UNIVERSITYW

N &3 5 " A (O 9.6 - 8

" #(((()((()//)(01(023 " "4
5 6. )# #3 6 # ) 8994

(10 ++

# (& (0 ((

oy 6 ' 5'66 ! ; )4'66 )43 5
1" <=)4")432 " " " #
" $; > # 66 ?
6 " 6 566 #
8 " ; ; @ $
6 # : " # " A

Z=\ White Rose

. | university consortium
‘\ /‘ Universities of Leeds, Sheffield & York




Pattern Recognition Letters
journal homepage: www.elsevier.com

Directed and Undirected Network Evolution from Euler-Laigge Dynamics

JianjiaWandg" , Richard CWilsor?, Edwin R.HancocR

aDepartment of Computer Science, University of York, Yotk,0r5DD, UK

ABSTRACT

In this paper, we investigate both undirected and direcédark evolution using the Euler-Lagrange
equation. We use the Euler-Lagrange equation to developiatiemal principle based on the von
Neumann entropy for time-varying network structure. Comairg from recent work to approximate
the von Neumann entropy using simple degree statisticehtheges in entropy between érent time
epochs are determined by correlations in the degreerdince in the edge connections. Our Euler-La-
grange equation minimises the change in entropy and allowsvelop a dynamic model to simulate
the changes of node degree with time. We rst explore theat of network dynamics on the three
widely studied complex network models, namely a) ErdesyR random graphs, b) Watts-Strogatz
small-world networks, and c) Barabasi-Albert scale-fne¢works. Our model eectively captures
both undirected and directed structural transitions indjieamic network models. We apply our
model to a network time sequence representing the evolofistock prices on the New York Stock
Exchange(NYSE) and sequences of Drosophila gene regulagtworks containing dierent devel-
opmental phases of the organism from embryo to adult. Herese¢he model to dierentiate between
periods of stable and unstable stock price trading and &ctiperiods of anomalous network evolu-
tion. Our experiments show that the presented model not prdyides an accurate simulation of
the degree statistics in time-varying networks but alsduwrag the topological variations taking place
when the structure of a network changes violently.

€ 2018 Elsevier Ltd. All rights reserved.

1. Introduction be distinguished from one to another. Thermodynamic analy-
sis of network structure allows the macroscopic propexