — 1))) (hd (tl (x (n — 1))))) = min (hd (take
2 (5 (n — 1)))) (hd (1 (take 2 (z (n — 1)))))
{ assume - min (hd (take 2 (z (n — 1)))) (hd (¢ (take 2 (z (n — 1))))) = min (hd (z (n —
1)) (hd (tl (z (n — 1))))
{ assume — hd (take 2 (x (n — 1))) = hd (z (n — 1))
{ assume -z (n — 1) =[]
moreover
{assume t{ (z (n — 1)) =[] Ahd (z (n — 1)) =z (n — 1)(0:nat) A hd (take 2 (z (n —
1))) = take 2 (z (n — 1))!(0::nat)

{assume (t/ (z (n — 1)) =[] Ahd (z (n — 1)) =2z (n — 1)!(0::nat) A hd (take 2 (x

(n— 1)) = take 2 (z (n — 1))(0::nat)) A = ((Af c. [if ¢ = 0 then 0 else min (hd (f (¢ — 1))) (hd (#

(1))()3]_ I o (M c. take 2 (fc))) xn = [if n = 0 then 0 else min (hd (x (n — 1))) (hd (¢t (z (n —
{assume (t! (z (n — 1)) =[] Ahd (x (n—1)) =2z (n— 1)(0:nat) A hd (take 2 (z

(n— 1)) = take 2 (z (n — 1))!(0::nat)) A = (if n = 0 then 0 else min (hd (x (n — 1))) (hd (¢t (z (n

— 1)) = min (hd (take 2 (x (n — 1)))) (hd (H (take 2 (z (n — 1)))))
then have ¢l (take 2 (z (n — 1))) =[] — n=20
by (metis (no-types) nth-take pos2) }

ultimately have ((\f c. [if ¢ = 0 then 0 else min (hd

(

(f (¢ = 1))) (hd (& (f (c
NN o (Mfc. take 2 (f ¢))) xn = [min (hd (take 2 (xz (n — 1)))) (hd (# (

(hd
tl (take 2 (z (n — 1)))))] At

90

(take 2 (x (n — 1)) =[] — n=20
by fastforce }

ultimately have ((Af c. [if ¢ = 0 then 0 else min (hd (f (¢ = 1)) (hd (t (f (¢ = 1)))])
o (M c. take 2 (f c))) z n = [min (hd (take 2 (z (n — 1)))) (hd (t (take 2 (x (n — 1)))))] A tl (take
2(x(n—1)) =] — (Mec [if c = 0then 0 else min (hd (f (¢ — 1))) (hd (¢l ((¢ — 1))))]) o (Nf
c. take 2 (fc))) zn = [if n = 0 then 0 else min (hd (x (n — 1))) (hd (8 (z (V=20
by blast }
moreover

{ assume — &l (z (n — 1)) = ||
then have — I (take 2 (z (n — 1))) = |]

using f7 f4 f8 by (metis (no-types) take-eq-Nil) }
ultimately have ((Af c. [if ¢ = 0 then 0 else min (d(f (¢c— 1)) (hd (8 (f (c = 1))))])
o (M c. take 2 (f ¢))) z n = [min (hd (take 2 (z (n — 1)))) (hd (8 (take 2 (x (n — 1)))))] A tl (take
2 (z (n— 1)) =[— (Me [if c = 0then 0 else min (hd (f (¢ — 1)) (hd (8 (f (¢ = 1))))]) o (A\f
c. take 2 (fc))) zn = [if n = 0 then 0 else min (hd (x (n — 1))) (hd (t (x (n — 1))))]Vn =20

using f2 f1 by blast }

then have ((\f c. [if ¢ = 0 then 0 else min (hc(i (f((1))) (hd (tl (])‘ (c = 1)) o (Mfec.
{ z

take 2 (f ¢))) z n = [min (hd (take 2 (z (n — 1)))) (hd (# (take 2 (x (n — 1)))))] A ¢ (take 2 (z (n
— 1) =1 — (Mec [if c = 0then 0 else min (hd (f (¢ — 1))) (hd (tl (f (¢ — 1))))]) o (Af c. take
2 (fe) zn=1[if n = 0then 0 else min (hd (z (n — 1))) (hd (¢t (x (n — 1))))]Vn=20

by fastforce }
moreover

{ assume — ¢l (take 2 (z (n — 1))) =[]
moreover
{ assume — # (take 2 (z (n — 1)) =[] A= (M e [if ¢ = 0 then 0 else min (hd (f (¢ —
1)) (hd (8L (f (¢ — 1))))]) o (Mfc. take 2 (f¢))) zn = [if n = 0 then 0 else min (hd (x (n — 1))) (hd
((z (n — 1)
{ assume — ¢l (take 2 (z (n — 1))) =[] A = (if n = 0 then 0 else min (hd (z (n — 1)))
(hd (tl (z (n — 1))))) = min (hd (take 2 (x (n — 1)))) (hd (H (take 2 (z (n — 1)))))
{ assume - ¥l (take 2 (z (n — 1))) =[] A = min (hd (take 2 (z (n — 1)))) (hd (¢
(take 2 (x (n — 1))))) = min (hd (xz (n — 1))) (hd (8 (z (n — 1))))
then have — #l (take 2 (z (n — 1)) =[|A—-z(n—1)=
by (metis take-eq-Nil)

{ assume (hd (t (z (n — 1))) = tl (x (n — 1))/(0:nat) A hd (t (take 2 (z (n —
1)))) = tl (take 2 (x (n — DY (0=nat) A =z (n — 1) =[]) A = ((Afc. [if ¢ = 0 then 0 else min (hd
(f (¢ = 1)) (hd (8 (f (¢ = 1)) o (Afc. take 2 (fc))) zn = |

1)) (hd (# (z (n — 1))))]
then have ((Af c. [if ¢ = 0 then 0 else min (hd (f (¢ —
(Mfc. take 2 (fc))) xn = [min (hd (take 2 (z (n — 1)))) (hd (¢ (take 2 (z (n — 1)))
(n—1)) =1t (z (n— 1)(0:nat) A hd (t (take 2 (z (n — 1)))) = tl (take 2 (z (n
A=z (n—1)=1) A= (if n=0then 0 else min (hd (z (— 1)) (hd (t (x (n — 1
(take 2 (z (n — 1)))) (hd (8 (take 2 (x (n — 1)))))
by fastforce

(

if n = 0 then 0 else min (hd (z (n —
f 1)) (hd (# (f (¢ = 1))))]) o
ta)] — (hd (tl (z
— 1)))X(0::nat)

1
(h
)X
))))) = min (hd

then have ((Af c. [if ¢ = 0 then 0 else min (hd (f (¢ — 1))) (hd (tl (f (¢ — 1))))]) o
(Afc. take 2 (fc))) o n = [min (hd (take 2 (z (n — 1)))) (hd (8 (take 2 (z (n — 1)))))] — n =10
using f5 by (metis (no-types)) }
ultimately have ((Af c. [if ¢ = 0 then 0 else min (hd (f (¢ — 1))) (hd (H (f (¢ —
)] o (Mfc. take 2 (f¢))) xn = [min (hd (take 2 (z (n — 1)))) (hd ()tl (take 2 (z (n — J;))) | —

(M c. [if ¢ = 0 then 0 else min (hd (f (¢ — 1))) (hd (¢ (f (¢ — 1))))]) o (Afec. take 2 (f¢))) zn =
[if n = 0 then 0 else min (hd (z (n — 1))) (hd (tl (x (n — 1))))] V=20

using f6 f1 by blast }

ultimately have ((A\f c. [if ¢ = 0 then 0 else min (hd (f (¢ — 1))) (hd (8 (f (¢ —

91

ION]) o (M c. take 2 (f¢))) xn = [min (hd (take 2 (z (n —

((Mfc. [if ¢ = 0 then 0 else min (hd (f (¢ — 1))) (hd (¢ (f (

[if n = 0 then 0 else min (hd (z (n — 1))) (hd (¢t (z (n — 1
by fastforce }

))) (hd (il (take 2 (z (n — 1)))))] —

1
c—1)))]) o (Mfe take 2 (fe))) zn =
I}V n=0

ultimately have ((Af c. [if ¢ = 0 then 0 else min (hd (f (¢ — 1))) (hd (# (f (¢ —
)N o (Mfc. take 2 (fc))) xn = [min (hd (take 2 (z (n — 1)))) (hd (H (take 2 (z (n — 1)))))]
E()\f c. [if ¢ = 0 then 0 else min (hd (f (¢ — 1))) (hd (8 (f (¢ — 1))))]) o (Mfc. take 2 (f¢))) zn =

if n = 0 then 0 else min (hd (z (n — 1))) (hd (H (z (n — 1))))]Vn=20
by force }
ultimately have ((\f c. [if
o (Afc. take 2 (fc))) xn = [min (hd (¢
[if ¢ = 0 then 0 else min (hd (f (¢ — 1
0 then 0 else min (hd (z (n — 1))) (hd
by blast }

c = 0 then 0 else min (hd (f (¢ — 1))) (hd (—1
ak ((n — 1)))) (hd (tl (take 2 (x (n — 1)))))] — ((Mfc.
))) (hd (t (f (¢ — 1))))]) o (A\f c. take 2 (f ¢ = =
(#(z(n = 1)) Vn=0

ultimately have ((Af c. [if ¢ = 0 then 0 else min (hd (f (¢ — 1))) (hd (8 (f (¢ — 1))))]))
o (Afec. take 2 (fc))) xn = [min (hd (take 2 (z (n — 1)))) (hd (8l (take 2 (z (n — 1)))))] — ((Afc
[if ¢ = 0 then 0 else min (hd (f (¢ — 1))) (hd (8 (f (¢ — 1))))]) o (Afc. take 2 (f¢))) zn = [if n =
0 then 0 else min (hd (z (n — 1))) (hd (¢t (z (n — 1))))]Vn =20

using f3 numeral-2-eq-2 by force }

ultimately have ((Af c. [if ¢ = 0 then 0 else min (hd (f (¢ — 1))) (hd (¢ (f (¢ — 1))))])
o (Afc. take 2 (fc))) xn = [min (hd (take 2 (z (n — 1)))) (hd (8l (take 2 (z (n — 1)))))] — ((Afc
[if ¢ = 0 then 0 else min (hd (f (¢ — 1))) (hd (t1 (f (¢ — 1))))]) o (Afc. take 2 (fc))) zn = [ifn =
0 then 0 else min (hd (z (n — 1))) (hd (¢t (z (n — 1))))]Vn =20

by presburger }
{ assume - ((Af c. [if ¢ = 0 then 0 else min (hd (f (¢ — 1))) (hd ((f (e = 1))))]) o (Afc.
take 2 (f ¢))) x n = [min (hd (take 2 (x (n — 1)))) (hd (t (take 2 (z (n — 1)))))]
then have — [if n = 0 then 0 else min (hd (take 2 (x (n — 1)))) (hd (8 (take 2 (z (n — 1)))))]
= [min (hd (take 2 (z (n — 1)))) (hd (8 (take 2 (z (n — 1)))))]
by simp
then have n = 0
by presburger }
ultimately have ((Af c. [if ¢ = 0 then 0 else min (hd (f (¢ — 1))) (hd (8] (f (¢ — 1))))]) o (\f
c. take 2 (f¢))) z n = [if n = 0 then 0 else min (hd (xz (n — 1))) (hd (t (z (n — 1))))]
by fastforce }
then show ((Af c. [if ¢ = 0 then 0 else min (hd (f (¢ — 1))) (hd (H (f (¢ — 1))))]) o (Af c. take
2 (fe) zn=1[if n = 0then 0 else min (hd (z (n — 1))) (hd (¢t (z (n — 1))))]
by blast
qed
then show ?thesis
by blast
qed
have f2: (Min2 ;; UnitDelay 0) ||p (Const 1)) =
(FBlock (Ax n. True) (2) (1)
Az n. [if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))])) |l (Const 1)
using f1 f1-0 by auto
then have f2-0: ... = FBlock (Ax n. True) (2) (2)
Az n. (Az n. [if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))]) ©
(Azz nn. take 2 (zx nn))) x n)
o (((f~Const 1) o (Azx nn. drop 2 (xz nn)))) z n))
using SimBlock-Const simblock-f1 apply (simp add: FBlock-parallel-comp f-sim-blocks)
by (simp add: numeral-2-eq-2)
then have f2-1: ... = FBlock (Ax n. True) (2) (2)
Az n. [if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1))))), 1])
using [f-Const-def by (simp add: 1)

92

have simblock-f2: SimBlock 2 2 (FBlock (Azx n. True) (2) (2)
Az n. [if n = 0 then 0 else (min (hd(xz (n—1))) (hd(tl(z (n—1))))), 1]))
by (metis (no-types, lifting) Const-def SimBlock-Const SimBlock-FBlock-parallel-comp
Suc-1 Suc-eq-plusl add-2-eq-Suc f2-0 f2-1 numeral-2-eq-2 simblock-f1)

have f3: (Min2 ;; UnitDelay 0) ||p (Const 1)) ;; Sum2) =
(FBlock (Az n. True) (2) (2)
Az n. [if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1))))), 1])) ;; Sum?2
using f2 f2-0 f2-1 by auto
have f3-0: ... = (FBlock (Az n. True) (2) (1)
(f-Sum2 o (Az n. [(if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))), 1])))
using SimBlock-Sum?2 simblock-f2 by (simp add: FBlock-seq-comp f-sim-blocks)

have f3-1: ... = (FBlock (Az n. True) (2) (1)
()\a:fn. [(if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1]))
proof —

have Vz n. ((f~Sum2 o (Az n. [(if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))),
1)) 2)
= ((Az n. [(if n = 0 then 0 else (min (hd(z (n—1))) (hd(t(z (n—1)))))) + 1]) z n)
by (simp add: f-Sum2-def)
then show ?thesis
by presburger
qed
have simblock-f3: SimBlock 2 1 (FBlock (Ax n. True) (2) (1)
Az n. [(if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1]))
by (metis (no-types, lifting) SimBlock-F Block-seq-comp SimBlock-Sum2 Sum2-def f3-0 f3-1 simblock-f2)

have f{: (Id ||g (Const 0)) = (FBlock (Az n. True) (1) (2)

Az n. (((f-Id o (Azz nn. take 1 (zz nn))) zn) o (((f-Const 0) o (Axx nn. drop 1 (zz nn)))) z n)))
using SimBlock-Const SimBlock-Id apply (simp add: FBlock-parallel-comp f-sim-blocks)
by (simp add: numeral-2-eq-2)

then have f}-0: ... = FBlock (Ax n. True) 1 2 (Ax n. [hd(z n), 0])
proof —
have Vz n. ((Az n. (((f-Id o (Azx nn. take 1 (zx nn))) zn) e
(((f-Const 0) o (Azz nn. drop 1 (xx nn)))) x n)) z n)
= ((Az n. [hd(z n), 0]) z n)
by (smt append.left-neutral append-Cons append-take-drop-id comp-apply f-Const-def
f-Id-def hd-append?2 take-eq-Nil zero-neg-one)
then show ?thesis
by presburger
qed
have simblock-f4: SimBlock (Suc 0) 2 (FBlock (Ax n. True) (Suc 0) 2 (Az n. [hd(z n), 0]))
using SimBlock-Const SimBlock-1d SimBlock-FBlock-seq-comp
by (metis (no-types, lifting) Const-def Id-def One-nat-def SimBlock-FBlock-parallel-comp
Suc-eq-plus1-left 4 f4-0 nat-1-add-1)

have f5: (Min2 ;; UnitDelay 0) ||p (Const 1)) ;; Sum?2) ||p Id) =
(FBlock (Az n. True) (2) (1)
Az n. [(if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1])) ||z Id
using f3 f3-0 f3-1 by auto
then have f5-0: ... =
(FBlock (Az n. True) (3) (2)
Az n. (Az n. [(if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1])
o (Azz nn. take 2 (zx nn))) z n)
o ((f-Id o (Azx mn. drop 2 (zx nn)))) z n)))
using simblock-f3 SimBlock-1d apply (simp add: FBlock-parallel-comp f-sim-blocks)

93

by (simp add: numeral-2-eq-2)
then have f5-1: ... =
(FBlock (Az n. True) (3) (2)
Az n. [(if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1, (z n)!2]))
proof —
have 11: Vinouts, x. (min (hd (take 2 (inouts, (x — Suc 0)))) (hd (tl (take 2 (inouts, (x —
Suc 0))))) + 1)
= min (hd (inouts, (z — Suc 0))) (hd (# (inouts, (z — Suc 0)))) + 1
by (smt Suc-1 append-take-drop-id diff-Suc-1 hd-append?2 take-eq-Nil tl-take zero-neg-one
zero-not-eq-two)
have 12: Vinouts, x. (length(inouts, z) = 3 —
(f-Id (Ann. drop 2 (inouts, nn)) z) = [inouts, z!(2)])
by (simp add: f-Id-def hd-drop-conv-nth)
have 2: Vinouts, z. (length(inouts, z) = 3 —
(((min (hd (take 2 (inouts, (z — Suc 0)))) (hd (tl (take 2 (inouts, (x — Suc 0))))) + 1) #
f-Id (Ann. drop 2 (inouts, nn)) z)
= [min (hd (inouts, (z — Suc 0))) (hd (H (inouts, (z — Suc 0)))) + 1, inouts, z!(2)]))
using 11 12 by blast
show ?thesis
apply (simp add: FBlock-def)
apply (rel-auto)
apply (metis (no-types, lifting) One-nat-def Suc-1 f-Id-def hd-drop-conv-nth lessI numeral-3-eq-3)
using 11 12 2
apply metis
apply (simp add: 12)
apply (simp add: 11 12)
by (simp add: f-Id-def)
qed
have simblock-f5: SimBlock 3 2 (FBlock (Ax n. True) (3) (2)
Az n. [(if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1, (z n)!2]))
by (smt Id-def SimBlock-Id SimBlock-FBlock-parallel-comp add.commute f5-0 f5-1 one-add-one
one-plus-numeral semiring-norm(3) simblock-f3)

have f6: ((Min2 ;; UnitDelay 0) ||p (Const 1)) ;; Sum?2) ||p Id ||p (Const 0))
= (FBlock (Ax n. True) (3) (2)
(Az n. [(if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1, (z n)!2]))

Iz (Const 0)
using f5 f5-0 f5-1 by auto
then have f6-0: ... = (FBlock (Axz n. True) (3) (3)

Az n. ((Az n. [(if n = 0 then 0 else (min (hd(z (n—1))) (hd(t(z (n—1)))))) + 1, (z n)!2])
o (A\zz nn. take 3 (zx nn))) = n)
e (((f-Const 0) o (Azz nn. drop 3 (xx nn)))) x n)))
using simblock-f5 SimBlock-Const by (simp add: FBlock-parallel-comp f-sim-blocks)

then have f6-1: ... = (FBlock (Az n. True) (3) (3)
()\;: n. [(if n = 0 then 0 else (min (hd(z (n—1))) (hd(t(z (n—1)))))) + 1, (z n)!2, 0]))
proof —

have 11: Vinouts, x. ((f~Const 0 (Ann. drop 3 (inouts, nn)) x)) = [0]
by (simp add: f-Const-def)

have 12: Vinouts, x. length(inouts,) = 8 — (take 3 (inouts, x)) = inouts, (z)
by simp

show FBlock (Ax n. True) 3 3
@) Az n. (Ax n. [(if n = 0 then 0 else min (hd (z (n — 1))) (hd (¢l (x (n — 1))))) + 1, z
nl(2)]) o

(Azz nn. take 3 (zz nn))) x n e (f-Const 0 o (Azxz nn. drop 8 (zz nn))) = n)

94

= FBlock (Ax n. True) 3 8 (Az n. [(if n = 0 then 0 else min (hd (z (n — 1)))
(hd (H (z (n — 1))))) + 1, znl(2), 0])
apply (simp add: FBlock-def)
apply (rel-auto)
apply (simp add: f-Const-def)
proof —
fix ok, and inouts,::nat=real list and ok, ' and inouts, ::nat=>real list and z::nat
assume al: Vz. (z = 0 —
length(inouts, 0) = 3 A
length(inouts,’ 0) = 8 A 1 # inouts, 0Y(2) # f-Const 0 (Ann. drop 3 (inouts, nn)) 0 =
inouts,’ 0) A
(0 <z —
length(inouts,) = 3 A
length(inouts,”) = 8 A
(min (hd (take 3 (inouts, (x — Suc 0)))) (hd (# (take 8 (inouts, (z — Suc 0))))) + 1) #
inouts, z!(2) # f-Const 0 (Ann. drop 3 (inouts, nn)) r =
inouts,’ x)
assume a2: 0 < z
from ol have 1: Vz. length(inouts,) = 3
using gr0I by blast
from a2 al have 2:
(min (hd (take 3 (inouts, (z — Suc 0)))) (hd (¢l (take 3 (inouts, (z — Suc 0))))) + 1) #
inouts, z!(2) # f-Const 0 (Ann. drop 3 (inouts, nn)) x = inouts,’ x
by blast
from a2 1 have 3: take 3 (inouts, (x — Suc 0)) = inouts, (x — Suc 0)
by simp
show [min (hd (inouts, (x — Suc 0))) (hd (tl (inouts, (z — Suc 0)))) + 1, inouts, z!(2),
0] = inouts,’ =
by (metis 1 11 2 order-refl take-all)
next
fix ok, and inouts,::nat=>real list and ok,’ and inouts,"::nat=real list
assume al: Vz. (z = 0 — length(inouts, 0) = 3 A length(inouts,’ 0) = 3 A [1, inouts,
01(2), 0] = inouts,’ 0) A
0 <z —
length(inouts,) = 3 A
length(inouts,’ x) = 8 A
[min (hd (inouts, (x — Suc 0))) (hd (¢ (inouts, (x — Suc 0)))) + 1, inouts, z!(2), 0] =
inouts,’ x)
show 1 # inouts, 01(2) # f-Const 0 (Ann. drop 3 (inouts, nn)) 0 = inouts,’ 0
by (simp add: 11 al)
next
fix ok, and inouts,::nat=real list and ok,’ and inouts, ::nat=-real list and z::nat
assume al: Vz. (z = 0 — length(inouts, 0) = 8 A length(inouts,” 0) = & A [1, inouts,
01(2), 0] = inouts,’ 0) A
0 <z —
length(inouts,) = 3 A
length(inouts,’ x) = 8 A
[min (hd (inouts, (x — Suc 0))) (hd (¢ (inouts, (x — Suc 0)))) + 1, inouts, z!(2), 0] =
inouts,’ x)
assume a2: z > 0
from ol have I: Vz. length(inouts,) = 3
using gr0I by blast
from a2 1 have 3: take 3 (inouts, (x — Suc 0)) = inouts, (x — Suc 0)
by simp
show (min (hd (take 3 (inouts, (z — Suc 0)))) (hd (tl (take 3 (inouts, (z — Suc 0))))) +

95

1) #

inouts, z!(2) # f-Const 0 (Ann. drop 3 (inouts, nn)) ¢ =
mouts,’ x

by (simp add: 11 3 al a2)
next

fix ok, and inouts,::nat=>real list and ok, ’ and inouts,
and z::nat=-real list and za::nat
show length(f-Const 0 (Ann. drop 3 (z nn))
by (simp add: f-Const-def)
qed
qed

have simblock-f6: SimBlock 8 8 (FBlock (Ax n. True) (3) (3)
Az n. [(if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1, (z n)!2, 0]))
using Const-def simblock-f5 SimBlock-F Block-parallel-comp

by (metis (no-types, lifting) One-nat-def SimBlock-Const Suc3-eq-add-3 add.commute
add-2-eq-Suc’ f6-0 f6-1 numeral-3-eq-8)

"nat=real list

za) = Suc 0

have f7: ((Min2 ;; UnitDelay 0) ||p (Const 1)) ;; Sum2) || Id ||p (Const 0)) ;; (Switchl 0.5)
= (FBlock (Ax n. True) (3) (3) (Az n. [(if n = 0 then 0 else
(min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1, (z n)'2, 0])) ;; (Switchl 0.5)
using f6 f6-0 f6-1 by auto

have f7-0: ... = (FBlock (Az n. True) (3) 1 ((f- Swztchl 0.5) o (Ax n. [(if n = 0 then 0 else
(min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1, (z n)!2, 0])))

using simblock-f6 SimBlock-Switchl by (simp add FBlock-seq-comp Switchl1-def)
have f7-1: ... = FBlock (Az n. True) (8) 1

(Az n. [zf (zn)!2>0.5
then ((if n = 0 then 0 else (min (hd(z (n
else 0])

proof —
have 1: Va n. (((f-Switch! 0.5)
(min (hd(z (n—1))) (hd(tl(z

—1))) (hd(tl(z (n—1)))))) + 1)

o (Az n. [(if n = 0 then 0 else
(n=1))))) + 1, (z)2, 0])) z n

Az n. [if (zn)!2> 0.5
then ((if n = 0 then 0 else (min (hd(z (n
else 0]) = n)

apply (auto)

by (simp add: f-Switchl-def)+

then show ?thesis
by presburger
qed

have simblock-f7: SimBlock 8 1 (FBlock (Ax n. True) (3) 1
Az n. [if (xn)!2 > 0.5

then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(t(z (n—1)))))) + 1) else 0]))
using simblock-f6 SimBlock-Switch1 SimBlock-FBlock-seq-comp f7 f7-0 f7-1
by (metis (no-types, lifting) Switch1-def)

—1))) (hd(tl(z (n—1)))))) + 1)

have f8: ((Min2 ;; UnitDelay 0) || (Const 1)) ;; Sum2) ||p Id || (Const 0))
(Switchl 0.5) ;; Split2 =

((FBlock (Ax n. True) (3) 1 Az n. [if (zn)!12 > 0.5

then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(t(z
by (metis RA1 f7 f7-0 f7-1)

(n=1)))))) + 1) else 0])) ;; Split2)
have f8-0: ... = (FBlock (\x n. True) (3)

2 (f-Split2 o Az n. [if (z n)!
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(ti(z (n—1)))))
using simblock-f7 SimBlock-Split2

by (simp add: FBlock-seq-comp Split2-def)

220
) +) else 01)))

96

v

have f8-1: ... = (FBlock (Az n. True) (8) 2 (Az n. [if (zn)!2 > 0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(t(z (n—1)))))) + 1) else 0,
if (xn)!2>0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1) else 0]))
proof —
have 11: Vx n. ((f-Split2 o (Az n. [if (zn)!2 > 0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(t(z (n—1)))))) + 1) else 0])) x n)
= Az n. [if (zn)!2>05
then ((if n = 0 then 0 else (min (hd(x (n—1))) (hd(tl(z (n—1)))))) + 1) else 0,
if (xn)!2>0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(t(z (n—1)))))) + 1) else 0]) z n
apply (auto)
by (simp add: f-Split2-def)+
show ?thesis
using 11 by presburger
qed
have simblock-f8: SimBlock 8 2 (FBlock (Az n. True) (3) 2 (Az n. [if (xn)!2 > 0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(t(z (n—1)))))) + 1) else 0,
if (xn)!22>0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1) else 0]))
using simblock-f7 f8 f8-0 f8-1 SimBlock-Split2
by (metis (no-types, lifting) SimBlock-FBlock-seq-comp Split2-def)
show ?thesis
using f8 f8-0 f8-1 by auto
qed

abbreviation variable Timer2 =
((Const 0) ||p Id) ;; Maxz2 ;; (Gain Rate) ;; RoundCeil ;; DataTypeConvint32Zero ;; Split2

variable Timer2 is also simplified by variable Timer2-simp.

lemma variable Timer2-simp:
variableTimer2 = (FBlock (Az n. True) (Suc 0) (2)
(Az n. [real-of-int (int32 (RoundZero(real-of-int [Rate * (maz (hd(z n)) 0)]))),
real-of-int (int32 (RoundZero(real-of-int [Rate * (maz (hd(z n)) 0)])))]))
proof —

have f1: ((Const 0) ||p Id) = (FBlock (Az n. True) (1) (2)
Az n. ((((f-Const 0) o (Azz nn. take 0 (xzz nn))) zn) & ((f-Id o (A\xxz nn. drop 0 (zz nn)))) = n)))
using SimBlock-Const SimBlock-Id apply (simp add: FBlock-parallel-comp f-sim-blocks)
by (simp add: numeral-2-eq-2)

then have f1-0: ... = FBlock (Ax n. True) (Suc 0) 2 (Az n. [0, hd(z n)])
by (simp add: f-blocks)

have simblock-f1: SimBlock (Suc 0) 2 (FBlock (Ax n. True) (Suc 0) 2 (Az n. [0, hd(z n)]))
using SimBlock-Const SimBlock-1d SimBlock-FBlock-seq-comp
by (metis (no-types, lifting) f1 f1-0 Const-def Id-def SimBlock-FBlock-parallel-comp Suc-eq-plus!

nat-1-add-1)

have f2: ((Const 0) ||p Id) ; ; Maz2 = FBlock (Ax n. True) (Suc 0) 2 (Az n. [0, hd(z n)]) ; ;
Max2
using f1-0 by (simp add: f1)

have f2-0: ... = FBlock (Az n. True) (Suc 0) (Suc 0) (f-Maz2 o (Az n. [0, hd(z n)]))
using simblock-f1 SimBlock-Maz2 by (simp add: FBlock-seq-comp f-sim-blocks)
have f2-1: ... = FBlock (Az n. True) (Suc 0) (Suc 0) (Az n. [maz (hd(z n)) 0])

using f~-Max2-def

97

by (metis (mono-tags, lifting) comp-eq-dest-lhs list.sel(1) list.sel(3) max.commute)
have simblock-f2: SimBlock (Suc 0) (Suc 0) (FBlock (Az n. True) (Suc 0) (Suc 0) (Az n. [maz
(hd(z) 0]))
using simblock-f1 SimBlock-Max2 SimBlock-F Block-seq-comp
by (metis Maz2-def One-nat-def f2-0 f2-1)
have f3: ((Const 0) ||p Id) ;; Maz2 ;; (Gain Rate) =
(FBlock (Az n. True) (Suc 0) (Suc 0) (Az n. [maz (hd(z n)) 0])) ;; (Gain Rate)
using f2-1 f2-0 by (simp add: RA1 f2)

then have f3-0: ... = FBlock (Ax n. True) (Suc 0) (Suc 0) ((f-Gain Rate) o (Az n. [maz (hd(z n))
0)))
using SimBlock-Gain simblock-f2 by (simp add: FBlock-seq-comp f-sim-blocks)
then have f3-1: ... = FBlock (Az n. True) (Suc 0) (Suc 0) (Az n. [Rate * (maz (hd(z n)) 0)])
proof —

have Vf n. (f-Gain Rate o (Af n. [maz (hd (fn)) 0])) fn = [Rate * maz (hd (fn)) 0]
by (simp add: f-Gain-def)
then show ?thesis
by presburger
qed
have simblock-f3: SimBlock (Suc 0) (Suc 0)
(FBlock (Az n. True) (Suc 0) (Suc 0) (Az n. [Rate * (maz (hd(z n)) 0)]))
using simblock-f2 SimBlock-Gain SimBlock-FBlock-seq-comp
by (metis Gain-def One-nat-def f3-0 f3-1)

have f/: ((Const 0) ||p Id) ;; Max2 ;; (Gain Rate) ;; RoundCeil =
(FBlock (Az n. True) (Suc 0) (Suc 0) (Az n. [Rate x (mazx (hd(z n)) 0)])) ;; RoundCeil
using f3-0 f3-1 by (simp add: RA1 f2 f2-0 f2-1)
then have f}-0: ... = (FBlock (Ax n. True) (Suc 0) (Suc 0) (
(f-RoundCeil) o (Az n. [Rate * (maz (hd(z n)) 0)])))
using SimBlock-RoundCeil simblock-f3 by (simp add: FBlock-seq-comp RoundCeil-def)
then have f/-1: ... = (FBlock (Ax n. True) (Suc 0) (Suc 0) (
(Az n. [real-of-int [Rate * (max (hd(z n)) 0)]])))
proof —
have V f n. (f~-RoundCeil o (Af n. [Rate * max (hd (f n)) 0])) fn = [real-of-int [Rate * maz (hd
(fn)) 01]
by (simp add: f-RoundCeil-def)
then show ?thesis
by presburger
qed
have simblock-f4: SimBlock (Suc 0) (Suc 0)
(FBlock (Az n. True) (Suc 0) (Suc 0) ((Az n. [real-of-int [Rate * (max (hd(z n)) 0)]])))
using simblock-f3 SimBlock-RoundCeil SimBlock-FBlock-seq-comp
by (metis One-nat-def RoundCeil-def f4-0 f4-1)

have f5: ((Const 0) ||g Id) ;; Maxz2 ;; (Gain Rate) ;; RoundCeil ;; DataTypeConvint32Zero
= (FBlock (Ax n. True) (Suc 0) (Suc 0) (Ax n. [real-of-int [Rate * (maz (hd(z n)) 0)1]))
;5 DataTypeConvInt32Zero
by (metis RA1 f} f4-0 f4-1)
then have f5-0: ... = (FBlock (Ax n. True) (Suc 0) (Suc 0)
(f-DTConvInt32Zero o (Ax n. [real-of-int [Rate * (maz (hd(z n)) 0)1])))
by (metis DataTypeConviInt32Zero-def One-nat-def FBlock-seq-comp
SimBlock-DataTypeConvInt32Zero simblock-f4)
then have f5-1: ... = (FBlock (Ax n. True) (Suc 0) (Suc 0)
(Az n. [real-of-int (int32 (RoundZero(real-of-int [Rate * (maz (hd(z n)) 0)1)))]))
proof —
have V[n. (f-DTConvInt32Zero o (Af n. [real-of-int [(Rate::real) * maz (hd (f n)) 0]])) fn

98

= [real-of-int (int32 (RoundZero (real-of-int [Rate * maz (hd (fn)) 01)))]
by (simp add: f-DTConvint32Zero-def)
then show ?%thesis
by presburger
qed
have simblock-f5: SimBlock (Suc 0) (Suc 0) ((FBlock (Ax n. True) (Suc 0) (Suc 0)
(Az n. [real-of-int (int32 (RoundZero(real-of-int [Rate * (mazx (hd(z n)) 0)]))])))
by (metis DataTypeConvInt32Zero-def One-nat-def SimBlock-DataTypeConvInt32Zero
SimBlock-FBlock-seq-comp f5-0 f5-1 simblock-f4)

have f6: ((Const 0) ||g Id) ;; Maz2 ;; (Gain Rate) ;; RoundCeil ;; DataTypeConvInt32Zero ; ;
Split2
= ((FBlock (Ax n. True) (Suc 0) (Suc 0)
(Az n. [real-of-int (int32 (RoundZero(real-of-int [Rate * (maz (hd(z n)) 0)1)))])))

;5 Split2
by (metis RA1 f5 f5-0 f5-1)
then have f6-0: ... = (FBlock (Ax n. True) (Suc 0) (2)

(f-Split2 o (Az n. [real-of-int (int32 (RoundZero(real-of-int [Rate * (mazx (hd(z n)) 0)]))])))
by (metis Split2-def One-nat-def FBlock-seq-comp
SimBlock-Split2 simblock-15)
then have f6-1: ... = (FBlock (Ax n. True) (Suc 0) (2)
(Az n. [real-of-int (int32 (RoundZero(real-of-int [Rate * (mazx (hd(z n)) 0)1))),
real-of-int (int32 (RoundZero(real-of-int [Rate x (max (hd(z n)) 0)1)))]))
proof —
have V f n. [real-of-int (int32 (RoundZero (real-of-int [(Rate::real) * maz (hd (fn)) 01))),
real-of-int (int32 (RoundZero (real-of-int [Rate * max (hd (fn)) 0])))] =
(f-Split2 o (Af n. [real-of-int (int32 (RoundZero (real-of-int [Rate * max (hd (fn)) 01)))]) fn
by (simp add: f-Split2-def)
then show %thesis
by presburger
qed
have simblock-f6: SimBlock 1 2 (FBlock (Ax n. True) (Suc 0) (2)
(Az n. [real-of-int (int32 (RoundZero(real-of-int [Rate * (mazx (hd(z n)) 0)]))),
real-of-int (int32 (RoundZero(real-of-int [Rate x (max (hd(z n)) 0)1)))]))
by (metis (no-types, lifting) One-nat-def SimBlock-FBlock-seq-comp SimBlock-Split2
Split2-def f6-0 f6-1 simblock-f5)
show ?thesis
by (simp add: f6 f6-0 f6-1)
qed

The variable Timer subsystem is composed of two parts by means of parallel composition and
feedback.

definition variableTimer =
(((variableTimerl || p variableTimer2) fp (0,0)) fp (0,2));; RopGT

vT-fd-sol-1 calculates the output from its current and past inputs recursively. It is a solution
for the first feedback in variable Timer.

fun vT-fd-sol-1:: (nat = real) = (nat = real) = nat = real where
vT-fd-sol-1 door-open-time door-open 0 =
(if door-open 0 > 0.5 then 1.0 else 0) |
vT-fd-sol-1 door-open-time door-open (Suc n) =
(if door-open (Suc n) > 0.5
then ((min (vT-fd-sol-1 door-open-time door-open n) (door-open-time n)) + 1)
else 0)

99

vT-fd-sol-1 is proved to be a solution for the first feedback. This lemma will be used later to
expand the first feedback.

lemma vT-fd-sol-1-is-a-solution:
fixes inoutsg::nat = real list and n::nat
assumes al: Vz. length(inoutsg x) = &
shows 0 < n — (1 < inoutsg n!(Suc 0) * 2 —
vT-fd-sol-1 (Anl. hd (inoutsg nl1)) (Anl. inoutsy nl!(Suc 0)) n =
min (vT-fd-sol-1 (Anl. hd (inoutsg nl1)) (Anl. inoutsy nl!(Suc 0)) (n — Suc 0))
(hd (inoutsg (n — Suc 0))) + 1) A
(= 1 < inoutsy n!(Suc 0) * 2 —
vT-fd-sol-1 (Anl. hd (inoutsg nl1)) (Anl. inoutsy nl1!(Suc 0)) n = 0)
apply (clarify, rule conjl, clarify)
defer
apply (clarify)
proof —
assume al: 0 < n
assume a2: = 1 < inoutsg n!(Suc 0) x 2
from a2 have a2”: inoutsg n!(Suc 0) < 0.5
by (simp)
have 1: vT-fd-sol-1 (Anl. hd (inoutsg n1)) (Anl. inoutsg n1!(Suc 0)) n
= vT-fd-sol-1 (Anl. hd (inoutsy n1)) (Anl. inoutsg n1!(Suc 0)) (Suc (n — Suc 0))
using al by simp
show vT-fd-sol-1 (An1. hd (inoutsy nl)) (Anl. inoutsy n1!(Suc 0)) n = 0
apply (simp add: 1)
using a2’ by (simp add: al)
next
assume al: 0 < n
assume a2: 1 < inoutsy n!(Suc 0) * 2
from a2 have a2”: inoutsg n!(Suc 0) > 0.5
by (simp)
have 1: vT-fd-sol-1 (Anl. hd (inoutsg n1)) (Anl. inoutsg n1!(Suc 0)) n
= vT-fd-sol-1 (Anl. hd (inoutsy nl)) (Anl. inoutsg n1!(Suc 0)) (Suc (n — Suc 0))
using al by simp
show vT-fd-sol-1 (Anl1. hd (inoutsy nl)) (Anl. inoutse nil(Suc 0)) n =
min (vT-fd-sol-1 (Anl. hd (inoutsy nl)) (Anl. inoutsy ni!(Suc 0)) (n — Suc 0))
(hd (inoutsy (n — Suc 0))) + 1
apply (simp add: 1)
using a2’ al by simp
qged

variable Timer-simp-pat-f gives the function definition of the finally simplified subsystem.

abbreviation variable Timer-simp-pat-f
= (Az na. [if (if 1 <z nal(0)* 2
then (if na = 0 then 0
else min (vT-fd-sol-1
(Anl. (Ana. real-of-int
(int32 (RoundZero (real-of-int [Rate * maz (z nal(Suc 0)) 01)))) nl)
(An1. (z n1)}(0)) (na — 1))
((Ana. real-of-int (int32 (RoundZero (real-of-int [Rate * maz (z nal(Suc 0)) 01))))

(na — 1)) + 1

else 0) > (real-of-int (int32 (RoundZero (real-of-int [Rate * maz (z na!(Suc 0)) 01))))

then 1 else 0])

variable Timer-simp-pat is the simplified block for the subsystem.

abbreviation variable Timer-simp-pat

100

= (FBlock (Ax n. True) (2) 1 variableTimer-simp-pat-f)

variable Timer-simp-pat is also a block.

lemma SimBlock-variable Timer-simp:
SimBlock 2 1 variableTimer-simp-pat
apply (rule SimBlock-FBlock)

apply (rule-tac x = Ana. [0, 0] in ex])
apply (rule-tac x = Ana. [0] in exl)
apply (simp)

apply (simp add: int32-def RoundZero-def)
by simp

variable Timer-simp simplifies the subsystem into a block.

lemma variable Timer-simp:
variable Timer = wvariable Timer-simp-pat
proof —
let %vt-f = (Az na. [if (if 1 < znal(0) * 2
then (if na = 0 then 0
else min (vT-fd-sol-1
(Anl1. (Ana. real-of-int
(int32 (RoundZero (real-of-int [Rate x maz (z nal(Suc 0)) 01)))) nl)
(Anl. (z n1)1(0)) (na — 1))
((Ana. real-of-int (int32 (RoundZero (real-of-int [Rate * maz (z na!(Suc 0)) 01))))
(na — 1)) + 1
else 0) > (real-of-int (int32 (RoundZero (real-of-int [Rate * maz (z nal(Suc 0)) 01))))
then 1 else 0])

have simblock-variableTimer1: SimBlock 3 2 (FBlock (Az n. True) (3) 2 (Az n. [if (zn)!2 > 0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1) else 0,
if (zxn)!2>0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(t(z (n—1)))))) + 1) else 0]))

apply (simp add: SimBlock-def FBlock-def)

apply (rel-auto)

apply (rule-tac x = Ana. [2, 1, 0.51] in exl, simp)

apply (rule-tac x = Ana. (if na = 0 then [1,1] else [2,2]) in exl)
by (simp)

have simblock-variable Timer2: SimBlock (Suc 0) 2 (FBlock (Az n. True) (Suc 0) (2)
(Az n. [real-of-int (int32 (RoundZero(real-of-int [Rate * (maz (hd(z n)) 0)]))),

real-of-int (int32 (RoundZero(real-of-int [Rate * (max (hd(z n)) 0)1)))]))
apply (simp add: SimBlock-def FBlock-def)
apply (rel-auto)
apply (rule-tac x = Ana. [1] in exl, simp)
apply (rule-tac © = Ana. [Rate,Rate] in exl, simp)
by (simp add: RoundZero-def int32-def)
have f1: (variableTimer1 || g variableTimer2)
= (FBlock (Ax n. True) (3) 2 Az n. [if (zn)!12 > 0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(ti(z (n—1)))))) + 1) else 0,
if (zxn)!2>0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(H(z (n—1)))))) + 1) else 0]))
5
(FBlock (Ax n. True) (Suc 0) (2)
(Az n. [real-of-int (int32 (RoundZero(real-of-int [Rate * (maz (hd(z n)) 0)1))),
real-of-int (int32 (RoundZero(real-of-int [Rate x (maz (hd(z n)) 0)])))])
using vartableTimerl-simp variable Timer2-simp by auto
then have f1-0: ... = (FBlock (Ax n. True) (4) 4

101

Az n. (((\z n.
[if (xn)!l2 > 0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1) else 0,
if (zn)!2>0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1) else 0])
o (A\zz nn. take 3 (zx nn))) x n)
o (((Az n. [real-of-int (int32 (RoundZero(real-of-int [Rate x (mazx (hd(z n)) 0)]))),
real-of-int (int32 (RoundZero(real-of-int [Rate x (max (hd(z n)) 0)1)))])
o (Azz nn. drop 3 (zx nn)))) x n)))
using simblock-variable Timerl simblock-variable Timer2 by (simp add: FBlock-parallel-comp f-sim-blocks)
then have f1-1: ... = (FBlock (Ax n. True) (4) 4
((\z n.
[if (xn)!12 > 0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1) else 0,
if (zn)!12>0.5

then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1) else 0
real-of-int (int32 (RoundZero(real-of-int [Rate x (maz ((z n)!3) 0)1))),
real-of-int (int32 (RoundZero(real-of-int [Rate * (maz ((z n)!3) 0)]))])))

proof —
have 11: Vz n. ((length(z n) = 4) — ((Az n. (((A\z n.
[if (xn)!12 > 0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(t(z (n—1)))))) + 1) else 0,
if (xn)!2>0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1) else 0])
o (Azz nn. take 8 (xx nn))) z n)
o (((Az n. [real-of-int (int32 (RoundZero(real-of-int [Rate * (mazx (hd(z n)) 0)]))),
real-of-int (int32 (RoundZero(real-of-int [Rate * (max (hd(z n)) 0)])))])
o (Azz nn. drop 3 (zx nn)))) zn)) z n)
= ((A\z n.
[if (xn)!12>0.5
then ((if n = 0 then 0 else (min (hd(x (n—1))) (hd(tl(z (n—1)))))) + 1) else 0,
if (zn)!122>0.5

then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(tH(zx (n—1)))))) + 1) else 0,
real-of-int (int32 (RoundZero(real-of-int [Rate x (maz ((z n)!3) 0)]))),
real-of-int (int32 (RoundZero(real-of-int [Rate x (maz ((z n)!3) 0)])))]) = n))

apply (auto)
apply (simp add: hd-drop-conv-nth)
apply (smt diff-Suc-1 hd-conv-nth list.sel(2) nth-take numeral-3-eq-3 take-eq-Nil ti-take
zero-less-Suc zero-neg-numeral)
apply (metis eval-nat-numeral(2) hd-drop-conv-nth lessI semiring-norm(26) semiring-norm(27))
by (metis eval-nat-numeral(2) hd-drop-conv-nth lessl semiring-norm(26) semiring-norm(27))
show ?thesis
apply (simp add: FBlock-def)
apply (rel-simp)
apply (rule iffT)
apply (clarify)
apply (rule conjI)
apply (clarify)
apply (rule conjl)
apply (clarify)
apply (metis eval-nat-numeral(2) hd-drop-conv-nth lessI semiring-norm(26) semiring-norm(27))
apply (metis eval-nat-numeral(2) hd-drop-conv-nth lessI semiring-norm(26) semiring-norm(27))
apply (clarify)
apply (rule conjl)
apply (clarify)

102

apply (rule conjl)
apply blast
apply (rule conjl)
apply blast
proof —
fix ok, and inouts,::nat=>real list and ok,’ and inouts, ::nat=real list
and z::nat
assume al: Vz. (z = 0 —
(1 < inouts, 0!(2) x 2 —
length(inouts, 0) = 4 A
length(inouts,” 0) = 4 N
(1, 1, real-of-int (int32 (RoundZero (real-of-int [Rate = mazx (hd (drop 3 (inouts, 0)))
01)));
real-of-int (int32 (RoundZero (real-of-int [Rate x max (hd (drop 8 (inouts, 0))) 01)))] =
inouts,” 0) N
(= 1 < inouts, 0!(2) x 2 —
length(inouts, 0) = 4 A
length(inouts,’ 0) = 4 A
[0, 0, real-of-int (int32 (RoundZero (real-of-int [Rate * mazx (hd (drop 3 (inouts, 0)))
on)),
real-of-int (int32 (RoundZero (real-of-int [Rate x+ max (hd (drop 3 (inouts, 0))) 01)))] =
inouts,’ 0)) A
0 <z —
(1 < inouts, z!(2) * 2 —
length(inouts, x) = 4 A
length(inouts,’) = 4 A
[min (hd (take 3 (inouts, (x — Suc 0)))) (hd (tl (take 3 (inouts, (x — Suc 0))))) +
min (hd (take 3 (inouts, (x — Suc 0)))) (hd (8 (take 3 (inouts, (z — Suc 0))))) +
real-of-int (int32 (RoundZero (real-of-int [Rate x maz (hd (drop 8 (inouts, z))) 01))),
real-of-int (int32 (RoundZero (real-of-int [Rate x max (hd (drop 8 (inouts, x))) 01)))] =
inouts,’) A
(= 1 < inouts, z(2) x 2 —
length(inouts, =) = 4 A
length(inouts,’) = 4 A
[0, 0, real-of-int (int32 (RoundZero (real-of-int [Rate * maxz (hd (drop 3 (inouts, x)))
o)),
real-of-int (int32 (RoundZero (real-of-int [Rate * max (hd (drop 8 (inouts, x))) 01)))] =
inouts,’ z))
assume a2: 0 < x
assume a3: 1 < inouts, z!(2) x 2
from al have 11: Vz. length(inouts, z) = 4
using a2 by blast
have 12: hd(drop 3 (inouts, z)) = (inouts, z!(3))
using 11 by (simp add: hd-drop-conv-nth)
have 13: (hd (take 3 (inouts, (x — Suc 0)))) = (hd (inouts, (x — Suc 0)))
using al by (metis append-take-drop-id hd-append?2 take-eq-Nil zero-neq-numeral)
have 14: (hd (take 3 (inouts, (x — Suc 0)))) = (hd (inouts, (x — Suc 0)))
using al by (metis append-take-drop-id hd-append?2 take-eq-Nil zero-neg-numeral)
have 15: (hd (# (take 8 (inouts, (z — Suc 0))))) = (hd (# (inouts, (z — Suc 0))))
by (metis Zero-not-Suc append-take-drop-id hd-append2 numeral-3-eq-3 take-eq-Nil take-tl)
show [min (hd (inouts, (z — Suc 0))) (hd (¢ (inouts, (x — Suc 0)))) + 1,
min (hd (inouts, (x — Suc 0))) (hd (H (inouts, (x — Suc 0)))) + 1,
real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, z!(3)) 01))),
real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(3)) 01)))] =
imouts,’ x

103

using 11 12 13 14 15 by (metis al a2 a3)

next
fix ok, and inouts,::nat=real list and ok,’ and inouts,"::nat=-real list
and z::nat

assume al:Vz. (z = 0 —
(1 < inouts, 01(2) * 2 —
length(inouts, 0) = 4 A
length(inouts,’ 0) = 4 N
[1, 1, real-of-int (int32 (RoundZero (real-of-int [Rate x max (hd (drop 3 (inouts, 0)))

01))),
real-of-int (int32 (RoundZero (real-of-int [Rate x max (hd (drop 8 (inouts, 0))) 01)))] =
inouts,’ 0) A
(= 1 < inouts, 01(2) x 2 —
length(inouts, 0) = 4 A
length(inouts,’ 0) = 4 A
[0, 0, real-of-int (int32 (RoundZero (real-of-int |Rate * max (hd (drop 3 (inouts, 0)))
01)));
real-of-int (int32 (RoundZero (real-of-int [Rate x max (hd (drop 8 (inouts, 0))) 01)))] =
inouts,’ 0)) A
(0<z—
(1 < inouts, z!(2) * 2 —
length(inouts, =) = 4 A
length(inouts,’) = 4 A
[min (hd (take 3 (inouts, (x — Suc 0)))) (hd (¢l (take 3 (inouts, (x — Suc 0))))) + 1,
min (hd (take 3 (inouts, (x — Suc 0)))) (hd (t (take 3 (inouts, (z — Suc 0))))) + 1,
real-of-int (int32 (RoundZero (real-of-int [Rate x max (hd (drop 3 (inouts, z))) 01))),
real-of-int (int32 (RoundZero (real-of-int [Rate * max (hd (drop 8 (inouts, x))) 01)))] =
inouts,’) A
(= 1 < inouts, z!(2) * 2 —
length(inouts, x) = 4 A
length(inouts,’ x) = 4 A
[0, 0, real-of-int (int32 (RoundZero (real-of-int [Rate * maxz (hd (drop 3 (inouts, z)))
01)));

real-of-int (int32 (RoundZero (real-of-int [Rate * mazx (hd (drop 8 (inouts, x))) 01)))] =
inouts,’ x))
have 11: hd (drop 8 (inouts, x)) = inouts, z!(3)
by (metis al eval-nat-numeral(2) gr-zerol hd-drop-conv-nth lessI semiring-norm(26)
semiring-norm(27))
show — 1 < inouts, z!(2) x 2 —
length(inouts, z) = 4 A
length(inouts,’) = 4 A
[0, 0, real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(3)) 01))),
real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(3)) 01)))] =
inouts,’
apply (auto)
using al gr-zerol apply blast
using al gr-zerol apply blast
by (metis 11 al neg0-conv)
next
show Aok, inouts, ok,’ inouts,’.
ok, —
ok, N
Vz. (z =0 —
(1 < inouts, 012 * 2 —
length(inouts, 0) = 4 A

104

length(inouts,’ 0) = 4 A
[1, 1, real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, 0!3) 01))),
real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, 0!3) 01)))] =
nouts,” 0) N
(= 1 < inouts, 012 x 2 —
length(inouts, 0) = 4 A
length(inouts,’ 0) = 4 A
[0, 0, real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, 0!3) 01))),
real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, 0!3) 01)))] =
inouts,’ 0)) A
(0 <z —
(1 < inouts, z!2 x 2 —
length(inouts, x) = 4 A
length(inouts,”) = 4 A
[min (hd (inouts, (z — Suc 0))) (hd (t (inouts, (x — Suc 0)))) + 1
min (hd (inouts, (z — Suc 0))) (hd (¢ (inouts, (z — Suc 0)))) + 1
real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, x!3) 07))),
real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, z!3) 01)))] =
inouts,” x) A
(= 1 < inouts, z!2 x 2 —
length(inouts, =) = 4 A
length(inouts,” z) = 4 A
[0, 0, real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!3) 01))),
real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, z!38) 01)))] =
inouts,’ x))) =
ok, —
oky' A
Vz. (z =0 —
(1 < inouts, 0'2 x 2 —
length(inouts, 0) = 4 A
length(inouts,’ 0) = 4 A
[1, 1, real-of-int (int32 (RoundZero (real-of-int [Rate * max (hd (drop 8 (inouts, 0)))

real-of-int (int32 (RoundZero (real-of-int [Rate * mazx (hd (drop 3 (inouts, 0))) 01)))]

nouts,” 0) N

(= 1 < inouts, 012 x 2 —

length(inouts, 0) = 4 A

length(inouts,’ 0) = 4 A

[0, 0, real-of-int (int32 (RoundZero (real-of-int [Rate * max (hd (drop & (inouts, 0)))

real-of-int (int32 (RoundZero (real-of-int [Rate * maz (hd (drop 8 (inouts, 0))) 0])))]

inouts,’ 0)) A
(0 <z —
(1 < inouts, z!2 x 2 —
length(inouts, x) = 4 A
length(inouts,’) = 4 A
[min (hd (take 3 (inouts, (z — Suc 0)))) (hd
min (hd (take 3 (inouts, (z — Suc 0))))
real-of-int (int32 (RoundZero (real-of-int
real-of-int (int32 (RoundZero (real-of-int

(hd (tl (take 8 (inouts, (z — Suc 0)))
(hd (t (take 3 (inouts, (x — Suc 0)))
[Rate * maz (hd (drop 8 (inouts, z))) 0
[Rate * maz (hd (drop 3 (inouts, z))) 0

~—

inouts,’) A
(= 1 < inouts, z!2 % 2 —

105

length(inouts, x) =
length(inouts,’ ©) =
[0, 0, real-of-int (int3

4 A
4 N
2 (RoundZero (real-of-int [Rate x mazx (hd (drop 3 (inouts, x)))
real-of-int (int32 (RoundZero (real-of-int [Rate x maz (hd (drop 3 (inouts, z))) 01])))]

inouts,’ x)))
apply (clarify)
apply (rule congI)
apply (clarify)
apply (rule congl)
apply (clarify)

apply (rule congl)
apply blast
apply (rule congl)
apply blast
apply (metis eval-nat-numeral(2) hd-drop-conv-nth lessI semiring-norm(26) semiring-norm(27))
apply (clarify)
apply (rule conjl)
apply blast
apply (rule congl)
apply blast
apply (metis eval-nat-numeral(2) hd-drop-conv-nth lessI semiring-norm(26) semiring-norm(27))
apply (clarify)
apply (rule conjI)
apply (clarify)
apply (rule congl)
apply blast
apply (rule congl)
apply blast
proof —
fix ok, and inouts,::nat=real list and ok, and inouts, "::nat=>real list
and z::nat
assume al: Vz. (z =0 —
(1 < inouts, 0'2 x 2 —
length(inouts, 0) = 4 A
length(inouts,’ 0) = 4 A
[1, 1, real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, 0!3) 01))),
real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, 0!3) 01)))] =
inouts,” 0) A
(= 1 < inouts, 02 % 2 —
length(inouts, 0) = 4 A
length(inouts,’ 0) = 4 A
[0, 0, real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, 013) 01))),
real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, 0!3) 01)))] =
inouts,’ 0)) A
(0 <z —
(1 < inouts, z!2 * 2 —
length(inouts, =) = 4 A
length(inouts,’) = 4 A
[min (hd (inouts, (x — Suc 0))) (hd (¢
min (hd (inouts, (z — Suc 0))) (hd (tl (inouts, (z — Suc 0)))) + 1,
real-of-int (int32 (RoundZero (real-of-int [Rate *x maz (inouts, z!3) 01))),
real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, z!3) 01)))] =
inouts,’ x) A

(inouts, (x — Suc 0)))) + 1,

106

(= 1 < inouts, z!2 * 2 —
length(inouts, =) = 4 A
length(inouts,’) = 4 A
[0, 0, real-of-int (int32 (RoundZero (real-of-int [Rate * mazx (inouts, z!3) 01))),
real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, z!3) 01)))] =
inouts,’ z))
assume a2: 0 < z
assume a3: I < inouts, z!(2) * 2
from al have 11: Vz. length(inouts, z) = 4
using a2 by blast
have 12: hd(drop 3 (inouts, z)) = (inouts, z!(3))
using 11 by (simp add: hd-drop-conv-nth)
have 13: (hd (take 3 (inouts, (x — Suc 0)))) = (hd (inouts, (z — Suc 0)))
using al by (metis append-take-drop-id hd-append2 take-eq-Nil zero-neg-numeral)
have 1/: (hd (take 3 (inouts, (x — Suc 0)))) = (hd (inouts, (z — Suc 0)))
using al by (metis append-take-drop-id hd-append? take-eq-Nil zero-neg-numeral)
have 15: (hd (# (take 3 (inouts, (z — Suc 0))))) = (hd (¢ (inouts, (z — Suc 0))))
by (metis Zero-not-Suc append-take-drop-id hd-append2 numeral-3-eq-3 take-eq-Nil take-tl)
show [min (hd (take 8 (inouts, (x — Suc 0)))) (hd (tl (take 3 (inouts, (r — Suc 0)))))

min (hd (take 3 (inouts, (z — Suc 0)))) (hd (8l (take 3 (inouts, (z — Suc 0))))) + 1,
real-of-int (int32 (RoundZero (real-of-int [Rate x max (hd (drop 3 (inouts, z))) 01))),
real-of-int (int32 (RoundZero (real-of-int [Rate x maz (hd (drop 3 (inouts, x)))

mouts,’ x
using 11 12 13 14 15 by (metis al a2 a3)
next
fix ok, and inouts,::nat=>real list and ok,’ and inouts, ::nat=>real list
and z::nat
assume al: Vz. (z = 0 —
(1 < inouts, 0!'2 * 2 —
length(inouts, 0) = 4 A
length(inouts,’ 0) = 4 A
[1, 1, real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, 013) 01))),
real-of-int (int32 (RoundZero (real-of-int [Rate * mazx (inouts, 0'3) 01)))] =
inouts,’ 0) A
(= 1 < inouts, 0!2 x 2 —
length(inouts, 0) = 4 A
length(inouts,’ 0) = 4 A
[0, 0, real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, 0!3) 01))),
real-of-int (int32 (RoundZero (real-of-int [Rate *x maz (inouts, 0!3) 01)))] =
inouts,’ 0)) A
(0 <z —
(1 < inouts, z!2 x 2 —
length(inouts, =) = 4 A
length(inouts,’) = 4 A
[min (hd (inouts, (x — Suc 0))) (hd (¢l 1,
min (hd (inouts, (x — Suc 0))) (hd (tl (inouts, (x — Suc 0)))) + 1,
real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, z!3)
real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, z!3)
inouts,” x) A
(= 1 < inouts, z!2 * 2 —
length(inouts, =) = 4 A
length(inouts,” x) = 4 A
[0, 0, real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, z!3) 01))),

(inouts, (z — Suc 0)))) +

01)),
0Nl =

107

real-of-int (int32 (RoundZero (real-of-int [Rate * mazx (inouts, x!3) 01)))] =

inouts,’ x))
assume a2: 0 < z
from al have 11: Vz. length(inouts, z) = 4

using a2 by blast
have 12: hd(drop 3 (inouts, z)) = (inouts, z!(3))

using 11 by (simp add: hd-drop-conv-nth)
have 13: (hd (take 3 (inouts, (x — Suc 0)))) = (hd (inouts, (z — Suc 0)))

using al by (metis append-take-drop-id hd-append?2 take-eq-Nil zero-neg-numeral)
have 14: (hd (take 3 (inouts, (x — Suc 0)))) = (hd (inouts, (x — Suc 0)))

using al by (metis append-take-drop-id hd-append? take-eq-Nil zero-neg-numeral)
have 15: (hd (# (take 3 (inouts, (z — Suc 0))))) = (hd (¢ (inouts, (z — Suc 0))))
by (metis Zero-not-Suc append-take-drop-id hd-append2 numeral-3-eq-3 take-eq-Nil take-tl)
show — 1 < inouts, z!(2) x 2 —

length(inouts,) = 4 A

length(inouts,”) = 4 A

[0, 0, real-of-int (int32 (RoundZero (real-of-int [Rate * mazx (hd (drop 8 (inouts, t)))

real-of-int (int32 (RoundZero (real-of-int [Rate x max (hd (drop 3 (inouts, x))) 0])))]

inouts,’ x
apply (clarify)
apply (rule conyl)
apply (simp add: 11)
apply (rule conjl)
using al a2 apply blast
using 11 12 18 14 15
by (simp add: al a2)
qed
qed
qed
have simblock-f1: SimBlock 4 4 (FBlock (Ax n. True) (4) 4
((\z n.
[if (xn)!12 > 0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1) else 0
if (zn)!12>0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(t(z)
real-of-int (int32 (RoundZero(real-of-int [Rate % (maz ((z n)!3) 0
real-of-int (int32 (RoundZero(real-of-int [Rate x (maz ((z n)!3) 0
using simblock-variable Timerl simblock-variable Timer2
by (metis (no-types, lifting) One-nat-def SimBlock-FBlock-parallel-comp Suc-eg-plusi
eval-nat-numeral(2) f1-0 f1-1 numeral-code(2) semiring-norm(26) semiring-norm(27))
have inps-f1: inps (FBlock (Ax n. True) (4) 4
((\z n.
[if (xn)!12 > 0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1) else 0,
if (zn)!12>0.5

then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(H(z (n—1)))))) + 1) else 0,
real-of-int (int32 (RoundZero(real-of-int [Rate x (maz ((z n)!3) 0)]))),
real-of-int (int32 (RoundZero(real-of-int [Rate x (maz ((z n)!'3) 0)])))]))) = 4

using simblock-f1 using inps-P by blast
have outps-f1: outps (FBlock (Ax n. True) (4) 4
((\z n.
[if (zn)!12>0.5
then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(H(z (n—1)))))) + 1) else 0,

108

if (xn)!2>0.5

then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(t(z (n—1)))))) + 1) else 0
real-of-int (int32 (RoundZero(real-of-int [Rate * (maz ((z n)!3) 0)]))),
real-of-int (int32 (RoundZero(real-of-int [Rate x (maz ((z n)!3) 0)])))])) = 4

using simblock-f1 using outps-P by blast

let 2f2-f = ((\z n.
[if (xn)!12 > 0.5
then ((if n = 0 then 0 else (min (hd(x (n—1))) (hd(tl(z (n—1)))))) + 1) else 0,
if (zn)!12>0.5

then ((if n = 0 then 0 else (min (hd(z (n—1))) (hd(tl(z (n—1)))))) + 1) else 0
real-of-int (int32 (RoundZero(real-of-int [Rate x (maz ((z n)!3) 0)]))),
real-of-int (int32 (RoundZero(real-of-int [Rate x (maz ((z n)!3) 0)1)))]))

let ?f2 = (FBlock (Ax n. True) (4) 4 2f2-f)
let ?f2-xx = (A(inoutsg::nat = real list). Ana. vT-fd-sol-1
(Anl. hd(inoutsg nl)) (Anl. (inoutsg n1)!1) na)
have f2: ((variableTimerl || g variableTimer2) fp (0,0))
— %2 fp (0,0)
using fI f1-0 fI-1 by auto
have is-solution-f2: is-Solution 0 0 4 4 ?f2-f ?f2-xx
apply (simp add: is-Solution-def)
apply (rule alll)
apply (simp add: f-PreFD-def)
apply (clarify)
using vT-fd-sol-1-is-a-solution by blast
have unique-f2: Solvable-unique 0 0 4 4 ?f2-f
apply (simp add: Solvable-unique-def)
apply (rule alll, clarify, simp add: f-PreFD-def)
apply (rule ex-exil)
apply (rule-tac x = Ana. vT-fd-sol-1
(Anl. hd(inoutsp nl)) (Anl. (inoutsg n1)!1) na in exl)
apply (simp)
apply (rule alll)
using vT-fd-sol-1-is-a-solution apply (simp)
proof —
fix inoutsg::nat = real list and zz y ::nat = real
assume al: Vz. length(inoutsy) = 3
assume a2: Vn. (n = 0 — (1 < inoutsg 0!(Suc 0) * 2 — zx 0 = 1) A
(= 1 < inoutsg 01(Suc 0) x 2 — zx 0 = 0)) A
(0 <n—

(1 < inoutsg n!(Suc 0) * 2 — zx n = min (zx (n — Suc 0)) (hd (inoutsg (n — Suc 0))) +

1) A
(= 1 < inoutsg n!(Suc 0) * 2 — zzn = 0))
assume a3: Vn. (n = 0 — (I < inoutsy 0!(Suc 0) x 2 — y 0 = 1) A
(= 1 < inoutsg 0!(Suc 0) * 2 — y 0 = 0)) A
(0 <n—

(1 < inoutsg n!(Suc 0) * 2 — yn = min (y (n — Suc 0)) (hd (inoutsg (n — Suc 0))) +

A
(= 1 < inoutsg n!(Suc 0) * 2 — yn = 0))
have 1:Vn.zzn=yn
apply (rule alll)
proof —
fix n:nat
show zzn =y n
proof (induct n)

109

case ()
then show ?case
using a2 a8 by metis
next
case (Suc n) note IH = this
then show ?case
using a2 a3 by (metis One-nat-def diff-Suc-1 zero-less-Suc)
qged
qed
show zz = y
by (simp add: 1 fun-eq)
qed
let 2/3-f = (A\x na. [if 1 < z nal(Suc 0) * 2
then (if na = 0 then 0
else min ((vT-fd-sol-1 (An1. hd (z n1)) (Anl. z n1!(Suc 0))) (na — 1))
(hd (z (na — 1)))) + 1
else 0,
real-of-int (int32 (RoundZero (real-of-int [Rate * maz (z nal(2)) 01))),
real-of-int (int32 (RoundZero (real-of-int [Rate * maz (z na!(2)) 01)))])
have f2-0:
72 o (0,0) =
(FBlock (Ax n. True) (4—1) (4—1)
(Az na. ((f~PostFD 0)
o ?f2-f
o (f-PreFD (2f2-zzx x) 0)) = na))
using is-solution-f2 unique-f2 simblock-f1 FBlock-feedback’ by blast
then have f2-1:
... = FBlock (Az n. True) 3 3 7f3-f
apply (simp (no-asm) add: f-PreFD-def f-PostFD-def)
using f-PreFD-def
by (metis (lifting) append.left-neutral drop-0 f-PreFD-def list.sel(1) list.sel(3) take-0)
have simblock-f2-0: SimBlock (4—1) (4—1) (?f2 fp (0,0))
using simblock-f1 unique-f2 Solvable-unique-is-solvable SimBlock-FBlock-feedback by blast
then have simblock-f2: SimBlock 3 3 (FBlock (Ax n. True) 8 3 ?f3-f)
by (metis (no-types, lifting) Suc-eq-plusl add-diff-cancel-right’ eval-nat-numeral(2) f2-0
12-1 semiring-norm(26) semiring-norm(27))
have inps-f2: inps (FBlock (Ax n. True) 3 3 2/3-f) = &
using simblock-f2 using inps-P by blast
have outps-f2: outps (FBlock (Ax n. True) 3 8 2f3-f) = 3
using simblock-f2 using outps-P by blast

have f3: (((variableTimerl! || variableTimer2) fp (0,0)) fp (0,2))
= (FBlock (Az n. True) 8 8 2f3-f) fp (0,2)
using f2 f2-0 f2-1 by auto
let ?2f3-zx = (A(inoutsg::nat = real list). Ana.
real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inoutsy nal(1)) 01))))
have is-solution-f3: is-Solution 0 2 8 8 ?f3-f ?2f3-xx
apply (simp add: is-Solution-def)
apply (rule alll)
by (simp add: f-PreFD-def)
have unique-f3: Solvable-unique 0 2 8 8 2f3-f
apply (simp add: Solvable-unique-def’)
apply (rule alll, clarify, simp add: f-PreFD-def)
apply (rule ex-ex1l)
apply (rule-tac x = Ana.

110

real-of-int (int32 (RoundZero (real-of-int [Rate *x maz (inoutsg nal(1)) 01))) in exl)
apply (simp)
by (simp add: ext)
have simp-1: Vx na. (Az na. [if 1 < z nal(0) * 2
then (if na = 0 then 0
else min (vT-fd-sol-1
(Anl1. hd (f-PreFD
(Ana. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (x nal(Suc 0)) 01))))
0xnl))
(Anl. f-PreFD
(Ana. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (z na!(Suc 0)) 01))))
0 xz n1!(Suc 0))
(na — 1))
(hd (f-PreFD
(Ana. real-of-int (int32 (RoundZero (real-of-int [Rate * maz (x nal(Suc 0))

05 (na— 1) +
1
else 0,
real-of-int (int82 (RoundZero (real-of-int [Rate * maz (z na!(Suc 0)) 0])))]) = na
= (Az na. [if 1 < znal(0) x 2
then (if na = 0 then 0
else min (vT-fd-sol-1
(An1. (Ana. real-of-int
(int32 (RoundZero (real-of-int [Rate * maz (z na!(Suc 0)) 01)))) nl)
(An1. (z n1)1(0)) (na — 1))
((Ana. real-of-int (int32 (RoundZero (real-of-int [Rate * maz (z nal(Suc 0)) 01))))
(na — 1)) + 1
else 0,
real-of-int (int82 (RoundZero (real-of-int [Rate * maz (z na!(Suc 0)) 01)))]) = na
by (simp add: f-PreFD-def)
let ?f4-f = Az na. [if 1 < znal(0) x 2
then (if na = 0 then 0
else min (vT-fd-sol-1
(Anl. (Ana. real-of-int
(int32 (RoundZero (real-of-int [Rate * maz (z na!(Suc 0)) 01)))) n1)
(An1. (z n1)}(0)) (na — 1))
((Ana. real-of-int (int32 (RoundZero (real-of-int [Rate * maz (z nal(Suc 0)) 01))))
(na — 1)) + 1
else 0,
real-of-int (int32 (RoundZero (real-of-int [Rate x maz (x nal(Suc 0)) 01)))])
have f3-0: (FBlock (Az n. True) 3 8 ?f3-f) fp (0,2)
= (FBlock (Ax n. True) (3—1) (3—1)
(Az na. ((f-PostFD 2)
o ?f3-f
o (f-PreF'D (?f3-zx x) 0)) x na))
using is-solution-f3 unique-f3 simblock-f2 FBlock-feedback’ by blast
then have f3-1: ... = FBlock (\x n. True) 2 2 2f)-f
apply (simp (no-asm) add: f-PreFD-def f-PostFD-def)
by (simp add: simp-1)
have simblock-f3-0: SimBlock (8—1) (3—1) ((FBlock (Ax n. True) 3 3 2f3-f) fp (0,2))
using simblock-f2 unique-f3 Solvable-unique-is-solvable SimBlock-FBlock-feedback by blast
then have simblock-f3: SimBlock 2 2 (FBlock (Az n. True) 2 2 2f}-f)

111

by (metis (no-types, lifting) One-nat-def Suc-1 diff-Suc-1 f3-0 f3-1 numeral-3-eq-3)

have simp-f{: Va n. (f~RopGT o ?f}-f) xn = %vt-fzn
using f-RopGT-def by simp

have f4: variableTimer = (FBlock (Ax n. True) 2 2 2f4-f) ;; RopGT
using f3 f3-0 f3-1 variable Timer-def by auto

then have f/-0: ... = FBlock (Ax n. True) 2 1 (f~RopGT o 2f}-f)
using simblock-f8 SimBlock-RopGT FBlock-seq-comp by (simp add: RopGT-def)
then have f4-1: ... = FBlock (Ax n. True) 2 1 %vt-f

using simp-f4 by presburger
show ?thesis

using f4 f4-0 f4-1 by auto
qed

C.1.1 Verification

vt-req-00: if door_open is false (door is closed), then the output of this subsystem is false. This
is not a requirement described in the paper but we believe it should hold for this subsystem.

Current Simulink diagram cannot guarantee this property because the type conversion int32
could cause its output less than 0 (i.e. 4294967295 = -10), finally the output of variable Timer
could be true. It violates our requirement. In the original Simulink block diagram, this variable-
Timer is a subsystem of post-landing-finalize which itself is a subsystem of aircraft cabin pressure
and environment control system applications. Therefore, its second input (door,pen;ime) relies
on the outputs of other subsystem (Timing Computation), and variable Timer actually makes
assumptions on its input.

However, taking variable Timer alone, we try to verify this property either strengthen its precon-
dition on the input (door,pen;imes is always larger or equal to 0 and less than 2147483647/ Rate),
or change int32 to uint32 for the type conversion block, or change the data type of this input t
unsigned integer.

In the lemma below, we proved this property holds if we make an assumption on its values.

lemma vt-req-00:
((V nunat - (
«(Az n. (hd(zn) = 0V hd(zn) = 1) A (x the first input door-open is boolean. *)
(hd(tl(z n)) > 0 A hd(t(z n)) < 214748364))»
(&inouts), («n»),)::sim-state upred)
Fn
((V n:inat -
((#4($inouts («n»)q)) =u «2%) A
((#u($inouts ” («n»)q)) =u «I») A
(head, (($inouts («n»)g)) =4 0) = (head,(($inouts” («n»)q)) =4 0))
)) C wvariable Timer
apply (simp (no-asm) add: variableTimer-simp)
apply (simp add: FBlock-def)
apply (rel-simp)
proof —
fix ok,::bool and inouts,::nat = real list and ok, "::bool and inouts,’ ::nat = real list
and z :: nat
assume al: V. (hd (inouts, x) = 0 V hd (inouts,) = 1) A
(0 < hd (8 (inouts, z)) A hd (H (inouts, x)) < 214748364)
assume a2: hd (inouts,) = 0
assume a3: Vz. (z = 0 —
(1 < inouts, 01(0) * 2 —

112

(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 0])) < 1 —
length(inouts, 0) = 2 A length(inouts,” 0) = Suc 0 A [1] = inouts,” 0) A
(= int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0)) 0])) < 1 —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [0] = inouts,’ 0)) A
(= 1 < inouts, 0!(0) x 2 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 0])) < 0 —
length(inouts, 0) = 2 A length(inouts,” 0) = Suc 0 A [1] = inouts,” 0) A
(- int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0)) 0])) < 0 —
length(inouts, 0) = 2 A length(inouts,” 0) = Suc 0 A [0] = inouts,” 0))) A
(0<z—
(1 < inouts, z!(0) x 2 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(An1. real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, nl1!(Suc 0))

(Anl. inouts, n1l(0)) (z — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate x max (inouts, (z — Suc 0)!(Suc 0))

1 —
length(inouts, z) = 2 A length(inouts,’) = Suc 0 A [1] = inouts,’ x) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(Anl. real-of-int (int32 (RoundZero (real-of-int [Rate * mazx (inouts, nl!(Suc 0))

(Anl. inouts, n1!(0)) (x — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate x mazx (inouts, (z — Suc 0)!(Suc 0))

1 —
length(inouts,) = 2 A length(inouts,’) = Suc 0 A [0] = inouts,’ x)) A
(= 1 < inouts, z!(0) x 2 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, x!(Suc 0)) 0])) < 0 —
length(inouts, =) = 2 A length(inouts,’) = Suc 0 A [1] = inouts,’ x) A
(= int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts, x) = 2 A length(inouts,’) = Suc 0 A [0] = inouts,’ x)))
have 1: Vz. length(inouts, z) = 2
using a8 neq0-conv by blast
have 2: inouts, z!(0) = 0
using 1 a2 by (metis hd-conv-nth list.size(3) zero-not-eg-two)
have 3: Vz. (0 < inouts, z!(Suc 0) A inouts, z!(Suc 0) < 214748364)
using al
by (metis 1 One-nat-def diff-Suc-1 hd-conv-nth length-greater-0-conv length-tl
less-numeral-extra(1) nth-tl numeral-2-eq-2)
have 30: Vz. Rate * mazx (inouts, z!(Suc 0)) 0 < Rate x 214748364 N
Rate * maz (inouts, z!(Suc 0)) 0 > 0
using 3 by simp
have Vz. [Rate x mazx (inouts, z!(Suc 0)) 0] < (Rate x mazx (inouts, z!(Suc 0)) 0 + 1)
using ceiling-correct by linarith
then have Vz. [Rate * max (inouts, z!(Suc 0)) 0] < (Rate x 214748364 + 1)
using 30 by (metis add.commute cancel-ab-semigroup-add-class.add-diff-cancel-left’
ceiling-less-iff less-eg-real-def numeral-times-numeral of-int-numeral one-plus-numeral)
then have 31: Vz. [Rate * maz (inouts, x!(Suc 0)) 0] < (Rate x 214748364 + 1) A
[Rate x max (inouts, z!(Suc 0)) 0] > 0
using 30 by (smt ceiling-le-zero ceiling-zero)
have 32: Vz. real-of-int [Rate x maz (inouts, x!(Suc 0)) 0] < (Rate x 214748364 + 1) A
real-of-int [Rate * max (inouts, z!(Suc 0)) 0] > 0

113

using 31 by (simp)
have 33: Vx. RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)
= |real-of-int [Rate x max (inouts, x!(Suc 0)) 0]]
using RoundZero-def by (simp)
have 3/: Vx. RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 0]) < (Rate x 21/7/8364 +
1) A
RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 07) > 0
using 33 31 by auto
have 35: Vz. int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0]))
= RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 01)
using 34 int32-eq by smt
have 36: Vz. int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0]))
< (Rate + 214748364 + 1) A
int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 07)) > 0
using 35 34 by (simp)
show hd (inouts,’) = 0
using a2 a3 36 2
by (metis (no-types, lifting) less-numeral-extra(1) list.sel(1) mult-zero-left neq0-conv not-le)
qged

lemma door-open-time-range:
fixes x :: real and door-open-time::real
assumes door-open-time < 214748364 N door-open-time > 0
assumes (0 < z A x < door-open-time)
shows int32 (RoundZero (real-of-int [Rate x maz x 01)) > 0 A
int32 (RoundZero (real-of-int [Rate * maz x 0])) < (Rate * door-open-time + 1)
proof —
have 0: Rate * max x 0 < Rate x door-open-time N\ Rate x max x 0 > 0
using assms by simp
have 1: [Rate * maz z 0] < (Rate * mar z 0 + 1)
using ceiling-correct by linarith
then have [Rate * maz z 0] < (Rate % door-open-time + 1)
using 0 assms by linarith
then have 2: [Rate * max z 0] < (Rate * door-open-time + 1) A
[Rate * maz x 0] > 0
using 0 by (smt ceiling-le-zero ceiling-zero)
have 3: real-of-int [Rate * maz x 0] < (Rate * door-open-time + 1) A
real-of-int [Rate * maz x 0] > 0
using 2 by (simp)
have 4: RoundZero (real-of-int [Rate * maz x 01])
= |real-of-int [Rate * maz = 0] |
using RoundZero-def by (simp)
have 5: RoundZero (real-of-int [Rate x mazx x 0]) < (Rate * door-open-time + 1) A
RoundZero (real-of-int [Rate x maz z 0]) > 0
using 3 4 by auto
have 51: RoundZero (real-of-int [Rate x mazx x 01)
RoundZero (real-of-int [Rate * maz x 01) >
using 5 assms by auto
have 6: int32 (RoundZero (real-of-int [Rate * mazx x 0]))
= RoundZero (real-of-int [Rate x mazx x 01)
using 51 int32-eq assms by simp
have 7: int32 (RoundZero (real-of-int [Rate x mazx x 01))
< (Rate * door-open-time + 1) A
int32 (RoundZero (real-of-int [Rate * maz x 0])) > 0
using 5 6 by (simp)

< (Rate * 214748364 + 1) A
0

114

show ?thesis
using 7 by blast
qged

C.2 Subsystem: riselShot

The rise1Shot subsystem is used for the purpose of making sure the finalize event is only triggered
by once if doors are continuously open.

definition riselShot =
(Split2 ;5 (Id || (UnitDelay 1.0 (x3%);; LopNOT (x4%))) ;; LopAND 2 (xRise-1x))

riselShot-simp-pat-f gives the function definition of the finally simplified subsystem.

abbreviation rise1Shot-simp-pat-f = (Az n. [if (hd(zn) # 0 A (n > 0 A hd(z (n—1)) = 0)) then 1
else 0])

riselShot-simp-pat is the simplified block for the subsystem.
abbreviation rise1Shot-simp-pat = (FBlock (Ax n. True) 1 1 riselShot-simp-pat-f)

lemma SimBlock-rise1Shot-simp:
SimBlock 1 1 riselShot-simp-pat
apply (rule SimBlock-FBlock)
apply (rule-tac x = Ana. [0] in exl)
apply (rule-tac x = Ana. [0] in exl)
apply (simp)
by simp

riselShot-simp simplifies the subsystem into a block.

lemma rise1Shot-simp:
rise1Shot = riselShot-simp-pat
proof —

have f1: (UnitDelay 1.0 (x3%); ; LopNOT (x4x*)) = FBlock (Az n. True) 1 1 (f~-LopNOT o
f-UnitDelay 1)
using SimBlock-LopNOT SimBlock-UnitDelay by (simp add: FBlock-seq-comp f-sim-blocks)
have simblock-f1: SimBlock 1 1 (FBlock (Ax n. True) 1 1 (f~-LopNOT o f-UnitDelay 1))
by (metis (no-types, lifting) LopNOT-def SimBlock-LopNOT SimBlock-FBlock-seq-comp
SimBlock-UnitDelay UnitDelay-def f1)

have f2: (Id ||p (UnitDelay 1.0 (x3%);; LopNOT (x4x)))
= (Id ||p FBlock (Ax n. True) 1 1 (f-LopNOT o f-UnitDelay 1))
using f1 by (simp)
then have f2-0: ...
= (FBlock (Ax n. True) 2 2 (Az n. (((f-Id o (Azz nn. take 1 (zz nn))) T n) o
(((f~LopNOT o f-UnitDelay 1) o (Azx nn. drop 1 (zz nn)))) z n)))
using simblock-f1 SimBlock-1d FBlock-parallel-comp f1
proof —
have An na f. = SimBlock n na (FBlock (Af n. True) n na f) V FBlock (Af n. True) (n + 1)
(na + 1) (Ma na. (f o (Af na. take n (f na))) fa na o (f~LopNOT o f-UnitDelay 1 o (Af na. drop n (f
na))) fa na) = FBlock (Af n. True) n na f ||p FBlock (A\f n. True) 1 1 (f~-LopNOT o f-UnitDelay 1)
using FBlock-parallel-comp simblock-f1 by presburger
then have — SimBlock 1 1 simu-contract-real.Id V FBlock (Af n. True) (
(f-Id o (Afn. take 1 (fn))) fn o (f~LopNOT o f-UnitDelay 1 o (Afn. drop 1 (f
n. True) 1 1 f-Id ||p FBlock (Afn. True) 1 1 (f-LopNOT o f-UnitDelay 1)
using simu-contract-real.Id-def by presburger

+1) (1 + 1) (M

)
n))) fn) = FBlock (A\f

115

then show ?thesis

by (metis (no-types) SimBlock-Id Suc-1 Suc-eq-plusl simu-contract-real.Id-def)

qed

have simblock-f2: SimBlock 2 2
(FBlock (Ax n. True) 2 2 (Az n. (((f-Id o (Axz nn. take 1 (zz nn))) zn) o
(((f-LopNOT o f-UnitDelay 1) o (Azzx nn. drop 1 (xx nn)))) z n)))

by (metis (no-types, lifting) SimBlock-Id SimBlock-FBlock-parallel-comp Suc-1 Suc-eg-plusi

12-0 simblock-f1 simu-contract-real.ld-def)

have f3: Split2 ;; (Id || (UnitDelay 1.0 (x3%);; LopNOT (x4x)))
= Split2 ;; (FBlock (Ax n. True) 2 2 (Ax n. ((f-Id o (Azz nn. take 1 (xz nn))) x n) ®
(((f-LopNOT o f-UnitDelay 1) o (Azzx nn. drop 1 (xz nn)))) z n)))
using f2 f2-0 by (simp)
then have f3-0: ... = (FBlock (Ax n. True) 1 2
((Az n. (((f-Id o (Axz nn. take 1 (xx nn))) x n) o
(((f~LopNOT o f-UnitDelay 1) o (Azz nn. drop 1 (zx nn)))) z n)) o f~-Split2))
using SimBlock-Split2 simblock-f2 by (simp add: FBlock-seq-comp f-sim-blocks)
have simblock-f3: SimBlock 1 2 (FBlock (Ax n. True) 1 2
((Az n. (((f-Id o (Aaz nn. take 1 (xx nn))) x n) e
(((f~LopNOT o f-UnitDelay 1) o (Azz nn. drop 1 (zz nn)))) z n)) o f-Split2))
by (smt SimBlock-FBlock-seq-comp SimBlock-Split2 Split2-def f3-0 simblock-f2)

have f/: (Split2 ;; (Id ||p (UnitDelay 1.0 (x3%);; LopNOT (x4x))) ;5 LopAND 2 (xRise-1x))
= (FBlock (Ax n. True) 1 2
((Az n. (((f-Id o (Azz nn. take 1 (zz nn))) zn) e
(((f~LopNOT o f-UnitDelay 1) o (Azz nn. drop 1 (zz nn)))) z n)) o f-Split2))
;5 LopAND 2 (xRise-1x)
using f3 f3-0
by (smt LopAND-def FBlock-seq-comp SimBlock-LopAND SimBlock-FBlock-seq-comp SimBlock-Split2

Split2-def comp-assoc f1 f2-0 neq0-conv simblock-f2 zero-not-eg-two)
have f{-0: ... = (FBlock (Az n. True) 1 1
(f-LopAND o (Az n. (((f-Id o (Azz nn. take 1 (zz nn))) zn) e
(((f~LopNOT o f-UnitDelay 1) o (Azx nn. drop 1 (xx nn)))) x n)) o f-Split2))
using SimBlock-LopAND simblock-f3 by (simp add: LopAND-def FBlock-seq-comp comp-assoc)
have Vz n. (f-LopAND o (Azx n. (((f-Id o (Azz nn. take 1 (xx nn))) zn) e
(((f~LopNOT o f-UnitDelay 1) o (Azz nn. drop 1 (zz nn)))) z n)) o f~Split2) z n
= ((Azn. [if (hd(zn)# 0N (n>0Ahd(zx (n—1)) = 0)) then 1 else 0])) z n
using f-Id-def f-LopNOT-def f-UnitDelay-def f-LopAND-def f-Split2-def by simp
then have (f-LopAND o (Az n. (((f-Id o (Azz nn. take 1 (zz nn))) z n) e
(((f-LopNOT o f-UnitDelay 1) o (Azz nn. drop 1 (zz nn)))) z n)) o f~-Split2)
= ((Azn. [if (hd(zn)# 0N (n>0Ahdx (n—1)) = 0)) then 1 else 0]))
by blast
then have f4-1: (Split2 ; ; (Id || (UnitDelay 1.0 (x3%); ; LopNOT (x4%))) ; ; LopAND 2
(xRise-1%)) =
(FBlock (Ax n. True) 1 1 (Azn. [if (hd(zn) # 0 A (n >0 A hd(z (n—1)) = 0)) then 1 else
o))

using f} f4-0 by (simp)
then show ?thesis

by (simp add: riselShot-def)
ged

116

C.2.1 Verification

riselshot-req-00 states that if the output of rise1Shot is true, then its present input must be
true and the previous input must be false. In other word, the inputs that are continuously true
won’t trigger the output again.

lemma riselshot-req-00:
((V nunat - (
«(Azn. (hd(zn) = 0V hd(zn) = 1))y (&inouts), («n»),):sim-state upred)
Fn
(VY nunat -
((#4($inouts («n»)a)) =y «1») A
((#u($inouts ™ («n»)q)) =4 «I1») A
(head, (($inouts” («n»)g)) =4 1) =
(«n» >, 0 A head,,(($inouts («n»)q)) =4 1 A head,((3inouts («<n—1%),)) =4 0))
)) C riselShot
apply (simp (no-asm) add: riselShot-simp)
apply (simp add: FBlock-def)
apply (rel-simp)
by (metis list.sel(1) neq0-conv zero-neg-one)

C.3 Subsystem: Latch

This subsystem implements a SR AND-OR latch and it has two inputs: 1st is S (set) and 2nd
is R (reset)

The first output is fed back into the first input.

definition latch =
((((UnitDelay 0 (x3%) ||p Id) ;; (LopOR 2 (x1x)))
|5
(Id ;; LopNOT (x2x))
)33 (LopAND 2) (xLatch-1%) ;; Split2
) fD (070)

latch-rec-calc-output is the solution for the feedback.

fun latch-rec-calc-output:: (nat = real) = (nat = real) = nat = real where
latch-rec-calc-output S R 0 =

(if R0 = 0 then (if S 0 = 0 then 0 else 1.0) else 0) |
latch-rec-calc-output S R (Suc n) =

(if R (Suc n) = 0 then (if S (Suc n) = 0 then (latch-rec-calc-output S R (n)) else 1.0) else 0)

lemma latch-rec-calc-output-0-1:
latch-rec-calc-output S R n = 0 V latch-rec-calc-output S R n = 1
proof (induction n)
case (
then show ?Zcase by (simp)
next
case (Suc n)
then show ?case by (simp)
qed

lemma latch-rec-calc-output-is-a-solution:
fixes inoutsg::nat = real list and n::nat
assumes al: Vz. length(inoutsy z) = 2

117

shows ((0 < n A = latch-rec-calc-output (Anl. hd (inoutsg nl))
(Anl. inoutsg n1!(Suc 0)) (n — Suc 0) = 0 V = hd (inoutsg n) = 0) A
inoutsg n!(Suc 0) = 0 —
latch-rec-calc-output (Anl. hd (inoutsg n1)) (Anl. inoutsy n1!(Suc 0)) n = 1) A
((n = 0 V latch-rec-calc-output (Anl. hd (inoutsy nl))
(Anl. inoutsg n1!(Suc 0)) (n — Suc 0) = 0) A hd (inoutsy n) = 0 —
latch-rec-calc-output (Anl. hd (inoutsy n1)) (Anl. inoutsg n1!(Suc 0)) n = 0) A
(= inoutsg n!(Suc 0) = 0 — latch-rec-calc-output (Anl. hd (inoutsy nl))
(Anl. inoutsg n1!(Suc 0)) n = 0)
apply (rule congl)
apply (clarify)

proof —
assume a2: 0 < n A = latch-rec-cale-output (Anl. hd (inoutsy nl)) (Anl. inoutsg ni!(Suc 0)) (n
— Suc 0) =0V

= hd (inoutsg n) = 0
assume a3: inoutsy n!(Suc 0) = 0
show latch-rec-calc-output (Anl. hd (inoutsg nl1)) (Anl. inoutsy n1!(Suc 0)) n = 1
proof (cases)
assume af: 0 < n A - latch-rec-calc-output (Anl. hd (inoutsg nl)) (Anl. inoutsg nl!(Suc 0)) (n
— Suc 0) =0
from a4 have 1: n > 0
by blast
have 11: latch-rec-calc-output (Anl. hd (inoutsg nl)) (Anl. inoutsy nl!(Suc 0)) n =
latch-rec-calc-output (Anl. hd (inoutsy nl)) (Anl. inoutsg n1!(Suc 0)) (Suc (n — Suc 0))
using 1 by simp
show ?thesis
proof (cases)
assume ad: hd (inoutsg n) = 0
from 11 have 12: latch-rec-calc-output (Anl. hd (inoutsy nl1)) (Anl. inoutsy n1!(Suc 0)) (Suc
(n — Suc 0))
= latch-rec-calc-output (Anl. hd (inoutsg nl1)) (Anl. inoutsg n1!(Suc 0)) (n — Suc 0)
using a3 a5 apply (simp (no-asm))
by (simp add: 1)
show ?thesis
using a4 latch-rec-calc-output-0-1 using 12 by auto
next
assume ad: —hd (inoutsg n) = 0
then have 12: latch-rec-calc-output (Anl. hd (inoutso nl1)) (Anl. inoutsy n1!(Suc 0)) (Suc (n
— Suc 0))
=1
using a3 a5 apply (simp (no-asm))
by (simp add: 1)
show ?thesis
using a4 using 12 by auto
qed
next
assume a4: - (0 < n A = latch-rec-calc-output (Anl. hd (inoutsg nl1)) (Anl. inoutsg n1!(Suc 0))
(n — Suc 0) = 0)
then have 1: - hd (inoutso n) = 0
using a2 by blast
show ?thesis
proof (cases)
assume ad: n = 0
show ?thesis
using a5 apply (simp)

118

using 1 a3 by blast
next
assume ad: —n = 0
then have a5 n > 0
by simp
have 11: latch-rec-calc-output (Anl. hd (inoutsg nl1)) (Anl. inoutsy ni!(Suc 0)) n =
latch-rec-calc-output (Anl. hd (inoutsy nl)) (Anl. inoutsg n1!(Suc 0)) (Suc (n — Suc 0))
using ad’ by simp
show ?thesis
apply (simp only: 11)
apply (simp)
using 1 a3 by (simp add: a5”)
qed
qed
next
show ((n = 0 V latch-rec-calc-output (Anl. hd (inoutsy nl)) (Anl. inoutsy n1!(Suc 0)) (n — Suc
0) = 0) A hd (inoutso n) = 0 —
latch-rec-calc-output (Anl. hd (inoutsy n1)) (Anl. inoutsg n1!(Suc 0)) n = 0) A
(= inoutsg n!(Suc 0) = 0 — latch-rec-calc-output (Anl. hd (inoutsy n1)) (Anl. inoutsy ni!(Suc
0)) n=0)
proof (cases)
assume a4: n = 0
then show ?thesis
by simp
next
assume a4: " n = 0
then have af”: n > 0
by simp
show ?thesis
apply (rule conjl, clarify)
apply (metis Suc-pred a4 a4’ latch-rec-calc-output.simps(2))
using a4 a4’ less-imp-Suc-add by fastforce
qed
qed

abbreviation latch-simp-pat-f = (Az na. [if (0 < na A
= latch-rec-calc-output (Anl. hd (z nl1)) (Anl. z n1!(Suc 0)) (na — Suc 0) = 0
V = hd (zna) = 0) A z nal(Suc 0) = 0
then 1 else 0])

abbreviation latch-simp-pat-f' = (Az na. |
latch-rec-calc-output (Anl. hd (z n1)) (Anl. z n1!(Suc 0)) (na)])

lemma latch-simp-pat-f-eq:
latch-simp-pat-f = latch-simp-pat-f’
proof —
have 1:Vz na. latch-simp-pat-f © na = latch-simp-pat-f' x na
apply (rule alll)+
apply (induct-tac na)
proof —
fix = na
have 1: [(if (0 < 0 A = latch-rec-calc-output (Anl. hd (z nl)) (Anl. z n1!(Suc 0)) (0 — Suc 0)
=0V
= hd (z 0)

=0)A
z 01(Suc 0) =0

119

then 1 else 0)] = [(if = hd (z 0) = 0 A z 0Y(Suc 0) = 0 then I else 0)]
by (simp)
have 2: [latch-rec-calc-output (Anl. hd (z n1)) (Anl. z n1!(Suc 0)) 0] =
[(if = hd (£ 0) =0 Az 0!(Suc 0) = 0 then 1 else 0)]
by (simp)
show [if (0 < 0 A — latch-rec-calc-output (Anl. hd (z nl)) (Anl. z n1!(Suc 0)) (0 — Suc 0) =

0V
— hd (z 0) = 0) A
x 0!(Suc 0) = 0
then 1 else 0] =
[latch-rec-calc-output (Anl. hd (z nl1)) (Anl. z n1!(Suc 0)) 0]
using 1 2 by (simp)
next

fix z nan
assume al: [if (0 < n A
= latch-rec-calc-output (Anl. hd (z n1)) (Anl. z n1!(Suc 0)) (n — Suc 0) = 0 V
= hd (xn) =0) A znl(Suc0) =20
then 1 else 0] =
[latch-rec-calc-output (Anl. hd (z nl1)) (Anl. z n1!(Suc 0)) n]
show [if (0 < Suc n A = latch-rec-calc-output (An1. hd (z n1)) (Anl. x n1!(Suc 0)) (Suc n —
Suc 0) = 0V
= hd (z (Sucn)) =0
z (Suc n)!(Suc 0) = 0
then 1 else 0] =
[latch-rec-calc-output (Anl. hd (z nl1)) (Anl. z n1!(Suc 0)) (Suc n)]
using al latch-rec-calc-output-0-1 by force
qed
show ?thesis
using 1 by simp
qed

) A

abbreviation latch-simp-pat = FBlock (Az n. True) 2 1 latch-simp-pat-f

lemma SimBlock-latch-simp:
SimBlock 2 1 latch-simp-pat
apply (rule SimBlock-FBlock)
apply (rule-tac x = Ana. [0, 1] in ex])
apply (rule-tac x = Ana. [0] in exl)
apply (simp)
by simp

abbreviation latch-simp-pat’ = FBlock (Ax n. True) 2 1 latch-simp-pat-f’

lemma SimBlock-latch-simp’:
StmBlock 2 1 latch-simp-pat’
using SimBlock-latch-simp latch-simp-pat-f-eq
by simp

lemma latch-simp:
latch = latch-simp-pat’
proof —

have f1: (UnitDelay 0 (x3%) ||p Id) = (FBlock (Az n. True) (2) (2)

(Az n. [if n = 0 then 0 else hd(z (n—1)), hd(ti(z n))]))
using UnitDelay-Id-parallel-comp by (simp)

120

have simblock-f1: SimBlock 2 2 (FBlock (Azx n. True) (2) (2)
(Ax n. [if n = 0 then 0 else hd(z (n—1)), hd(t(z n))]))
by (metis (no-types, lifting) SimBlock-Id SimBlock-FBlock-parallel-comp SimBlock-UnitDelay
Suc-1 Suc-eq-plus1 UnitDelay-Id-parallel-comp UnitDelay-def Id-def)

have f2: ((UnitDelay 0 (x3%) ||p Id) ;; (LopOR 2 (x1%))) = (FBlock (Az n. True) (2) (2)
(Ax n. [if n = 0 then 0 else hd(z (n—1)), hd(tl(z n))])) ;; (LopOR 2 (x1x))
by (simp add: UnitDelay-Id-parallel-comp)
have f2-0: ... = FBlock (Ax n. True) (2) (1)
(f-LopOR o (Ax n. [if n = 0 then 0 else hd(z (n—1)), hd(ti(z n))]))
using LopOR-def FBlock-seq-comp SimBlock-LopOR simblock-f1 by auto
have f2-1: ... = FBlock (Ax n. True) (2) (1)
Az n. [if (n> 0 A hd(z (n—1)) # 0) V hd(tl(z n)) # 0 then 1::real else 0])
proof —
have Vz n. ((f-LopOR o (Az n. [if n = 0 then 0 else hd(z (n—1)), hd(tl(z n))])) z n
=Azn. [if (n>0Ahd(z (n—1)) # 0)V hd(tl(z n)) # 0 then 1::real else 0]) x n)
using f-LopOR-def by auto
then show %thesis
by presburger
qed
have simblock-f2: SimBlock 2 1 (FBlock (Azx n. True) (2) (1)
Az n. [if (n>0 A hd(z (n—1)) # 0) V hd(t(z n)) # 0 then 1::real else 0]))
by (metis (no-types, lifting) LopOR-def SimBlock-LopOR SimBlock-FBlock-seq-comp f2-0 f2-1
pos2 simblock-f1)

have f3: (Id ;; LopNOT (x2%)) = (FBlock (Ax n. True) (1) (1) (f~LopNOT o f-1d))
by (metis LopNOT-def One-nat-def FBlock-seq-comp SimBlock-Id SimBlock-LopNOT
simu-contract-real. Id-def)

then have f3-0: ... = (FBlock (Ax n. True) (1) (1)
(Ax n. [if hd(z n) = 0 then 1 else 0]))
proof —

have Vz n. ((f-LopNOT o f-Id) x n = (Az n. [if hd(z n) = 0 then 1 else 0]) z n)
by (simp add: f-Id-def f~-LopNOT-def)
then show ?thesis
by presburger
qed
have simblock-f3: SimBlock 1 1 (FBlock (Ax n. True) (1) (1)
(Az n. [if hd(z n) = 0 then 1 else 0]))
by (metis LopNOT-def SimBlock-1d SimBlock-LopNOT SimBlock-FBlock-seq-comp f3 f3-0 Id-def)

let P = (Azn. [if (n > 0 A hd(z (n—1)) # 0) V hd(tl(x n)) # 0 then 1::real else 0])
let ?Q = (Az n. [if hd(z n) = 0 then 1 else 0))
have f{: (((UnitDelay 0 (x3x%) ||p Id) ;; (LopOR 2 (x1%))) || (Id ;; LopNOT (x2x)))

= (FBlock (Ax n. True) (2) (1) ?P) || (FBlock (Az n. True) (1) (1) 7Q)

using f2 f2-0 f2-1 f3 f3-0 by auto
then have f/-0: ... = FBlock (Axz n. True) (2+1) (1+1)

Az n. (((¢P o (Azz nn. take 2 (zx nn))) x n)

e ((?Q o (Azz nn. drop 2 (xzx nn)))) z n))
using SimBlock- UnitDelay SimBlock-1d SimBlock-LopOR SimBlock-LopNOT simblock-f1 simblock-f2

simblock-f3

by (simp add: FBlock-parallel-comp f-sim-blocks)
then have f/-1: ... = FBlock (Ax n. True) 3 2
Az n. (P o (A\zz nn. take 2 (zx nn))) = n)
e ((?Q o (Azz nn. drop 2 (xzx nn)))) z n))
using Suc-eg-plusl nat-1-add-1 numeral-2-eq-2 numeral-3-eq-3 by presburger

121

have f{-2: FBlock (Az n. True) 3 2
Az n. (P o (Aaz nn. take 2 (zx nn))) z n)
e ((?Q o (Azz nn. drop 2 (xzx nn)))) x n))
= FBlock (Az n. True) 3 2
Az n. ([if (n > 0 A hd(z (n—1)) # 0) V hd(tl(z n)) # 0 then 1::real else 0,
if (xn)!2 = 0 then 1 else 0]))
proof —
have 1:V(z:nat = real list) n:nat. length(x n) > 2 —
(((?Q o (Azx nn. drop 2 (zx nn)))) = n
= (Az n. [if (xn)!2 = 0 then 1 else 0]) x n)
apply (auto)
apply (simp add: hd-drop-conv-nth)
by (simp add: hd-drop-conv-nth)
have 2: V (z::nat = real list) n:nat. (Az n. (7P o (Azz nn. take 2 (zx nn))) = n)
e ((?Q o (Azz nn. drop 2 (xx nn)))) xn)) T n
= (Azn. (A n. [if (n>0Ahd(z (n—1)) # 0)V hd(ti(z n)) # 0 then 1::real else 0]) z n)
e ((?Q o (Azz nn. drop 2 (zxz nn)))) x n)) x n)
apply (auto)
apply (metis append-take-drop-id hd-append2 take-eq-Nil zero-not-eq-two)
apply (metis Suc-1 append-take-drop-id hd-append?2 take-eq-Nil take-tl zero-neq-one)
apply (metis Suc-1 append-take-drop-id hd-append?2 take-eq-Nil take-tl zero-neg-one)
apply (metis Suc-1 hd-conv-nth less-numeral-extra(1) nth-take take-eq-Nil take-tl zero-neg-one)
apply (metis Suc-1 append-take-drop-id hd-append?2 take-eq-Nil take-tl zero-neq-one)
apply (metis append-take-drop-id hd-append2 take-eq-Nil zero-not-eg-two)
by (metis Suc-1 append-take-drop-id hd-append2 take-eq-Nil take-tl zero-neg-one)
have 3: V (z::nat = real list) n::nat. length(z n) > 2 —
(Azn. (A n. [if (n >0 A hd(z (n—1)) # 0) V hd(tl(z n)) # 0 then 1::real else 0]) x n)
o ((?Q o (Azzx nn. drop 2 (zz nn)))) xn)) T n
= Az n. ([if (n>0 A hd(x (n—1)) # 0) V hd(tl(z n)) # 0 then 1::real else 0,
if (xn)!2 = 0 then 1 else 0])) x n)
using hd-drop-m by simp
have 4: V (z::nat = real list) n::nat. length(x n) > 2 —
((Az n. (((¢P o (Azz nn. take 2 (zx nn))) x n)
e ((?Q o (Azz nn. drop 2 (zz nn)))) xz n)) x
= Azn. ([if (n>0 A hd(z (n—1)) # 0) V hd tl(a: n)) # 0 then 1:real else 0,
if (xn)!2 = 0 then 1 else 0])) x n)
using 1 2 by simp
show ?thesis
apply (simp add: FBlock-def)
apply (rel-simp)
apply (rule iffT)
apply (clarify)
defer
apply (clarify)
defer
proof —
fix ok, inouts,::nat = real list and ok,’ inouts,::nat = real list and z::nat
assume al: Vz. (hd (drop 2 (inouts, z)) = 0 —
(0 <z A= hd (take 2 (inouts, (z — Suc 0))) = 0 — length(inouts, x) = 3 A length(inouts,’
xz) =2 AN [1, 1] = inouts,” x) A
(= hd (8l (take 2 (inouts, z))) = 0 — length(inouts, x) = 3 A length(inouts,”) = 2 A
[1, 1] = inouts,’ z) A
((x = 0 V hd (take 2 (inouts, (z — Suc 0))) = 0) A hd (tl (take 2 (inouts, z))) = 0 —
length(inouts, z) = 3 A length(inouts,” z) = 2 A [0, 1] = inouts,’ z)) A
(= hd (drop 2 (inouts, z)) = 0 —»

122

(0 <z A= hd (take 2 (inouts, (z — Suc 0))) = 0 — length(inouts, x) = 3 A length(inouts,’
z) = 2 A [1, 0] = inouts,” x) A
(= hd (8l (take 2 (inouts, z))) = 0 — length(inouts, x) = 3 A length(inouts,”) = 2 A
[1, 0] = inouts,” z) A
((x = 0 V hd (take 2 (inouts, (z — Suc 0))) = 0) A hd (tl (take 2 (inouts, z))) = 0 —
length(inouts, z) = 3 A length(inouts,” z) = 2 A [0, 0] = inouts,’ z))
from a! have len-3: V na. length(inouts, na) = 8
by (meson neq0-conv)
from len-3 have hd-drop: (hd (drop 2 (inouts, z)) = inouts, x!(2))
by (simp add: hd-drop-conv-nth)
have hd-take: hd (take 2 (inouts, (xz — Suc 0))) = hd (inouts, (x — Suc 0))
by (metis append-take-drop-id hd-append2 take-eq-Nil zero-neg-numeral)
have hd-tl-take: hd (¢ (take 2 (inouts, x))) = hd (tl (inouts, x))
by (metis Suc-1 hd-conv-nth less-numeral-extra(1) nth-take take-eq-Nil take-tl zero-neq-one)
show (inouts, z!(2) = 0 —
(0 <z A= hd (inouts, (x — Suc 0)) = 0 — length(inouts,) = 3 A length(inouts,’ z)
=2 A [1, 1] = inouts,” z) N
(= hd (¢l (inouts, z)) = 0 — length(inouts, z) = & A length(inouts,’ ©) = 2 A [1, 1] =
inouts,” x) A
((x = 0 V hd (inouts, (x — Suc 0)) = 0) A hd (H (inouts, z)) = 0 —
length(inouts, z) = 3 A length(inouts,’) = 2 A [0, 1] = inouts,’ z)) A
(= inouts, z!1(2) = 0 —
(0 <z A= hd (inouts, (z — Suc 0)) = 0 — length(inouts, z) = 3 A length(inouts,’ x)
= 2 A [1, 0] = inouts,” z) A
(= hd (¢l (inouts, z)) = 0 — length(inouts, z) = 3 A length(inouts,’) = 2 A [1, 0] =
inouts,’ x) A
((x = 0 V hd (inouts, (x — Suc 0)) = 0) A hd (tl (inouts, z)) = 0 —
length(inouts, z) = 3 A length(inouts,” z) = 2 A [0, 0] = inouts,’ z))
using al hd-drop hd-take hd-tl-take by presburger
next
fix ok,::bool and inouts,::nat = real list and ok, "::bool and inouts,”::nat = real list and
r:nat
assume al: (Vz. (inouts, z!(2) = 0 —
(0 <z A= hd (inouts, (z — Suc 0)) = 0 — length(inouts,) = 8 A length(inouts,’
z) =2 AN [1, 1] = inouts,” x) A
(= hd (tl (inouts, z)) = 0 —> length(inouts, z) = 3 A length(inouts,’ z) = 2 N [1,
1] = inouts,” x) A
((x = 0 V hd (inouts, (x — Suc 0)) = 0) A hd (tl (inouts, z)) = 0 —
length(inouts, z) = 3 A length(inouts,’) = 2 A [0, 1] = inouts,” x)) A
(= inouts, z!1(2) = 0 —
(0 <z A = hd (inouts, (z — Suc 0)) = 0 — length(inouts, x) = 3 A length(inouts,’
z) =2 A [1, 0] = inouts,”) A
(= hd (# (inouts, z)) = 0 — length(inouts, z) = 3 A length(inouts,’ ©) = 2 N [1,
0] = inouts,’ x) A
((x = 0 V hd (inouts, (z — Suc 0)) = 0) A hd (¢l (inouts, z)) = 0 —
length(inouts, x) = 3 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x)))
from al have len-3: V na. length(inouts, na) = 3
by (meson neq0-conv)
from len-3 have hd-drop: (hd (drop 2 (inouts, x)) = inouts, z!(2))
by (simp add: hd-drop-conv-nth)
have hd-take: hd (take 2 (inouts, (x — Suc 0))) = hd (inouts, (x — Suc 0))
by (metis append-take-drop-id hd-append2 take-eq-Nil zero-neq-numeral)
have hd-tl-take: hd (¢l (take 2 (inouts, x))) = hd (t (inouts, x))
by (metis Suc-1 hd-conv-nth less-numeral-extra(1) nth-take take-eq-Nil take-tl zero-neg-one)
show ((hd (drop 2 (inouts, z)) = 0 —

123

(0 <z A= hd (take 2 (inouts, (z — Suc 0))) = 0 —> length(inouts, =) = 3 A
length(inouts,” ©) = 2 A [1, 1] = inouts,” z) A
(= hd (tl (take 2 (inouts, x))) = 0 — length(inouts, ©) = 3 A length(inouts,’ z) =
2 N1, 1] = inouts,” x) A
((x = 0 V hd (take 2 (inouts, (x — Suc 0))) = 0) A hd (H (take 2 (inouts, z))) = 0
N
length(inouts, x) = 3 A length(inouts,’ ©) = 2 A [0, 1] = inouts,’ z)) A
(= hd (drop 2 (inouts, z)) = 0 —
(0 <z A = hd (take 2 (inouts, (x — Suc 0))) = 0 — length(inouts, z) = 3 A
length(inouts,”) = 2 A [1, 0] = inouts,” z) A
(= hd (tl (take 2 (inouts, x))) = 0 — length(inouts, z) = 3 A length(inouts,’ z) =
2 A1, 0] = inouts,”) A
((x = 0 V hd (take 2 (inouts, (x — Suc 0))) = 0) A hd (H (take 2 (inouts, z))) = 0
H
length(inouts, z) = 3 A length(inouts,” £) = 2 A [0, 0] = inouts,’ x)))
by (simp add: al hd-drop hd-take hd-tl-take)
qed
qed
then have f/-3: (((UnitDelay 0 (x3%) || Id) ;; (LopOR 2 (x1%))) ||p (Id ;; LopNOT (x2x)))
= FBlock (A\x n. True) 8 2
Az n. ([if (n > 0 A hd(z (n—1)) # 0) V hd(tl(z n)) # 0 then 1::real else 0,
if (xn)!2 = 0 then 1 else 0]))
using f4 f4-0 f4-1 by simp
have simblock-f4: SimBlock 3 2 (FBlock (Ax n. True) 3 2
Az n. ([if (n >0 A hd(z (n—1)) # 0) V hd(tl(z n)) # 0 then 1::real else 0,
if (xn)!2 = 0 then 1 else 0])))
by (metis (no-types, lifting) One-nat-def SimBlock-FBlock-parallel-comp Suc-1 Suc-eq-plusl f4
14-3 numeral-3-eq-8 simblock-f2 simblock-f3)

have f5: (((UnitDelay 0 (x3%) || Id) ;; (LopOR 2 (x1x)))
I
(Id ;5 LopNOT (%2x))
)53 (LopAND 2) (xLatch-1%)) =
FBlock (Az n. True) 3 2
Az n. ([if (n >0 A hd(z (n—1)) # 0) V hd(tl(z n)) # 0 then 1::real else 0,
if (xn)!2 = 0 then 1 else 0])) ;; (LopAND 2)
using f4-3 by simp
then have f5-0: ... = FBlock (Ax n. True) 3 1
(f-LopAND o (Az n. ([if (n > 0 A hd(z (n—1)) # 0) V hd(tl(z n)) # 0 then 1::real else 0,
if (xn)!2 = 0 then 1 else 0])))
by (metis (no-types, lifting) LopAND-def One-nat-def FBlock-seq-comp SimBlock-LopAND
SimBlock-FBlock-parallel-comp Suc-1 Suc-eq-plusl f4 f4-8 numeral-3-eq-3 pos2 simblock-f2

simblock-f3)
then have f5-1: ... = FBlock (Ax n. True) 3 1
Az n. ([if ((n >0 A hd(z (n—1)) # 0) V hd(tl(z n)) # 0) A (zn)!2 = 0 then 1::real else 0]))
proof —

have Vz n. (f~-LopAND o (Az n. ([if (n > 0 A hd(z (n—1)) # 0) V hd(tl(x n)) # 0 then 1::real
else 0,
if (xn)!2 = 0then 1 else 0]))) zn
= Azn. ([if (n>0Ahd(z (n—1))# 0)V hd(ti(zn)) # 0) A (zn)!2 = 0 then 1::real else
0)) zn
by (simp add: f-LopAND-def)
then show ?thesis
apply (simp add: FBlock-def)
apply (rel-simp)

124

apply (simp add: f-LopAND-def)
apply (rule iffI)
apply (clarify)
using neq0-conv apply blast
apply (clarify)
by blast

qed

have simblock-f5: SimBlock 3 1 (FBlock (Ax n. True) 3 1
Az n. ([if (n>0Ahd(z (n—1)) # 0)V hd(tl(zn)) # 0) A (zn)!2 = 0 then 1::real else 0])))
using simblock-f4
by (metis (no-types, lifting) LopAND-def SimBlock-LopAND SimBlock-FBlock-seq-comp f5-0 f5-1
pos2)

have f6” (((UnitDelay 0 (x3%) || Id) ;; (LopOR 2 (x1x%)))
(Iii i3 LopNOT (x2%))) ;3 (LopAND 2) (xLatch-1x) ;; Split2)
= (FBlock (Ax n. True) 3 1
Az n. ([¢if ((n >0 A hd(z (n—1)) # 0) V hd(tl(z n)) # 0) A (zn)!2 = 0 then 1::real else 0]))

;5 Split2)
using f5 f5-0 f5-1 by (simp add: RA1)
then have f6-0: ... = (FBlock (Ax n. True) 3 2 (f-Split2 o

Az n. ([if ((n > 0 A hd(z (n—1)) # 0) V hd(tl(z n)) # 0) A (z n)!2 = 0 then 1::real else 0]))))
using Split2-def FBlock-seq-comp simblock-f5 by (metis (no-types, lifting) SimBlock-Split2)
then have f6-1: ... = (FBlock (Ax n. True) 3 2
((Azn. ([if (n >0 A hd(z (n—1)) # 0)V hd(tl(zn)) # 0) A (xn)!2 = 0 then 1::real else 0,
if ((n>0Ahd(z (n—1))# 0)V hd(tl(z n)) # 0) A (xn)!2 = 0 then 1::real else 0]))))
proof —
have Vo f. [if (0 <n A= hd (f (n — 1)) = (0=real) V = hd (8 (fn
fnl(2) = (0:real) then 1 else 0,if (0 <n A-hd (f (n— 1)) =
= hd (H (fn)) = 0) A fnl(2) = (0:real) then 1 else 0] =
(f-Split2 o (Afn. [if (0 <nA=hd(f(n—1)=0V-hd (tl (fn)) =0)A
fnl(2) = (0::real) then 1 else 0])) fn
by (simp add: f-Split2-def)
then show %thesis
by presburger
qed
have simblock-f6: SimBlock 3 2 (FBlock (Ax n. True) 3 2
(Azn. ([if (n >0 A hd(z (n—1)) # 0) V hd(tl(z n)) # 0) A (x n)!2 = 0 then 1::real else 0,
if ((n>0 A hd(z (n—1)) # 0)V hd(tl(zn)) # 0) A (zn)!2 = 0 then I::real else 0]))))
using simblock-f5 SimBlock-Split2
by (smt SimBlock-FBlock-seq-comp Split2-def f6-0 f6-1)
let ?f6 = (FBlock (Axz n. True) 3 2
((Azn. ([if (n >0 A hd(z (n—1)) # 0) V hd(tl(z n)) # 0) A (x n)!2 = 0 then 1::real else 0,
if ((n>0 A hd(z (n—1)) # 0)V hd(tl(zn)) # 0) A (zn)!2 = 0 then I::real else 0]))))
have inps-f6: inps 76 = 3
using inps-P simblock-f6 by blast
have outps-f6: outps 2f6 = 2
using outps-P simblock-f6 by blast

)= 0) A

) =
oV

have f7: latch = 2f6 fp (0,0)
using f6 f6-0 f6-1 latch-def by simp
have is-solution-f7: is-Solution 0 0 8 2
((Azn. ([if (n >0 A hd(z (n—1)) # 0)V hd(tl(z n)) # 0) A (x n)!2 = 0 then 1::real else 0,
if ((n>0 A hd(z (n—1)) # 0)V hd(tl(zn)) # 0) A (x n)!2 = 0 then 1::real else 0])))
(A(inoutsp::nat = real list). Ana. latch-rec-calc-output

125

(Anl. hd(inoutsy nl)) (Anl. (inoutsg n1)!1) na)
apply (simp add: is-Solution-def)
apply (rule alll)
apply (clarify)
apply (simp add: f-PreFD-def)
using latch-rec-calc-output-is-a-solution by blast
have unique-f7: Solvable-unique 0 0 8 2
Az n. ([if ((n>0Ahd(z (n=1))# 0)V hd(tl(zn)) # 0) A (zn)!2 = 0 then 1::real else 0,
if ((n>0Ahd(z (n—1))# 0)V hd(tl(zn)) # 0) A (xn)!2 = 0 then 1::real else 0]))
apply (simp add: Solvable-unique-def’)
apply (rule alll, clarify, simp add: f-PreFD-def)
apply (rule ez-ex1l)
apply (rule-tac © = Ana. latch-rec-calc-output (Anl. hd(inoutsg nl)) (Anl. (inoutsy ni)!1) na in
exl)
apply (simp)
apply (rule alll)
using latch-rec-calc-output-is-a-solution apply blast
proof —
fix inoutsg::nat = real list and zz y ::nat = real
assume al:Vn. (0 <n A - zx (n — Suc 0) =0V — hd (inoutsg n) = 0) A
inoutsg n!(Suc 0) = 0 — zxn = 1) A
((n=0V zx (n — Suc 0) = 0) A hd (inoutso n) = 0 — zxn = 0) A
(= dnoutsy n!(Suc 0) = 0 — zz n = 0)
assume a2: Vn. (0 <n A -y (n— Suc0) =0V - hd (inoutsg n) = 0) A
inoutsy n!(Suc 0) =0 — yn = 1) A
((n=0Vy(n— Suc0)=0)A hd (inoutso n) = 0 — yn = 0) A
(= inoutsg n!(Suc 0) = 0 — yn = 0)
have 1:Vn. 2z n=yn
apply (rule alll)
proof —
fix n:nat
show zzn =y n
proof (induct n)
case (
then show ?case
using al a2 by metis
next
case (Suc n) note IH = this
then show ?case
using al a2 by (metis One-nat-def diff-Suc-1 zero-less-Suc)
qged
qed
show zzx = y
using 1 fun-eq by (blast)
qed
have f7-0:
2f6 fp (0,0) = (FBlock (Ax n. True) (3—1) (2—1)
(Az na. ((f~PostFD 0)
o(Men. ([if ((n>0ANhd(z (n—1)) % 0)V hd(tl(zn)) # 0) A (zn)!2 = 0 then 1::real else

0u
if ((n>0Ahd(z (n—1))+# 0)V hd(tl(zn)) # 0) A (xn)!2 = 0 then 1::real else 0]))
o (f-PreFD ((A(inoutsg::nat = real list). Ana. latch-rec-calc-output
(Anl1. hd(inoutsg n1)) (Anl. (inoutsy n1)!1) na)) 0)) z na))
using FBlock-feedback’ f7 is-solution-f7 unique-f7 simblock-f6 by blast
then have f7-1: ... = FBlock (Ax n. True) 2 1

126

(Az na. [if (0 < na A
= latch-rec-calc-output (Anl. hd (z n1)) (Anl. z n1!(Suc 0)) (na — Suc 0) = 0
V = hd (zna) = 0) A znal(Suc 0) = 0

then 1 else 0])
by (simp (no-asm) add: f-PreFD-def f-PostFD-def)
show ?thesis
using f7 f7-0 f7-1 latch-simp-pat-f-eq by (simp)
qged

C.3.1 Verification

latch-req-00: if R is true, then the output is always false.

lemma latch-req-00:
(VY n:nat - (
«(Azn. ((hd(zxn) =0V hd(zn) =1) A (hd(tl(zn)) = 0 V hd(tl(zn)) = 1)))»
(&inouts), («n»),)::sim-state upred)
Fn
((V ninat -
((#u($inouts («n»)q)) =u «2%) A
((#u($inouts ” («n»)q)) =u «I») A
(head, (tail . ($inouts («n»)g)) #u 0) = (head,(($inouts” («n»)y)) =4 0))
)) C latch
using latch-simp apply (simp add: latch-def)
proof —
show (V n -« xn. (hd (xn) =0V hd (xn)=1) A (hd (t (xzn)) =0V hd (t (xn)) = 1)»
(&inouts),(«n»)q) Fpn
(V n « #.(Sinouts(«n»),) =4 «2» A
#Hu(Sinouts («n»)q) =, «Suc 0» A head, (tail, ($inouts(«n»)q)) #u 0 =
head,, ($inouts " («n»),) =, 0)
C
FBlock (Az n. True) 2 (Suc 0)
(Az na. [latch-rec-calc-output (Anl. hd (z nl)) (Anl. z n1!(Suc 0)) na))
apply (simp add: FBlock-def)
apply (rule ndesign-refine-intro)
apply simp
apply (rel-simp)
proof —
fix inouts, inouts,:nat = real list and z::nat
assume al: Vz. (hd (inouts, x) = 0 V hd (inouts,) = 1) A (hd (t (inouts, z)) = 0 V
hd (tl (inouts, x)) = 1)
assume a2: Vz. length(inouts,) = 2 A
length(inouts,’ x) = Suc 0 A
[latch-rec-calc-output (Anl. hd (inouts, nl)) (Anl. inouts, n1!(Suc 0)) z] = inouts,’
assume a3: - hd (8l (inouts, z)) = 0
have 1: = inouts, z!(Suc 0) = 0
using a2 a3
by (metis One-nat-def Suc-1 diff-Suc-1 diff-is-0-eq hd-conv-nth length-tl
less-numeral-extra(1) list.size(3) not-one-le-zero nth-tl)
have 2: inouts,’ © = [0]
using a2 1
by (metis (mono-tags, lifting) latch-rec-calc-output.elims)
then show hd (inouts,’) = 0
by (simp)
qed
qed

127

C.4 System: post-landing-finalize

post-mode is a part of block compositions from the input mode to the three-way AND logic
block.

definition post-mode =
(Split2 (x mode is split into two *) ; ;

((UnitDelay 0 (xIC = 0, r=1/10s%) ||g Const 4 (xlanding, wint32(4), r=1/10sx)) ; ; RopEQ)
72
((Id ||p Const 8 (xground, wint32(8), r=1/10s*)) ; ; RopEQ)
)
)

lemma post-mode-simp:
post-mode = (FBlock (Az n. True) (1) (2)
Az n. (([if (n > 0 A hd(z (n—1)) = 4) then I:real else 0, if hd(z n) = 8 then 1 else 0]))))
proof —

have f1: (UnitDelay 0 (xIC = 0, r=1/10s%) | Const 4 (xlanding, uint32(4), r=1/10sx))
= FBlock (Az n. True) (1) (2)
(Az n. (((f-UnitDelay 0 o (Axzz nn. take 1 (xz nn))) x n) ®
((f-Const 4 o (Azz nn. drop 1 (zz nn)))) x n))
using SimBlock-UnitDelay SimBlock-Const apply (simp add: FBlock-parallel-comp f-sim-blocks)
by (simp add: numeral-2-eq-2)
have f1-0: ... = FBlock (Azx n. True) (1) (2)
Az n. ([if n = 0 then 0 else hd(z (n—1)), 4]))
using f-UnitDelay-def f-Const-def apply (auto)
proof —
{ fix nn :: nat and rrs :: nat = real list
have Vs n. hd (take n rs) = (hd rs::real) V take n rs = ||
by (metis append-take-drop-id hd-append?2)
then have FBlock (Af n. True) (Suc 0) 2 (M n. [if n = 0 then 0 else hd (take (Suc 0) (f (n
1), 4)
= FBlock (Af n. True) (Suc 0) 2 (Afn. [if n = 0 then 0 else hd (f (n — 1)), 4]) V
[if nn = 0 then 0 else hd (take (Suc 0) (rrs (nn — 1))), 4] = [if nn = 0 then 0 else hd (rrs
(nn — 1)), 4]
by force }
then show FBlock (Af n. True) (Suc 0) 2 (\f n. [if n = 0 then 0 else hd (take (Suc 0) (f (n —
), 4)
= FBlock (Af n. True) (Suc 0) 2 (Afn. [if n = 0 then 0 else hd (f (n — 1)), 4])
by presburger
qed
have simblock-f1: SimBlock 1 2 (FBlock (Ax n. True) (1) (2)
Az n. ([if n = 0 then 0 else hd(z (n—1)), 4])))
using SimBlock-UnitDelay SimBlock-Const f1 f1-0 apply (simp add: SimBlock-FBlock-parallel-comp
f-sim-blocks)
by (smt One-nat-def SimBlock-FBlock-parallel-comp Suc-1 Suc-eq-plus! add.right-neutral)

have f2: ((UnitDelay 0 (xIC = 0, r=1/10sx) ||p Const 4 (xlanding, wint32(4), r=1/10s%)) ; ;
RopEQ) =
(FBlock (Az n. True) (1) (2) (Ax n. ([if n = 0 then 0 else hd(z (n—1)), 4]))) ;; RopEQ
using fI f1-0 by simp
then have f2-0: ... =
(FBlock (Az n. True) (1) (1) (f-RopEQ o (Axz n. ([if n = 0 then 0 else hd(z (n—1)), 4]))))

128

using simblock-f1 SimBlock-RopEQ FBlock-seq-comp by (simp add: RopEQ-def)

then have f2-1: ... = (FBlock (Ax n. True) (1) (1)
Az n. ([if (n> 0 A hd(z (n—1)) = 4) then 1:real else 0])))
proof —

have Vz n. (f~RopEQ o (Az n. ([if n = 0 then 0 else hd(z (n—1)), 4]))) z n
= Az n. ([if (n >0 A hd(z (n—1)) = 4) then 1:real else 0])) z n
using f-RopEQ-def by auto
then show %thesis
by presburger
qed
have simblock-f2: SimBlock 1 1 (FBlock (Azx n. True) (1) (1)
Az n. ([if (n >0 A hd(z (n—1)) = 4) then 1:real else 0])))
using f2 f2-0 f2-1 by (smt RopEQ-def SimBlock-FBlock-seq-comp SimBlock-RopEQ simblock-f1)

have f3: (Id ||p Const 8 (xground, uint32(8), r=1/10sx))
= FBlock (Az n. True) (1) (2)
Az n. (((f-Id o (Azz nn. take 1 (zz nn))) xn) e
((f~Const 8 o (Azz nn. drop 1 (zz nn)))) x n))
using SimBlock-Id SimBlock-Const apply (simp add: FBlock-parallel-comp f-sim-blocks)
by (simp add: numeral-2-eq-2)
then have f3-0: ... = FBlock (Ax n. True) (1) (2) (Az n. ([hd(z n), 8]))
proof —
have Vz n. ((Az n. (((f-Id o (Azx nn. take 1 (zz nn))) z n) e
((f~Const 8 o (Azz nn. drop 1 (xx nn)))) xn)) zn
= (Az n. ([hd(z n), 8])) = n)
using f-Id-def f-Const-def
proof —
{ fix rrs :: nat = real list and nn :: nat
have Vrs. hd (take 1 rs) = (hd rs:real) V 15 = |
by (metis Suc-eg-plus! add.left-neutral list.sel(1) take-Suc)
then have (f-Id o (A\fn. take 1 (fn))) rrs nn e (f~-Const 8 o (A\fn. drop 1 (fn))) rrs nn =
[hd (rrs nn), 8]
using f-Const-def f-Id-def by auto }
then show ?thesis
by fastforce
qed
then show ?thesis
by simp
qed
have simblock-f3: SimBlock 1 2 (FBlock (Ax n. True) (1) (2) (Az n. ([hd(z n), 8])))
by (metis (no-types, lifting) One-nat-def SimBlock-Const SimBlock-Id SimBlock-FBlock-parallel-comp

Suc-1 Suc-eq-plusl add.commute f3 f3-0 simu-contract-real. Const-def simu-contract-real.ld-def)
have f}: ((Id ||g Const 8 (xground, wint32(8), r=1/10s%)) ; ; RopEQ)

= FBlock (Ax n. True) (1) (2) (Az n. ([hd(z n), 8])) ;; RopEQ
using f3 f3-0 by simp

then have f}-0: ... = FBlock (Ax n. True) (1) (1) (fRopEQ o (Az n. ([hd(z n), 8])))
using simblock-f8 SimBlock-RopEQ FBlock-seq-comp by (simp add: RopEQ-def)
then have f/-1: ... = FBlock (Ax n. True) (1) (1) (Az n. ([if hd(xz n) = 8 then 1 else 0]))

using f-RopEQ-def by (metis (mono-tags, lifting) comp-apply list.sel(1) list.sel(3))
have simblock-f4: SimBlock 1 1
(FBlock (Ax n. True) (1) (1) (Az n. ([if hd(z n) = 8 then 1 else 0])))
using simblock-f8 SimBlock-RopEQ by (metis RopEQ-def SimBlock-FBlock-seq-comp f4-0 f4-1)

129

have f5: (
((UnitDelay 0 (xIC = 0, r=1/10s%) ||g Const 4 (xlanding, wint32(4), r=1/10sx)) ; ; RopEQ)
IF:;
((Id || Const 8 (xground, wint32(8), r=1/10sx)) ;; RopFEQ))
= (FBlock (Ax n. True) (1) (1) Az n. ([if (n > 0 A hd(z (n—1)) = 4) then 1:real else 0])))

|5
(FBlock (Ax n. True) (1) (1) (Az n. ([if hd(z n) = 8 then 1 else 0])))
using f2 f2-1 f4 f4-1 f2-0 f4-0 by auto
then have f5-0: ... = FBlock (Ax n. True) (2) (2
Az n. (Azn. (Jif (n>0 A hd(z (n—1)) =
o (Azz nn. take 1 (xz nn))) zn) e
((Az n. ([if hd(z n) = 8 then 1 else 0]))
o (Axzzx nn. drop 1 (zz nn)))) = n))
using simblock-f2 simblock-f4 apply (simp add: FBlock-parallel-comp f-sim-blocks)
by (simp add: numeral-2-eq-2)

)
4) then 1::real else 0]))

then have f5-1: ... = FBlock (Ax n. True) (2) (2)
Az n. (([if (n > 0 A hd(z (n—1)) = 4) then I1:real else 0, if (x n)!1 = 8 then I else 0])))
proof —

show ?thesis
apply (simp add: FBlock-def)
apply (rel-simp)
apply (rule conjl)
apply (clarify)

apply (rule congl)

apply (clarify)

apply (rule iffT)

apply (clarify)

apply (subgoal-tac ¥ z. length(inouts, z) = 2)

apply (rule congl)

apply (clarify)

using hd-drop-m hd-take-m apply (metis Suc-1 Suc-eq-plusl add.left-neutral lessI)

using hd-drop-m hd-take-m apply simp

using neq0-conv apply blast

apply (clarify)

apply (subgoal-tac V z. length(inouts, z) = 2)

apply (rule conjl)

apply (clarify)

using hd-drop-m hd-take-m apply (metis Suc-1 Suc-eq-plusl add.left-neutral lessl)

using hd-drop-m hd-take-m apply simp

using neq0-conv apply blast

apply (clarify)

apply (rule iffT)

apply (clarify)

apply (subgoal-tac ¥ z. length(inouts, z) = 2)

apply (rule congl)

apply (clarify)

using hd-drop-m hd-take-m apply (metis Suc-1 Suc-eq-plusl add.left-neutral lessl)

using hd-drop-m hd-take-m apply simp

using neq0-conv apply blast

apply (clarify)

apply (subgoal-tac V z. length(inouts, z) = 2)

apply (rule conjI)

apply (clarify)

using hd-drop-m hd-take-m apply (metis Suc-1 Suc-eg-plusl add.left-neutral lessl)

using hd-drop-m hd-take-m apply simp

130

using neq0-conv apply blast
apply (clarify)
apply (rule conjl)
apply (clarify)
apply (rule iffT)
apply (clarify)
apply (subgoal-tac ¥ z. length(inouts, z) = 2)
apply (rule congl)
apply (clarify)
using hd-drop-m hd-take-m apply (metis Suc-1 Suc-eq-plusl add.left-neutral lessl)
using hd-drop-m hd-take-m apply simp
using neq0-conv apply blast
apply (clarify)
apply (subgoal-tac ¥ z. length(inouts, z) = 2)
apply (rule conjl)
apply (clarify)
using hd-drop-m hd-take-m apply (metis Suc-1 Suc-eg-plusl add.left-neutral lessl)
using hd-drop-m hd-take-m apply simp
using neq0-conv apply blast
apply (clarify)
apply (rule iffT)
apply (clarify)
apply (subgoal-tac ¥ z. length(inouts, z) = 2)
apply (rule congl)
apply (clarify)
using hd-drop-m hd-take-m apply (metis Suc-1 Suc-eq-plusl add.left-neutral lessl)
using hd-drop-m hd-take-m apply simp
apply metis
using neq0-conv apply blast
apply (clarify)
apply (subgoal-tac ¥ z. length(inouts, z) = 2)
apply (rule conjl)
apply (clarify)
using hd-drop-m hd-take-m apply (metis Suc-1 Suc-eq-plusl add.left-neutral lessI)
using hd-drop-m hd-take-m apply simp
apply metis
using neq0-conv by blast
qed
have simblock-f5: SimBlock 2 2 (FBlock (Ax n. True) (2) (2)
Az n. ([if (n >0 A hd(z (n—1)) = 4) then 1:real else 0, if (z n)l1 = 8 then 1 else 0]))))
using simblock-f2 simblock-f4 SimBlock-F Block-parallel-comp f5 f5-0 f5-1
by (metis (no-types, lifting) one-add-one)

have f6: post-mode = Split2 ; ; (FBlock (Az n. True) (2) (2)
Mz n. (([if (n > 0 A hd(z (n—1)) = 4) then 1:real else 0, if (z n)l1 = 8 then 1 else 0]))))
using f5 f5-0 f5-1 post-mode-def by auto

then have f6-0: ... = (FBlock (Ax n. True) (1) (2) (
Az n. (([if (n > 0 A hd(x (n—1)) = 4) then 1:real else 0, if (z n)l1 = 8 then 1 else 0]))) o
J-Split2))
using SimBlock-Split2 simblock-f5 by (simp add: FBlock-seq-comp f-sim-blocks)
then have f6-1: ... = (FBlock (Axz n. True) (1) (2)
Az n. ([if (n > 0 A hd(z (n—1)) = 4) then 1:real else 0, if hd(z n) = 8 then 1 else 0]))))
proof —

have Vz n. (Az n. (([if (n > 0 A hd(x (n—1)) = 4) then 1::real else 0,
if (xn)!l1 = 8then 1 else 0]))) o f-Split2) z n

131

= Azn. ([if (n>0 A hd(z (n—1)) = 4) then 1:real else 0,
if hd(z n) = 8 then 1 else 0]))) z n
using f-Split2-def by simp
then show ?thesis

by metis

qed

then show ?thesis
using f6 f6-0 by auto
qged

Finally, post-landing-finalize is the composition of subsystems defined previously and other
blocks. It is shown in post-landing-finalize-1.

abbreviation post-landing-finalize-part] = (

(
(
(

Split2 (x door-closed (boolean, 1/10s) is split into two *)

I
Id (% door-open-time: double x)
) ;; Router 3 [0,2,1]

|5
post-mode

)

|5

(UnitDelay 1.0 ;; LopNOT) (x ac-on-ground *)

5
(UnitDelay 0) (x Delay2 *)

)
)

abbreviation post-landing-finalize-part2 = (

(

(LopNOT)

|5

(Id) (x door-open-time: double *)
) 5 ; wvariable Timer

)

abbreviation post-landing-finalize-part3 = (

(LopAND 3)
|5
(LopOR 2)
)55 latch
)

definition post-landing-finalize-1 =

(

post-landing-finalize-part! ; ;

(

post-landing-finalize-part2
=

132

post-landing-finalize-part3
) ;3 LopAND 2;; riselShot ;; Split2
) fD (4a Z)

Simplified design corresponding to a part of the diagram from inputs to variable Timer.

abbreviation pif-vt-simp = Az na. if (if hd(z na) = 0
then (if na = 0 then 0
else min (vT-fd-sol-1
(An1. (Ana. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (z na!(Suc 0)) 01)))) nl)
(An1. (if hd(z n1) = 0 then 1:real else 0)) (na — 1))
((Ana. real-of-int (int32 (RoundZero (real-of-int [Rate x maxz (z na!(Suc 0))

(na — 1))) 4+ 1::real
else 0) > (real-of-int (int32 (RoundZero (real-of-int [Rate * max (x na!(Suc 0)) 01))))
then 1::real else 0

Simplified design corresponding to a part of the diagram from inputs to latch.

abbreviation pif-latch-simp = Az na. (latch-rec-calc-output
(Anl. (ifhd(znl) =0V nl =0V (x (nl1—1))12# 4V (znl)2 #8
then 0 else 1::real))
(Anl. (if (n1 =0)V ((z (n1 — 1)N3#0 AN (z(nl —1))14 =0))
then 0 else 1::real))

(na))

A function for the simplified design corresponding to a part of the diagram from inputs to
outputs but without the feedback from one of outputs.

abbreviation plf-rise1shot-simp-f = (Az n. [if (((plf-vi-simp n) # 0 A (plf-latch-simp x n) # 0) A
(n > 0 A ((plf-vt-simp x (n—1)) = 0 V (plf-latch-simp © (n—1)) = 0))) then 1 else 0,

if (((plf-vt-simp x n) £ 0 A (plf-latch-simp x n) # 0) A
(n > 0 A ((plf-vt-simp x (n—1)) = 0 V (plf-latch-simp x (n—1)) = 0))) then 1 else 0))

Simplified design corresponding to a part of the diagram from inputs to outputs but without
the feedback from one of outputs.

definition pif-riselshot-simp = FBlock (Ax n. True) 5 2 plf-riselshot-simp-f

lemma post-landing-finalize-1-simp-simblock:
post-landing-finalize-1 = plf-riselshot-simp fp (4, 1) A SimBlock 5 2 plf-riselshot-simp
proof —

let ?f1-f = (Ax n. [hd(z n), hd(z n), hd(t(z n))])
let ?f1 = FBlock (Ax n. True) 2 3 2f1-f
have f1: Split2 (x door-closed (boolean, 1/10s) is split into two *)
lp Id (% door-open-time: double x)
= FBlock (Ax n. True) (14+1) (2+1)
Az n. (((f-Split2 o (Axz nn. take 1 (zx nn))) xn) @
((f-Id o (Azxz nn. drop 1 (xx nn)))) z n))
using SimBlock-1d SimBlock-Split2 FBlock-parallel-comp
by (simp add: Split2-def simu-contract-real.ld-def)
then have f1-0: ... = ?f1
proof —

133

have Vz n. ((Az n. (((f-Split2 o (Azx nn. take 1 (zx nn))) zn) e
((f-Id o (Azx nn. drop 1 (xx nn)))) zn)) z n)
= (?fl-fz n)
using f-Id-def f-Split2-def by (simp add: drop-Suc hd-take-m)
then show ?thesis
apply (simp)
by (simp add: numeral-2-eq-2)
qed
have simblock-f1: SimBlock 2 8 (?2f1)
using SimBlock-1d SimBlock-Split2 SimBlock-F Block-parallel-comp
by (metis (no-types, lifting) One-nat-def Split2-def Suc-1 Suc-eq-plusl f1 f1-0
numeral-3-eq-3 simu-contract-real.ld-def)

let 2f2-f = (Ax n. [hd(z n), hd(t(z n)), hd(z n)])

let ?f2 = FBlock (Ax n. True) (2) (3) ?f2-f

have f2: (Split2 ||p Id) ;; Router 8 [0,2,1] = ?f1 ;; Router 3 [0,2,1]
using fI f1-0 by auto

then have f2-0: ... = FBlock (Ax n. True) (2) (3) (f~Router [0,2,1] o ?f1-f)
using simblock-f1 Router-def SimBlock-Router FBlock-seq-comp by simp
then have f2-1: ... = 7f2
proof —

have YV n. (f~Router [0,2,1] o ?f1-f) xn = 2f2-fxn
using f-Router-def by (simp)
then show ?thesis
by presburger
qed
have simblock-f2: SimBlock 2 8 ?f2
using simblock-f1 SimBlock-Router SimBlock-F Block-seq-comp
by (metis (no-types, lifting) Router-def f2-0 f2-1 length-Cons list.size(8) numeral-3-eq-3)

let ?post-mode-f =
Az n. ([if (n > 0 A hd(z (n—1)) = 4) then 1:real else 0, if hd(x n) = 8 then 1 else 0])))
let ?post-mode = (FBlock (Ax n. True) (1) (2) ?post-mode-f)
have simblock-post-mode: SimBlock 1 2 (?post-mode)
apply (rule SimBlock-FBlock)
apply (rule-tac x = Ana. [4] in ex])
apply (rule-tac x = Ana. [if na > 0 then 1 else 0, 0] in exl)
apply (simp add: f-blocks)
by (simp add: f-blocks)
let 2f3-f = (Ax n. [hd(z n), hd(t(z n)), hd(z n),
if (n>0A (z (n—1))!12 = 4) then 1::real else 0,
if (xn)!2 = 8 then 1 else 0])
let 23 = FBlock (Az n. True) 3 5 2f3-f
have f3: (((Split2 (x door-closed (boolean, 1/10s) is split into two x)
[P
Id (x door-open-time: double x)
) ;; Router 3 [0,2,1])
Iz post-mode) = 2f2 ||p ?post-mode
using f2 f2-0 f2-1 post-mode-simp by auto
then have f3-0: ... = FBlock (Az n. True) (2+1) (3+2)
Az n. (((7/2-f o (Azz nn. take 2 (zx nn))) zn) @
((#post-mode-f o (Azx nn. drop 2 (zx nn)))) z n))
using simblock-post-mode simblock-f1 FBlock-parallel-comp simblock-f2 by blast
then have f3-1: ... = FBlock (Ax n. True) (2+1) (3+2) ¢f3-f
proof —

134

show ?thesis
apply (simp add: FBlock-def)
apply (rel-simp)
apply (rule conjl, clarify)
apply (rule conjl, clarify)
apply (rule iffI, clarify)
defer
apply (clarify)
defer
apply (clarify, rule iffI, clarify)
apply (metis hd-drop-conv-nth lessI numeral-2-eq-2 numeral-3-eq-8)
apply (clarify)
apply (simp add: hd-drop-conv-nth)
apply (clarify, rule conjl, clarify)
apply (rule iffI, clarify)
apply (metis hd-drop-conv-nth lessI numeral-2-eq-2 numeral-3-eq-8)
apply (clarify)
apply (simp add: hd-drop-conv-nth)
apply (clarify, rule iffI, clarify)
defer
apply (clarify)
defer
proof —
fix ok, ok,"::bool and inouts, inouts,’::nat = real list and x
assume al: Vz. (hd (drop 2 (inouts, z)) = 8§ —
(0 <z A hd (drop 2 (inouts, (z — Suc 0))) = 4 —
length(inouts, =) = 3 A
length(inouts,” z) = 5 A
[hd (take 2 (inouts, z)), hd (tl (take 2 (inouts, z))), hd (take 2 (inouts, x)), 1, 1] =
inouts,’ x) A
(zr=0—
length(inouts, 0) = 3 A
length(inouts,’ 0) = 5 N
[hd (take 2 (inouts, 0)), hd (& (take 2 (inouts, 0))), hd (take 2 (inouts, 0)), 0, 1] =
inouts,’ 0) A
(= hd (drop 2 (inouts, (z — Suc 0))) = 4 —
length(inouts, =) = 3 A
length(inouts,” z) = 5 A
[hd (take 2 (inouts, x)), hd (¢l (take 2 (inouts, x))), hd (take 2 (inouts, x)), 0, 1] =
inouts,’ z)) A
(= hd (drop 2 (inouts, z)) = 8 —
(0 <z A hd (drop 2 (inouts, (z — Suc 0))) = 4 —
length(inouts, =) = 3 A
length(inouts,” z) = 5 A
[hd (take 2 (inouts, z)), hd (tl (take 2 (inouts, z))), hd (take 2 (inouts, x)), 1, 0] =
inouts,’ x) A
(=0 —
length(inouts, 0) = 3 A
length(inouts,’ 0) = 5 N
[hd (take 2 (inouts, 0)), hd (t (take 2 (inouts, 0))), hd (take 2 (inouts, 0)), 0, 1] =
inouts,’ 0) A
(= hd (drop 2 (inouts, (z — Suc 0))) = 4 —
length(inouts, =) = 3 A
length(inouts,” z) = 5 A
[hd (take 2 (inouts, x)), hd (¢ (take 2 (inouts, x))), hd (take 2 (inouts, x)), 0, 0] =

135

inouts,’ z))
from a! have len-3: Vz. length(inouts, x) = 3
by (metis neq0-conv)
have drop-2: V. (hd (drop 2 (inouts,’ z)) = (inouts,’ ©)!2)
using len-8 hd-drop-m
by (metis Suc-eg-plusl Suc-le-eq al add-Suc-right add-diff-cancel-right’ diff-le-self
hd-drop-conv-nth neq0-conv one-plus-numeral one-plus-numeral-commute semiring-norm(2)

semiring-norm(3) semiring-norm(4))
have take-2: Vx. hd (take 2 (inouts, x)) = hd(inouts, z)
using len-3 hd-take-m by simp
have take-tl-2: YV z. hd (¢l (take 2 (inouts, x))) = hd(tl(inouts, z))
using len-8 hd-tl-take-m by simp
show (inouts, z!(2) = 8 —
(0 < z A inouts, (x — Suc 0)Y(2) = 4 —
length(inouts, =) = 3 A
length(inouts,’) = 5 A [hd (inouts, z), hd (tl (inouts, z)), hd (inouts, z), 1, 1] =
inouts,’) A
(z=0—
length(inouts, 0) =
length(inouts,” 0)
inouts,’ 0) A
(= inouts, (z — Suc 0)}(2) = | —
length(inouts, z) = 8 A
length(inouts,” x) = 5 A [hd (inouts, z), hd (&l (inouts, z)), hd (inouts,), 0, 1] =
inouts,’ x)) A
(= inouts, z!1(2) = 8 —
(0 < z A inouts, (x — Suc 0)(2) = 4 —
length(inouts, z) = 8 A
length(inouts,”) = 5 A [hd (inouts, z), hd (8 (inouts, z)), hd (inouts,), 1, 0] =
inouts,’ x) A
(r=0—
length(inouts, 0) = 3 A
length(inouts,” 0) = 5 A [hd (inouts, 0), hd (¢l (inouts, 0)), hd (inouts, 0), 0, 1] =
inouts,’ 0) A
(= inouts, (z — Suc 0))(2) = 4 —
length(inouts, =) = 3 A
length(inouts,”) = 5 A [hd (inouts, z), hd (¢l (inouts, z)), hd (inouts, z), 0, 0] =

3 A
= 5 A [hd (inouts, 0), hd (¢l (inouts, 0)), hd (inouts, 0), 0, 1] =

inouts,’ z))
using drop-2 take-2 take-tl-2
by (metis One-nat-def Suc-1 al hd-drop-conv-nth len-3 lessI numeral-3-eq-3)
next
fix ok, ok,":bool and inouts, inouts,’::nat = real list and z
assume al: Vz. (inouts, z!(2) = 8§ —
(0 < z A inouts, (x — Suc 0)!/(2) = 4 —
length(inouts, x) = 8 A
length(inouts,” x) = 5 A [hd (inouts, z), hd (tl (inouts, z)), hd (inouts,), 1, 1] =
inouts,’) A
(r=0—
length(inouts, 0) = 3 A
length(inouts,” 0) = 5 A [hd (inouts, 0), hd (tl (inouts, 0)), hd (inouts, 0), 0, 1] =
inouts,’ 0) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts, =) = 3 A
length(inouts,’) = 5 A [hd (inouts, z), hd (¢l (inouts, z)), hd (inouts, z), 0, 1] =

136

inouts,’ x)) A
(= inouts, z!1(2) = 8§ —
(0 < z A inouts, (x — Suc 0)/(2) = 4 —
length(inouts, x) = 38 A
length(inouts,” x) = 5 A [hd (inouts, z), hd (&l (inouts, z)), hd (inouts,), 1, 0] =
inouts,’) A
(z=0—
length(inouts, 0) = 3 A
length(inouts,” 0) = 5 A [hd (inouts, 0), hd (tl (inouts, 0)), hd (inouts, 0), 0, 1] =
inouts,” 0) N
(= inouts, (x — Suc 0)}(2) = 4 —
length(inouts, =) = 3 A
length(inouts,” x) = 5 A [hd (inouts, z), hd (t (inouts, z)), hd (inouts,), 0, 0] =
inouts,’ x))
from al have len-3: V. length(inouts,) = 8
by (metis neq0-conv)
have drop-2: Vz. (hd (drop 2 (inouts,’ x)) = (inouts,’ z)!2)
using len-3 hd-drop-m
by (metis Suc-eq-plusl Suc-le-eq al add-Suc-right add-diff-cancel-right’ diff-le-self
hd-drop-conv-nth neq0-conv one-plus-numeral one-plus-numeral-commaute semiring-norm(2)

semiring-norm(3) semiring-norm(4))
have take-2: Vx. hd (take 2 (inouts, x)) = hd(inouts, z)
using len-8 hd-take-m by simp
have take-tl-2: YV z. hd (tl (take 2 (inouts, x))) = hd(tl(inouts, z))
using len-3 hd-tl-take-m by simp
show (hd (drop 2 (inouts, z)) = 8 —
(0 <z A hd (drop 2 (inouts, (z — Suc 0))) = 4 —
length(inouts, z) = 8 A
length(inouts,” ©) = 5 A
[hd (take 2 (inouts, x)), hd (tl (take 2 (inouts, x))), hd (take 2 (inouts, z)), 1, 1] =
inouts,’ x) A
(r=0—
length(inouts, 0) = 3 A
length(inouts,’ 0) = 5 A
[hd (take 2 (inouts, 0)), hd (t (take 2 (inouts, 0))), hd (take 2 (inouts, 0)), 0, 1] =
inouts,’ 0) A
(= hd (drop 2 (inouts, (x — Suc 0))) = 4 —
length(inouts, x) = 3 A
length(inouts,’ ©) = 5 A
[hd (take 2 (inouts, x)), hd (tl (take 2 (inouts, x))), hd (take 2 (inouts, z)), 0, 1] =
inouts,’ x)) A
(= hd (drop 2 (inouts, z)) = 8 —»
(0 <z A hd (drop 2 (inouts, (z — Suc 0))) = 4 —
length(inouts, z) = 8 A
length(inouts,” ©) = 5 A
[hd (take 2 (inouts, x)), hd (tl (take 2 (inouts, x))), hd (take 2 (inouts, z)), 1, 0] =
inouts,’) A
(r=0—
length(inouts, 0) = 3 A
length(inouts,’ 0) = 5 A
[hd (take 2 (inouts, 0)), hd (t (take 2 (inouts, 0))), hd (take 2 (inouts, 0)), 0, 1] =
inouts,’ 0) A
(= hd (drop 2 (inouts, (x — Suc 0))) = 4 —
length(inouts, =) = 3 A

137

(inouts,

(inouts,

(inouts,

(inouts,

(inouts,

(inouts,

length(inouts,” z) = 5 A
[hd (take 2 (inouts, z)), hd (tl (take 2 (inouts, z))), hd (take 2 (inouts, x)), 0, 0] =
inouts,’ x))

using drop-2 take-2 take-tl-2

by (metis One-nat-def Suc-1 al hd-drop-conv-nth len-3 lessI numeral-3-eq-3)

next

fix ok, ok,":bool and inouts, inouts,’::nat = real list and z::nat
assume al: Vz. (hd (drop 2 (inouts, z)) = 8 —
(0 <z A hd (drop 2 (inouts, (xz — Suc 0))) = 4 —
length(inouts, =) = 3 A
length(inouts,”) = 5 A [hd (take 2 (inouts, z)), hd (tl (take 2 (inouts, x))), hd (take 2

z)), 1, 1] = inouts,’ z) A

(zr=0—
length(inouts, 0) = 3 A
length(moutsv’ 0) =5 A [hd (take 2 (inouts, 0)), hd (¢l (take 2 (inouts, 0))), hd (take 2
0)), 0, 0] = inouts,’ 0) A
(= hd (drop 2 (inouts, (x — Suc 0))) = 4 —
length(moutsu z) =38 A
length(inouts,’ a:) = 5 A [hd (take 2 (inouts, x)), hd (tl (take 2 (inouts, x))), hd (take 2
z)), 0, 1] = inouts,’ z)) A
(= hd (drop 2 (inouts, ©)) = 8 —»
(0 <z A hd (drop 2 (inouts, (z — Suc 0))) = 4 —
length(inouts, x) = 38 A
length(inouts,’) = 5 A [hd (take 2 (inouts, z)), hd (tl (take 2 (inouts, z))), hd (take 2

z)), 1, 0] = inouts,’ z) A

(r=0—
length(inouts, 0) = 3 A
length(moutsv 0) =5 A [hd (take 2 (inouts, 0)), hd (tl (take 2 (inouts, 0))), hd (take 2
0)), 0, 0] = inouts,’ 0) A
(= hd (drop 2 (inouts, (x — Suc 0))) = 4 —
length(znoutsv z) =38 A
length(inouts,’ z) = 5 A [hd (take 2 (inouts, x)), hd (tl (take 2 (inouts, z))), hd (take 2
z)), 0, 0] = inouts,’ z))
assume a2: - hd (drop 2 (inouts, 0)) = 8
assume a3: - inouts, 01(2) = 8
from al have len-3: V. length(inouts,) = &
by (metis neq0-conv)
have drop-2: Vz. (hd (drop 2 (inouts,’ x)) = (inouts,’ z)!2)
using len-3 hd-drop-m
by (metis Suc-eq-plusl Suc-le-eq al add-Suc-right add-diff-cancel-right’ diff-le-self
hd-drop-conv-nth neq0-conv one-plus-numeral one-plus-numeral-commute semiring-norm(2)

semiring-norm(3) semiring-norm(4))
have take-2: Vx. hd (take 2 (inouts, x)) = hd(inouts, z)
using len-3 hd-take-m by simp
have take-tl-2: V. hd (tl (take 2 (inouts, x))) = hd(tl(inouts, z))
using len-3 hd-tl-take-m by simp
show (inouts, z!(2) = 8 —
(0 < z A inouts, (x — Suc 0)/(2) = 4 —
length(inouts, x) = 3 A
length(inouts,”) = 5 A [hd (inouts, z), hd (8 (inouts, z)), hd (inouts,), 1, 1] =

inouts,’ x) N\

(zr=0—
length(inouts, 0) = 3 A
length(inouts,’ 0) = 5 A [hd (inouts, 0), hd (t (inouts, 0)), hd (inouts, 0), 0, 0] =

138

inouts,’

mouts,’

mouts,’

nouts,’

inouts,’

(inouts,

(inouts,

(inouts,

(inouts,

(inouts,

(inouts,

0) A
(= inouts, (z — Suc 0)}(2) = 4 —
length(inouts,) = 3 A
length(inouts,” x) = 5 A [hd (inouts,),
z)) A
(= inouts, z!(2) = 8 —
(0 < z A inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 8 A
length(inouts,”) = 5 A [hd (inouts, z),
z) A
(r=0—
length(inouts, 0) = 3 A
length(inouts,” 0) = 5 A [hd (inouts, 0),
0) A
(= inouts, (z — Suc 0))(2) = 4 —
length(inouts, =) = 3 A
length(inouts,”) = 5 A [hd (inouts,),
z))

using drop-2 take-2 take-tl-2

hd (¢l (inouts,

hd (¢l (inouts,

hd (tl (inouts,

hd (tl (inouts,

z)), hd (inouts, z),

z)), hd (inouts, z),

0)), hd (inouts, 0),

z)), hd (inouts, z),

by (metis One-nat-def Suc-1 al hd-drop-conv-nth len-3 lessI numeral-3-eq-3)

next
fix ok, ok,":bool and inouts, inouts,’::nat = real list and z

assume al: Vz. (inouts, z!(2) = 8 —
(0 < z A inouts, (x — Suc 0)/(2) = 4 —

length(inouts, x) = 3 A length(inouts,’ ©) = 5 A [hd (inouts, x), hd (¢ (inouts,

z), 1, 1] = inouts,’) A
(r=0—

length(inouts, 0) = 8 A length(inouts,’ 0) = 5 A [hd (inouts, 0), hd (¢ (inouts,

0), 0, 0] = inouts,” 0) A
(= inouts, (x — Suc 0)}(2) = 4 —

length(inouts, x) = 3 A length(inouts,’ ©) = 5 A [hd (inouts, x), hd (t (inouts,

z), 0, 1] = inouts,’ z)) A
(= inouts, z!1(2) = 8 —
(0 <z Ainouts, (z — Suc 0)1(2) = 4 —

length(inouts, x) = 3 A length(inouts,’ ©) = 5 A [hd (inouts, x), hd (t (inouts,

z), 1, 0] = inouts,’) A
(zr=0—

length(inouts, 0) = 8 A length(inouts,’ 0) = 5 A [hd (inouts, 0), hd (¢ (inouts,

0), 0, 0] = inouts,’ 0) A
(= inouts, (x — Suc 0)1(2) = 4 —

length(inouts, x) = 3 A length(inouts,’ ©) = 5 A [hd (inouts, x), hd (t (inouts,

z), 0, 0] = inouts,’ z))

from al have len-3: Vz. length(inouts, z) = 3

by (metis neq0-conv)

have drop-2: V. (hd (drop 2 (inouts,’ ©)) = (inouts,’ z)!2)

using len-8 hd-drop-m

by (metis Suc-eq-plusl Suc-le-eq al add-Suc-right add-diff-cancel-right’ diff-le-self
hd-drop-conv-nth neq0-conv one-plus-numeral one-plus-numeral-commute semiring-norm(2)

semiring-norm(3) semiring-norm(4))

have take-2: Vx. hd (take 2 (inouts, x)) = hd(inouts, x)

using len-8 hd-take-m by simp

have take-tl-2: YV z. hd (tl (take 2 (inouts, x)))
using len-3 hd-tl-take-m by simp

show (hd (drop 2 (inouts, z)) = 8§ —

139

= hd(tl(inouts, x))

(0 <z A hd (drop 2 (inouts, (z — Suc 0))) = 4 —
length(inouts, x) = 3 A
length(inouts,’) = 5 A [hd (take 2 (inouts, x)), hd (tl (take 2 (inouts, z))), hd (take 2

(inouts, x)), 1, 1] = inouts,’ x) A

(inouts, 0)), 0

(r=0—

length(inouts, 0) = 3 A

length(moutsu 0) = 5 A [hd (take 2 (inouts, 0)), hd (&l (take 2 (inouts, 0))), hd (take 2
0] = inouts,’ 0) A

(= hd (drop 2 (inouts, (z — Suc 0))) = 4 —

length(moutsv z) =3 A

length(inouts,’ fE) = 5 A [hd (take 2 (inouts, x)), hd (tl (take 2 (inouts, z))), hd (take 2

(inouts, z)), 0, 1] = inouts,” x)) A

(= hd (drop 2 (inouts, z)) = 8 —
(0 < z A hd (drop 2 (inouts, (xz — Suc 0))) = 4 —
length(inouts, x) = 8 A
length(inouts,”) = 5 A [hd (take 2 (inouts, z)), hd (tl (take 2 (inouts, x))), hd (take 2

(inouts, z)), 1, 0] = inouts,”) A

(inouts, 0)), 0

(z=0—

length(inouts, 0) = 3 A

length(moutsu 0) =5 A [hd (take 2 (inouts, 0)), hd (tl (take 2 (inouts, 0))), hd (take 2
0] = inouts,’ 0) A

(= hd (drop 2 (inouts, (x — Suc 0))) = 4 —

length(moutsu z) =38 A

length(inouts,’ a:) = 5 A [hd (take 2 (inouts, x)), hd (tl (take 2 (inouts, x))), hd (take 2

(inouts, x)), 0, 0] = inouts,’ x))

using drop-2 take-2 take-tl-2
by (metis One-nat-def Suc-1 al hd-drop-conv-nth len-3 lessI numeral-3-eq-3)
qed
qed
have simblock-f3: SimBlock 3 5 (%f3)
using simblock-f2 simblock-post-mode SimBlock-FBlock-parallel-comp
by (smt Suc-eq-plusl add-Suc f3-0 f3-1 numeral-2-eq-2 numeral-3-eq-8 numeral-code(3))

let 2f4-f = Az n. [(if n = 0 then 0 else (if hd(z (n—1)) = 0 then 1 else 0))])
let ?f4 = FBlock (Ax n. True) 1 1 2f4-f
have f4: (UnitDelay 1.0 ;; LopNOT) = FBlock (Ax n. True) 1 1 (f~LopNOT o f-UnitDelay 1.0)
using SimBlock-UnitDelay SimBlock-LopNOT FBlock-seq-comp by (simp add: LopNOT-def UnitDelay-def)
then have f4-0: ... = FBlock (Ax n. True) 1 1 ?f}-f
proof —
have Vz n. (f~LopNOT o f-UnitDelay 1.0) x n = ?f4-fzn
using f-LopNOT-def f-UnitDelay-def by simp
then show ?thesis
by presburger
qed
have simblock-f}: SimBlock 1 1 ?f/
using SimBlock-UnitDelay SimBlock-LopNOT SimBlock-FBlock-seq-comp
by (metis (no-types, lifting) LopNOT-def UnitDelay-def f4 f4-0)

let 7f5-f = (Az n. [(if n = 0 then 0 else (if hd(z (n—1)) = 0 then 1 else 0)),
if n = 0 then 0 else hd(tl(z (n — 1)))])
let ?f5 = FBlock (Ax n. True) 2 2 2f5-f
have f5: ((UnitDelay 1.0 ;; LopNOT)
Il
(UnitDelay 0) (x Delay2 x))
= ?f4 || (UnitDelay 0)

140

using f4 f4-0 by auto
then have f5-0: ... = FBlock (Ax n. True) 2 2
Az n. (((2f4-f o (A\zz nn. take 1 (zx nn))) zn) @
((f-UnitDelay 0 o (Azx nn. drop 1 (zx nn)))) x n))
using simblock-f4 SimBlock-UnitDelay FBlock-parallel-comp apply (simp add: UnitDelay-def)
by (simp add: numeral-2-eq-2)
then have f5-1: ... = 2f5
proof —
have Vz n. (Ax n. (((2f4-f o (A\xz nn. take I (zx nn))) zn) e
((f-UnitDelay 0 o (Azx nn. drop 1 (zz nn)))) zn)) zn
= ?f5-fxn
using f-UnitDelay-def apply (simp)
apply (rule alll)+
apply (rule conjl, clarify)
apply (simp add: drop-Suc hd-take-m)
by (simp add: drop-Suc hd-take-m)
then show ?thesis
by presburger
qed
have simblock-f5: SimBlock 2 2 ?f5
using simblock-f4 SimBlock-UnitDelay SimBlock-F Block-parallel-comp f5 f5-0 f5-1
by (metis (no-types, lifting) Suc-1 Suc-eq-plusl UnitDelay-def)

let ?2f6-f = (Ax n. [hd(z n), hd(t(z n)), hd(z n),
if (n>0A (z(n—1))'2 = 4) then 1::real else 0,
if (xn)!2 = 8then 1 else 0,
(if n = 0 then 0 else (if (x (n — 1))!8 = 0 then 1 else 0)),
if n = 0 then 0 else (z (n — 1))!4])
let ?f6 = FBlock (Ax n. True) 5 7 2f6-f
have f6: ((((
Split2 (x door-closed (boolean, 1/10s) is split into two *)
I3
Id (x door-open-time: double x)
) ;; Router 3 [0,2,1])
[P
post-mode

|5

(
(UnitDelay 1.0 ;; LopNOT)

Il
(UnitDelay 0) (x Delay2 x)
)
= %3 ||p o5
by (smt Suc3-eq-add-8 Suc-eg-plusl add-2-eq-Suc eval-nat-numeral(3) f1 f1-0 f2-0 f2-1 f3-0
13-1 f4 f4-0 f5-0 f5-1 numeral-Bit0 post-mode-simp)
then have f6-0: ... = FBlock (Ax n. True) (3 + 2) (5 + 2)
Az n. (((713-f o (Azz nn. take 3 (zx nn))) zn) o
((2f5-f o (Azz nn. drop 3 (zz nn)))) z n))
using simblock-f3 simblock-f5 FBlock-parallel-comp by (simp)
then have f6-1: ... = FBlock (Az n. True) (3 + 2) (5 + 2) 2f6-f
proof —
show ?thesis
apply (simp add: FBlock-def)
apply (rel-simp)

141

apply (rule congl, clarify, rule iffI)
apply (clarify)
defer

apply (clarify)
defer
apply (clarify, rule iffI)
apply (clarify)
defer
apply (clarify)
defer
proof —
fix ok, and inouts,::nat=real list and ok, ' and inouts, ::nat=real list and z::nat
assume al: Vz. (z = 0 —
length(inouts, 0) = 5 A
length(inouts,’ 0) = 7 A
[hd (take 3 (inouts, 0)), hd (tl (take 8 (inouts, 0))), hd (take 3 (inouts, 0)), 0, 1, 0, 0] =
inouts,’ 0) A
0 <z —
(hd (drop 3 (inouts, (x — Suc 0))) = 0 —
(inouts, z!(2) = 8§ —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (take 3 (inouts, x)), hd (¢l (take 3 (inouts, x))), hd (take 8 (inouts, x)), 1, 1, 1,
hd (tl (drop 3 (inouts, (x — Suc 0))))] =
inouts,’ x) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (take 3 (inouts, x)), hd (tl (take 3 (inouts, x))), hd (take 3 (inouts, x)), 0, 1, 1,
hd (tl (drop 3 (inouts, (z — Suc 0))))] =
inouts,’ ©)) N
(= inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 5 A
length(inouts,”) = 7 A
[hd (take 3 (inouts, x)), hd (tl (take 3 (inouts, z))), hd (take 3 (inouts, x)), 1, 0, 1,
hd (tl (drop 3 (inouts, (z — Suc 0))))] =
inouts,’ x) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = & A
length(inouts,’) = 7 A
[hd (take 3 (inouts, x)), hd (tl (take 3 (inouts, z))), hd (take 3 (inouts, x)), 0, 0, 1,
hd (tl (drop 8 (inouts, (z — Suc 0))))] =
inouts,’ ©))) A
(= hd (drop 3 (inouts, (x — Suc 0))) = 0 —
(inouts, z!(2) = 8§ —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (take 3 (inouts, x)), hd (¢l (take 3 (inouts, x))), hd (take 3 (inouts, x)), 1, 1, 0,
hd (tl (drop 3 (inouts, (z — Suc 0))))] =
inouts,’ x) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = &5 A

142

length(inouts,’) = 7 A
[hd (take 8 (inouts, x)), hd (¢l (take 3 (inouts, x))), hd (take 8 (inouts, x)), 0, 1, 0,
hd (tl (drop 3 (inouts, (x — Suc 0))))] =
inouts,’ x)) A
(= inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (take 3 (inouts, x)), hd (tl (take 3 (inouts, x))), hd (take 3 (inouts, x)), 1, 0, 0,
hd (tl (drop 3 (inouts, (z — Suc 0))))] =
inouts,’) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = 5 A
length(inouts,”) = 7 A
[hd (take 3 (inouts, z)), hd (tl (take & (inouts, x))), hd (take 3 (inouts, z)), 0, 0, 0,
hd (tl (drop 3 (inouts, (z — Suc 0))))] =
inouts,’ z))))
from al have len-5: Vz. length(inouts, x) = 5
by (metis neq0-conv)
have hd-take-3: hd (take 3 (inouts, z)) = hd(inouts,)
using len-5 by (metis append-take-drop-id hd-append2 take-eq-Nil zero-neg-numeral)
have hd-ti-take-3: hd (tl (take 3 (inouts, x))) = hd (tl (inouts, x))
using len-5 by (simp add: hd-tl-take-m)
have hd-drop-3: hd (drop 3 (inouts, x)) = inouts, z!(3)
using len-5 by (simp add: hd-drop-conv-nth)
have hd-drop-3" hd (drop 3 (inouts, (z — Suc 0))) = inouts, (z — Suc 0)1(3)
using len-5 by (simp add: hd-drop-conv-nth)
have hd-tl-drop-3: hd (tl (drop 3 (inouts, x))) = inouts, z!(4)
using len-5 by (simp add: hd-drop-conv-nth nth-tl tl-drop)
have hd-tl-drop-3": hd (tl (drop 8 (inouts, (z — Suc 0)))) = inouts, (z — Suc 0)!(4)
using len-5
by (metis drop-Suc eval-nat-numeral(2) eval-nat-numeral(3) hd-drop-conv-nth lessI
semiring-norm(26) semiring-norm(27) tl-drop)
show (z = 0 —
length(inouts, 0) = 5 A
length(inouts,’ 0) = 7 A
[hd (inouts, 0), hd (tl (inouts, 0)), hd (inouts, 0), 0, 1, 0, 0] = inouts,’ 0) A
(0 <z —
(inouts, (x — Suc 0)1(8) = 0 —
(inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 5 A
length(inouts,”) = 7 A
[hd (inouts, z), hd (8l (inouts, z)), hd (inouts, z), 1, 1, 1, inouts, (x — Suc 0)1(4)] =
inouts,’ x) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = &5 A
length(inouts,”) = 7 A
[hd (inouts, z), hd (tl (inouts, x)), hd (inouts, z), 0, 1, 1, inouts, (x — Suc 0)!(4)] =
inouts,’ ©)) N
(= inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (inouts, z), hd (8l (inouts, z)), hd (inouts, z), 1, 0, 1, inouts, (x — Suc 0)1(4)] =

143

inouts,”) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (inouts, z), hd (tl (inouts, x)), hd (inouts, z), 0, 0, 1, inouts, (x — Suc 0)!(4)] =
inouts,’ ©))) A
(= inouts, (z — Suc 0)}(8) = 0 —
(inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (inouts, z), hd (¢l (inouts, z)), hd (inouts, z), 1, 1, 0, inouts, (x — Suc 0)I(4)] =
inouts,’ x) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = &5 A
length(inouts,”) = 7 A
[hd (inouts, z), hd (8l (inouts, z)), hd (inouts, z), 0, 1, 0, inouts, (z — Suc 0)1(4)] =
inouts,’ ©)) A
(= inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (inouts, z), hd (tl (inouts, z)), hd (inouts, z), 1, 0, 0, inouts, (z — Suc 0)!(4)] =
inouts,’ x) A
(= inouts, (z — Suc 0)(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (inouts, z), hd (8 (inouts, z)), hd (inouts, z), 0, 0, 0, inouts, (x — Suc 0)1(4)] =
inouts,’ x))))
using al hd-take-3 hd-tl-take-3 hd-drop-3' hd-tl-drop-3' by (smt)
next
fix ok, and inouts,::nat=>real list and ok,’ and inouts, ::nat=-real list and z::nat
assume al:Vz. (z =0 —
length(inouts, 0) = 5 A
length(inouts,” 0) = 7 A
[hd (inouts, 0), hd (tl (inouts, 0)), hd (inouts, 0), 0, 1, 0, 0] = inouts,’ 0) A
(0 <z —
(inouts, (x — Suc 0)1(8) = 0 —
(inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (inouts, z), hd (tl (inouts, x)), hd (inouts, z), 1, 1, 1, inouts, (x — Suc 0)!(4)] =
inouts,” x) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = 5 A
length(inouts,”) = 7 A
[hd (inouts, z), hd (tl (inouts, x)), hd (inouts, z), 0, 1, 1, inouts, (x — Suc 0)!(4)] =
inouts,’)) A
(= inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = &5 A
length(inouts,”) = 7 A
[hd (inouts, z), hd (tl (inouts, x)), hd (inouts, z), 1, 0, 1, inouts, (x — Suc 0)!(4)] =
inouts,’) A

144

(= inouts, (z — Suc 0)1(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A

[hd (inouts, x), hd (tl (inouts, x)), hd (inouts,
A\

inouts,’ x)))
(= tnouts, (z — Suc 0)1(3) = 0 —
(inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = &5 A
length(inouts,’) = 7 A

[hd (inouts,), hd (tl (inouts, x)), hd (inouts,

inouts,”) A

(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A

[hd (inouts,), hd (tl (inouts, x)), hd (inouts,

inouts,’)) A

(= inouts, z!(2) = 8 —

(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = &5 A
length(inouts,”) = 7 A

[hd (inouts,), hd (tl (inouts, x)), hd (inouts,

inouts,’ x) A

(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = &5 A
length(inouts,”) = 7 A

[hd (inouts,), hd (tl (inouts, x)), hd (inouts,

inouts,’ z))))
from al have len-5: Vz. length(inouts, x) = 5
by (metis neq0-conv)

z),

have hd-take-3: hd (take 3 (inouts, z)) = hd(inouts,)
using len-5 by (metis append-take-drop-id hd-append2 take-eq-Nil zero-neg-numeral)
have hd-tl-take-3: hd (tl (take 3 (inouts, x))) = hd (tl (inouts, z))

using len-5 by (simp add: hd-tl-take-m)

have hd-drop-3: hd (drop 3 (inouts, x)) = inouts, z!(3)

using len-5 by (simp add: hd-drop-conv-nth)

inouts, (x — Suc 0)1(4)] =

inouts, (x — Suc 0)!(4)] =

inouts, (x — Suc 0)1(4)] =

inouts, (x — Suc 0)!(4)] =

inouts, (x — Suc 0)!(4)] =

have hd-drop-3" hd (drop 3 (inouts, (z — Suc 0))) = inouts, (x — Suc 0)1(3)

using len-5 by (simp add: hd-drop-conv-nth)

have hd-tl-drop-3: hd (¢l (drop 3 (inouts, x))) = inouts, z!(4)
using len-5 by (simp add: hd-drop-conv-nth nth-tl tl-drop)
have hd-tl-drop-3": hd (tl (drop 3 (inouts, (z — Suc 0)))) = inouts, (z — Suc 0)!(4)

using len-5

by (metis drop-Suc eval-nat-numeral(2) eval-nat-numeral(3) hd-drop-conv-nth lessI

semiring-norm(26) semiring-norm(27) tl-drop)

show (z = 0 —
length(inouts, 0) = 5 A
length(inouts,’ 0) = 7 A

[hd (take 3 (inouts, 0)), hd (tl (take 8 (inouts, 0))), hd (take 3 (inouts, 0)), 0, 1, 0, 0] =

inouts,’ 0) A
(0 <z —
(hd (drop 3 (inouts, (x — Suc 0))) = 0 —
(inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A

145

[hd (take 8 (inouts, x)), hd (t (take 3 (inouts,
hd (¢l (drop 3 (inouts, (x — Suc 0))))] =
inouts,’) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (take 8 (inouts, x)), hd (tl (take 3 (inouts,
hd (tl (drop 3 (inouts, (x — Suc 0))))] =
inouts,’ x)) A
(- inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (take 3 (inouts, x)), hd (tl (take 3 (inouts,
hd (tl (drop 3 (inouts, (z — Suc 0))))] =
inouts,’ x) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (take 3 (inouts, x)), hd (tl (take 3 (inouts,
hd (tl (drop 3 (inouts, (z — Suc 0))))] =
inouts,’ ©))) A
(= hd (drop 3 (inouts, (z — Suc 0))) = 0 —
(inouts, z!(2) = 8 —
(inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (take 8 (inouts, x)), hd (t (take 3 (inouts,
hd (tl (drop 3 (inouts, (x — Suc 0))))] =
inouts,’) A
(= inouts, (x — Suc 0)N(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (take 8 (inouts, x)), hd (tl (take 3 (inouts,
hd (tl (drop 3 (inouts, (x — Suc 0))))] =
inouts,’ x)) A
(= inouts, z!(2) = 8 —
(inouts, (x — Suc 0)X(2) = 4 —
length(inouts, z) = &5 A
length(inouts,’ ©) = 7 A
[hd (take 3 (inouts, x)), hd (tl (take 3 (inouts,
hd (tl (drop 3 (inouts, (z — Suc 0))))] =
inouts,’ z) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (take 3 (inouts, x)), hd (tl (take 3 (inouts,
hd (tl (drop 3 (inouts, (z — Suc 0))))] =
inouts,’ z))))

z))), hd (take 3 (inouts, z)),

z))), hd (take 3 (inouts, z)),

z))), hd (take 3 (inouts, z)),

x))), hd (take 3 (inouts, z)),

z))), hd (take 3 (inouts, x)),

z))), hd (take 3 (inouts, z)),

z))), hd (take 3 (inouts, z)),

x))), hd (take 3 (inouts, x)),

using al hd-take-3 hd-tl-take-3 hd-drop-3' hd-tl-drop-3' by (smt)

next

fix ok, and inouts,::nat=real list and ok,’ and inouts, ::nat=real list and z::nat

assume al:Vz. (z = 0 —
length(inouts, 0) = 5 A
length(inouts,’ 0) = 7 A

146

[hd (take 3 (inouts, 0)), hd (t (take 8 (inouts, 0))), hd (take 3 (inouts, 0)), 0, 0, 0, 0] =
imouts,’ 0 N
(= inouts, 01(2) = 4 —
length(inouts, 0) = 5 A
length(inouts,’ 0) = 7 N
[hd (take 3 (inouts, 0)), hd (il (take 3 (inouts, 0))), hd (take 3 (inouts, 0)), 0, 0, 0, 0] =
inouts,’ 0)) A
0<z—
(hd (drop 3 (inouts, (x — Suc 0))) = 0 —
(inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (take 3 (inouts, x)), hd (tl (take 3 (inouts, x))), hd (take 3 (inouts, x)), 1, 1, 1,
hd (tl (drop 3 (inouts, (z — Suc 0))))] =
inouts,’ x) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (take 3 (inouts, x)), hd (tl (take 3 (inouts, x))), hd (take 3 (inouts, x)), 0, 1, 1,
hd (tl (drop 3 (inouts, (z — Suc 0))))] =
inouts,’)) A
(- inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = &5 A
length(inouts,’) = 7 A
[hd (take 3 (inouts, x)), hd (tl (take 3 (inouts, z))), hd (take 3 (inouts, x)), 1, 0, 1,
hd (tl (drop 8 (inouts, (z — Suc 0))))] =
inouts,’ x) A
(= inouts, (z — Suc 0)1(2) = 4 —
length(inouts,) = &5 A
length(inouts,”) = 7 A
[hd (take 8 (inouts, x)), hd (t (take 3 (inouts, x))), hd (take 3 (inouts, z)), 0, 0, 1,
hd (tl (drop 3 (inouts, (x — Suc 0))))] =
inouts,’))) A
(= hd (drop 8 (inouts, (z — Suc 0))) = 0 —
(inouts, z!(2) = 8 —
(inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = 5 A
length(inouts,’ ©) = 7 A
[hd (take 3 (inouts, x)), hd (tl (take 3 (inouts, x))), hd (take 3 (inouts, x)), 1, 1, 0,
hd (tl (drop 3 (inouts, (z — Suc 0))))] =
inouts,’) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (take 3 (inouts, x)), hd (tl (take 3 (inouts, x))), hd (take 3 (inouts, x)), 0, 1, 0,
hd (tl (drop 3 (inouts, (z — Suc 0))))] =
inouts,’)) A
(= inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = &5 A
length(inouts,”) = 7 A
[hd (take 3 (inouts, x)), hd (tl (take 3 (inouts, z))), hd (take 3 (inouts, x)), 1, 0, 0,
hd (tl (drop 8 (inouts, (z — Suc 0))))] =

147

inouts,”) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (take 3 (inouts, x)), hd (tl (take 3 (inouts, x))), hd (take 3 (inouts, x)), 0, 0, 0,
hd (tl (drop 3 (inouts, (z — Suc 0))))] =
inouts,’ x))))
from ol have len-5: Vz. length(inouts, x) = 5
by (metis neq0-conv)
have hd-take-3: hd (take 3 (inouts, z)) = hd(inouts,)
using len-5 by (metis append-take-drop-id hd-append2 take-eq-Nil zero-neg-numeral)
have hd-ti-take-3: hd (tl (take 3 (inouts, x))) = hd (tl (inouts, x))
using len-5 by (simp add: hd-tl-take-m)
have hd-drop-3: hd (drop 3 (inouts, x)) = inouts, z!(3)
using len-5 by (simp add: hd-drop-conv-nth)
have hd-drop-3" hd (drop 3 (inouts, (z — Suc 0))) = inouts, (z — Suc 0)1(3)
using len-5 by (simp add: hd-drop-conv-nth)
have hd-tl-drop-3: hd (¢l (drop 3 (inouts, x))) = inouts, z!(4)
using len-5 by (simp add: hd-drop-conv-nth nth-tl tl-drop)
have hd-tl-drop-3": hd (¢l (drop 3 (inouts, (z — Suc 0)))) = inouts, (z — Suc 0)!(4)
using len-5
by (metis drop-Suc eval-nat-numeral(2) eval-nat-numeral(3) hd-drop-conv-nth lessI
semiring-norm(26) semiring-norm(27) tl-drop)
show (z = 0 —
length(inouts, 0) = 5 A
length(inouts,’ 0) = 7 N
[hd (inouts, 0), hd (tl (inouts, 0)), hd (inouts, 0), 0, 0, 0, 0] = inouts,” 0 A
(= inouts, 01(2) = 4 —
length(inouts, 0) = 5 A
length(inouts,’ 0) = 7 A
[hd (inouts, 0), hd (tl (inouts, 0)), hd (inouts, 0), 0, 0, 0, 0] = inouts,’ 0)) A
(0 <z —
(inouts, (x — Suc 0)1(8) = 0 —
(inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = &5 A
length(inouts,”) = 7 A
[hd (inouts, z), hd (tl (inouts, x)), hd (inouts, z), 1, 1, 1, inouts, (x — Suc 0)!(4)] =
inouts,’ x) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = & A
length(inouts,”) = 7 A
[hd (inouts, z), hd (tl (inouts, x)), hd (inouts, z), 0, 1, 1, inouts, (x — Suc 0)!(4)] =
inouts,” ©)) A
(= inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = &5 A
length(inouts,”) = 7 A
[hd (inouts, z), hd (tl (inouts, x)), hd (inouts, z), 1, 0, 1, inouts, (x — Suc 0)!(4)] =
inouts,’ x) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = &5 A
length(inouts,’) = 7 A
[hd (inouts, z), hd (tl (inouts, x)), hd (inouts, z), 0, 0, 1, inouts, (x — Suc 0)!(4)] =
inouts,’ z))) A

148

(= tnouts, (z — Suc 0)1(3) = 0 —
(inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = &5 A
length(inouts,”) = 7 A
[hd (inouts, z), hd (tl (inouts, x)), hd (inouts, z), 1, 1, 0, inouts, (x — Suc 0)!(4)] =
inouts,’ x) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = & A
length(inouts,”) = 7 A
[hd (inouts, z), hd (tl (inouts, x)), hd (inouts, z), 0, 1, 0, inouts, (x — Suc 0)!(4)] =
inouts,’ ©)) A
(= inouts, z!(2) = 8 —
(inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = &5 A
length(inouts,”) = 7 A
[hd (inouts, z), hd (8l (inouts, z)), hd (inouts, z), 1, 0, 0, inouts, (x — Suc 0)1(4)] =
inouts,’ x) A
(= inouts, (z — Suc 0)1(2) = 4 —
length(inouts,) = &5 A
length(inouts,”) = 7 A
[hd (inouts, z), hd (tl (inouts, x)), hd (inouts, z), 0, 0, 0, inouts, (x — Suc 0)!(4)] =
inouts,’ x))))
using al hd-take-3 hd-tl-take-3 hd-drop-3' hd-tl-drop-3' by (smt)
next
fix ok, and inouts,::nat=real list and ok,’ and inouts, ::nat=-real list and z::nat
assume al:Vz. (z = 0 —
length(inouts, 0) = 5 A
length(inouts,’ 0) = 7 A
[hd (inouts, 0), hd (tl (inouts, 0)), hd (inouts, 0), 0, 0, 0, 0] = inouts,’ 0 A
(— inouts, 0(2) = 4 —
length(inouts, 0) = 5 A
length(inouts,’ 0) = 7 N
[hd (inouts, 0), hd (tl (inouts, 0)), hd (inouts, 0), 0, 0, 0, 0] = inouts,’ 0)) A
(0 <z —
(inouts, (x — Suc 0)Y(8) =0 —
(inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 5§ A
length(inouts,’) = 7 A
[hd (inouts, x), hd (tl (inouts, x)), hd (inouts,), 1, 1, 1, inouts, (x — Suc 0)!(4)] =
inouts,’ x) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (inouts, x), hd (tl (inouts, x)), hd (inouts,), 0, 1, 1, inouts, (x — Suc 0)!(4)] =
inouts,’ x)) A
(= inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (inouts, x), hd (tl (inouts, x)), hd (inouts,), 1, 0, 1, inouts, (x — Suc 0)!(4)] =
inouts,’ x) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts, =) = &5 A

149

length(inouts,’) = 7 A
[hd (inouts, x), hd (tl (inouts, z)), hd (inouts, z), 0, 0, 1, inouts, (x — Suc 0)!(4)] =
inouts,’ x))) A
(= inouts, (z — Suc 0)!(3) = 0 —
(inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (inouts, x), hd (tl (inouts, z)), hd (inouts,), 1, 1, 0, inouts, (x — Suc 0)!(4)] =
inouts,’ x) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (inouts, x), hd (tl (inouts, z)), hd (inouts,), 0, 1, 0, inouts, (x — Suc 0)!(4)] =
inouts,’ x)) A
(= inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (inouts, x), hd (tl (inouts, z)), hd (inouts,), 1, 0, 0, inouts, (x — Suc 0)!(4)] =
inouts,’ x) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts, z) = 5 A
length(inouts,’) = 7 A
[hd (inouts, x), hd (tl (inouts, x)), hd (inouts,), 0, 0, 0, inouts, (x — Suc 0)!(4)] =
inouts,’ x))))
from al have len-5: Vz. length(inouts,) = 5
by (metis neq0-conv)
have hd-take-3: hd (take 3 (inouts, z)) = hd(inouts,)
using len-5 by (metis append-take-drop-id hd-append2 take-eq-Nil zero-neg-numeral)
have hd-tl-take-3: hd (tl (take 3 (inouts, x))) = hd (¢l (inouts, z))
using len-5 by (simp add: hd-tl-take-m)
have hd-drop-3: hd (drop 3 (inouts, x)) = inouts, z!(3)
using len-5 by (simp add: hd-drop-conv-nth)
have hd-drop-3" hd (drop 38 (inouts, (x — Suc 0))) = inouts, (z — Suc 0)1(3)
using len-5 by (simp add: hd-drop-conv-nth)
have hd-tl-drop-3: hd (¢l (drop 3 (inouts, x))) = inouts, z!(4)
using len-5 by (simp add: hd-drop-conv-nth nth-tl ti-drop)
have hd-tl-drop-3": hd (tl (drop 8 (inouts, (z — Suc 0)))) = inouts, (x — Suc 0)!(4)
using len-5
by (metis drop-Suc eval-nat-numeral(2) eval-nat-numeral(8) hd-drop-conv-nth lessl
semiring-norm(26) semiring-norm(27) tl-drop)
show (z = 0 —
length(inouts, 0) = 5 A
length(inouts,” 0) = 7 A
[hd (take 3 (inouts, 0)), hd (tl (take 8 (inouts, 0))), hd (take 3 (inouts, 0)), 0, 0, 0, 0] =
mouts,’ 0 N
(= inouts, 01(2) = 4 —
length(inouts, 0) = 5 A
length(inouts,’ 0) = 7 A
[hd (take 8 (inouts, 0)), hd (t (take 3 (inouts, 0))), hd (take 3 (inouts, 0)), 0, 0, 0, 0] =
inouts,” 0)) A
(0 <z —
(hd (drop 3 (inouts, (x — Suc 0))) = 0 —
(inouts, z!(2) = 8 —

150

(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (take 3 (inouts, x)), hd (tl (take 3 (inouts,
hd (tl (drop 3 (inouts, (z — Suc 0))))] =
inouts,’) A
(= inouts, (z — Suc 0)1(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (take 3 (inouts, x)), hd (tl (take 3 (inouts,
hd (tl (drop 3 (inouts, (z — Suc 0))))] =
inouts,” ©)) A
(= inouts, z!(2) = 8 —
(inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = &5 A
length(inouts,”) = 7 A
[hd (take 8 (inouts, x)), hd (t (take 3 (inouts,
hd (¢l (drop 3 (inouts, (x — Suc 0))))] =
inouts,’ x) A
(= inouts, (x — Suc 0)N(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (take 8 (inouts, x)), hd (tl (take 3 (inouts,
hd (tl (drop 3 (inouts, (x — Suc 0))))] =
inouts,’ x))) A
(= hd (drop 3 (inouts, (x — Suc 0))) = 0 —
(inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (take 3 (inouts, x)), hd (tl (take 3 (inouts,
hd (tl (drop 3 (inouts, (z — Suc 0))))] =
inouts,’) A
(= inouts, (x — Suc 0)1(2) = 4 —
length(inouts,) = 5 A
length(inouts,”) = 7 A
[hd (take 3 (inouts, x)), hd (tl (take 3 (inouts,
hd (tl (drop 3 (inouts, (z — Suc 0))))] =
inouts,’ ©)) N
(= inouts, z!(2) = 8 —
(inouts, (x — Suc 0)Y(2) = 4 —
length(inouts,) = 5 A
length(inouts,”) = 7 A
[hd (take 8 (inouts, x)), hd (t (take 3 (inouts,
hd (tl (drop 3 (inouts, (x — Suc 0))))] =
inouts,’) A
(= inouts, (x — Suc 0)N(2) = 4 —
length(inouts,) = 5 A
length(inouts,’) = 7 A
[hd (take 8 (inouts, x)), hd (tl (take 3 (inouts,
hd (tl (drop 3 (inouts, (x — Suc 0))))] =
inouts,’ x))))

x))), hd (take 3 (inouts,

z))), hd (take 3 (inouts,

z))), hd (take 3 (inouts,

z))), hd (take 3 (inouts,

x))), hd (take 3 (inouts,

z))), hd (take 3 (inouts,

x))), hd (take 3 (inouts,

z))), hd (take 3 (inouts,

using al hd-take-8 hd-tl-take-8 hd-drop-3' hd-tl-drop-3' by (smt)

qed
qed

151

3

then have f6-2: ... = 96
by (smt Suc-eg-plus! add-Suc-right numeral-Bit! numeral-One one-add-one)
have simblock-f6: SimBlock 5 7 ?f6
using simblock-f3 simblock-f5 SimBlock-F Block-parallel-comp
by (metis (no-types, lifting) Suc-1 Suc-eq-plusl Suc-numeral add-numeral-left f6-0 f6-1
numeral-Bit] numeral-One)

have ref-f6: (V n:nat - (
«(Azn. (hd(zn) =0V hd(zn) =1)))»
(&inouts), («n»),)::sim-state upred)
((V n:inat -
((#($inouts («n»)q)) =u «5») A
((#u($inouts ™ («n»)g)) =u «7») A
(head,, ($inouts («n»),) =4 head,($inouts” («n»)q)) A
(head,, (tail ,($inouts («n»)q)) =4 head, (tail, ($inouts” («n»),))))
)) C post-landing-finalize-part1
proof —
have 1: ((V nunat - (
«(Azn. (hd(zn) =0V hd(zn) =1)))»
(&inouts), («n»),)::sim-state upred)
Fn
((V n:unat -
#yu($inouts («n»),)) =4 «5») A
#u(Sinouts " («n»)g)) =u «7») A
head,, ($inouts («n»),) =, head,($inouts” («n»),)) A
head., (tail, ($inouts («n»)q)) = head, (tail,($inouts” («n»),))))
)T o6
apply (simp add: FBlock-def)
apply (rule ndesign-refine-intro)
apply simp
apply (rel-simp)
apply (rule congl, clarify)
apply (metis gr-zerol list.sel(1) list.sel(3))
apply (clarify)
by (metis gr-zerol list.sel(1) list.sel(3))
show ?thesis
using 1 f6 f6-0 f6-1 f6-2 by simp
qed

let 2f7-f = (Az n. [if hd(z n) = 0 then 1 else 0, hd(tl(z n))])
let 2f7 = FBlock (Az n. True) 2 2 2f7-f
have f7: (LopNOT) || (Id) (x door-open-time: double x)) =
FBlock (Ax n. True) (1+1) (1+1)
Az n. (((f~LopNOT o (Axz nn. take 1 (zz nn))) zn) e ((f-Id o (Azx nn. drop 1 (zx nn)))) x n))
using SimBlock-LopNOT SimBlock-1d FBlock-parallel-comp
by (simp add: LopNOT-def simu-contract-real.Id-def)
then have f7-0: ... = FBlock (Ax n. True) 2 2 ?f7-f
proof —
have Vz n. (Az n. (((f~LopNOT o (Axx nn. take 1 (xx nn))) xn) e
((f-Id o (Azz nn. drop 1 (zx nn)))) xn)) zn = 2f7-fzn
by (simp add: drop-Suc f-I1d-def f-LopNOT-def hd-take-m)
then show ?thesis
by (simp add: numeral-2-eq-2)

152

qed
have simblock-f7: SimBlock 2 2 (2f7)
using SimBlock-LopNOT SimBlock-1d SimBlock-F Block-parallel-comp
by (metis (no-types, lifting) LopNOT-def f7 f7-0 one-add-one simu-contract-real.Id-def)

let 2/8-f = (A\xz na. [if (if I < (if hd(z na) = 0 then 1:real else 0) * 2
then (if na = 0 then 0
else min (vT-fd-sol-1
(Anl1. (Ana. real-of-int
(int32 (RoundZero (real-of-int [Rate x maz (z nal(Suc 0)) 01])))) nl)
(Anl1. (if hd(z n1) = 0 then 1::real else 0)) (na — 1))
((Ana. real-of-int (int32 (RoundZero (real-of-int [Rate * max (z na!(Suc 0)) 07))))
(na — 1)) + 1
else 0) > (real-of-int (int32 (RoundZero (real-of-int [Rate * maz (x na!(Suc 0)) 01))))
then 1 else 0])
let 2f8-f' = (Az na. [if (if hd(z na) = 0
then (if na = 0 then 0
else min (vT-fd-sol-1
(Anl. (Ana. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (z na!(Suc 0)) 01)))) ni)
(Anl. (if hd(z n1) = 0 then 1::real else 0)) (na — 1))
((Ana. real-of-int (int32 (RoundZero (real-of-int [Rate x max (z na!(Suc 0))
01))))
(na — 1)) + 1
else 0) > (real-of-int (int32 (RoundZero (real-of-int [Rate * maz (x na!(Suc 0)) 0]))))
then 1 else 0])
let ?/8 = FBlock (\x n. True) 2 1 2f8-f'
have f8: ((LopNOT) ||p (Id) (x door-open-time: double %)) ;; wvariable Timer
= 2f7 ;; wariable Timer-simp-pat
using variable Timer-simp f7 f7-0 by auto

then have f8-0: ... = FBlock (Ax n. True) 2 1 (variableTimer-simp-pat-f o 2f7-f)
using simblock-f7 SimBlock-variable Timer-simp FBlock-seq-comp by blast

then have f8-1: ... = 7f8
proof —

show ?thesis
apply (simp add: FBlock-def)
apply (rel-simp)
apply (rule iffI)
apply (clarify)
defer
apply (clarify)
defer
proof —
fix ok, and inouts,::nat=real list and ok,’ and inouts, ::nat=real list and z::nat
assume al: Vz. (z = 0 —
(hd (inouts, 0) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (hd (tl (inouts, 0))) 0])) < 1 —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [1] = inouts,” 0) A
(= int32 (RoundZero (real-of-int [Rate * max (hd (tl (inouts, 0))) 01)) < 1 —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [0] = inouts,’ 0)) A
(= hd (inouts, 0) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (hd (tl (inouts, 0))) 0])) < 0 —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [1] = inouts,” 0) A
(= int32 (RoundZero (real-of-int [Rate * max (hd (&l (inouts, 0))) 01)) < 0 —

153

length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [0] = inouts,’ 0))) A
(0 <z —
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate x max (hd (t (inouts, z))) 0])))

< min (vT-fd-sol-1
(Anl. real-of-int (int32 (RoundZero (real-of-int [Rate x mazx (hd (¢ (inouts, nl)))

01)))
(Anl. if hd (inouts, n1) = 0 then 1 else 0) (x — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate * maz (hd (tl (inouts, (x — Suc 0))))

1 —
length(inouts, z) = 2 A length(inouts,’) = Suc 0 A [1] = inouts,’ z) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * max (hd (tl (inouts, z))) 0])))

< min (vT-fd-sol-1
(Anl. real-of-int (int32 (RoundZero (real-of-int [Rate * maz (hd (¢ (inouts,

ni))) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))

(real-of-int
(int32 (RoundZero (real-of-int [Rate * mazx (hd (tl (inouts, (z — Suc 0)))) 01)))) +

1 —
length(inouts, x) = 2 A length(inouts,’ ©) = Suc 0 A [0] = inouts,’ z)) A

(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (hd (tl (inouts, z))) 0])) < 0 —
length(inouts, x) = 2 A length(inouts,’) = Suc 0 A [1] = inouts,” x) A
(= int32 (RoundZero (real-of-int [Rate * max (hd (tl (inouts, z))) 0])) < 0 —
length(inouts, x) = 2 A length(inouts,’ z) = Suc 0 A [0] = inouts,’ x)))
from a! have len-2: Vz. length(inouts, x) = 2
by (metis (no-types, lifting) gr-zerol)
have hd-tl-2: hd (tl (inouts, x)) = inouts, z!(Suc 0)
using len-2
by (metis Suc-1 diff-Suc-1 hd-conv-nth length-tl less-numeral-extra(1) list.size(8)

nth-tl zero-neg-one)
have hd-tl-2": Vz. hd (t (inouts, z)) = inouts, z!(Suc 0)

using len-2
by (metis Suc-1 diff-Suc-1 hd-conv-nth length-tl less-numeral-extra(1) list.size(3) nth-tl

zero-neq-one)
have hd-tl-2": (hd (¢l (inouts, (x — Suc 0)))) = (inouts, (z — Suc 0)!(Suc 0))

using len-2 using hd-tl-2’ by blast
from ! have al"Vz. (z = 0 —

(hd (inouts, 0) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 01)) < 1 —

length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [1] = inouts,’ 0) A
(= int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0)) 0])) < 1 —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [0] = inouts,’ 0)) A
(= hd (inouts, 0) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 01)) < 0 —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [1] = inouts,’ 0) A
(= int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0)) 0])) < 0 —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [0] = inouts,’ 0))) A
0 <z —
(hd (inouts, z) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))

< min (vT-fd-sol-1
(Anl. real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, n1!(Suc 0))

154

(Anl. if hd (inouts, nl) = 0 then 1 else 0) (xz — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, (z — Suc 0)!(Suc 0))
01)))) +

1 —
length(inouts, x) = 2 A length(inouts,”) = Suc 0 A [1] = inouts,’) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 01)))

< min (vT-fd-sol-1

(An1. real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, ni1!(Suc

(Anl.if hd (inouts, nl) = 0 then 1 else 0) (xz — Suc 0))
(real-of-int
(int32 (RoundZero (real-of-int [Rate * mazx (inouts, (x — Suc 0)!(Suc 0)) 01)))) +
1 —
length(inouts, x) = 2 A length(inouts,’) = Suc 0 A [0] = inouts,” x)) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts, ©) = 2 A length(inouts,’ x) = Suc 0 A [1] = inouts,” z) A
(= int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts, x) = 2 A length(inouts,’) = Suc 0 A [0] = inouts,” x)))
using hd-tl-2’ by presburger
show (z = 0 —
(hd (inouts, 0) = 0 —»
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 0])) < 1 —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [1] = inouts,’ 0) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 0])) < 1 —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [0] = inouts,’ 0)) A
(= hd (inouts, 0) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 0])) < 0 —

length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [1] = inouts,’ 0) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 0])) < 0 —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [0] = inouts,’ 0))) A

(0 <z —
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(An1. real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, n1!(Suc 0))

(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate *x maz (inouts, (z — Suc 0)!(Suc 0))

1 —
length(inouts, x) = 2 A length(inouts,”) = Suc 0 A [1] = inouts,” x) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate *x maz (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(An1. real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, ni!(Suc

(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, (x — Suc 0)!(Suc
0)) 01)))) +
1 —

length(inouts, x) = 2 A length(inouts,’ ©) = Suc 0 A [0] = inouts,’ z)) A
(= hd (inouts, z) = 0 —

(int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts, z) = 2 A length(inouts,’) = Suc 0 A [1] = inouts,’ z) A

(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —

155

length(inouts, ©) = 2 A length(inouts,’ x) = Suc 0 A [0] = inouts,”’ z)))
using al’ by blast
next
fix ok, and inouts,::nat=real list and ok,’ and inouts, ::nat=-real list and z::nat
assume al: Vz. (z =0 —
(hd (inouts, 0) = 0 —»
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 0])) < 1 —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [1] = inouts,’ 0) A
(= int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0)) 0])) < 1 —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [0] = inouts,’ 0)) A
(= hd (inouts, 0) = 0 —
(int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0)) 0])) < 0
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [1] = inouts,’ 0) A
(= int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0)) 0])) < 0 —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [0] = inouts,” 0))) A
(0 <z —
(hd (inouts, z) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1 (Anl. real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts,
nl!(Suc 0)) 01))))

—

(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int | Rate x max (inouts, (x — Suc 0)!(Suc 0))
o) +
1 —
length(inouts, x) = 2 A length(inouts,”) = Suc 0 A [1] = inouts,’ x) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate *x maz (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1 (Anl. real-of-int (int32 (RoundZero (real-of-int [Rate % maz
(inouts, n1!(Suc 0)) 01))))
(Anl. if hd (inouts, nl) = 0 then I else 0) (z — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, (z — Suc 0)!(Suc
0)) 01)))) +
1 —
length(inouts, ©) = 2 A length(inouts,” x) = Suc 0 A [0] = inouts,’ x)) A
(= hd (inouts, x) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts, x) = 2 A length(inouts,”) = Suc 0 A [1] = inouts,’ x) A
(= int32 (RoundZero (real-of-int [Rate x maz (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts, ©) = 2 A length(inouts,” x) = Suc 0 A [0] = inouts,’ ©)))
from al have len-2: Vz. length(inouts,) = 2
by (metis (no-types, lifting) gr-zerol)
have hd-tl-2: hd (¢l (inouts, z)) = inouts, z!(Suc 0)
using len-2
by (metis Suc-1 diff-Suc-1 hd-conv-nth length-tl less-numeral-extra(1) list.size(3)
nth-tl zero-neg-one)
have hd-tl-2": Vx. hd (tl (inouts, x)) = inouts, z!(Suc 0)
using len-2
by (metis Suc-1 diff-Suc-1 hd-conv-nth length-tl less-numeral-extra(1) list.size(3) nth-tl
zero-neg-one)
have hd-tl-2"": (hd (¢ (inouts, (z — Suc 0)))) = (inouts, (z — Suc 0)!(Suc 0))
using len-2 using hd-tl-2' by blast
from af have al" Vz. (z =0 —
(hd (inouts, 0) = 0 —»
(int32 (RoundZero (real-of-int [Rate * max (hd (tl (inouts, 0))) 01)) < 1 —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [1] = inouts,” 0) A
(= int32 (RoundZero (real-of-int [Rate x maz (hd (¢ (inouts, 0))) 0])) < 1 —

156

length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [0] = inouts,’ 0)) A
(= hd (inouts, 0) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (hd (tl (inouts, 0))) 01)) < 0 —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [1] = inouts,’ 0) A
(= int32 (RoundZero (real-of-int [Rate * maz (hd (# (inouts, 0))) 0])) < 0 —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [0] = inouts,’ 0))) A
(0 <z —
(hd (inouts, z) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (hd (tl (inouts, z))) 0])))
< min (vT-fd-sol-1 (Anl. real-of-int (int32 (RoundZero (real-of-int [Rate * max (hd (il
(inouts, n1))) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (xz — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate x maz (hd (tl (inouts, (z — Suc 0))))
01)))) +
1 —
length(inouts, x) = 2 A length(inouts,”) = Suc 0 A [1] = inouts,’) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate x maz (hd (tl (inouts, z))) 01)))
< min (vT-fd-sol-1 (Anl. real-of-int (int32 (RoundZero (real-of-int [Rate * maz (hd
(# (inouts, nl))) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate x max (hd (tl (inouts, (z — Suc

0)))) 01)))) +
1 —

length(inouts, x) = 2 A length(inouts,’ ©) = Suc 0 A [0] = inouts,” x)) A
(= hd (inouts,) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (hd (tl (inouts, z))) 0])) < 0 —
length(inouts, ©) = 2 A length(inouts,’ x) = Suc 0 A [1] = inouts,” z) A
(= int32 (RoundZero (real-of-int [Rate x maz (hd (¢l (inouts, z))) 0])) < 0 —
length(inouts, x) = 2 A length(inouts,’) = Suc 0 A [0] = inouts,” x)))
using hd-tl-2' by presburger
show (z = 0 —
(hd (inouts, 0) = 0 —»
(int32 (RoundZero (real-of-int [Rate * max (hd (tl (inouts, 0))) 0])) < I —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [1] = inouts,’ 0) A
(= int32 (RoundZero (real-of-int [Rate * max (hd (tl (inouts, 0))) 01)) < 1 —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [0] = inouts,’ 0)) A
(= hd (inouts, 0) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (hd (tl (inouts, 0))) 0])) < 0 —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [1] = inouts,’ 0) A
(= int32 (RoundZero (real-of-int [Rate * max (hd (tl (inouts, 0))) 07)) < 0 —
length(inouts, 0) = 2 A length(inouts,’ 0) = Suc 0 A [0] = inouts,’ 0))) A
(0 <z —
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (hd (tl (inouts, x))) 01)))
< min (vT-fd-sol-1 (Anl. real-of-int (int32 (RoundZero (real-of-int [Rate x max (hd (¢l
(inouts, n1))) 01))))
(Anl. if hd (inouts, n1) = 0 then 1 else 0) (z — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate x mazx (hd (tl (inouts, (z — Suc 0))))
01))) +
1 —
length(inouts, x) = 2 A length(inouts,’) = Suc 0 A [1] = inouts,” x) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * max (hd (tl (inouts, z))) 0])))
< min (vT-fd-sol-1 (Anl. real-of-int (int32 (RoundZero (real-of-int [Rate *x maz (hd (il
(inouts, n1))) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))

157

(real-of-int (int32 (RoundZero (real-of-int | Rate * maz (hd (¢l (inouts, (z — Suc
0)))) 01)))) +
1 —

length(inouts, x) = 2 A length(inouts,’ ©) = Suc 0 A [0]
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate x mazx (hd (tl (inouts, z))) 0])) < 0 —
length(inouts, x) = 2 A length(inouts,’) = Suc 0 A [1] = inouts,” x) A
(= int32 (RoundZero (real-of-int [Rate * max (hd (tl (inouts, z))) 0])) < 0 —
length(inouts, x) = 2 A length(inouts,’) = Suc 0 A [0] = inouts,’ x)))
using hd-tl-2' a1’ by blast
qed
qed
then have f8-2: ...
proof —
have Vz na. (1 <
by simp
then show ?thesis
proof —
have FBlock (Af n. True) 2 1 (Af n. [if
real-of-int (int32 (RoundZero (real-of-int [(Rate::real) * maz (f n!(Suc 0)) 0]))) <
(if (1:real) < (if hd (f n) = 0 then 1 else 0) x 2 then (if n = 0 then 0 else
min (vT-fd-sol-1 (An. real-of-int (int32 (RoundZero (real-of-int [(Rate::real)
maz (f n)(Suc 0)) 01))))
(An. if hd (f n) = 0 then 1 else 0) (n — 1)) (real-of-int (int32 (RoundZero (real-of-int
[(Rate::real) x maz (f (n — 1)!(Suc 0)) 01))))) + 1 else 0) then 1 else 0]) =
FBlock (Af n. True) 2 1 (A n. [if real-of-int (int32 (RoundZero (real-of-int [(Rate::real)
x maz (f n!(Suc 0)) 01))) < (if hd (fn) = 0 then (if n = 0 then 0 else min (vT-fd-sol-1
(An. real-of-int (int32 (RoundZero (real-of-int [(Rate::real) * maz (f n!(Suc 0)) 01))))
(An. if hd (f n) = 0 then 1 else 0) (n — 1)) (real-of-int (int32 (RoundZero (real-of-int
[(Rate::real) x mazx (f (n — 1)!(Suc 0)) 01))))) + 1 else 0) then 1 else 0]) V
(Vf n. [if real-of-int (int32 (RoundZero (real-of-int [(Rate::real) * maz (f n!(Suc 0)) 0]))) <
(if (1:real) < (if hd (f n) = (0::real) then 1 else 0) % 2 then (if n = 0 then 0 else min
(vT-fd-sol-1 (An. real-of-int (int32 (RoundZero (real-of-int [(Rate::real) *
maz (f n!(Suc 0)) 01)))) (An. if hd (f n) = 0 then 1 else 0) (n — 1))
(real-of-int (int32 (RoundZero (real-of-int [(Rate::real) * maz (f (n — 1)!(Suc 0)) 01)))))

= inouts,’ x)) A

= FBlock (Ax n. True) 2 1 2f8-f'

(if hd(x na) = 0 then 1:real else 0) * 2) = (hd(z na) = 0)

+ 1 else 0)

then 1::real else 0] = [if real-of-int (int32 (RoundZero (real-of-int [(Rate::real) %

maz (f n!(Suc 0)) 01))) < (if hd (f n) = 0 then (if n = 0 then 0 else min (vT-fd-sol-1
(An. real-of-int (int32 (RoundZero (real-of-int [(Rate::real) * maz (f n!(Suc 0)) 07))))
(An. if hd (fn) = 0 then 1 else 0) (n — 1)) (real-of-int (int32 (RoundZero (real-of-int

[(Rate::real) x maz (f (n — 1)!(Suc 0)) 01))))) + 1 else 0) then 1 else 0])
by auto

then show %thesis
by force
qed
qed

have simblock-f8: SimBlock 2 1 (FBlock (Ax n. True) 2 1 2f8-f")

using simblock-f7 SimBlock-variable Timer-simp SimBlock-FBlock-seq-comp f8-0 f8-1 f8-2 by
fastforce

let 2f9-f = Az n. [if (zn)!0 =0V (zn)ll =0V (zn)!2 =0 then 0 else 1,
if (xn)!3 =0 A (zn)l4 = 0 then 0 else 1])
let 2f9 = FBlock (Ax n. True) 5 2 2f9-f

have f9: ((LopAND 3) ||g (LopOR 2)) = FBlock (Ax n. True) (3+2) (1+1)
(Az n. (((f-LopAND o (Azz nn. take 3 (xx nn))) x n) e

158

((f-LopOR o (Azz nn. drop 3 (zxz nn)))) z n))
using SimBlock-LopAND SimBlock-LopOR FBlock-parallel-comp
by (simp add: LopAND-def LopOR-def)
then have f9-0: ... = FBlock (Ax n. True) (3+2) (1+1) 2f9-f
proof —
show ?thesis
apply (simp add: FBlock-def f-LopAND-def f-LopOR-def)
apply (rel-simp)
apply (rule iffT)
apply (clarify)
defer
apply (clarify)
defer
proof —
fix ok, and inouts,::nat=real list and ok,’ and inouts, ::nat=-real list and z::nat
assume al: Vz. (LOr (drop 3 (inouts, ©)) —
(LAnd (take 3 (inouts, x)) —
length(inouts,) = 5 A length(inouts,’) = Suc (Suc 0) A [1, 1] = inouts,” z) A
(= LAnd (take 3 (inouts, x)) —
length(inouts, z) = 5 A length(inouts,’) = Suc (Suc 0) A [0, 1] = inouts,’ x)) A
(= LOr (drop 3 (inouts, z)) —
(LAnd (take 3 (inouts, x)) —
length(inouts,) = 5 A length(inouts,’) = Suc (Suc 0) A [1, 0] = inouts,”) A
(= LAnd (take 3 (inouts, x)) —
length(inouts, x) = 5 A length(inouts,’) = Suc (Suc 0) A [0, 0] = inouts,’ x))
from al have len-5: Vz. length(inouts,) = 5
by blast
have take-3: take 3 (inouts, z) = [(inouts, x)!0, (inouts, x)!1, (inouts, z)!2]
using len-5 by (smt Cons-nth-drop-Suc Suc-1 Suc-eq-plusl Suc-mono add-Suc-right
add-diff-cancel-right’ drop-0 numeral-3-eq-3 numeral-Bit1 numeral-eq-one-iff
numeral-plus-one take-Suc-Cons take-eq-Nil zero-less-numeral)
have land-take-3:
LAnd (take 3 (inouts, z)) = (= ((inouts, x)!0 = 0 V (inouts, z)!1 = 0 V (inouts, z)!2

by (simp add: take-3)
have drop-3: drop 3 (inouts, x) = [(inouts, x)!3, (inouts, x)!4]
using len-5
by (metis Cons-nth-drop-Suc add-Suc cancel-ab-semigroup-add-class.add-diff-cancel-left’
drop-eq-Nil eval-nat-numeral(2) eval-nat-numeral(3) lessl numeral-Bit0 order-refl pos2
semiring-norm(26) semiring-norm(27) zero-less-diff)
have lor-drop-3: LOr (drop 8 (inouts, x)) = (—=((inouts, ©)!3 = 0 A (inouts,)4 = 0))
by (simp add: drop-8)
show (inouts, z!(3) = 0 A inouts, z!(4) = 0 —
(inouts, z!(0) = 0 — length(inouts,) = 5 A length(inouts,’) = Suc (Suc 0) A [0, 0]
= inouts,’ x) A
(inouts, z!(Suc 0) = 0 — length(inouts,) = &5 A length(inouts,’) = Suc (Suc 0) A
[0, 0] = inouts,” z) A
(inouts, x!(2) = 0 — length(inouts, z) = 5 A length(inouts,’ x) = Suc (Suc 0) A [0, 0]
= inouts,’) A
(= inouts, z!(0) = 0 A = inouts, z!(Suc 0) = 0 A = inouts, z!(2) = 0 —
length(inouts, x) = 5 A length(inouts,’) = Suc (Suc 0) A [1, 0] = inouts,” x)) A
((inouts, z!(3) = 0 — — inouts, z!(4) = 0) —
(inouts, x!(0) = 0 — length(inouts,) = 5 A length(inouts,’ x) = Suc (Suc 0) A [0, 1]
= inouts,’) A
(inouts, z!(Suc 0) = 0 — length(inouts,) = 5 A length(inouts,’) = Suc (Suc 0) A

159

[0, 1] = inouts,’) A
(inouts, x!(2) = 0 — length(inouts,) = 5 A length(inouts,’ x) = Suc (Suc 0) A [0, 1]
= inouts,’ x) A
(= inouts, z!(0) = 0 A — inouts, z!(Suc 0) = 0 A — inouts, z!(2) = 0 —
length(inouts, =) = 5 A length(inouts,’) = Suc (Suc 0) A [1, 1] = inouts,’ x))
using land-take-3 lor-drop-3 al len-5 by simp
next
fix ok, and inouts,::nat=real list and ok,’ and inouts, ::nat=-real list and z::nat
assume al: Vz. (inouts, z!(3) = 0 A inouts, z!(4) = 0 —
(inouts, x!(0) = 0 — length(inouts, x) = 5 A length(inouts,’ x) = Suc (Suc 0) A [0, 0]
= inouts,’) A
(inouts, z!(Suc 0) = 0 — length(inouts,) = 5 A length(inouts,’) = Suc (Suc 0) A
[0, 0] = inouts,” z) A
(inouts, x!(2) = 0 — length(inouts,) = 5 A length(inouts,’ x) = Suc (Suc 0) A [0, 0]
= inouts,’ x) A
(= inouts, z!1(0) = 0 A = inouts, z!(Suc 0) = 0 A = inouts, z!(2) = 0 —
length(inouts, x) = 5 A length(inouts,’ z) = Suc (Suc 0) A [1, 0] = inouts,’ x)) A
((inouts, z!(3) = 0 — — inouts, z!(4) = 0) —
(inouts, x!(0) = 0 — length(inouts, ©) = 5 A length(inouts,’ x) = Suc (Suc 0) A [0, 1]
= inouts,’ x) A
(inouts, z!(Suc 0) = 0 —> length(inouts,) = 5 A length(inouts,’) = Suc (Suc 0) A
[0, 1] = inouts,’ z) A
(inouts, x!(2) = 0 — length(inouts,) = 5 A length(inouts,’ x) = Suc (Suc 0) A [0, 1]
= inouts,’ x) A
(= inouts, z!(0) = 0 A = inouts, z!(Suc 0) = 0 A = inouts, z!(2) = 0 —
length(inouts, =) = 5 A length(inouts,’) = Suc (Suc 0) A [1, 1] = inouts,’ x))
from al have len-5: Vz. length(inouts,) = 5
by blast
have take-3: take 8 (inouts, x) = [(inouts, x)!0, (inouts, x)!1, (inouts, x)!2]
using len-5 by (smt Cons-nth-drop-Suc Suc-1 Suc-eq-plusl Suc-mono add-Suc-right
add-diff-cancel-right’ drop-0 numeral-3-eq-3 numeral-Bit1 numeral-eq-one-iff
numeral-plus-one take-Suc-Cons take-eq-Nil zero-less-numeral)
have land-take-3:
LAnd (take 3 (inouts, x)) = (= ((inouts, x)!0 = 0 V (inouts, z)!1 = 0 V (inouts, z)!2

I

S
=
=

by (simp add: take-3)

have drop-3: drop 3 (inouts, x) = [(inouts, x)!3, (inouts, x)!4]
using len-5
by (metis Cons-nth-drop-Suc add-Suc cancel-ab-semigroup-add-class.add-diff-cancel-left’
drop-eq-Nil eval-nat-numeral(2) eval-nat-numeral(3) lessI numeral-Bit0 order-refl pos2
semiring-norm(26) semiring-norm(27) zero-less-diff)

have lor-drop-3: LOr (drop 38 (inouts, x)) = (—=((inouts, ©)!3 = 0 A (inouts,)4 = 0))
by (simp add: drop-8)

show (LOr (drop 3 (inouts, x)) —
(LAnd (take 3 (inouts, x)) —
length(inouts, x) = 5 A length(inouts,’) = Suc (Suc 0) A [1, 1] = inouts,’ z) A
(- LAnd (take 3 (inouts, z)) —
length(inouts, =) = 5 A length(inouts,’) = Suc (Suc 0) A [0, 1] = inouts,’ x)) A
(= LOr (drop 3 (inouts, z)) —
(LAnd (take 3 (inouts, x)) —
length(inouts, x) = 5 A length(inouts,’) = Suc (Suc 0) A [1, 0] = inouts,’ z) A
(- LAnd (take 3 (inouts, z)) —
length(inouts, =) = 5 A length(inouts,’) = Suc (Suc 0) A [0, 0] = inouts,’ x))
using land-take-3 lor-drop-3 al len-5 by simp

qed

160

qed
then have f9-1: ... = 219
by (metis (no-types, lifting) Suc-eg-plusl add-Suc nat-1-add-1 numeral-2-eq-2
numeral-3-eq-8 numeral-code(3))
have simblock-f9: SimBlock 5 2 2f9
using SimBlock-LopAND SimBlock-LopOR SimBlock-F Block-parallel-comp f9-0 f9-1 f9
by (smt LopAND-def LopOR-def One-nat-def Suc-eq-plusl add-Suc numeral-3-eq-3 numeral-Bit1
one-add-one zero-less-numeral)

let 2f10-f = (Az na. [latch-rec-calc-output
(Anl. (if (xnI)!0 =0V (znl)ll =0V (znl)!2 = 0 then 0 else 1::real))
(Anl. (if (zn1)!8 =0 A (xz nl)l4 = 0 then 0 else 1::real))
(na)))
let ?f10 = FBlock (Ax n. True) 5 1 ?f10-f
have f10: (((LopAND 3) ||g (LopOR 2)) ;; latch) = 29 ;; latch-simp-pat’
using latch-simp f9 f9-0 f9-1 by simp

then have f10-0: ... = FBlock (Az n. True) 5 1 (latch-simp-pat-f’ o 2f9-f)
using simblock-f9 FBlock-seq-comp SimBlock-latch-simp’ by blast
then have f10-1: ... = FBlock (Ax n. True) 5 1 2f10-f
proof —
have 1: Va n. (latch-simp-pat-f’ o 2f9-f) x n = 2f10-fz n
by (simp)

then have 2: (latch-simp-pat-f' o ?f9-f) = 2f10-f
using fun-eq by blast
show ?thesis
using 2 by (rule FBlock-eq)
qed
have simblock-f10: SimBlock 5 1 2f10
using simblock-f9 SimBlock-latch-simp’ SimBlock-FBlock-seq-comp f10-0 f10-1 by fastforce

let ?f11-f = (A\x na. [if (if hd(z na) = 0
then (if na = 0 then 0
else min (vT-fd-sol-1
(An1. (Ana. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (z na!(Suc 0)) 01)))) nl)
(Anl. (if hd(z n1) = 0 then 1::real else 0)) (na — 1))
((Ana. real-of-int (int32 (RoundZero (real-of-int [Rate x maz (z na!(Suc 0))

(na — 1)) + 1

else 0) > (real-of-int (int32 (RoundZero (real-of-int [Rate * max (x na!(Suc 0)) 01))))

then 1 else 0,

latch-rec-calc-output

(An1. (if (xn1)!2 =
(Anl. (if (zn1)ls =

(na)l)
let ?f11 = FBlock (Ax n. True) 7 2 ?f11-f

OV (znl)l3 =0V (znl)4 = 0then 0 else 1::real))
0 A (znl)l6 = 0 then 0 else 1::real))

have f11: ((((LopNOT) ||p (Id) (x door-open-time: double %)) ;; wariableTimer)
I
((LopAND 3) || 5(LopOR 2)) ;; latch))
= ?f8 ||p 210
using f10 f10-0 f10-1 f8 f8-0 f8-1 by auto
then have f11-0: ... = FBlock (Ax n. True) (2+5) (1+1)
Az n. (((9/8-f" o (Azz nn. take 2 (zz nn))) zn) o ((2f10-f o (Azz nn. drop 2 (xz nn)))) x n))
using simblock-f8 simblock-f10 FBlock-parallel-comp by blast

161

then have f11-1: ... = FBlock (Az n. True) (2+45) (1+1) ?f11-f
proof —
show %thesis
apply (rule FBlock-eq'")
defer
apply auto[1]
apply auto[1]
apply (rule alll)+
apply (clarify)
proof —
fix z::nat = real list and n::nat
assume al: Vn. length(zn) =2 + 5
have hd-take-2: ¥V n. hd (take 2 (z n)) = hd (x n)
by (simp add: hd-take-m)
have drop-2-0: Vn. drop 2 (z n)!0 = (z n)!2
using al by simp
have drop-2-1: Vn. drop 2 (x n)!1 = (z n)!3
using al by simp
have drop-2-1": ¥V n. drop 2 (z n)!(Suc 0) = (z n)!3
using al by simp
have drop-2-2: Vn. drop 2 (z n)!2 = (z n)l4
using al by simp
have drop-2-3: ¥V n. drop 2 (z n)!3 = (z n)!5
using al by simp
have drop-2-4: Vn. drop 2 (x n)l4 = (z n)l6
using al by simp
let ?lhsl = ((Az na. [if real-of-int (int32 (RoundZero (real-of-int | Rate * maz (z na!(Suc 0))

< (if hd (z na) = 0
then (if na = 0 then 0
else min (vT-fd-sol-1

(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate x maz (z n1!(Suc 0)) 01))))

(Anl. if hd (z n1) = 0 then 1 else 0) (na — 1))

(real-of-int
(int32 (RoundZero (real-of-int [Rate x maz (z (na — 1)!(Suc 0))

1
else 0)
then 1 else 0]) o (Azx nn. take 2 (zx nn))) z n
let ?rhs1 = (Az na. [if real-of-int (int32 (RoundZero (real-of-int [Rate x maz (z na!(Suc 0))

< (if hd (x na) = 0
then (if na = 0 then 0
else min (vT-fd-sol-1

(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (z nl1!(Suc 0)) 0]))))

(Anl. if hd (z n1) = 0 then 1 else 0) (na — 1))

(real-of-int
(int32 (RoundZero (real-of-int [Rate *x maz (xz (na — 1)!(Suc 0))

1
else 0)
then 1 else 0]) z n
let ?lhs2 = ((Az na. [latch-rec-calc-output

162

(Anl.ifznil(0) =0V znll(1) =0V znl!(2) = 0 then 0 else 1::real)
(Anl.if xn1l(8) = 0 Az nil(4) = 0 then 0 else 1::real) (na)])
o (Axzzx nn. drop 2 (zx nn))) z n
let ?rhs2 = (Az n. [latch-rec-calc-output
(Anl.ifznil(2) =0V znll(3) =0V znll(4) = 0 then 0 else 1::real)
(Anl.if xnil(5) = 0 A znll(6) = 0 then 0 else 1::real) (n)]) zn
let ?rhs1’ = if real-of-int (int32 (RoundZero (real-of-int [Rate *x maz (z n!(Suc 0)) 01)))
< (ifhd (zn) =0
then (if n = 0 then 0
else min (vT-fd-sol-1
(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (z nl!(Suc 0)) 01))))
(Anl. if hd (z n1) = 0 then 1 else 0) (n — 1))
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (z (n — 1)!(Suc 0))

1::real
else 0)
then 1::real else 0
let ?rhs2’ = latch-rec-calc-output
(Anl.ifxni!(2) =0V znil(3) =0V znll(4) = 0 then 0 else 1::real)
(Anl.if xn1l(5) = 0 Az nl1l(6) = 0 then 0 else 1::real) (n)
from al hd-take-2 have f1: ?lhs1 = ?rhsl
by (simp)
have 11: Vna. (Anl. if drop 2 (z n1)1(0) = 0 V drop 2 (z n1)!(Suc 0) = 0 V drop 2 (z
n1)!(2) = 0 then 0 else 1) na
=Anl.ifznil(2) =0V anil(8) =0V znll(4) = 0then 0 else 1) na
using drop-2-0 drop-2-1' drop-2-2 drop-2-3 drop-2-4 al by simp
then have 12: (Anl. if drop 2 (z n1)Y(0) = 0 V drop 2 (x n1)!/(Suc 0) = 0 V drop 2 (z
n1)l(2) = 0 then 0 else 1)
=Anl.ifznil(2) =0V anil(8) =0V znll({) = 0then 0 else 1)
by (rule fun-eq)
have 21: Vna. (Anl. if drop 2 (x n1)1(8) = 0 A drop 2 (z n1)!(4) = 0 then 0 else 1) na
= (Anl.ifznil(5) = 0 A xn1l(6) = 0 then 0 else 1) na
using drop-2-0 drop-2-1' drop-2-2 drop-2-3 drop-2-4 al by simp
then have 22: (Ani. if drop 2 (z n1)!(3) = 0 A drop 2 (x n1)!(4) = 0 then 0 else 1)
= (Anl.if xni!(5) = 0 A znll(6) = 0 then 0 else 1)
by (rule fun-eq)
have latch-eq:
latch-rec-cale-output (Anl. if drop 2 (z n1)!(0) = 0 V drop 2 (z n1)!(Suc 0) = 0
V drop 2 (z nl)!(2) = 0 then 0 else 1)
(Anl. if drop 2 (x n1)!(3) = 0 A drop 2 (x n1)!(4) = 0 then 0 else 1) (n — Suc 0)
= latch-rec-calc-output (Anl. if tn1l(2) =0V znil(3) =0V xni!(4) = 0 then 0 else 1)
(Anl.if xnil(5) = 0 AN znll(6) = 0 then 0 else 1) (n — Suc 0)
by (simp add: 12 22)
have f2: ?lhs2 = ?rhs2
apply (simp)
using latch-eq drop-2-0 drop-2-1 drop-2-2 drop-2-3 drop-2-4 al
using numeral-1-eq-Suc-0 numerals(1) by presburger
have f12: (?lhs1 o ?lhs2) = ?rhsl e ?rhs2
using f1 f2 by simp
then have f21: ... = [?rhs1’, ?rhs2]]
by simp
show (?lhs1 e ?lhs2) = [?rhsl’, ?rhs2’]
using f12 f21 by (simp)
qed

163

qed
then have f11-2: ... = ?f11
by (smt Suc-eg-plus! add-Suc-right numeral-Bit! numeral-One one-add-one)
have simblock-f11: SimBlock 7 2 ?f11
using simblock-f8 simblock-f10 SimBlock-F Block-parallel-comp
by (smt Suc-numeral add.commute add-Suc-right add-numeral-left f11-0 f11-1 numeral-Bit1
numeral-One one-add-one)

let 2f12-f-1 = Az na. if (if hd(z na) = 0
then (if na = 0 then 0
else min (vT-fd-sol-1
(Anl. (Ana. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (z na!(Suc 0)) 0])))) nl)
(An1. (if hd(z n1) = 0 then 1::real else 0)) (na — 1))
((Ana. real-of-int (int32 (RoundZero (real-of-int [Rate x maz (z na!(Suc 0))

(na — 1))) + 1:real
else 0) > (real-of-int (int32 (RoundZero (real-of-int [Rate x max (x na!(Suc 0)) 01))))
then 1::real else 0
let 2f12-f-2 = Az na. latch-rec-calc-output

(An1. (if hd(znl) =0V (if (n1 > 0 A (z (n1—1))12 = 4) then 1:real else 0) = 0
V (if (z n1)!2 = 8 then 1::real else 0) = 0 then 0 else 1::real))

(An1. (if ((if nl = 0 then 0 else (if (z (n1 — 1))!8 = 0 then 1::real else 0))) = 0 A

(if n1 = 0 then 0 else (x (n1 — 1))14) = 0 then 0 else 1::real))
(na)

let 2f12-f-2' = Az na. (latch-rec-calc-output
(Anl. (if hd(znl) =0V nl =0V (x (n1—1))12 # 4V (znl)2 #8
then 0 else 1::real))
(Anl. (if (n1 =0)V ((z (n1 = 1)N3#0 AN (z(nl —1))14 =0))
then 0 else 1::real))
(na))
let 2f12-f = (A\z na. [2f12-f-1 x na, ?f12-f-2 x na))
let 212 = FBlock (Ax n. True) 5 2 2f12-f
let 2f12-f' = (Ax na. [?f12-f-1 x na, ?f12-f-2' x nal)
let ?f12' = FBlock (Ax n. True) 5 2 2f12-f'
have f12-f-2-eq: Vx n. ?f12-f-2xn = 2f12-f-2" x n
apply (rule alll)+
apply (simp)
apply (induct-tac n)
apply auto[1]
by simp
have f12: (
(
(
(
Split2 (x door-closed (boolean, 1/10s) is split into two *)
|
Id (x door-open-time: double x)
) ;; Router 3 [0,2,1]
)

5
post-mode

|5

(

164

(UnitDelay 1.0 ;; LopNOT)
5
(UnitDelay 0) (x Delay2 x)

)
)i
(
(
(
(LopNOT)
5
(Id) (% door-open-time: double *)
) ;3 wariableTimer
B2
(
(
(LopAND 3)
|5
(LopOR 2)
) 55 latch
)
) = 2f6 ;; ?f11
using f11 f11-0 f11-1 f11-2 f8 f8-0 f8-1 f6 f6-0 f6-1 f6-2 by auto
then have f12-0: ... = FBlock (Ax n. True) 5 2 (2f11-f o 2f6-f)
using simblock-f6 simblock-f11 FBlock-seq-comp by blast
then have f12-1: ... = FBlock (Ax n. True) 5 2 (2f12-f)
proof —

have hd-tl-eq: Vx n. length(z n) > 1 — hd (tl (z n)) = (z n)!(Suc 0)
by (metis One-nat-def drop-0 drop-Suc hd-drop-conv-nth)
show ?thesis
apply (rule FBlock-eq'")
defer
apply auto[1]
apply auto[1]
apply (simp)
apply (rule alll)+
apply (clarify)
apply (rule conjl)
apply (simp add: hd-tl-eq)
apply (clarify, rule congl)
defer
apply (simp add: hd-tl-eq)
proof —
fix z::nat = real list and n::nat
assume al: Vna. length(z na) = 5
have vT-eq: (vT-fd-sol-1 (Anl. real-of-int (int32 (RoundZero (real-of-int [Rate * mazx (hd (¢l

(z n1))) 01))))
(An1.if hd (z n1) = 0 then 1 else 0) (n — Suc 0))
= (vT-fd-sol-1 (Anl. real-of-int (int32 (RoundZero (real-of-int [Rate * maz (z n1!(Suc 0))
01))))
(Anl.if hd (z n1) = 0 then 1 else 0) (n — Suc 0))
by (simp add: hd-tl-eq al)
have real-eq: real-of-int (int32 (RoundZero (real-of-int [Rate * max (hd (tl (z n))) 01)))
= real-of-int (int32 (RoundZero (real-of-int [Rate * max (z n!(Suc 0)) 0])))
by (simp add: hd-tl-eq al)

165

show a2: hd (zn) =0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate x max (hd (H (z n))) 01)))
< min (vT-fd-sol-1 (Anl. real-of-int (int32 (RoundZero (real-of-int [Rate x max (hd (¢l

(z n1))) 01))))
(Anl. if hd (x nl) = 0 then 1 else 0) (n — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate * maz (hd (¢ (z (n — Suc 0)))) 0]))))

1 —
real-of-int (int32 (RoundZero (real-of-int [Rate * maz (z n!(Suc 0)) 01)))
< min (vT-fd-sol-1 (Anl. real-of-int (int32 (RoundZero (real-of-int [Rate x mazx (x n1!(Suc
0)) 01))))
(Anl. if hd (z n1) = 0 then 1 else 0) (n — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate x mazx (z (n — Suc 0)!(Suc 0)) 01))))

A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * max (hd (tl (z n))) 0])))
< min (vT-fd-sol-1 (Anl. real-of-int (int32 (RoundZero (real-of-int [Rate * maz (hd (tl
(z n1))) 01))))
(Anl. if hd (z n1) = 0 then 1 else 0) (n — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate x max (hd (tl (z (n — Suc 0))))
01)))) +
1 —
= real-of-int (int32 (RoundZero (real-of-int [Rate x mazx (x n!(Suc 0)) 01)))
< min (vT-fd-sol-1 (Anl. real-of-int (int32 (RoundZero (real-of-int [Rate * mazx (z
n1!(Suc 0)) 01))))
(Anl. if hd (x n1) = 0 then I else 0) (n — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (x (n — Suc 0)!(Suc 0))
01)))) +
1
using vT-eq real-eq al hd-tl-eq
by (simp add: hd-tl-eq)
qed
qed
then have f12-2: ... = FBlock (Az n. True) 5 2 (2f12-f)
proof —
show ?thesis
apply (rule FBlock-eq'")
using f12-f-2-eq apply blast
apply simp
by simp
qed
have simblock-f12: SimBlock 5 2 2f12'
using simblock-f6 simblock-f11 FBlock-seq-comp SimBlock-FBlock-seq-comp f12-0 f12-1 f12-2
by smt

let 2f13-f = Az n. [if ((hd(z n) # 0 A hd(tl(z n)) # 0) A
(n> 0N (hd(z (n—1)) =0V hd(tl(z (n—1))) = 0))) then I else 0])
let 213 = FBlock (Ax n. True) 2 1 2f15-f
have f13: LopAND 2;; riselShot = LopAND 2 ;; riselShot-simp-pat
by (simp add: riselShot-simp)
then have f13-0: ... = FBlock (Ax n. True) 2 1 (riselShot-simp-pat-f o f-LopAND)
using SimBlock-rise1Shot-simp SimBlock-LopAND FBlock-seq-comp
by (simp add: LopAND-def)
then have f13-1: ... = 2f13
proof —

166

show ?thesis

apply (rule FBlock-eq"")
defer
apply (simp add: f-LopAND-def)
apply (simp add: f-LopAND-def)
apply (rule alll)+
apply (clarify)
apply (simp add: f-LopAND-def)
apply (clarify)
proof —

fix z:: nat = real list and n::nat

assume al: Vn. length(z n) = 2

assume a2: n > 0

from a! a2 have land-1: LAnd (z (n — Suc 0)) =

(= hd (z (n — Suc 0)) =0 A= hd (¢ (z (n — Suc 0))) = 0)
using LAnd.simps(1) LAnd.simps(2) append-eq-Cons-conv hd-Cons-tl length-Cons list.sel(3)

list-equal-size2 tl-append? by smt
from al a2 have land-2: LAnd (z n) =
(mhd (zn)=0AN-hd (tl (xn)) =0)
using LAnd.simps(1) LAnd.simps(2) append-eq-Cons-conv hd-Cons-tl length-Cons list.sel(3)

list-equal-size2 tl-append2 by smt
show (LAnd (z (n — Suc 0)) —
hd (xn) =0V hd (1 (xn)) =0V = hd (z (n — Suc 0)) = 0 AN~ hd (tl (z (n — Suc 0)))

(= LAnd (z (n — Suc 0)) —
(LAnd (z n) —
—hd (xn)=0A-hd (H (zn))=0A (hd (z (n — Suc 0)) = 0V hd (t (x (n — Suc

0)) A

(- LAnd (x n) —
hd (xn) =0V hd (tl (xn)) =0V = hd (z (n — Suc 0)) =0 A= hd (H (z (n — Suc

0))

using land-1 land-2 by blast
qged

qed

have simblock-f13: SimBlock 2 1 ?f13
using SimBlock-rise1Shot-simp SimBlock-LopAND SimBlock-F Block-seq-comp
by (metis (no-types, lifting) LopAND-def f13-0 f13-1 pos2)

let ?f14-f = (Ax n. [if ((hd(zn) # 0

(n> 0 A (hd(z (n—1))
if ((hd(zn) # 0 A

(n>0AN (hd(z (n—1)) =

(n—1))) = 0))) then I else 0,

hd(tl(:v (n—1))) = 0))) then I else 0])

let ?f14 = FBlock (Ax n. True) 2 2 ?f14-f
have f14: LopAND 2;; riselShot ;; Split2 = 2f18 ;; Split2
by (metis RA1 f13-0 f13-1 riselShot-simp)
then have f14-0: ... = FBlock (Ax n. True) 2 2 (f-Split2 o ?2f13-f)
using simblock-f138 SimBlock-Split2 FBlock-seq-comp
by (simp add: Split2-def)
then have f14-1: ... = ?f1)
proof —
show ?thesis

apply (rule FBlock-eq)
using f-Split2-def

167

by fastforce
qed
have simblock-f14: SimBlock 2 2 ?f1/
using simblock-f13 SimBlock-Split2 SimBlock-FBlock-seq-comp
by (metis (no-types, lifting) Split2-def f14-0 f14-1)

let 2f15-f = Az n. [if (((2f12-f-1 2 n) # 0 N (9f12-f-2" . n) # 0) A
(n>0N((212-f-12 (n—1)) =0V (?f12-f-2" z (n—1
if (((2f12-f-1xn) # 0 N (2f12-f-2" x n) # 0) A
(n>0N((?f12-f-1 2 (n—1)) =0V (?f12-f-2" z (n—1
let 2f15 = FBlock (Az n. True) 5 2 2f15-f
have f15: (

(
(
(
(

Split2 (x door-closed (boolean, 1/10s) is split into two *)
[
Id (% door-open-time: double x)
) ;; Router 3 [0,2,1]
)

[P
post-mode

P

(
(UnitDelay 1.0 ;; LopNOT)

I}
(UnitDelay 0) (x Delay2 x)
)
)5
(
(
(
(LopNOT)
[}
(Id) (x door-open-time: double *)
) 5 ; wvariableTimer
)
5
(
(
(LopAND 3)
|5
(LopOR 2)
)55 latch
)
) 53 LopAND 2;; riselShot ;; Split2) = 2f12';; 2f14
by (smt RA1 f12 f12-0 f12-1 f12-2 f1} f14-0 f]4—])

then have f15-0: ... = FBlock (Ax n. True) 5 2 (2f14-f o 2f12-f)
using simblock-f14 simblock-f12 FBlock-seq-comp by blast

then have f15-1: ... = ?f15
proof —

have 1: Vax n. ((7f14-f o 2f12-f") x n = ?f15-f x n)
apply (rule alll)+

168

) =
) =

0))) then 1 else 0,

0))) then 1 else 0])

by (simp)
have 2: (9f14-f o ?f12-f") = ?2f15-f
using 1 fun-eq by blast
show ?thesis
apply (rule FBlock-eq)
using 1 2 by blast
qed
have simblock-f15: SimBlock 5 2 ?f15
using simblock-f14 simblock-f12 SimBlock-FBlock-seq-comp f15-0 f15-1
by (metis (no-types, lifting))
have inps-f15: inps 2f15 = 5
using simblock-f15 inps-P by blast
have outps-f15: outps ?2f15 = 2
using simblock-f15 outps-P by blast

have f16: post-landing-finalize-1 = ?f15 fp (4, 1)
using f15 f15-0 f15-1 post-landing-finalize-1-def by presburger
show ?thesis
apply (simp only: plf-riselshot-simp-def)
using f16 simblock-f15 by presburger
qed

Finally, post-landing-finalize-1 is simplified to a design with a feedback.

lemma post-landing-finalize-1-simp:
post-landing-finalize-1 = plf-riselshot-simp fp (4, 1)
using post-landing-finalize-1-simp-simblock by blast

lemma post-landing-finalize-1-simblock:
SimBlock 5 2 plf-riselshot-simp
using post-landing-finalize-1-simp-simblock by blast

lemma inps-plf-riselshot:
inps plf-riselshot-simp = 5
using post-landing-finalize-1-simblock inps-P by blast

lemma outps-plf-riselshot:
outps plf-riselshot-simp = 2
using post-landing-finalize-1-simblock outps-P by blast

C.5 Verification

Here we assume the maximum door open time is 1000s. It could be a value less than 214748364.

abbreviation max-door-open-time = 1000

C.5.1 Requirement 01

post-landing-finalize-req-01: A finalize event will be broadcast after the aircraft door has been
open continuously for door-open-time seconds while the aircraft is on the ground after a successful
landing.

Here we assume the constant door open time is 20s. It should be a variable but according to
Assumption 3, it does not change while the aircraft is on the ground. So we can regard it as a
constant after landing.

abbreviation c-door-open-time = 20

169

req-01-contract is the requirement to be verified. Its precondition specifies that door-closed and
ac-on-ground are boolean and door-open-time is constant. Its postcondition specifies that

e it always has four inputs and one output;
e the requirement:

— after a successful landing: door is closed, aircraft is on ground, mode is switched from
LANDING (at step m) to GROUND (at step m + 1);

— then the door has been open continuously for door-open-time (200): from step m+2+p
to m + 2+ p + door_open_time (m + 2+ p + 200), therefore the door is closed at the
step before p;

— while the aircraft is on ground: ac-on-ground is true and mode=GROUND;
— additionally, between step m and p, the finalize-cvent is not enabled;

— then a finalize-event will be broadcast at step p + door_open_time

definition req-01-contract = ((V n:nat - (
«(Az n.
(
(hd(zn) = 0V hd(zn) = 1) A (x door-closed is boolean x)
((z n)!1 = c-door-open-time) A (x door-open-time x)
((zn)!8 =0V (zn)!3 = 1) (x ac-on-ground is boolean x)
))» (&inouts), («n»)q):sim-state upred)
Fn
((

(
(
(x m

n:nat -
(#4(Sinouts («n»)q)) =4 «4%) A
(#4($inouts” («n»)y)) =u «I»)) A
: LANDING
m+1 : GROUND
. —finalize-event during this time, door may be open for a while but not longer like
door-open-time
—1 door closed
[0] oor open
door continuously open
p[n] : door open for door-open-time seconds, finalize-event enabled.

9
(Y m:nat -
(
((x A successful landing)
((«nthy ($inouts («m»)4)a (3)a =u 1) (¥ ac-on-ground = truex)
A(«nthy ($inouts («m»)a)a (2)a =u 4) (x mode = LANDING x)
A(«nthy ($inouts («m»)a)a (0)a =u 1) (x door-closed = true x)
) A
((«nth» ($inouts («m~+1»)a)a (3)a =u) (* ac-on-ground = truex)
A(«nthy ($inouts («m~+1»)4)a (2)s =u 8) (¥ mode = GROUND x)
A(«nthy ($inouts («m~+1%)4)a (0)s =u 1) (* door-closed = true *)
)
) =
((x The door is open continuously for door-open-time seconds from (m+p) *)
VY p:nat -
(
((V g:nat -

(((«g» <4 «c-door-open-timexRate»)) =

170

(«nthy ($inouts («m+24p+¢»)a)a (0)o =u 0) (x door-closed = false)
) (x The door is continuously open *)
) A
(V g:nat - ((«g» <y «p + c-door-open-timex Rates) =
((«nth» ($inouts («m+2+g»)a)a (3)a =u 1) (x ac-on-ground = true x) A
(«nth» ($inouts («m+2+¢»)a)a (2)a =u 8) (x mode = GROUND x)))
) (% the aircraft is always on the ground from m+2 to m+p-+times x) A
((«nth» ($inouts («m+24p—1%)a)q (0)a =u 1)) (* door-closed = true before p *) A
(V qnat - («q» <y «p») = (head,(($inouts” («m+2+q»),)) =u 0)))
(* finalize-event has not been enabled before p *)
= ($inouts” («m + 2 + p + c-door-open-timexRate»),) =, (1)(x then the finalize-event

req-01-1-contract is the contract for post-landing-finalize-1 without feedback: plf-riseishot-simp.
It is similar to reg-01-contract except that 1) it has five inputs and two outputs (the feedback
operator will remove one input and one output); 2) the 2nd output is equal to the 4th input
since they are connected together by the feedback loop.

definition req-01-1-contract = (V n:nat - (

«(Az n.
(
(hd(z n) = 0 V hd(z n) = 1) A (x door-closed is boolean x)
((z n)!1 = c-door-open-time) A (x door-open-time x)
((zn)!3 =0V (zn)!8 = 1) (x ac-on-ground is boolean x)
))» (&inouts), («n»)q)::sim-state upred)
Fn
((V n:inat -

((#4($inouts («n»)q)) =u «5%) A

((#u($inouts ™ («n»)g)) =u «2»)) A

(*x m : LANDING
m+1 : GROUND

. —finalize-event during this time, door may be open for a while but not longer like
door-open-time

1 : door closed

] = door open

: door continuously open

p[n] : door open for door-open-time seconds, finalize-event enabled.

.
p[0

*)
(Y m:nat -
(
((x A successful landing *)
((«nth» ($inouts («m»)a)a (3)a =u 1) (* ac-on-ground = truex)
A(«nthy ($inouts («m»)g)a (2)a =u 4) (x mode = LANDING x)
A(«nthy ($inouts («m»)g)a (0)q =vu 1) (x door-closed = true x)
) A
((«nth» ($inouts («m~+1%)a)a (3)a =u) (* ac-on-ground = truex)
A(«nthy ($inouts («<m+1%)a)a (2)a =« 8) (x mode = GROUND x)
A(«nthy ($inouts («m~+1»)g)a (0)g =u 1) (* door-closed = true x)

) A
(V ninat - (head, (tail ,($inouts ™ («n»)q)) =4 «nthy ($inouts («n%)e)a (4)a))
* Jth input is equal to outputx)
) =
((x The door is open continuously for door-open-time seconds from (m+p) *)

171

Vv pinat -
(
(VY g:nat -
(((«g» <, «c-door-open-timexRate»)) =
(«nth» ($inouts («m+2+p+q»)a)a (0)a =u 0) (x door-closed = false x)
) (x The door is continuously open x)
) A
(V g:nat - ((«g» <, «p + c-door-open-timexRate») =
((«nth» ($inouts («m+2+¢»)a)a (3)a =u 1) (* ac-on-ground = true *) A
(«nth» ($inouts («m+2+¢»)a)a (2)a =u 8) (x mode = GROUND x)))
) (x the aircraft is always on the ground from m+2 to m+p+times *) A
((«nth» ($inouts («m+2+p—1»)a)a (0)a =u 1)) (x door-closed = true x) A
(V qunat - («q» <y «p») = (head,(($inouts” («m+2+¢»),)) =4 0)))
(* finalize-event has not been enabled before p *)
= ($inouts” («m + 2 + p + c-door-open-timexRate»),) =, (1,1)(x then the finalize-event

)

is true. *)

)))

lemma SimBlock-req-01-1-contract:
SimBlock 5 2 req-01-1-contract
apply (simp add: SimBlock-def req-01-1-contract-def)
apply (rel-auto)
apply (rule-tac x = Ana. [1, 20, if na = 1 then 8 else 4, 1, 0] in exl)
apply (rule conjgl, simp)
apply (rule-tac = Ana. [1, 1] in exl)
by (simp)

lemma inps-req-01-1-contract:
inps req-01-1-contract = 5
using SimBlock-req-01-1-contract inps-P by blast

lemma outps-req-01-1-contract:
outps req-01-1-contract = 2
using SimBlock-req-01-1-contract outps-P by blast

In order to verify this requirement, firstly to verify the contract req-01-1-contract refined by
plf-riselshot-simp.

lemma req-01-ref-plf-rise1shot: req-01-1-contract T plf-riselshot-simp
apply (simp add: FBlock-def plf-riselshot-simp-def req-01-1-contract-def)
apply (rule ndesign-refine-intro)
apply simp
apply (unfold upred-defs urel-defs)
apply (simp add: fun-eq-iff relcomp-unfold OO-def
lens-defs upred-defs alpha-splits Product-Type.split-beta) ?
apply (transfer)
apply (simp; safe)
proof —
fix inouts, inouts, :nat = real list and z::nat and za::nat
assume al: V. (hd (inouts, x) = 0 V hd (inouts,) = 1) A
inouts, z!(Suc 0) = c-door-open-time A (inouts, z!'8 = 0 V inouts, z!3 = 1)
let 2P = Az. (z < Suc 0 —
(hd (inouts, 0) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 0])) < 1 —

172

(z = 0 — length(inouts, 0) = 5 A length(inouts,’ 0) = 2 A [0, 0] = inouts,” 0) A
0 <z —
(hd (inouts, z) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate x max (inouts, z!(Suc 0)) 01)))
< min 1 (real-of-int
(int32 (RoundZero (real-of-int [Rate x maz (inouts, 0!(Suc 0)) 01)))) +
1 —
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!l2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 =0
then 0 else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = j —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!l2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ z)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 1 (real-of-int
(int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0)) 01)))) +
1 —
length(inouts,) = 5 A
length(inouts,’) = 2 A
[0, 0] = inouts,” x A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 =} —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!12 = / —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 =0
then 0 else 1)
xTr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8

173

then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, ©) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,’ x)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A
length(inouts,’) = 2 A
[0, 0] = inouts,” x A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
Tr =
0 —
length(inouts,) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’))))) A
(— int82 (RoundZero (real-of-int [Rate x maz (inouts, 0!(Suc 0)) 0])) < 1 —

(=0 —
length(inouts, 0) = 5 A
length(inouts,’ 0) = 2 A

[0, 0] = inouts,” 0 A length(inouts, 0) = 5 A length(inouts,’ 0) = 2 A [0, 0] = inouts,’
0) A
(0 <z —
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 1 (real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 01)))) +
1 —
(= latch-rec-calc-output
(An1. if inouts, (nl — Suc 0)!12 = { —
hd (inouts, n1) = 0 V nl = 0 V - inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V - inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
xTr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, ©) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,’ x)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate x max (inouts, z!(Suc 0)) 01)))
< min 1 (real-of-int
(int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0)) 0])))) +
1 —
length(inouts,) = 5 A
length(inouts,’) = 2 A

174

[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = j —
hd (inouts, n1) = 0V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = | —
hd (inouts, n1) = 0 V nl = 0 V - inouts, n1!2 = 8
then 0 else 1)
(Anl.4f nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 =0
then 0 else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = j —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!l2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)) A
(= int82 (RoundZero (real-of-int [Rate x maz (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A
length(inouts,’) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!12 = 4 —
hd (inouts, n1) = 0V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, ©) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,’ 1)))))) A
(= hd (inouts, 0) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 0])) < 0 —
(x = 0 — length(inouts, 0) = 5 A length(inouts,’ 0) = 2 A [0, 0] = inouts,’ 0) A
(0 <z —
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 0 (real-of-int
(int32 (RoundZero (real-of-int [Rate x mazx (inouts, 0!(Suc 0)) 01)))) +
1 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = § —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!l2 = 8

175

then 0 else 1)
(Anl.if n1 = 0 V — inouts, (nl — Suc 0)!8 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
Tr =
0 —
length(inouts, ©) = &5 A length(inouts,’ x) = 2 A [1, 1] = inouts,’ z) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = j —
hd (inouts, n1) = 0V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts,) = & A length(inouts,”) = 2 N [0, 0] = inouts,’ x)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 0 (real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 01)))) +
1 —
length(inouts,) = &5 A
length(inouts,’) = 2 A
[0, 0] = inouts,” = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = j —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!l2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(An1. if inouts, (nl — Suc 0)!12 = / —
hd (inouts, n1) = 0 V nl = 0 V - inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ z)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A
length(inouts,’) = 2 A
[0, 0] = inouts,” x A

176

(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = j —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’))))) A
(= int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0)) 0])) < 0 —
(r=0—
length(inouts, 0) = 5 A
length(inouts,’ 0) = 2 A
[0, 0] = inouts,” 0 A length(inouts, 0) = 5 A length(inouts,’ 0) = 2 A [0, 0] = inouts,’
0) A
(0 <z —
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 0 (real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 01)))) +
1 —
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V - inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
xTr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, ©) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,’ x)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 0 (real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 01)))) +
1 —
length(inouts,) = 5 A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, ©) = 5 A length(inouts,” z) = 2 A [0, 0] = inouts,’ ©))) A

177

(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —

(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V — inouts, n1!2 = 8

then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!8 = 0 A inouts, (nl — Suc 0)!4 = 0

then 0 else 1)
Tr =
0 —
length(inouts, ©) = &5 A length(inouts,’ x) = 2 A [1, 1] = inouts,’ z) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = j —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!l2 = 8

then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0

else 1)

Tr =

00—

length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A

length(inouts,’) = 2 A

[0, 0] = inouts,’ = A

(latch-rec-calc-output

(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!l2 = 8

then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0

else 1)
Tr =
0 —
length(inouts, ©) = 5 A length(inouts,” z) = 2 A [0, 0] = inouts,’ ©))))))) A
(= z < Suc 0 —
(hd (inouts, (x — Suc 0)) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, (x — Suc 0)!(Suc 0)) 0])))
< min (vT-fd-sol-1

(Anl. real-of-int
(int82 (RoundZero (real-of-int [Rate x maz (inouts, nl1!(Suc 0)) 01))))

(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc (Suc 0)))

(real-of-int
(int32 (RoundZero (real-of-int | Rate * maz (inouts, (z — Suc (Suc 0))!(Suc 0)) 01))))

1 —
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1

(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, n1!(Suc 0)) 01))))

(Anl. if hd (inouts, n1) = 0 then 1 else 0) (x — Suc 0))

(real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, (x — Suc 0)!(Suc 0)) 01)))) +

1 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = { —

178

hd (inouts, n1) = 0 V nl = 0 V = inouts, nl1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
Tr =
A
latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = } —
hd (inouts, n1) = 0 V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
(z — Suc 0) =
0 —
length(inouts, x) = & A length(inouts,”) = 2 N [1, 1] = inouts,’) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V — inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x) A
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = | —
hd (inouts, n1) = 0 V nl = 0 V = inouts, nl1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!8 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
(z — Suc 0) =
0 —
length(inouts, ©) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,’ x)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, n1l(Suc 0)) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, (z — Suc 0)!(Suc 0)) 01)))) +
1 —
length(inouts,) = 5 A
length(inouts,’ z) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-cale-output
(Anl. if inouts, (n1 — Suc 0)!2 = } —
hd (inouts, n1) = 0 V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
xTr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x) A
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = { —

179

hd (inouts, n1) = 0 V nl = 0 V = inouts, nl1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
(x — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = § —
hd (inouts, n1) = 0 V nl = 0 V = inouts, nl1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!83 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
Tr =
A
latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = } —
hd (inouts, n1) = 0V nl = 0 V - inouts, n1!2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
(z — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x) A
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!8 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
(x — Suc 0) =
0 —
length(inouts, ©) = & A length(inouts,’) = 2 A [0, 0] = inouts,’ x)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A
length(inouts,’ x) = 2 A
[0, 0] = inouts,” x A
(latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = j —
hd (inouts, n1) = 0 V nl = 0 V - inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =

180

0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x) A
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
(z — Suc 0) =
0 —
length(inouts, ©) = &5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)))) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, (x — Suc 0)!(Suc 0))
01)))
< min (vT-fd-sol-1
(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, n1!(Suc 0)) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc (Suc 0)))
(real-of-int
(int32 (RoundZero
(real-of-int [Rate x mazx (inouts, (x — Suc (Suc 0))!(Suc 0)) 0])))) +
1 —
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, n1l(Suc 0)) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, (x — Suc 0)!(Suc 0)) 01)))) +
1 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, nl1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!8 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = } —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!'4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ z)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01])))
< min (vI-fd-sol-1
(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, n1!(Suc 0)) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int
(int32 (RoundZero (real-of-int [Rate * maz (inouts, (x — Suc 0)!(Suc 0)) 01)))) +

181

1 —
length(inouts,) = 5 A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,’ T A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V — inouts, nl!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts,) = 0 —
(int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = § —
hd (inouts, n1) = 0 V nl = 0 V - inouts, n1l2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = } —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, ©) = & A length(inouts,’) = 2 A [0, 0] = inouts,’ x)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A
length(inouts,’ x) = 2 A
[0, 0] = inouts,” x A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!l2 = 8
then 0 else 1)
(Anl.ifnl = 0V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)4 = 0 then 0
else 1)
Tr =
0 —
length(inouts,) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’))))) A
(= hd (inouts, (z — Suc 0)) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, (z — Suc 0)!(Suc 0)) 0])) < 0 —
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, n1l(Suc 0)) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int

182

(int32 (RoundZero (real-of-int [Rate x maz (inouts, (x — Suc 0)!(Suc 0)) 01)))) +
1 —
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
Tr =
0 A
latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
(r — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,”) A
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V - inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
(x — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ z)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01])))
< min (vI-fd-sol-1
(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, n1!(Suc 0)) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int
(int32 (RoundZero (real-of-int [Rate * maz (inouts, (x — Suc 0)!(Suc 0)) 01)))) +
1 —
length(inouts,) = & A
length(inouts,’ x) = 2 A
[0, 0] = inouts,” x A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = j —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =

183

0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x) A
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
(z — Suc 0) =
0 —
length(inouts, ©) = &5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, nl1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!8 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
Tr =
0 A
latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = j —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.ifnl = 0V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!'4 = 0 then 0
else 1)
(r — Suc 0) =
00—
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, ©) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,” z) A
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 =0
then 0 else 1)
(x — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ z)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,’ T A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8

184

then 0 else 1)
(Anl.if n1 = 0 V — inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,”) A
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = / —
hd (inouts, n1) = 0V nl = 0 V - inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
(x — Suc 0) =
0 —
length(inouts, z) = & A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x)))) A
(= int32 (RoundZero (real-of-int [Rate * maz (inouts, (z — Suc 0)!(Suc 0)) 0
(hd (inouts, z) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, n1l(Suc 0)) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, (x — Suc 0)!(Suc 0)) 01)))) +
1 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = § —
hd (inouts, n1) = 0 V nl = 0 V = inouts, nl1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)

N <0—

Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-cale-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
xTr =
0 —
length(inouts, ©) = & A length(inouts,’) = 2 A [0, 0] = inouts,’ x)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, n1!(Suc 0)) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, (z — Suc 0)!(Suc 0)) 01)))) +
1 —
length(inouts, ©) = &5 A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,” x A
(latch-rec-calc-output

185

(Anl. if inouts, (n1 — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V — inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = { —
hd (inouts, n1) = 0 V nl = 0 V — inouts, n1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, ©) = & A length(inouts,’) = 2 A [0, 0] = inouts,’ x)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = & A
length(inouts,’ x) = 2 A
[0, 0] = inouts,” x A
(latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = j —
hd (inouts, n1) = 0 V nl = 0 V - inouts, n1!l2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
Tr =
00—
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’))))))
assume a2: Vz. ?P x

assume a3: inouts, z!3 = 1

assume a4: inouts, r'2 = 4

assume ad: inouts, z'0 = 1

assume ab: inouts, (Suc x)!3 = 1

assume a7: inouts, (Suc z)!2 = 8

assume a8: inouts, (Suc x)!0 = 1

assume a81: Vz. hd (¢ (inouts,’ ©)) = inouts, z!(4)

assume a9: Vzb<200. inouts, (Suc (Suc (z + za + zb)))!0 = 0

assume al0: Vab<za + 200. inouts, (Suc (Suc (z + zb))!(3) = 1 A inouts, (Suc (Suc (z +
b)\(2) = 8

assume all: inouts, (Suc (z + za))!0 = 1

186

assume al2: Vazb<za. hd (inouts,’ (Suc (Suc (xz + zb)))) = 0
have len-inouts: V z. length(inouts, z) = 5
using a2 by blast

have al1” hd(inouts, (Suc (z + za))) = 1
using all len-inouts
by (metis hd-conv-nth list.size(3) zero-neg-numeral)

from a! have al’: Vz. inouts, z!(Suc 0) = c-door-open-time
by simp
have 1: Vz::nat. (int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 07)) = 200)
using al’ by (simp add: RoundZero-def int32-def)
have 11: Vz::nat. (real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 01)))
— 200)
using al’ by (simp add: RoundZero-def int32-def)

have 12: (vT-fd-sol-1
(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, n1l(Suc 0)) 01))))
=1

(Anl. if hd (inouts, nl) = 0 then 1 else 0) (Suc (Suc (z + za))))
proof —

have 1: (vT-fd-sol-1
(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, n1!(Suc 0)) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (Suc (Suc (z + za)))) =
(vT-fd-sol-1
(Anl. 200)
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (Suc (Suc (x + za))))
using 11 by simp
then have 2: ... = 1
apply (simp)
using a9 all by (smt Nat.add-0-right al a2 hd-conv-nth le0 list.size(3) zero-less-Suc
zero-neg-numeral)
show ?thesis
using 1 2 by (simp)
qed

have 13: V ¢<200 . (vT-fd-sol-1
(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, n1!(Suc 0)) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (Suc (Suc (x + za + q)))) = ¢ + 1
apply (rule alll)
proof —
fix ¢::nat
have 1: ¢ < 200 —
(vT-fd-sol-1
(Anl. real-of-int (int32 (RoundZero (real-of-int [Rate * mazx (inouts, n1!(Suc 0)) 01))))
(Anl.if hd (inouts, nl) = 0 then 1 else 0) (Suc (Suc (z + za + q))))
= real (¢ + 1)
proof (induct q)
case ()
then show Zcase using 12 by simp
next
case (Suc q)
then show ?case

187

apply (clarify)
apply (simp)
apply (rule conjl)
apply (clarify)
using 11 apply auto[!]
proof —

assume al: ¢ < 199

have al’: Suc q < 200

using al by simp
have 1: hd (inouts, (Suc (Suc (Suc (z 4+ za + q))))) = (inouts, (Suc (Suc (Suc (z + za

using len-inouts
by (metis Suc-numeral Zero-not-Suc hd-conv-nth list.size(8) semiring-norm(5))

then have 2: ... = (inouts, (Suc (Suc (x + za + Suc ¢))))!0
by (smt add-Suc-right)

then have 5: ... = 0

proof —

show ?thesis
using al’ a9 le-eq-less-or-eq by presburger
qed
show hd (inouts, (Suc (Suc (Suc (z + za + ¢))))) = 0
using 1 2 3 by linarith
qed
qged
show ¢ < 200 — vT-fd-sol-1
(Anl. real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, nl!(Suc 0)) 01))))
(Anl.if hd (inouts, nl) = 0 then 1 else 0) (Suc (Suc (x + za + q))) = real (¢ + 1)
using 1 by linarith
qed
have 130: V ¢<200 . (vT-fd-sol-1 (An1. 200)
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (Suc (Suc (x + za + q)))) = q + 1
using 13 by (simp add: 11)

have 14: (vT-fd-sol-1 (Anl. real-of-int (int32 (RoundZero (real-of-int [Rate x max (inouts, n1!(Suc

0)) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (Suc (x + za))) = 0
using al1 all’ 1 11 by (simp)

have output-at-z: hd (inouts,’) = 0

using a5 a2

by (smt 1 hd-Cons-tl hd-conv-nth list.inject list.size(3) neg0-conv zero-neg-numeral)
have output-at-z-1: hd (inouts,’ (Suc z)) = 0

using a8 a2

by (smt 1 hd-Cons-tl hd-conv-nth list.inject list.size(3) neq0-conv zero-neg-numeral)

have output-at-q: V ¢<200 . hd (inouts,’ (Suc (Suc (z + za + q)))) = 0
apply (rule alll)
proof —
fix ¢::nat
have count-less: V ¢<200.
(= real-of-int (int32 (RoundZero (real-of-int [Rate x mazx (inouts, (Suc (Suc (z + za +

9)))!(Suc 0)) 01)))
< min (vT-fd-sol-1

188

(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, nl!(Suc 0)) 01))))
(Anl. if hd (inouts, n1) = 0 then 1 else 0) (Suc (z + za + q)))
(real-of-int
(int32 (RoundZero (real-of-int [Rate x mazx (inouts, (Suc (x + za + q))!(Suc 0))
01))) +
1
apply (rule alll)
proof —
fix q::nat
show 1: ¢ < 200 —
= real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, (Suc (Suc (x + za +
0))!(Suc 0)) 01)))
< min (vT-fd-sol-1
(Anl. real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, n1!(Suc 0))

01))))
(Anl. if hd (inouts, n1) = 0 then 1 else 0) (Suc (z + za + q)))
(real-of-int
(int32 (RoundZero (real-of-int [Rate * mazx (inouts, (Suc (z + za + ¢))!(Suc 0))
01))) +
1
proof (induct q)
case (

then show ?case
using 1 11 14 all by simp
next
case (Suc q)
then show ?case
using 1 11 14 all 13 by simp
qged
qed
show ¢ < 200 — hd (inouts,’ (Suc (Suc (z + za + q)))) = 0
proof (induct q)
case (
then show ?case
using al1 1 11 a2 18 count-less
by (smt 14 Nat.add-0-right One-nat-def diff-Suc-1 list.sel(1) zero-less-Suc)
next
case (Suc q)
then show ?case
using count-less 1 11 a2
by (smt One-nat-def Suc-lessD al diff-Suc-1 zero-less-Suc)
qed
qed

have output-eq: Vz. hd (tl(inouts,’ z)) = hd(inouts,’)
using a2 by (smt hd-Cons-tl list.inject not-gr0 ti-Nil)

have inputf-z: inouts, ()4 = 0
using output-at-z output-eq by (simp add: a81)

have inputf-z-1: inouts, (Suc z)!4 = 0
using output-at-z-1 output-eq by (simp add: a81)

have inputf-q: V ¢<200. inouts, (Suc (Suc (z + za + q)))!4 =0
using output-at-q a81 output-eq by auto

have a12" Vzb<za. (inouts, (Suc (Suc (z + zb))))!(4) = 0
using al2 a81 using output-eq by auto

189

have inputf-z-to-q: V g::nat . (¢ < ra — inouts, (Suc (Suc (z
(¢ > za A qg<za+ 200 — inouts, (Suc (Suc (z + ¢)))4
using input4-q a12’ apply (simp)
apply (rule alll, clarify)
by (metis (full-types) add-less-cancel-left le-Suc-ex semiring-normalization-rules(25))

M4 = 0) A

t4q

have latch-m-1: latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 =0
then 0 else 1)
(Suc z) =1
apply (simp)
using a3 a4 ab a6 a7 a8
by (metis hd-conv-nth inputf-z len-inouts list.size(3) zero-neg-numeral zero-neg-one)

have latch-1-¢-200: ¥V q < (za + 200) . latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V - inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
(Suc (Suc (z+4q))) = 1
apply (rule alll)
proof —
fix ¢::nat
show ¢ < za + 200 —
latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!(2) = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts, n1!(2)
= § then 0
else 1)
(Anl. if n1 = 0 V = inouts, (nl — Suc 0)}(8) = 0 A inouts, (nl — Suc 0)!(4) = 0 then 0
else 1)
(Suc (Suc (x + q))) = 1
proof (induct q)
case ()
then show ?case
using a6 input4-z-1 latch-m-1 by auto
next
case (Suc q)
then show ?case
proof —
assume al: ¢ < za + 200 —
latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)Y(2) = 4 — hd (inouts, n1) = 0V nl = 0 V — inouts,
nll(2) = 8 then 0
else 1)
(Anl. if nl = 0 V = inouts, (nl — Suc 0)!(3) = 0 A inouts, (nl — Suc 0)!(4) = 0
then 0 else 1)
(Suc (Suc (z + q))) =1
have 1: Suc ¢ < za + 200 —
((latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)}(2) = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,

190

nll(2) = 8 then 0
else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)1(3) = 0 A inouts, (nl — Suc 0)!(4) = 0
then 0 else 1)
(Suc (Suc (z + Suc q)))) = (latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)}(2) = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nl!(2) = 8 then 0
else 1)
(Anl.if nl = 0 V — inouts, (nl — Suc 0)!(3) = 0 A inouts, (n1 — Suc 0)!(4) = 0
then 0 else 1)
(Suc (Sue (z + 9)))
apply (clarify)
proof —
assume al: Suc q < za + 200
have 1: (Anl. if inouts, (n1 — Suc 0)1(2) = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l(2) = 8 then 0 else 1)
(Suc (Suc (x + Suc q))) =0
using al0 al by auto
have 2: (Anl. if nl = 0 V = inouts, (nl — Suc 0)!(3) = 0 A
inouts, (n1 — Suc 0)!(4) = 0 then 0 else 1)
(Suc (Suc (z + Suc q))) =0
apply (simp)
apply (rule congl)
using al0 apply (smt Suc-leD al)
using input4-z-to-q al
by (metis Suc-le-eq le-eq-less-or-eq nat-le-linear)
show ((latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)(2) = 4 —> hd (inouts, nl) =0V nl =0V —
inouts, n1!(2) = 8 then 0
else 1)
(Anl. if nl = 0 V = inouts, (nl — Suc 0)!(3) = 0 A inouts, (nl — Suc 0)!(4) = 0
then 0 else 1)
(Suc (Suc (x + Suc q)))) = (latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)}(2) = 4 — hd (inouts, nl) =0V nl =0 V —
inouts, n1!(2) = 8 then 0
else 1)
(Anl.ifnl = 0 V = inouts, (n1 — Suc 0)!(3) = 0 A inouts, (nl — Suc 0)!(4) = 0
then 0 else 1)
(Sue (Sue (z + 9)))
using 1 2 by (smt add-Suc-right latch-rec-calc-output.simps(2))
qed

show Suc ¢ < za + 200 —
latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)1(2) = 4 — hd (inouts, n1) = 0 V nl = 0 V - inouts,
nil(2) = 8 then 0
else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!(3) = 0 A inouts, (n1 — Suc 0)!(4) = 0
then 0 else 1)
(Suc (Suc (z + Suc q))) = 1
using 1 al by linarith
qed
qed
qed
have latch-at-202:

191

latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = / —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1) (202 + (z + za)) = 1
proof —
have 1: latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, nl1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 =0
then 0 else 1)
(Suc (Suc (z+za+200))) = 1
using latch-1-q-200
by (metis (no-types, lifting) add.assoc add-le-cancel-left add-less-cancel-left mono-nat-linear-1b)
have 2: (Suc (Suc (z+za+200))) = (202 + (z + za))
by auto
show ?thesis
using 1 2 by simp
qed

have count-at-198:
vT-fd-sol-1 (Anl. 200) (Anl. if hd (inouts, nl) = 0 then 1 else 0) (200 + (z + za)) = 199
proof —
have 1: vT-fd-sol-1 (Anl. 200) (Anl. if hd (inouts, nl) = 0 then 1 else 0)
(Suc (Suc (x + za + 198))) = 199
using 130 by (metis (no-types, lifting) Suc-numeral less-add-Suc2 numeral-Bit0 numeral-Bitl
of-nat-numeral one-plus-numeral semiring-norm(3) semiring-norm(5) semiring-norm(8))
have 2: (200 + (x + za)) = (Suc (Suc (z + za + 198)))
by auto
show ?thesis
using 1 2 by presburger
qed
have count-at-199:
vT-fd-sol-1 (An1. 200) (Anl. if hd (inouts, nl) = 0 then 1 else 0) (201 + (z + za)) = 200
proof —
have 1: vT-fd-sol-1 (An1. 200) (Anl. if hd (inouts, nl) = 0 then 1 else 0)
(Suc (Suc (x + za + 199))) = 200
using 130
by (metis Suc-numeral lessI numeral-plus-one of-nat-numeral semiring-norm(5) semiring-norm(8))
have 2: (201 + (z + za)) = (Suc (Suc (z + za + 199)))
by auto
show ?thesis
using 1 2 by presburger
qed

have inouts, (Suc (Suc (z + za + 199)))10 = 0

using a9 len-inouts

by (metis Suc-numeral le-eq-less-or-eq lessl semiring-norm(5) semiring-norm(8))
then have hd(inouts, (Suc (Suc (z + za + 199)))) = 0

using a9 len-inouts by (smt hd-conv-nth list.size(3) zero-neg-numeral)
then have a9-199: hd (inouts, (201 + (z + za))) = 0

by (simp add: semiring-normalization-rules(25))

192

have a9-200-0: inouts, (Suc (Suc (z + xza + 200)))!10 = 0
using a9 len-inouts by blast
then have hd(inouts, (Suc (Suc (z + za + 200)))) = 0
using a9 len-inouts by (smt hd-conv-nth list.size(3) zero-neg-numeral)
then have a9-200: hd(inouts, (202 + (z + za))) = 0
by (simp add: semiring-normalization-rules(25))
have output-at-p-200-imply: (7P (Suc (Suc (z + xza + 200)))) — (inouts,’ (202 + (z + za)) =
11,1))
apply (simp)
apply (simp add: a9-199)
apply (simp add: 1 11)
apply (simp add: count-at-198)
apply (simp add: a9-200)
apply (simp add: count-at-199)
by (simp add: latch-at-202)
have output-at-p-200: (?P (Suc (Suc (z + za + 200))))
using a2 by smt
show inouts,’ (202 + (x + za)) = [1,1]
using output-at-p-200 output-at-p-200-imply by fastforce
qed

Secondly to verify the refinement relation for the feedback.

lemma req-01-ref: reg-01-1-contract fp (4, 1) C plf-riselshot-simp fp (4, 1)
apply (rule feedback-monolof 5 2])
using SimBlock-req-01-1-contract apply (blast)
using post-landing-finalize-1-simblock apply (blast)
using req-01-ref-plf-riselshot apply (blast)
by (auto)

Thirdly to verify the requirement contract satisfied by the feedback of req-01-1-contract.

lemma req-01-fd-ref:
reg-01-contract T req-01-1-contract fp (4, 1)
using inps-req-01-1-contract outps-req-01-1-contract apply (simp add: PreFD-def PostFD-def)
proof —
show reg-01-contract C (3 x - (true b,
(Vv n « #4(8inouts(«n»)q) =u «4» N #Hu(Sinouts («n»)q) =4 «I» A Sinouts («n»), =y
«f-PreFD x 4»($inouts).(«n»)q)) 5 ;
req-01-1-contract ; ;
(true b,
(V n - #.(Sinouts(«n»)y) =4 «2» A
#u($inouts " («n»),) =4 «Suc 0» A
$inouts “(«n»)q =y «f-PostF'D (Suc 0)» ($inouts),(«n»), A «uapply» ($inouts(«n»)q)q(«Suc
0%)q =u T N»)))
apply (simp (no-asm) add: req-01-1-contract-def req-01-contract-def)

apply (rel-simp)
apply (simp add: f-PostF'D-def f-PreFD-def)
proof —
fix ok,::bool and inouts,::nat=-real list and
ok, ":bool and inouts, "::nat=-real list and z::nat=-real and
ok,""::bool and inouts,'::nat=real list and ok, ’""::bool and
inouts, """ :nat=real list
assume al: (Vza. (hd (inouts, za e [z za]) = 0 V hd (inouts, za e [z za]) = 1) A
(inouts, za e [z za)])!(Suc 0) = c-door-open-time A

193

((inouts, za e [z za])!3 = 0 V (inouts, za e [z za])!3 = 1)) —
ok, """ A
(Vz. length(inouts, """) = 2) A
(Vza. (inouts, za e [z za))!3 =
(inouts, za e [z za])!2 = / /\
(inouts, za e [z za])l0 = 1 A
(inouts, (Suc za) e [z (Suc za)])!3 =1 A
(inouts, (Suc za) e [z (Suc za)])!2 = 8 A
inouts, (Suc za) e [z (Suc za)])!0 = 1 A (Vza. hd (tl(inouts,’’ za)) = (inouts, za e [z
ra))lf) —
(Vab. (Vze<200. (inouts, (Suc (Suc (za + xb + zc))) o [z (Suc (Suc (za + zb + zc)))])!0

=0) A
(Vze<ab + 200.
(inouts, (Suc (Suc (za + zc))) o [z (Suc (Suc (za + zc)))])!8 =
(inouts, (Suc (Suc (za 4+ zc))) o [z (Suc (Suc (za + xc)))])!2 = 8) A
(inouts, (Suc (za + xb)) e [x (Suc (za + zb)))I0 = 1 A
(Vaze<ab. hd (inouts,”" (Suc (Suc (za + zc)))) = 0) —
inouts,”’ (202 + (za + zb)) = [1, 1]))
assume a2: ok, —
ok, N
(Vza. length(inouts,’” za) = 2 A
length(inouts,’ za) = Suc 0 A
inouts,’ xa = take (Suc 0) (inouts,”’ za) e drop (Suc (Suc 0)) (inouts,””’ za)
A inouts, " zal(Suc 0) = z za)
assume a3: Vz. (hd (inouts, z) = 0 V hd (inouts, z) = 1) A
inouts, z!(Suc 0) = c-door-open-time A (inouts, z!3 = 0 V inouts, z!3 = 1)
assume aj: Vza. length(inouts, za) = 4 A length(inouts,” za) = 5 A
inouts," xa = take 4 (inouts, za) e x xza # drop J (inouts, za)
from aj have 1:Vza. length(inouts, za) = 4
by blast
have 2: (Vza. (((hd (inouts, za e [z za]) = 0 V hd (inouts, za e [z za]) = 1) A
(inouts, za e [z za])!(Suc 0) = c-door-open-time A
((inouts, za e [z za])!3 = 0 V (inouts, za e [z za])!3 = 1))
= ((hd (inouts, za) = 0 V hd (inouts, za) = 1) A
inouts, zal(Suc 0) = c-door-open-time A (inouts, zal3 = 0 V inouts, zal3 = 1))))
using 1
by (metis Suc-mono Suc-numeral hd-append2 length-greater-0-conv nth-append numeral-2-eq-2
numeral-3-eq-3 semiring-norm(2) semiring-norm(8) zero-less-Suc)
have 3: ok,’”’
using 2 a3 al by simp
have /: ok,’
using a2 3 by blast
have 5: Vza. inouts,’ za = [hd (inouts,’"’ za)]
using 3 a2 by (metis append-eq-conv-conj length-Cons list.size(3) list-equal-size2 self-append-conv)
have 6: Vza. inouts,"”’ za!(Suc 0) = z za
using a2 3 by blast
have input-at-3: ¥ za. (inouts, za e [z za])!3 = inouts, za!3
using 1 by (simp add: nth-append)
have input-at-2: ¥ za. (inouts, za e [z za])!2 = inouts, za!2
using 1 by (simp add: nth-append)
have input-at-1: ¥V za. (inouts, za e [z za))!l = inouts, xall
using 1 by (simp add: nth-append)
have input-at-0: V za. (inouts, za e [z za])!0 = inouts, za!0
using 1 by (simp add: nth-append)
have input-at-4: V za. (inouts, za e [z za])l4 = x za

|
>

194

using 1 by (simp add: nth-append)
have feedback: (Vza. hd (t(inouts,”’ za)) = (inouts, za e [z za])!4) =
(Vza. (inouts, """ za)!(Suc 0) = (z za))
by (metis 3 One-nat-def a2 diff-Suc-1 hd-conv-nth input-at-4 length-greater-0-conv
length-tl nth-tl numeral-2-eq-2 zero-less-one)
have al":
(Vz. length(inouts,”"') = 2) A
(Vza. (inouts, za)l8 = 1 A
(inouts, za)!2 = 4 A
(inouts, za)l0 = 1 A
(inouts, (Suc za))!8 =1 A
(inouts, (Suc za))!2 = 8 A
(inouts, (Suc za))!0 = 1 A (Y za. (inouts,”” za)!(Suc 0) = (z za)) —
(Vab. (Vxe<200. (inouts, (Suc (Suc (za + zb + xc))))I0 = 0) A
(Vze<axb + 200.
(inouts, (Suc (Suc (za + zc))))!3 =1 A
(inouts, (Suc (Suc (za + zc))))!12 = 8) A
(inouts, (Suc (za + xb)))I0 = 1 A
(Vaze<ab. hd (inouts,”’ (Suc (Suc (za + zc)))) = 0) —
inouts, "’ (202 + (za + zb)) = [1, 1]))
using input-at-0 input-at-1 input-at-2 input-at-3 input-at-4 al 6 2 3 a3 feedback
by simp
show ok,’ A
(Vz. length(inouts,’ x) = Suc 0) A
(V. inouts, z'3 = 1 A
inouts, z!'2 = 4 A inouts, z!'0 = 1 A inouts, (Suc z)!8 =1 A
inouts, (Suc)12 = 8 A inouts, (Suc z)!0 = 1 —
(Vza. (Vab<200. inouts, (Suc (Suc (z + za + zb)))!0 = 0) A
(Vab<za + 200. inouts, (Suc (Suc (x + zb)))!8 = I A inouts, (Suc (Suc (z +

inouts, (Suc (z + za))!0 = 1 N (Vzb<za. hd (inouts,’ (Suc (Suc (z + zb)))) = 0)

inouts,’ (202 + (z + za)) = [1]))

apply (rule conjl)

using 4 apply (simp)

apply (rule conjl)

using 3 a2 apply blast

apply (rule alll, clarify)

using a!’ apply (auto)

by (simp add: 5 6)

qed
qed

Finally, the requirement is held for the post-landing-finalize-1 because of transitivity of refine-
ment relation.

lemma req-01:
req-01-contract = post-landing-finalize-1
apply (simp only: post-landing-finalize-1-simp)
using req-01-fd-ref req-01-ref by auto

C.5.2 Requirement 02

post-landing-finalize-req-02: A finalize event is broadcast only once while the aircraft is on the
ground.

195

req-02-contract is the requirement to be verified. Its precondition is the same as req-01-contract.
Its postcondition specifies that

e it always has four inputs and one output;

e the requirement:

— if a finalize event has been broadcast at step m,

— while the aircraft is on ground: ac-on-ground is true and mode=GROUND,

— then a finalize event won’t be broadcast again.

definition req-02-contract = ((V n:unat - (
«(Az n.

(
d(zn) =0V hd(zn) = 1) A (x door-closed is boolean)

(h
((z n)'1 = c-door-open-time) A (x door-open-time)
((zn)!8 =0V (zn)!8 = 1) (x ac-on-ground is boolean *)
))» (&inouts), («n»)q)::sim-state upred)
Fn
((V n:nat -

((#4($inouts («n»)y)) = «4») A

((#u($inouts” («n»)q)) =u «I1»)) A

(* m : finalize-event

: mode is GROUND and ac-on-ground is true
p : mode is GROUND and ac-on-ground is true = —finalize-event
*
)

(V m:nat -

(head, ($inouts ™ («m»)q) =4 1) (x finalize-event at m)

=
(
YV p:nat -
(
(V gunat - ((«g» <, «p») =
((«nth» ($inouts («m+1+4g»)a)a (3)a =u 1) (x ac-on-ground = true %) A
(«nthy ($inouts («m+14¢»)a)a (2)a =u 8) (x mode = GROUND x)))
(x the aircraft is always on the ground from m+1 to m+1+p x)
= ($inouts” («m+1+4p»)a) =y (0)(x then the finalize-event is false. *)
)
)
)))

req-02-1-contract is the contract for post-landing-finalize-1 without feedback: plf-rise1shot-simp.
It is similar to reg-02-contract except that 1) it has five inputs and two outputs (the feedback
operator will remove one input and one output); 2) the 2nd output is equal to the 4th input
since they are connected together by the feedback loop.

definition req-02-1-contract = ((V n:nat - (
«(Az n.

(
d(zn) =0V hd(zn) = 1) A (x door-closed is boolean)

(h

((z n)!'1 = c-door-open-time) A (x door-open-time)
((zn)!3 =0V (zn)!8 = 1) (x ac-on-ground is boolean x)
))» (&inouts), («n»)q)::sim-state upred)

Fn

196

(VY nunat -
((#4($inouts («n»)a)) =y «5») A
((#u($inouts ™ («n»)q)) =4 «2»)) A
(* m : finalize-event
: mode is GROUND and ac-on-ground is true
p : mode is GROUND and ac-on-ground is true = —finalize-event

0
(V munat -
(head, ($inouts” («m»)q) =4 1) (x finalize-event at m x) A
(V n:nat - (head, (tail, ($inouts ™ («n»)q)) =, «nthy ($inouts («n»)a)a (4)a))
=
(
Vv punat -
(
(V gunat - ((«g» <y «p») =
((«nth» ($inouts («m+1+g»)g)a (3)a =u 1) (x ac-on-ground = true %) A
(«nthy ($inouts («m+14¢»)a)a (2)a =u 8) (x mode = GROUND x)))
(x the aircraft is always on the ground from m+1 to m~+1+p *)
= ($inouts” («m~+14+p»),) =4 (0,0)(x then the finalize-event is false. *)
)
)
)))

lemma SimBlock-req-02-1-contract:
SimBlock 5 2 req-02-1-contract
apply (simp add: SimBlock-def req-02-1-contract-def)
apply (rel-auto)
apply (rule-tac x = Ana. [1, 20, if na = 1 then 8 else 4, 1, 0] in exl)
apply (rule congl, simp)
apply (rule-tac x = Ana. [0, 0] in ex])
by (simp)

lemma inps-req-02-1-contract:
mps req-02-1-contract = 5
using SimBlock-req-02-1-contract inps-P by blast

lemma outps-req-02-1-contract:
outps req-02-1-contract = 2
using SimBlock-req-02-1-contract outps-P by blast

In order to verify this requirement, firstly to verify the contract req-02-1-contract refined by
plf-riselshot-simp.

lemma req-02-ref-plf-rise1shot: req-02-1-contract T plf-riselshot-simp
apply (simp add: FBlock-def plf-riselshot-simp-def req-02-1-contract-def)
apply (rule ndesign-refine-intro)
apply simp
apply (unfold upred-defs urel-defs)
apply (simp add: fun-eq-iff relcomp-unfold OO-def
lens-defs upred-defs alpha-splits Product-Type.split-beta) ?
apply (transfer)
apply (simp; safe)
proof —
fix inouts, inouts,’::nat = real list and z::nat and za::nat
assume al: Vz. (hd (inouts, z) = 0 V hd (inouts,) = 1) A

197

inouts, z!(Suc 0) = c-door-open-time A (inouts, z!3 = 0 V inouts, z!3 = 1)
let 2P = Az. (z < Suc 0 —
(hd (inouts, 0) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 0])) < 1 —
(x = 0 — length(inouts, 0) = 5 A length(inouts,” 0) = 2 A [0, 0] = inouts,’ 0) A
(0 <z —
(hd (inouts, z) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 1 (real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 01)))) +
1 —
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!12 =/ —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
xTr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!l2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ z)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 1 (real-of-int
(int32 (RoundZero (real-of-int [Rate x maz (inouts, 0'(Suc 0)) 01)))) +
1 —
length(inouts,) = 5 A
length(inouts,’) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, nll2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts,) = 0 —»
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!12 = { —
hd (inouts, n1) = 0 V nl = 0 V - inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V - inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
Tr =
0 —

198

length(inouts, ©) = & A length(inouts,’ x) = 2 A [1, 1] = inouts,’) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = j —
hd (inouts, n1) = 0V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ z)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A
length(inouts,’) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts,) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’))))) A
(= int32 (RoundZero (real-of-int [Rate *x maz (inouts, 0!(Suc 0)) 0])) < 1 —
(r=0—
length(inouts, 0) = 5 A
length(inouts,” 0) = 2 A
[0, 0] = inouts,’ 0 A length(inouts, 0) = 5 A length(inouts,” 0) = 2 A [0, 0] = inouts,’

—~—~

(0 <z —
(hd (inouts, x) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 1 (real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 01)))) +
1 —
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!12 = | —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V — inouts, (n1 — Suc 0)!8 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
Tr =
0 —
length(inouts, ©) = & A length(inouts,’ x) = 2 A [1, 1] = inouts,’) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = j —
hd (inouts, n1) = 0V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 1 (real-of-int

199

(int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0)) 01)))) +
1 —
length(inouts,) = 5 A
length(inouts,’) = 2 A
[0, 0] = inouts,” x A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 =} —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts, x) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = | —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
xTr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts,) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ z)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = &5 A
length(inouts,’) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = j —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!l2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)))))) A
(= hd (inouts, 0) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 0])) < 0 —
(z = 0 — length(inouts, 0) = 5 A length(inouts,’ 0) = 2 A [0, 0] = inouts,” 0) A
(0 <z —
(hd (inouts, x) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 0 (real-of-int
(int32 (RoundZero (real-of-int [Rate x maz (inouts, 0!(Suc 0)) 01)))) +

200

1 —
(= latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!12 = | —
hd (inouts, n1) = 0 V nl = 0 V - inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!l2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’) = 2 A [0, 0] = inouts,’ z)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate x mazx (inouts, z!(Suc 0)) 01)))
< min 0 (real-of-int
(int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0)) 01)))) +
1 —
length(inouts,) = 5 A
length(inouts,’) = 2 A
[0, 0] = inouts,” x A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts,) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V - inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
xTr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, ©) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,’ x)) A

201

(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A
length(inouts,’) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
Tr =
0 —
length(inouts,) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’))))) A
(= int32 (RoundZero (real-of-int [Rate *x maz (inouts, 0!(Suc 0)) 0])) < 0 —
(=0 —
length(inouts, 0) = 5 A
length(inouts,’ 0) = 2 A
[0, 0] = inouts,” 0 A length(inouts, 0) = 5 A length(inouts,’ 0) = 2 A [0, 0] = inouts,’

—~—~

(0 <z —
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 0 (real-of-int
(int32 (RoundZero (real-of-int [Rate x mazx (inouts, 0!(Suc 0)) 01)))) +
1 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = § —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
xTr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!12 = 4 —
hd (inouts, n1) = 0V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, ©) = & A length(inouts,’) = 2 A [0, 0] = inouts,’ x)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, z!(Suc 0)) 01)))
< min 0 (real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 01)))) +
1 —
length(inouts,) = 5 A
length(inouts,’) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if nl = 0V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0

202

else 1)
Tr =
00—
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(An1. if inouts, (nl — Suc 0)!12 = / —
hd (inouts, n1) = 0 V nl = 0 V - inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
Tr =
0 —
length(inouts, z) = & A length(inouts,”) = 2 A [1, 1] = inouts,’) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!l2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ z)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A
length(inouts,’ x) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 =} —
hd (inouts, n1) = 0V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’) = 2 A [0, 0] = inouts,’))))))) A
(mz < Suc 0 —
(hd (inouts, (z — Suc 0)) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, (x — Suc 0)!(Suc 0)) 0])))
< min (vT-fd-sol-1
(An1. real-of-int
(int32 (RoundZero (real-of-int [Rate * maz (inouts, n1!(Suc 0)) 01))))
(Anl.if hd (inouts, nl) = 0 then 1 else 0) (x — Suc (Suc 0)))
(real-of-int
(int32 (RoundZero (real-of-int [Rate x maz (inouts, (x — Suc (Suc 0))!(Suc 0)) 01))))

1 —
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, n1l(Suc 0)) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int

203

(int32 (RoundZero (real-of-int [Rate x maz (inouts, (x — Suc 0)!(Suc 0)) 01)))) +
1 —
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
Tr =
0 A
latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
(r — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,”) A
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V - inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
(x — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ z)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01])))
< min (vI-fd-sol-1
(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, n1!(Suc 0)) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int
(int32 (RoundZero (real-of-int [Rate * maz (inouts, (x — Suc 0)!(Suc 0)) 01)))) +
1 —
length(inouts,) = & A
length(inouts,’ x) = 2 A
[0, 0] = inouts,” x A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = j —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
Tr =

204

0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x) A
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
(z — Suc 0) =
0 —
length(inouts, ©) = &5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, nl1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!8 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
Tr =
0 A
latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = j —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.ifnl = 0V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!'4 = 0 then 0
else 1)
(r — Suc 0) =
00—
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, ©) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,” z) A
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 =0
then 0 else 1)
(x — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ z)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,’ T A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8

205

then 0 else 1)
(Anl.if n1 = 0 V — inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,”) A
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = / —
hd (inouts, n1) = 0V nl = 0 V - inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
(x — Suc 0) =
0 —
length(inouts, z) = & A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x)))) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, (x — Suc 0)!(Suc 0))
01)))
< min (vT-fd-sol-1
(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate x max (inouts, n1!(Suc 0)) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc (Suc 0)))
(real-of-int
(int32 (RoundZero
(real-of-int [Rate x mazx (inouts, (z — Suc (Suc 0))!(Suc 0)) 01)))) +
1 —
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, nll(Suc 0)) 01))))
(Anl. if hd (inouts, n1) = 0 then 1 else 0) (z — Suc 0))
(real-of-int
(int32 (RoundZero (real-of-int [Rate x maz (inouts, (x — Suc 0)!(Suc 0)) 01)))) +
1 —
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 =0
then 0 else 1)
Tr =
0 —
length(inouts, z) = &5 A length(inouts,’) = 2 A [1, 1] = inouts,” z) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = j —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.ifnl = 0V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)!'4 = 0 then 0
else 1)
xr =
00—
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ x)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(Anl. real-of-int

206

(int32 (RoundZero (real-of-int [Rate * max (inouts, n1!(Suc 0)) 01))))
(Anl. if hd (inouts, nl) = 0 then I else 0) (x — Suc 0))
(real-of-int
(int32 (RoundZero (real-of-int | Rate * maz (inouts, (z — Suc 0)!(Suc 0)) 01)))) +
1 —
length(inouts,) = 5 A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,’ T A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = } —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, ©) = &5 A length(inouts,” z) = 2 A [0, 0] = inouts,’ ©))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!8 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
T =
0 —
length(inouts, ©) = &5 A length(inouts,’) = 2 A [1, 1] = inouts,”) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = } —
hd (inouts, n1) = 0 V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
xTr =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = &5 A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,’ T A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts,) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’))))) A
(= hd (inouts, (x — Suc 0)) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, (x — Suc 0)!(Suc 0)) 0])) < 0 —
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1

207

(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, nl!(Suc 0)) 01))))
(Anl. if hd (inouts, n1) = 0 then 1 else 0) (x — Suc 0))
(real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, (z — Suc 0)!(Suc 0)) 01)))) +
1 —
(= latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!12 = / —
hd (inouts, n1) = 0V nl = 0 V - inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
Tr =
0 A
latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)4 = 0 then 0
else 1)
(r — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-cale-output
(Anl. if inouts, (n1 — Suc 0)!12 = } —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
xTr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x) A
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V - inouts, n1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
(x — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, n1!(Suc 0)) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int
(int32 (RoundZero (real-of-int [Rate x maz (inouts, (x — Suc 0)!(Suc 0)) 01)))) +
1 —
length(inouts,) = 5 A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,” T A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8

208

then 0 else 1)
(Anl.if n1 = 0 V — inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,”) A
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = / —
hd (inouts, n1) = 0V nl = 0 V - inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
(x — Suc 0) =
0 —
length(inouts, x) = & A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!12 = | —
hd (inouts, n1) = 0V nl = 0 V - inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
Tr =
0 A
latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)4 = 0 then 0
else 1)
(r — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-cale-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,”) A
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!12 = / —
hd (inouts, n1) = 0V nl = 0 V - inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
(z — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A
length(inouts,’ ©) = 2 A

209

[0, 0] = inouts,’ = A
(latch-rec-cale-output
(Anl. if inouts, (n1 — Suc 0)!12 = } —
hd (inouts, n1) = 0 V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.ifnl = 0V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!'4 = 0 then 0
else 1)
r =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x) A
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!12 = { —
hd (inouts, n1) = 0 V nl = 0 V — inouts, n1l2 = 8
then 0 else 1)
(Anl.if nl = 0 V - inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
(x — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,’ z) = 2 A [0, 0] = inouts,’ x)))) A
(— nt82 (RoundZero (real-of-int [Rate * maz (inouts, (z — Suc 0)!(Suc 0)) 0
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, n1l(Suc 0)) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int
(int32 (RoundZero (real-of-int [Rate x maz (inouts, (z — Suc 0)!(Suc 0)) 01)))) +
1 —
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!8 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)

N <0—

Tr =
0 —
length(inouts, x) = &5 A length(inouts,’) = 2 A [1, 1] = inouts,” z) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = } —
hd (inouts, n1) = 0V nl = 0 V — inouts, n1!2 = 8
then 0 else 1)
(Anl.ifnl = 0V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
r =
00—
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate *x maz (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(Anl. real-of-int
(int32 (RoundZero (real-of-int [Rate * max (inouts, n1!(Suc 0)) 01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int
(int82 (RoundZero (real-of-int [Rate * maz (inouts, (x — Suc 0)!(Suc 0)) 01)))) +
1 —

210

length(inouts,) = 5 A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,’ T A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)4 = 0 then 0
else 1)

—~

T =
0 —
length(inouts, ©) = 5 A length(inouts,” z) = 2 A [0, 0] = inouts,’ ©))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = § —
hd (inouts, n1) = 0 V nl = 0 V = inouts, nl1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!8 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1!2 = 8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ z)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,’ T A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, n1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)!4 = 0 then 0
else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’))))))
assume a2: Vz. 7P x

assume a3: hd (inouts,’) = 1
assume aj: Vz. hd (tl (inouts,’ x)) = inouts, z!(4)
assume ad: Vab<za. inouts, (Suc (z + zb))!/(3) = 1 A inouts, (Suc (z + zb))!(2) = 8
have len-inouts: V z. length(inouts, z) = 5
using a2 by blast
have output-at-0: inouts,’ 0 = [0,0]
using a2 by (smt One-nat-def zero-le-one)
have output-eq: V. hd (tl(inouts,” ©)) = hd(inouts,” x)

211

using a2 by (smt hd-Cons-tl list.inject not-gr0 ti-Nil)
have input-4-at-m: inouts, z!(4) = 1
using a8 a4 output-eq by simp
have latch-at-m-1: latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, nl1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!8 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
(Suc (z)) =0
using input-4-at-m ad by simp
have latch-m-1-to-p: V q<za . latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = / —
hd (inouts, n1) = 0V nl = 0 V - inouts, n1!2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
(Suc (z+9)) = 0
apply (rule alll)
proof —
fix q::nat
show ¢ < za —
latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!(2) = 4 — hd (inouts, n1) =0V nl = 0 V = inouts, n1!(2)
=38
then 0 else 1)
(Anl. if n1 = 0 V = inouts, (nl — Suc 0)}(8) = 0 A inouts, (nl — Suc 0)!(4) = 0 then 0
else 1)
(Suc (z + q)) =0
proof (induct q)
case (
then show ?case
using latch-at-m-1 by simp
next
case (Suc q)
then show ?case
apply (simp add: latch-rec-calc-output.elims)
using a5 One-nat-def Suc-leD add-Suc-right diff-Suc-1 by smt
qed
qed
have latch-at-p: latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 —
hd (inouts, n1) = 0 V nl = 0 V = inouts, nl1l2 = 8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (n1 — Suc 0)!8 = 0 A inouts, (nl — Suc 0)!4 = 0
then 0 else 1)
(Suc (z4za)) = 0
using latch-m-1-to-p by blast
show inouts,’ (Suc (z + za)) = inouts,’ 0
using a2 latch-at-p by (smt output-at-0 zero-less-Suc)
qged

Secondly to verify the refinement relation for the feedback.

lemma req-02-ref: req-02-1-contract fp (4, 1) C plf-riselshot-simp fp (4, 1)
apply (rule feedback-monolof 5 2])

212

using SimBlock-req-02-1-contract apply (blast)
using post-landing-finalize-1-simblock apply (blast)
using req-02-ref-plf-rise1shot apply (blast)

by (auto)

Thirdly to verify the requirement contract satisfied by the feedback of req-02-1-contract.

lemma req-02-fd-ref:
req-02-contract T req-02-1-contract fp (4, 1)
using inps-req-02-1-contract outps-req-02-1-contract apply (simp add: PreF'D-def PostFD-def)
proof —
show reg-02-contract C (3 z « (true F,
(V n « #u(Sinouts(«n»)q) =u «4» A #u(Sinouts («n»)y) =4 «5» A
Sinouts " («n»)q =y «f-PreF'D x 4»($inouts),(«n»)q)) ;3
req-02-1-contract ; ;
(true b,
(V n - #u(Sinouts(«n»)q) = «2» A
#.(Sinouts " («n»),) =4 «Suc 0» A
Sinouts " («n»)q =y «f-PostFD (Suc 0)»($inouts),(«n»)q A
«uapply» ($inouts(«n»)q) o («Suc 0%)q =4 KT n»)))
apply (simp (no-asm) add: req-02-1-contract-def req-02-contract-def)

apply (rel-simp)
apply (simp add: f-PostF'D-def f-PreFD-def)
proof —
fix ok,::bool and inouts,::nat=real list and
ok, :bool and inouts, ::nat=real list and z::nat=real and
ok, "":bool and inouts,'"::nat=-real list and ok, ''"::bool and
mouts, " nat=>real list
assume al: (Vza. (hd (inouts, za e [z za]) = 0 V hd (inouts, za e [z za]) = 1) A
(inouts, za e [z za])!(Suc 0) = c-door-open-time A
((inouts, za e [z za))!3 = 0 V (inouts, za e [z za])!3 = 1)) —
ok, """ A
(V. length(inouts,”"') = 2) A
(Vza. hd (inouts,”"’ za) = 1 N (Yza. hd (8 (inouts,’” za)) = (inouts, za e [z za])l4) —
(Vab. (Vxe<zb. (inouts, (Suc (za + xc)) o [z (Suc (za + xc))])'é’ =1A
(inouts, (Suc (za + zc)) o [z (Suc (za + zc))])!2 = 8) —
inouts,"’ (Suc (za + b)) = [0, 0]))
assume a2: ok, —
ok’ A
(Vza. length(inouts,”" xa) = 2 A
length(inouts,’ za) = Suc 0 A
inouts,’ xa = take (Suc 0) (inouts,””" xa) e drop (Suc (Suc 0)) (inouts,”” xa) A
inouts,""” zal(Suc 0) = z za)
assume a3: Vz. (hd (inouts, z) = 0 V hd (inouts, z) = 1) A
inouts, z!(Suc 0) = c-door-open-time A (inouts, z!3 = 0 V inouts, z!3 = 1)
assume a4: Vza. length(inouts, za) = 4 A length(inouts,” za) = 5 A
inouts," xa = take 4 (inouts, za) e x xza # drop 4 (inouts, xa)
from aj have 1:Vza. length(inouts, za) = 4
by blast
have 2: (Vza. (((hd (inouts, za e [z za]) = 0 V hd (inouts, za e [z za]) = 1) A
(inouts, za e [z za])!(Suc 0) = c-door-open-time A
((inouts, za e [z za])!3 = 0 V (inouts, za e [z za])!3 = 1))
= ((hd (inouts, za) = 0 V hd (inouts, za) = 1) A
inouts, zal(Suc 0) = c-door-open-time A (inouts, zal3 = 0 V inouts, zal3 = 1))))
using 1

213

by (metis Suc-mono Suc-numeral hd-append?2 length-greater-0-conv nth-append numeral-2-eq-2
numeral-3-eq-8 semiring-norm(2) semiring-norm(8) zero-less-Suc)
have 3: ok,’”’
using 2 a8 al by simp
have 4: ok,’
using a2 3 by blast
have 5: Vza. inouts,’ za = [hd (inouts,”"’ za)]
using 3 a2 by (metis append-eq-conv-conj length-Cons list.size(3) list-equal-size2 self-append-conv)
have 6: V za. inouts,"”"’ za!(Suc 0) = x za
using a2 3 by blast
have input-at-3: V za. (inouts, za e [z za])!8 = inouts, za!3
using 1 by (simp add: nth-append)
have input-at-2: V za. (inouts, za e [z xza))!2 = inouts, xa!2
using 1 by (simp add: nth-append)
have input-at-1: ¥ za. (inouts, za e [z za])!l = inouts, zall
using 1 by (simp add: nth-append)
have input-at-0: V za. (inouts, za e [z za])!0 = inouts, zal0
using 1 by (simp add: nth-append)
have input-at-4: ¥ za. (inouts, za e [z xza])l4 = z za
using 1 by (simp add: nth-append)
have feedback: (VY za. hd (tl(inouts,”’ za)) = (inouts, za e [z za])l4) =
(Vza. (inouts, ' za)!(Suc 0) = (z za))
by (metis 3 One-nat-def a2 diff-Suc-1 hd-conv-nth input-at-4 length-greater-0-conv
length-tl nth-tl numeral-2-eq-2 zero-less-one)
have al’: (Vx. length(inouts,”"') = 2) A
(Vza. hd (inouts,”"' za) = 1 N (Yza. hd (t (inouts,’” za)) = (inouts, za e [z za])l4) —
(Vab. (Vze<zb. (inouts, (Suc (za + xc)) o [z (Suc (za + xc))])'S’ =1A
(inouts, (Suc (za + xc)) o [z (Suc (za + zc))])!2 = 8) —
inouts,"’ (Suc (za + b)) = [0, 0]))
using feedback al 6 2 a8 input-at-8 input-at-2 by simp
show ok,’ A
(Vz. length(inouts,’ x) = Suc 0) A
(Vz. hd (inouts,’ z) = 1 —
(Vza. (Vab<za. inouts, (Suc (x + zb))!8 = I A inouts, (Suc (z + zb))!12 = 8) —
inouts,’ (Suc (z + za)) = [0]))
apply (rule conjl)
using 4 apply (simp)
apply (rule conjl)
using 3 a2 apply blast
apply (rule alll, clarify)
using al’ by (simp add: 3 5 a2 feedback input-at-2 input-at-3)
qed
qed

Finally, the requirement is held for the post-landing-finalize-1 because of transitivity of refine-
ment relation.

lemma reg-02:
req-02-contract = post-landing-finalize-1
apply (simp only: post-landing-finalize-1-simp)
using req-02-fd-ref req-02-ref by auto

C.5.3 Requirement 03

post-landing-finalize-req-03: The finalize event will not occur during flight.

During flight, ac-on-ground is false. According to Assumption 4 in the paper: "door-closed

214

must be true if ac-on-ground is false.", then door-closed is true during flight. Therefore, this

requirement can be verified similarly as Requirement 04.

C.5.4 Requirement 04

post-landing-finalize-req-04: The finalize event will not be enabled while the aircraft door is

closed.

Requirement 4: assumes

e door-closed and ac-on-ground are boolean,

e door-open-time is within (0, maz-door-open-time)
then it must guarantee that

e it has four inputs and one output,

e if the door is closed, then the output is always false (0).

abbreviation req-04-contract = ((V n:nat - (

«(Az n. (

(hd(zn) = 0V hd(zn) = 1) A (x door-closed is boolean x)
((zn)!1 > 0 A (zn)l1 < maz-door-open-time) A (x door-open-time x)
((zn)!8 =0V (zn)!8 = 1) (x ac-on-ground is boolean x)
))»
(&inouts), («n»),)::sim-state upred)

Fn

((V n:nat -

((#u($inouts («n»)q)) =u «4») A

((#4(8inouts” («n»)g)) =4 «I») A

((head, (($inouts («n»)q)) =4 1) (x
= (head, (($inouts” («n»),)) =y

door-closed is true x)
0))

This is the contract for post-landing-finalize-1 without the last feedback. Since post-landing-finalize- 1
is equal to plf-riselshot-simp fp (4, 1), then this is the contract for plf-riselshot-simp.

definition req-04-1-contract = ((V n:nat - (

«(Az n. (

(hd(z n) = 0 V hd(z n) = 1) A (x door-closed is boolean)
((zn)l1 > 0 A (zn)l1 < maz-door-open-time) A (x door-open-time x)
((zn)!8 =0V (zn)!8 = 1) (x ac-on-ground is boolean x)
))»
(&inouts), («n»),)::sim-state upred)

Fn

((V n:nat -

((#u($inouts («n»)y)) =u «5») A
(#u($inouts” («n»)q)) =u «2») A
((head,(($inouts («n»),)) =4 1) (x door-closed is true *)
= (head, (($inouts” («n»),)) =, 0) A (head, (tail, ($inouts” («n»)q)) =u 0)))

lemma SimBlock-req-04-1-contract:
SimBlock 5 2 req-04-1-contract

215

apply (simp add: SimBlock-def req-04-1-contract-def)
apply (rel-auto)

apply (rule-tac x = Ana. [0, 20, 4, 0, 0] in exl, simp)
by (rule-tac z = Ana. [0, 0] in exI, simp)

lemma inps-req-04-1-contract:
mnps req-04-1-contract = 5
using SimBlock-req-04-1-contract inps-P by blast

lemma outps-req-04-1-contract:
outps req-04-1-contract = 2
using SimBlock-req-04-1-contract outps-P by blast

In order to verify this requirement, firstly to verify the contract reg-04-1-contract refined by
plf-riselshot-simp.

lemma reg-04-ref-plf-riselshot: req-04-1-contract T plf-riselshot-simp
apply (simp add: FBlock-def plf-riselshot-simp-def reg-04-1-contract-def)
apply (rule ndesign-refine-intro)
apply simp
apply (unfold upred-defs urel-defs)
apply (simp add: fun-eq-iff relcomp-unfold OO-def
lens-defs upred-defs alpha-splits Product-Type.split-beta) ?
apply (transfer)
apply (simp; safe)
apply (rename-tac inouts, inouts,’ x)
proof —
fix inouts, inouts,:nat = real list and z::nat
assume al: Vz. (hd (inouts, x) = 0 V hd (inouts,) = 1) A
0 < inouts, z!(Suc 0) A
inouts, z!(Suc 0) < maz-door-open-time A
(inouts, z'8 = 0 V inouts, z!3 = 1)
assume a2: Vz. (z < Suc 0 —
(hd (inouts, 0) = 0 —»
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 0])) < 1 —
(x = 0 — length(inouts, 0) = 5 A length(inouts,” 0) = 2 A [0, 0] = inouts,’ 0) A
(0 <z —
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 1 (real-of-int (int82 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0))
o) + 1 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V - inouts,

nil2 =8
then 0 else 1)
(Anl.if nl = 0V = inouts, (nl — Suc 0)!8 = 0 A inouts, (n1 — Suc 0)!4 = 0 then
0 else 1)
Tr =
0 —
length(inouts, ©) = &5 A length(inouts,’ x) = 2 A [1, 1] = inouts,’ z) A
(latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)14 = 0 then
Oelse 1) x =

216

0 —
length(inouts, x) = 5 A length(inouts,’) = 2 A [0, 0] = inouts,’ z)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 1 (real-of-int (int82 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0))

o)) +1 —
length(inouts,) = 5 A
length(inouts,’) = 2 A

[0, 0] = inouts,’ = A
(latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V = inouts,

nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
Oelse 1) x =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0V = inouts, (nl — Suc 0)!8 = 0 A inouts, (n1 — Suc 0)!4 = 0 then
0 else 1)
Tr =
0 —
length(inouts, ©) = & A length(inouts,’ x) = 2 A [1, 1] = inouts,’ z) A
(latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)14 = 0 then
Oelse 1) x =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ z)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A
length(inouts,’) = 2 A
[0, 0] = inouts,” x A
(latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)14 = 0 then
Oelse 1) x =

0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))))) A
(= int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0)) 0])) < 1 —
(r=0—
length(inouts, 0) = 5 A
length(inouts,’ 0) = 2 A
[0, 0] = inouts,” 0 A length(inouts, 0) = 5 A length(inouts,’ 0) = 2 A [0, 0] = inouts,’
0) A
(0 <z —
(hd (inouts, z) = 0 —

217

(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 1 (real-of-int (int32 (RoundZero (real-of-int [Rate x* maz (inouts, 0!(Suc 0))
o) + 1 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V = inouts,

nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)!4 = 0 then
0 else 1)
T =
0 —
length(inouts, ©) = &5 A length(inouts,’ x) = 2 A [1, 1] = inouts,’) A
(latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
Oelse 1) x =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 1 (real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0))
o) + 1 —
length(inouts,) = 5 A
length(inouts,’) = 2 A
[0, 0] = inouts,” x A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V — inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
Oelse 1) x =
0 —
length(inouts,) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts,) = 0 —»
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 —> hd (inouts, nl) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
0 else 1)
xTr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)'2 = 4 — hd (inouts, nl1) = 0 V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
Oelse 1) x =

0 —

length(inouts, x) = 5 A length(inouts,’) = 2 A [0, 0] = inouts,’ z)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts, z) = 5 A

218

length(inouts,’) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)'2 = 4 — hd (inouts, nl1) = 0 V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
Oelse 1) x =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)))))) A
(= hd (inouts, 0) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 0])) < 0 —
(x = 0 — length(inouts, 0) = 5 A length(inouts,” 0) = 2 A [0, 0] = inouts,’ 0) A
(0 <z —
(hd (inouts, x) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 0 (real-of-int (int32 (RoundZero (real-of-int [Rate x max (inouts, 0!(Suc 0))
o) + 1 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V — inouts,

nil2 =8
then 0 else 1)
(Anl.if nl = 0V = inouts, (nl — Suc 0)!8 = 0 A inouts, (n1 — Suc 0)!4 = 0 then
0 else 1)
Tr =
0 —
length(inouts, ©) = &5 A length(inouts,’ x) = 2 A [1, 1] = inouts,’ z) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)14 = 0 then
Oelse 1) x =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ z)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, z!(Suc 0)) 01)))
< min 0 (real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0))
o) + 1 —
length(inouts,) = 5 A
length(inouts,’) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
Oelse 1) x =
0 —
length(inouts, ©) = 5 A length(inouts,” z) = 2 A [0, 0] = inouts,’ ©))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V = inouts,
nil2 =8

then 0 else 1)

219

(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)\4 = 0 then

0 else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)14 = 0 then
Oelse 1) x =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ z)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = § A
length(inouts,’) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)14 = 0 then
Oelse 1) x =

0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’))))) A
(= int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0)) 0])) < 0 —
(r=0—
length(inouts, 0) = 5 A
length(inouts,’ 0) = 2 A
[0, 0] = inouts,” 0 A length(inouts, 0) = 5 A length(inouts,’ 0) = 2 A [0, 0] = inouts,’
0) A
0 <z —
(hd (inouts, z) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 0 (real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0))
o) + 1 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 —> hd (inouts, nl) = 0 V nl = 0 V = inouts,

nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
0 else 1)
xTr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)'2 = 4 — hd (inouts, nl1) = 0 V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
Oelse 1) x =

0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)) A
(= real-of-int (int32 (RoundZero (real-of-int | Rate * max (inouts, z!(Suc 0)) 01)))
< min 0 (real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0))

220

o) + 1 —
length(inouts,) = 5 A
length(inouts,’) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V — inouts,

nll2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
Oelse 1) x =
0 —
length(inouts, ©) = 5 A length(inouts,” z) = 2 A [0, 0] = inouts,’ ©))) A
(= hd (inouts, x) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)!4 = 0 then
0 else 1)
Tr =
0 —
length(inouts,) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
Oelse 1) x =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
Oelse 1) x =

0 —
length(inouts, ©) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©))))))) A
(mz < Suc 0 —
(hd (inouts, (x — Suc 0)) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, (x — Suc 0)!(Suc 0)) 0])))
< min (vT-fd-sol-1
(Anl. real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, nl1!(Suc 0))

(Anl. if hd (inouts, nl) = 0 then I else 0) (x — Suc (Suc 0)))
(real-of-int (int32 (RoundZero (real-of-int [Rate x mazx (inouts, (x — Suc (Suc 0))!(Suc
0)) 01)))) +

1 —
(hd (inouts, z) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))

221

< min (vT-fd-sol-1
(An1. real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, ni1!(Suc 0))

01))))
(Anl. if hd (inouts, n1) = 0 then 1 else 0) (z — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, (z — Suc 0)!(Suc 0))
01))) +
1 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)'2 = 4 — hd (inouts, n1) = 0 V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
0 else 1)
Tr =
0 A
latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nil2 =38
then 0 else 1)
(Anl.if nl = 0 V — inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1)
(r — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)!4 = 0 then 0
else 1) ¢ =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x) A
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
0 else 1)
(x — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate *x maz (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(Anl. real-of-int (int32 (RoundZero (real-of-int [Rate * mazx (inouts, nl!(Suc
0)) 01))))

(An1. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate * mazx (inouts, (x — Suc 0)!(Suc

1 —
length(inouts,) = &5 A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,’ T A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nil2 =8

222

then 0 else 1)
(Anl.if n1 = 0 V — inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)4 = 0 then 0

else 1) ¢ =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x) A
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!'2 = 4 — hd (inouts, nl) = 0 V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
0 else 1)
(x — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
0 else 1)
Tr =
0 N
latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)4 = 0 then 0
else 1)
(z — Suc 0) =
0 —
length(inouts, x) = &5 A length(inouts,’) = 2 A [1, 1] = inouts,” z) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl1) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.ifnl = 0V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1) x =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x) A
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!12 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
0 else 1)
(x — Suc 0) =
0 —

length(inouts, x) = 5 A length(inouts,’ z) = 2 A [0, 0] = inouts,’ x)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts, ©) = & A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,” x A
(latch-rec-calc-output

223

(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,

nil2 =38
then 0 else 1)
(Anl.if nl = 0 V — inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1) x =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x) A
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)'2 = 4 — hd (inouts, n1) = 0 V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
0 else 1)
(x — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ x)))) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, (z — Suc 0)!(Suc 0))
01)))
< min (vT-fd-sol-1
(Anl. real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, n1!(Suc 0))
01))))

(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc (Suc 0)))
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, (z — Suc (Suc 0))!(Suc
0)) 01)))) +
1 —
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(An1. real-of-int (int32 (RoundZero (real-of-int [Rate *x maz (inouts, ni1!(Suc 0))

01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (z — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int | Rate x maz (inouts, (z — Suc 0)!(Suc 0))
01)))) +
1 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)'2 = 4 — hd (inouts, n1) = 0 V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
0 else 1)
Tr =
0 —
length(inouts, x) = &5 A length(inouts,’) = 2 A [1, 1] = inouts,” z) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.ifnl = 0V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!'4 = 0 then 0
else 1) x =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ x)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(An1. real-of-int (int32 (RoundZero (real-of-int [Rate * mazx (inouts, nl!(Suc
0)) 01))))

224

(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, (x — Suc 0)!(Suc
0)) 01)))) +
1 —

length(inouts,) = 5 A
length(inouts,’ z) = 2 A
[0, 0] = inouts,’ T A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl1) = 0 V nl = 0 V - inouts,

nil2 =8
then 0 else 1)
(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1) ¢ =
0 —
length(inouts, z) = & A length(inouts,” ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(An1. if inouts, (nl — Suc 0)!12 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
0 else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V — inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1) x =
0 —
length(inouts, x) = 5 A length(inouts,’ z) = 2 A [0, 0] = inouts,’ x)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts, ©) = &5 A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = / — hd (inouts, n1) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.ifnl = 0V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1) x =

0 —
length(inouts, x) = 5 A length(inouts,’) = 2 A [0, 0] = inouts,’))))) A
(= hd (inouts, (z — Suc 0)) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, (z — Suc 0)!(Suc 0)) 0])) < 0 —
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(An1. real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, nl1!(Suc 0))

(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate *x maz (inouts, (z — Suc 0)!(Suc 0))

225

01)))) +

1 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)'2 = 4 — hd (inouts, n1) = 0 V nl = 0 V — inouts,

nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
0 else 1)
Tr =
0 A
latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1)
(r — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)4 = 0 then 0
else 1) x =
0 —
length(inouts, z) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,”) A
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
0 else 1)
(z — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(An1. real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, ni!(Suc
0)) 01))))

(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int | Rate * maz (inouts, (x — Suc 0)!(Suc

1 —

length(inouts,) = 5 A

length(inouts,’ ©) = 2 A

[0, 0] = inouts,’ T A

(latch-rec-calc-output

(Anl. if inouts, (n1 — Suc 0)!12 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nll2 =8
then 0 else 1)

(Anl.if nl = 0 V — inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1) x =

0 —

length(inouts, x) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,”) A

226

(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V — inouts,

nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
0 else 1)
(z — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
0 else 1)
Tr =
0 N
latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)4 = 0 then 0
else 1)
(r — Suc 0) =
0 —
length(inouts, x) = &5 A length(inouts,’) = 2 A [1, 1] = inouts,”) A
(latch-rec-cale-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1) ¢ =
00—
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x) A
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)12 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V —inouts, (n1 — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)!4 = 0 then
0 else 1)
(x — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,’ z) = 2 A [0, 0] = inouts,’ x)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts, ©) = &5 A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl1) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.ifnl = 0V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1) x =

227

0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x) A
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)'2 = 4 — hd (inouts, n1) = 0 V nl = 0 V — inouts,

nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
0 else 1)
(z — Suc 0) =
0 —

length(inouts, ©) = &5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)))) A
(= int32 (RoundZero (real-of-int [Rate * maz (inouts, (z — Suc 0)!(Suc 0)) 0
(hd (inouts, z) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(An1. real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, nl!(Suc 0))

D <0—

01))))
(Anl. if hd (inouts, n1) = 0 then 1 else 0) (x — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, (z — Suc 0)!(Suc 0))
01))) +
1 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!'2 = 4 — hd (inouts, n1) = 0 V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
0 else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)4 = 0 then 0
else 1) x =
0 —
length(inouts, ©) = & A length(inouts,’) = 2 A [0, 0] = inouts,’ x)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(An1. real-of-int (int32 (RoundZero (real-of-int [Rate x mazx (inouts, n1!(Suc
0)) 01))))

(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int | Rate * mazx (inouts, (z — Suc 0)!(Suc

1 —

length(inouts, ©) = &§ A

length(inouts,’ ©) = 2 A

[0, 0] = inouts,’ = A

(latch-rec-calc-output

(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl1) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)

(Anl.ifnl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!'4 = 0 then 0

else 1) x =

228

0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,

nll2 =8
then 0 else 1)
(Anl. if nl = 0 V —inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
0 else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)4 = 0 then 0
else 1) ¢ =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ z)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = &5 A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,’ T A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)!4 = 0 then 0
else 1) x =

0 —
length(inouts, ©) = & A length(inouts,’) = 2 A [0, 0] = inouts,’ x))))))
assume a3: hd (inouts, z) = 1
have 1:Vz. (inouts, z!(Suc 0)) > 0 A (inouts, z!(Suc 0)) < maz-door-open-time
using al by blast
have 2: Vz. int32 (RoundZero (real-of-int | Rate * max (inouts, z!(Suc 0)) 0])) > 0 A
int32 (RoundZero (real-of-int [Rate x maz (inouts, z!(Suc 0)) 01)) < (Rate * maz-door-open-time
+ 1)
apply (rule alll)
proof —
fix zx::nat
have 0: Rate * maz (inouts, zz!(Suc 0)) 0 < Rate * maz-door-open-time A Rate x maz x 0 > 0
using 7 by simp
have 1: [Rate * maz (inouts, zz!(Suc 0)) 0] < (Rate * mazx (inouts, zz!(Suc 0)) 0 + 1)
using ceiling-correct by linarith
then have [Rate * maz (inouts, zz!(Suc 0)) 0] < (Rate * max-door-open-time + 1)
using 0 1 by linarith
then have 2: [Rate * max (inouts, zz!(Suc 0)) 0] < (Rate * maz-door-open-time + 1) A
[Rate * max (inouts, zz!(Suc 0)) 07 > 0
using 0 by (smt ceiling-le-zero ceiling-zero)
have 3: real-of-int [Rate * max (inouts, xz!(Suc 0)) 0] < (Rate *x maz-door-open-time + 1) A
real-of-int [Rate * mazx (inouts, xz!(Suc 0)) 0] > 0
using 2 by (simp)
have /: RoundZero (real-of-int [Rate * maz (inouts, zz!(Suc 0)) 01)

229

= |real-of-int [Rate * max (inouts, xz!(Suc 0)) 07]
using RoundZero-def by (simp)
have 5: RoundZero (real-of-int [Rate x maz (inouts, zz!(Suc 0)) 0]) < (Rate x maz-door-open-time
+ 1) A
RoundZero (real-of-int [Rate * maz (inouts, zz!(Suc 0)) 0]) > 0
using 3 4 by auto
have 51: RoundZero (real-of-int [Rate * maz (inouts, zx!(Suc 0)) 0]) < (Rate * 214748364 +
1) A
RoundZero (real-of-int [Rate x maz (inouts, zz!(Suc 0)) 0]) > 0
using 5 1 by auto
have 6: int32 (RoundZero (real-of-int [Rate x maz (inouts, zz!(Suc 0)) 01))
= RoundZero (real-of-int [Rate * maz (inouts, zz!(Suc 0)) 01)
using 51 int32-eq 1 by simp
have 7: int32 (RoundZero (real-of-int [Rate x maz (inouts, zz!(Suc 0)) 01))
< (Rate x maz-door-open-time + 1) A
int32 (RoundZero (real-of-int [Rate * maz (inouts, zz!(Suc 0)) 0])) > 0
using 5 6 by (simp)
show 0 < int32 (RoundZero (real-of-int [Rate *x maz (inouts, zz!(Suc 0)) 0])) A
int32 (RoundZero (real-of-int [Rate x mazx (inouts, xz!(Suc 0)) 01)) < Rate x maz-door-open-time
+ 1
using 7 by blast
qed
show hd (inouts,’) = 0
using 2 a2 a3 al neq0-conv list.sel(1) by (smt)
next
fix inouts, inouts,”::nat = real list and z::nat
assume al: Vz. (hd (inouts, x) = 0 V hd (inouts,) = 1) A
0 < inouts, z!(Suc 0) A
inouts, z!(Suc 0) < maz-door-open-time A
(inouts, z!8 = 0 V inouts, z!3 = 1)
assume a2: Vz. (x < Suc 0 —
(hd (inouts, 0) = 0 —»
(int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0)) 0])) < 1 —
(z = 0 — length(inouts, 0) = 5 A length(inouts,’ 0) = 2 A [0, 0] = inouts,’ 0) A
(0<z—
(hd (inouts, x) = 0 —
(real-of-int (int32 (RoundZero (real-of-int | Rate * max (inouts, z!(Suc 0)) 01)))
< min 1 (real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0))
o) + 1 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V - inouts,

nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)\4 = 0 then
0 else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)14 = 0 then
Oelse 1) x =

0 —

230

length(inouts, ©) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,’ x)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 1 (real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0))

o)) +1 —
length(inouts,) = 5 A
length(inouts,’) = 2 A

[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)'2 = 4 — hd (inouts, n1) = 0 V nl = 0 V — inouts,

nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)14 = 0 then
Oelse 1) x =
0 —
length(inouts,) = & A length(inouts,” ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)\4 = 0 then
0 else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
Oelse 1) x =
0 —
length(inouts, x) = 5 A length(inouts,’) = 2 A [0, 0] = inouts,’ z)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = &5 A
length(inouts,’) = 2 A
[0, 0] = inouts,” = A
(latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)14 = 0 then
Oelse 1) x =

0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’))))) A
(= int82 (RoundZero (real-of-int [Rate x maz (inouts, 0!(Suc 0)) 0])) < 1 —
(r=0—
length(inouts, 0) = 5 A
length(inouts,’ 0) = 2 A
[0, 0] = inouts,” 0 A length(inouts, 0) = 5 A length(inouts,’ 0) = 2 A [0, 0] = inouts,’

(0 <z —

(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))

231

< min 1 (real-of-int (int82 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0))
o)) + 1 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,

nil2 =8
then 0 else 1)
(Anl.if nl = 0V = inouts, (nl — Suc 0)!8 = 0 A inouts, (n1 — Suc 0)!4 = 0 then
0 else 1)
Tr =
0 —
length(inouts, ©) = &5 A length(inouts,’ x) = 2 A [1, 1] = inouts,’ z) A
(latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)14 = 0 then
Oelse 1) x =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, z!(Suc 0)) 01)))
< min 1 (real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0))
o) + 1 —
length(inouts,) = 5 A
length(inouts,’) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)!4 = 0 then
Oelse 1) x =
0 —
length(inouts, ©) = 5 A length(inouts,” z) = 2 A [0, 0] = inouts,’ ©))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)!4 = 0 then
0 else 1)
Tr =
0 —
length(inouts, ©) = &5 A length(inouts,’) = 2 A [1, 1] = inouts,’) A
(latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)14 = 0 then
Oelse 1) x =

0 —

length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A

length(inouts,’) = 2 A

232

[0, 0] = inouts,’ = A
(latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)14 = 0 then
Oelse 1) x =
0 —
length(inouts, x) = 5 A length(inouts,’) = 2 A [0, 0] = inouts,’ ©)))))) A
(= hd (inouts, 0) = 0 —
(int32 (RoundZero (real-of-int [Rate * maxz (inouts, 0!(Suc 0)) 0])) < 0 —
(z = 0 — length(inouts, 0) = 5 A length(inouts,’ 0) = 2 A [0, 0] = inouts,” 0) A
(0 <z —
(hd (inouts, z) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate x max (inouts, z!(Suc 0)) 01)))
< min 0 (real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0))
o) + 1 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0V nl = 0 V = inouts,

nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)\4 = 0 then
0 else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
Oelse 1) x =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ z)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 0 (real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0))
o) + 1 —
length(inouts,) = 5 A
length(inouts,’) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
Oelse 1) x =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,
nil2 =8

then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)\4 = 0 then

233

0 else 1)
xTr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V — inouts,

nll2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
Oelse 1) xz =
0 —
length(inouts, ©) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,’ x)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A
length(inouts,”) = 2 A
[0, 0] = inouts,” x A
(latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)14 = 0 then
Oelse 1) x =

0 —
length(inouts,) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’))))) A
(= int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0)) 0])) < 0 —

(z=0—
length(inouts, 0) = 5 A
length(inouts,’ 0) = 2 A

[0, 0] = inouts,” 0 A length(inouts, 0) = 5 A length(inouts,’ 0) = 2 A [0, 0] = inouts,’
0) A
(0 <z —
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 0 (real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, 0!(Suc 0))
o) + 1 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V = inouts,

nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!8 = 0 A inouts, (n1 — Suc 0)!4 = 0 then
0 else 1)
Tr =
0 —
length(inouts, ©) = &5 A length(inouts,’ x) = 2 A [1, 1] = inouts,’) A
(latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)14 = 0 then
Oelse 1) x =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min 0 (real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, 0!(Suc 0))
o) + 1 —

234

length(inouts,) = 5 A
length(inouts,’) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V = inouts,

—~

nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
Oelse 1) x =
0 —
length(inouts, ©) = 5 A length(inouts,” z) = 2 A [0, 0] = inouts,’ ©))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0V = inouts, (nl — Suc 0)!8 = 0 A inouts, (n1 — Suc 0)!4 = 0 then
0 else 1)
Tr =
0 —
length(inouts, ©) = & A length(inouts,’ x) = 2 A [1, 1] = inouts,’ z) A
(latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)14 = 0 then
Oelse 1) x =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)) A
(= int82 (RoundZero (real-of-int [Rate x maz (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A
length(inouts,’) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)'2 = 4 — hd (inouts, nl1) = 0 V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl. if n1 = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
Oelse 1) x =

0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’))))))) A
(mz < Suc 0 —
(hd (inouts, (z — Suc 0)) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, (z — Suc 0)!(Suc 0)) 0])))
< min (vT-fd-sol-1
(Anl. real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, nl!(Suc 0))

(Anl.if hd (inouts, nl) = 0 then 1 else 0) (z — Suc (Suc 0)))
(real-of-int (int32 (RoundZero (real-of-int [Rate x mazx (inouts, (x — Suc (Suc 0))!(Suc
0)) 01)))) +
1 —
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1

235

(Anl. real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, nl!(Suc 0))

01))))
(Anl. if hd (inouts, n1) = 0 then 1 else 0) (x — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, (z — Suc 0)!(Suc 0))
01))) +
1 —
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
0 else 1)
Tr =
0 A
latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)!4 = 0 then 0
else 1)
(r — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1) ¢ =
0 —
length(inouts, x) = & A length(inouts,”) = 2 A [0, 0] = inouts,’) A
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,
nll2 =8
then 0 else 1)
(Anl.if nl = 0 V —inouts, (n1 — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)!4 = 0 then
0 else 1)
(x — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ x)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(An1. real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, nl!(Suc
0)) 01))))

(An1. if hd (inouts, nl) = 0 then I else 0) (x — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int | Rate * mazx (inouts, (x — Suc 0)!(Suc

1 —
length(inouts,) = 5 A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)

236

(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!'4 = 0 then 0

else 1) ¢ =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x) A
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,
nll2 =8
then 0 else 1)
(Anl.if nl = 0 V —inouts, (n1 — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)'4 = 0 then
0 else 1)
(x — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,
nil2 =38
then 0 else 1)
(Anl. if nl = 0 V —inouts, (n1 — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)!4 = 0 then
0 else 1)
Tr =
0 N
latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!'4 = 0 then 0
else 1)
(z — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V - inouls,
nil2 =8
then 0 else 1)
(Anl.ifnl = 0V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1) x =
00—
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x) A
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!12 = 4 — hd (inouts, nl) = 0 V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
0 else 1)
(z — Suc 0) =
0 —

length(inouts, ©) = & A length(inouts,’) = 2 A [0, 0] = inouts,’ x)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A
length(inouts,’ x) = 2 A
[0, 0] = inouts,” x A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,

237

nil2 =38
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)4 = 0 then 0

else 1) x =
0 —
length(inouts, x) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,”) A
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!12 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
0 else 1)
(x — Suc 0) =
0 —
length(inouts, z) = & A length(inouts,’) = 2 A [0, 0] = inouts,’ x)))) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, (x — Suc 0)!(Suc 0))
01)))
< min (vT-fd-sol-1
(An1. real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, nl1!(Suc 0))
01))))

(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc (Suc 0)))
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, (x — Suc (Suc 0))!(Suc
0) 01)) +
1 —
(hd (inouts, x) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(Anl. real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, nl!(Suc 0))

01))))
(Anl. if hd (inouts, n1) = 0 then 1 else 0) (x — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, (z — Suc 0)!(Suc 0))
01))) +
1 —
(= latch-rec-calc-output
(An1. if inouts, (nl — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
0 else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V — inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1) x =
0 —
length(inouts, x) = 5 A length(inouts,” z) = 2 A [0, 0] = inouts,’ ©)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(An1. real-of-int (int32 (RoundZero (real-of-int [Rate * mazx (inouts, n1!(Suc
0)) 01))))

(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))

238

(real-of-int (int32 (RoundZero (real-of-int [Rate *x maz (inouts, (z — Suc 0)!(Suc
0)) 01)))) +
1 —

length(inouts,) = &5 A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,’ = A
(latch-rec-calc-output
(An1. if inouts, (n1 — Suc 0)!2 = / — hd (inouts, n1) = 0 V nl = 0 V - inouts,

nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1) x =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 — hd (inouts, nl) = 0 V nl = 0 V — inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
0 else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)4 = 0 then 0
else 1) x =
0 —
length(inouts, ©) = & A length(inouts,’) = 2 A [0, 0] = inouts,’ x)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A
length(inouts,’ x) = 2 A
[0, 0] = inouts,” x A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1) x =

0 —
length(inouts,) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’))))) A
(= hd (inouts, (xz — Suc 0)) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, (x — Suc 0)!(Suc 0)) 0])) < 0 —
(hd (inouts,) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min (vI-fd-sol-1
(An1. real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, ni1!(Suc 0))

(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int | Rate x maz (inouts, (z — Suc 0)!(Suc 0))

239

1 —
(= latch-rec-calc-output
(An1. if inouts, (nl — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V — inouts,

nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
0 else 1)
Tr =
0 A
latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)!4 = 0 then 0
else 1)
(r — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)4 = 0 then 0
else 1) ¢ =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x) A
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl. if nl = 0 V —inouts, (n1 — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)!4 = 0 then
0 else 1)
(x — Suc 0) =
0 —

length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ x)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(An1. real-of-int (int32 (RoundZero (real-of-int [Rate * mazx (inouts, nl!(Suc

(An1. if hd (inouts, nl) = 0 then I else 0) (x — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, (x — Suc 0)!(Suc

1 —
length(inouts,) = 5 A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,’ T A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)4 = 0 then 0
else 1) x =
0 —
length(inouts, ©) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,”) A
(= latch-rec-calc-output

240

(An1. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,

nil2 =38
then 0 else 1)
(Anl.if nl = 0 V —inouts, (n1 — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)!4 = 0 then
0 else 1)
(x — Suc 0) =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl. if nl = 0 V —inouts, (n1 — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)!4 = 0 then
0 else 1)
Tr =
0 N
latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)4 = 0 then 0
else 1)
(r — Suc 0) =
0 —
length(inouts, z) = & A length(inouts,’) = 2 A [1, 1] = inouts,” z) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.ifnl = 0V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1) x =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [0, 0] = inouts,’ x) A
(= latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!12 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
0 else 1)
(x — Suc 0) =
0 —
length(inouts, ©) = & A length(inouts,’) = 2 A [0, 0] = inouts,’ x)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = & A
length(inouts,’ x) = 2 A
[0, 0] = inouts,” x A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V - inouls,
nil2 =8
then 0 else 1)
(Anl.if nl = 0V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1) x =

00—

241

length(inouts, x) = &5 A length(inouts,’) = 2 A [0, 0] = inouts,”) A
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V — inouts,

nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then
0 else 1)
(x — Suc 0) =
0 —

length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)))) A
(= int32 (RoundZero (real-of-int [Rate * maz (inouts, (z — Suc 0)!(Suc 0)) 0
(hd (inouts, z) = 0 —
(real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 01)))
< min (vT-fd-sol-1
(Anl. real-of-int (int32 (RoundZero (real-of-int [Rate * max (inouts, n1!(Suc 0))

N <0—

01))))
(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate *x maz (inouts, (z — Suc 0)!(Suc 0))
01)))) +
1 —
(= latch-rec-calc-output
(An1. if inouts, (nl — Suc 0)!2 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,
nll2 =8
then 0 else 1)
(Anl.if nl = 0 V —inouts, (n1 — Suc 0)!3 = 0 A inouts, (n1 — Suc 0)'4 = 0 then
0 else 1)
Tr =
0 —
length(inouts, x) = 5 A length(inouts,’ ©) = 2 A [1, 1] = inouts,’ x) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then 0
else 1) ¢ =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ z)) A
(= real-of-int (int32 (RoundZero (real-of-int [Rate * maz (inouts, z!(Suc 0)) 01])))
< min (vI-fd-sol-1
(An1. real-of-int (int32 (RoundZero (real-of-int [Rate x maz (inouts, n1!(Suc
0)) 01))))

(Anl. if hd (inouts, nl) = 0 then 1 else 0) (x — Suc 0))
(real-of-int (int32 (RoundZero (real-of-int [Rate * mazx (inouts, (z — Suc 0)!(Suc

1 —
length(inouts,) = 5 A
length(inouts,’ x) = 2 A
[0, 0] = inouts,” x A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V - inouls,
nil2 =8
then 0 else 1)
(Anl.ifnl = 0V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)4 = 0 then 0
else 1) x =
0 —

242

length(inouts, ©) = &5 A length(inouts,” z) = 2 A [0, 0] = inouts,’ ©))) A
(= hd (inouts, z) = 0 —
(int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
(= latch-rec-calc-output
(Anl. if inouts, (nl — Suc 0)!12 = 4 — hd (inouts, nl) = 0 V nl = 0 V - inouts,

nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (n1 — Suc 0)!3 = 0 A inouts, (nl — Suc 0)!4 = 0 then
0 else 1)
T =
0 —
length(inouts, ©) = & A length(inouts,’) = 2 A [1, 1] = inouts,”) A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V - inouts,
nil2 =8
then 0 else 1)
(Anl.if nl = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)'4 = 0 then 0
else 1) ¢ =
0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’ ©)) A
(= int32 (RoundZero (real-of-int [Rate * max (inouts, z!(Suc 0)) 0])) < 0 —
length(inouts,) = 5 A
length(inouts,’ ©) = 2 A
[0, 0] = inouts,” © A
(latch-rec-calc-output
(Anl. if inouts, (n1 — Suc 0)!2 = 4 — hd (inouts, n1) = 0 V nl = 0 V = inouts,
nil2 =8
then 0 else 1)
(Anl.if n1 = 0 V = inouts, (nl — Suc 0)!3 = 0 A inouts, (nl — Suc 0)4 = 0 then 0
else 1) ¢ =

0 —
length(inouts, x) = 5 A length(inouts,”) = 2 A [0, 0] = inouts,’))))))
assume a3: hd (inouts, z) = 1
have 1:Vz. (inouts, z!(Suc 0)) > 0 A (inouts, z!(Suc 0)) < maz-door-open-time
using al by blast
have 2: Vz. int32 (RoundZero (real-of-int | Rate * max (inouts, z!(Suc 0)) 0])) > 0 A
int32 (RoundZero (real-of-int [Rate x maz (inouts, z!(Suc 0)) 01)) < (Rate * max-door-open-time
+ 1)
apply (rule alll)
proof —
fix zz:nat
have 0: Rate * maz (inouts, zz!(Suc 0)) 0 < Rate x maz-door-open-time A Rate * maz x 0 > 0
using 1 by simp
have 1: [Rate x maz (inouts, zz!(Suc 0)) 0] < (Rate * maz (inouts, zz!(Suc 0)) 0 + 1)
using ceiling-correct by linarith
then have [Rate * maz (inouts, zz!(Suc 0)) 0] < (Rate * maz-door-open-time + 1)
using 0 1 by linarith
then have 2: [Rate * max (inouts, zz!(Suc 0)) 0] < (Rate * maz-door-open-time + 1) A
[Rate * max (inouts, zz!(Suc 0)) 0] > 0
using 0 by (smt ceiling-le-zero ceiling-zero)
have 3: real-of-int [Rate * maz (inouts, zz!(Suc 0)) 0] < (Rate * max-door-open-time + 1) A
real-of-int [Rate * max (inouts, zz!(Suc 0)) 0] > 0
using 2 by (simp)
have /: RoundZero (real-of-int [Rate * maz (inouts, zz!(Suc 0)) 01)
= |real-of-int [Rate * max (inouts, xz!(Suc 0)) 07]

243

using RoundZero-def by (simp)
have 5: RoundZero (real-of-int [Rate x maz (inouts, zz!(Suc 0)) 0]) < (Rate x maz-door-open-time
+ 1) A
RoundZero (real-of-int [Rate * mazx (inouts, xz!(Suc 0)) 0]) > 0
using 3 4 by auto
have 51: RoundZero (real-of-int [Rate * maz (inouts, zx!(Suc 0)) 0]) < (Rate * 214748364 +
1) A
RoundZero (real-of-int [Rate x maz (inouts, zz!(Suc 0)) 0]) > 0
using 5 1 by auto
have 6: int32 (RoundZero (real-of-int [Rate x maz (inouts, zz!(Suc 0)) 01))
= RoundZero (real-of-int [Rate * maz (inouts, zz!(Suc 0)) 01])
using 51 int32-eq 1 by simp
have 7: int32 (RoundZero (real-of-int [Rate x maz (inouts, zz!(Suc 0)) 01))
< (Rate * max-door-open-time + 1) A
int32 (RoundZero (real-of-int [Rate x max (inouts, zx!(Suc 0)) 0])) > 0
using 5 6 by (simp)
show 0 < int32 (RoundZero (real-of-int [Rate *x maz (inouts, zz!(Suc 0)) 0])) A
int32 (RoundZero (real-of-int [Rate x mazx (inouts, xz!(Suc 0)) 01)) < Rate x maz-door-open-time
+ 1
using 7 by blast
qed
show hd (tl (inouts,’ x)) = 0
using 2 a2 a3 al neq0-conv list.sel(1) list.sel(8) by (smt)
qged

Secondly to verify the refinement relation for the feedback.

lemma req-04-ref: req-04-1-contract fp (4, 1) C plf-riselshot-simp fp (4, 1)
apply (rule feedback-monolof 5 2])
using SimBlock-req-04-1-contract apply (blast)
using post-landing-finalize-1-simblock apply (blast)
using req-04-ref-plf-rise1shot apply (blast)
by (auto)

Thirdly to verify the requirement contract satisfied by the feedback of req-04-1-contract.

lemma req-04-fd-ref:
req-04-contract T req-04-1-contract fp (4, 1)
using inps-req-04-1-contract outps-req-04-1-contract apply (simp add: PreF'D-def PostFD-def)
proof —
show (V n -« xn. (hd (xn) =0V hd (zn)=1) A
0 < z n!(Suc 0) A
z n!(Suc 0) < maz-door-open-time N
(znl3 =0V znl3=1)(&inouts)s(«n»),) Fpn
(V n - #.(Sinouts(«n»)y) =u «4» A
#u(Binouts " («n»)q) =y «Suc 0» A (head, ($inouts(«n»),) =y 1 = head, ($inouts («n»)q)
=u 0))
C
(3 z - (true b,
(V n - #u(Sinouts(«n»)q) = «4» A
#Hu($inouts " («n»)q) =4 «5» A Sinouts («n»), =y «f-PreFD x 4»(Sinouts),(«n»),))

req-04-1-contract ; ;
(true by,
(V n « #u(Sinouts(«n»)y) =4 «2» A
#u($inouts " («n»)q) =4 «Suc 0» A
$inouts "(«n»), =4 «f-PostFD (Suc 0)»($inouts)q(«n»)q A

244

«uapply» ($inouts(«n»)q) o («Suc 0%)4 =4 <z 1»)))
apply (simp (no-asm) add: reg-04-1-contract-def)

apply (rel-simp)
apply (simp add: f-PostF'D-def f-PreFD-def)
proof —
fix ok,::bool and inouts,::nat=real list and
ok, ":bool and inouts, ::nat=-real list and z::nat=real and
ok, "":bool and inouts,'"::nat=-real list and ok, ''"::bool and
inouts, ' :nat=real list
assume al: (Vza. (hd (inouts, za e [z za]) = 0 V hd (inouts, za e [z za]) = 1) A
0 < (inouts, za e [z za))!(Suc 0) A
(inouts, za e [z za])!(Suc 0) < max-door-open-time A
((inouts, za e [z za))!3 = 0 V (inouts, za e [z za])!3 = 1)) —
ok, """ A
(Vza. length(inouts,’” za) = 2 A
(hd (inouts, za e [z za]) = 1 —
hd (inouts,”’ za) = 0 A hd (t (inouts,””’ za)) = 0))
assume a2: ok, —
ok, N
(V za. length(inouts,’” za) = 2 A
length(inouts,’ za) = Suc 0 A
inouts,’ ra = take (Suc 0) (inouts,””’ za) e drop (Suc (Suc 0)) (inouts,””" za) A
inouts,”"" ra!(Suc 0) = x za)
assume a3: Vz. (hd (inouts, z) = 0 V hd (inouts, z) = 1) A
0 < inouts, z!(Suc 0) A
inouts, z!(Suc 0) < maz-door-open-time A
(inouts, '8 = 0 V inouts, z!3 = 1)
assume a4: Vza. length(inouts, za) = 4 A
length(inouts," za) = 5 A
inouts,” za = take 4 (inouts, za) e x xa # drop 4 (inouts, xa)
from a4 have I:Vza. length(inouts, za) = 4
by blast
have 2: (Vza. (((hd (inouts, za e [z za]) = 0 V hd (inouts, za e [z za]) = 1) A
0 < (inouts, za e [z za))!(Suc 0) A
(inouts, za e [z za))!(Suc 0) < max-door-open-time N
((inouts, za e [z za])!3 = 0 V (inouts, za e [z za])!3 = 1))
= ((hd (inouts, za) = 0 V hd (inouts, za) = 1) A
0 < inouts, za!(Suc 0) A
inouts, za!(Suc 0) < maz-door-open-time A
(inouts, zal3 = 0 V inouts, zal3 = 1))))
using 1
by (metis Suc-mono Suc-numeral hd-append2 length-greater-0-conv nth-append numeral-2-eq-2
numeral-3-eq-3 semiring-norm(2) semiring-norm(8) zero-less-Suc)
have 3: ok,’”’
using 2 a3 al by simp
have 4: (Vza. length(inouts,’" za) = 2 A
(hd (inouts, za) = 1 —
hd (inouts,”"" za) = 0 A hd (8l (inouts,”’ za)) = 0))
using 1 2 a8 al by (smt hd-append?2 list.size(3) zero-neg-numeral)
have 5: Vza. inouts,’ za = [hd (inouts,””’ za)]
using 3 a2 by (metis append-eq-conv-conj length-Cons list.size(3) list-equal-size2 self-append-conv)
show ok,’ A (Vz. length(inouts,”) = Suc 0 A (hd (inouts, x) = 1 —> hd (inouts,’ =) = 0))
apply (rule conjl)
using 3 a2 apply blast

245

apply (rule alll)
apply (rule conjl)
using 3 a2 apply blast
using 3 a2 / by (simp add: 5)
qed
qed

Finally, the requirement is held for the post-landing-finalize-1 because of transitivity of refine-
ment relation.

lemma reg-04:
req-04-contract T post-landing-finalize-1
apply (simp only: post-landing-finalize-1-simp)
using req-04-fd-ref req-04-ref by auto

end

246

References

1]

2]
3]

4]

15]

[6]

7]

8]

19]

[10]

[11]

[12]

[13]

MathWorks, “Simulink.” [Online|. Available: https://uk.mathworks.com/products/
simulink.html

OSMC, “Openmodelica.” [Online|. Available: https://openmodelica.org/

R. D. Arthan, P. Caseley, C. O’Halloran, and A. Smith, “Clawz: Control laws in Z,” in
3rd IEEE International Conference on Formal Engineering Methods, ICFEM 2000, York,
England, UK, September 4-7, 2000, Proceedings. IEEE Computer Society, 2000, pp. 169—
176.

P. Roy and N. Shankar, “Simcheck: a contract type system for simulink,” Innovations in
Systems and Software Engineering, vol. 7, no. 2, p. 73, Jun. 2011. [Online|. Available:
http://dx.doi.org/10.1007/s11334-011-0145-4

P. Bostrom and J. Wiik, “Contract-based verification of discrete-time multi-rate simulink
models,” Software and System Modeling, vol. 15, no. 4, pp. 1141-1161, 2016.

P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis, “Translating discrete-time
simulink to lustre,” in Embedded Software, Third International Conference, EMSOFT 2003,
Philadelphia, PA, USA, October 13-15, 2008, Proceedings, ser. Lecture Notes in Computer
Science, R. Alur and I. Lee, Eds., vol. 2855. Springer, 2003, pp. 84-99.

A. Cavalcanti, P. Clayton, and C. O’Halloran, “Control law diagrams in Circus,” in FM 2005:
Formal Methods, International Symposium of Formal Methods Europe, Newcastle, UK, July
18-22, 2005, Proceedings, ser. Lecture Notes in Computer Science, J. S. Fitzgerald, 1. J.
Hayes, and A. Tarlecki, Eds., vol. 3582. Springer, 2005, pp. 253—268.

V. Preoteasa, I. Dragomir, and S. Tripakis, “The refinement calculus of reactive systems,”
CoRR, vol. abs/1710.03979, 2017. [Online|. Available: http://arxiv.org/abs/1710.03979

F. Zeyda, J. Ouy, S. Foster, and A. Cavalcanti, “Formalising cosimulation
models,” Software Engineering and Formal Methods, Jan. 2018. [Online|. Available:
http://dx.doi.org/10.1007/978-3-319-74781-1 31

B. Meyer, “Applying "design by contract",” IEEE Computer, vol. 25, no. 10, pp. 40-51,
1992.

C. B. Jones, Wanted: a compositional approach to concurrency. New York, NY:
Springer New York, 2003, pp. 5-15. [Online|. Available: https://doi.org/10.1007/
978-0-387-21798-7 1

S. S. Bauer, A. David, R. Hennicker, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski,
“Moving from specifications to contracts in component-based design,” in Fundamental Ap-
proaches to Software Engineering - 15th International Conference, FASE 2012, Held as
Part of the Furopean Joint Conferences on Theory and Practice of Software, ETAPS 2012,
Tallinn, Estonia, March 24 - April 1, 2012. Proceedings, ser. Lecture Notes in Computer
Science, J. de Lara and A. Zisman, Eds., vol. 7212. Springer, 2012, pp. 43-58.

S. Tripakis, C. Sofronis, P. Caspi, and A. Curic, “Translating discrete-time simulink to
lustre,” ACM Trans. Embedded Comput. Syst., vol. 4, no. 4, pp. 779-818, 2005.

247

https://uk.mathworks.com/products/simulink.html
https://uk.mathworks.com/products/simulink.html
https://openmodelica.org/
http://dx.doi.org/10.1007/s11334-011-0145-4
http://arxiv.org/abs/1710.03979
http://dx.doi.org/10.1007/978-3-319-74781-1_31
https://doi.org/10.1007/978-0-387-21798-7_1
https://doi.org/10.1007/978-0-387-21798-7_1

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

J. Woodcock and A. Cavalcanti, “A tutorial introduction to designs in unifying theories of
programming,” in Integrated Formal Methods, E. A. Boiten, J. Derrick, and G. Smith, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 40—66.

C. Hoare and J. He, Unifying theories of programming. Prentice Hall, 1998, vol. 14.

T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL - A Proof Assistant for Higher-
Order Logic, ser. Lecture Notes in Computer Science. Springer, 2002, vol. 2283.

S. Foster, F. Zeyda, and J. Woodcock, “Isabelle/utp: A mechanised theory engineering
framework,” in Unifying Theories of Programming - 5th International Symposium, UTP
2014, Singapore, May 13, 2014, Revised Selected Papers, ser. Lecture Notes in Computer
Science, D. Naumann, Ed., vol. 8963. Springer, 2014, pp. 21-41.

M. Oliveira, A. Cavalcanti, and J. Woodcock, “A UTP Semantics for Circus,” Formal Asp.
Comput., vol. 21, no. 1-2, pp. 3-32, 2009.

J.-R. Abrial, The B-book: assigning programs to meanings. Cambridge University Press,
2005.

J. M. Spivey, The Z Notation: A Reference Manual, ser. Prentice Hall International Series
in Computer Science. Prentice Hall, 1989.

N. Marian and Y. Ma, Translation of Simulink Models to Component-based Software Models.
Forlag uden navn, 2007, pp. 274-280.

A. Cavalcanti, A. Mota, and J. Woodcock, “Simulink timed models for program verification,”
in Theories of Programming and Formal Methods - Essays Dedicated to Jifeng He on the
Occasion of His 70th Birthday, ser. Lecture Notes in Computer Science, Z. Liu, J. Woodcock,
and H. Zhu, Eds., vol. 8051. Springer, 2013, pp. 82-99.

A. Cavalcanti and J. Woodcock, “A tutorial introduction to CSP in Unifying Theories of
Programming,” in Refinement Techniques in Software Engineering, First Pernambuco Sum-
mer School on Software Engineering, PSSE 2004, Recife, Brazil, November 23-December 5,
2004, Revised Lectures, ser. Lecture Notes in Computer Science, A. Cavalcanti, A. Sampaio,
and J. Woodcock, Eds., vol. 3167. Springer, 2004, pp. 220-268.

C. A. R. Hoare and A. W. Roscoe, “Programs as Executable Predicates,” in FGCS, 1984,
pp. 220-228.

V. Preoteasa and S. Tripakis, “Refinement calculus of reactive systems,” CoRR, vol.
abs/1406.6035, 2014. [Online|. Available: http://arxiv.org/abs/1406.6035

S. Foster, A. Cavalcanti, S. Canham, J. Woodcock, and F. Zeyda, “Unifying theo-
ries of reactive design contracts,” In preparation for Theoretical Computer Science, vol.
abs/1712.10233, 2017.

I. Dragomir, V. Preoteasa, and S. Tripakis, “Compositional semantics and analysis of hi-
erarchical block diagrams,” in Model Checking Software - 23rd International Symposium,
SPIN 2016, Co-located with ETAPS 2016, Eindhoven, The Netherlands, April 7-8, 2016,
Proceedings, ser. Lecture Notes in Computer Science, D. Bosnacki and A. Wijs, Eds., vol.
9641. Springer, 2016, pp. 38-56.

248

http://arxiv.org/abs/1406.6035

[28] D. Bhatt, A. Chattopadhyay, W. Li, D. Oglesby, S. Owre, and N. Shankar, “Contract-based
verification of complex time-dependent behaviors in avionic systems,” in NASA Formal
Methods - 8th International Symposium, NEM 2016, Minneapolis, MN, USA, June 7-9,
2016, Proceedings, ser. Lecture Notes in Computer Science, S. Rayadurgam and O. Tkachuk,
Eds., vol. 9690. Springer, 2016, pp. 34—40.

[29] VeTSS, “Uk research institute in verified trustworthy software systems.” [Online|. Available:
https:/ /vetss.org.uk/

249

https://vetss.org.uk/

	Introduction
	Preliminaries
	Control Law Diagrams and Simulink
	Unifying Theories of Programming
	Designs

	Assumptions and General Procedure of Reasoning
	Assumptions
	General Procedure of Applying Assumption-Guarantee Reasoning

	Semantic Translation of Blocks
	State Space
	Healthiness Condition: SimBlock
	Blocks
	Pattern
	Simulink Blocks
	Virtual Blocks

	Subsystems

	Block Compositions
	Sequential Composition
	Parallel Composition
	Feedback
	Composition Examples

	Case Study
	Modelling
	Subsystems Verification
	Requirement Verification
	Requirement 3 and 4
	Requirement 1
	Requirement 2

	Summary

	Conclusions
	Progress Summary

	Block Theories
	Additional Laws
	State Space
	Patterns
	Number of Inputs and Outputs
	Operators
	Id
	Parallel Composition
	Sequential Composition
	Feedback
	Split

	Blocks
	Source
	Constant

	Unit Delay
	Discrete-Time Integrator
	Sum
	Product
	Gain
	Saturation
	MinMax
	Rounding
	Logic Operators
	AND
	OR
	NAND
	NOR
	XOR
	NXOR
	NOT

	Relational Operator
	Equal ==
	Notequal =
	Less Than <
	Less Than or Equal to <=
	Greater Than >
	Greater Than or Equal to >=

	Switch
	Data Type Conversion
	Initial Condition (IC)
	Router Block

	Block Laws
	Additional Laws
	SimBlock healthiness
	inps and outps
	Operators
	Id
	Sequential Composition
	Parallel Composition
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 mergeB
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sim-paralell

	Feedback
	feedback

	Split

	Blocks
	Source
	Const
	Pulse Generator

	Unit Delay
	Discrete-Time Integrator
	Sum
	Product
	Gain
	Saturation
	MinMax
	Rounding
	Combinatorial Logic
	Logic Operators
	AND
	OR
	NAND
	NOR
	XOR
	NXOR
	NOT

	Relational Operator
	Equal ==
	Notequal =
	Less Than <
	Less Than or Equal to <=
	Greater Than >
	Greater Than or Equal to >=

	Switch
	Merge
	Subsystem
	Enabled Subsystem
	Triggered Subsystem
	Enabled and Triggered Subsystem
	Data Type Conversion
	Initial Condition (IC)
	Router Block

	Frequently Used Composition of Blocks

	Post Landing Finalize
	Subsystem: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 variableTimer
	Verification

	Subsystem: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 rise1Shot
	Verification

	Subsystem: Latch
	Verification

	System: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 post-landing-finalize
	Verification
	Requirement 01
	Requirement 02
	Requirement 03
	Requirement 04

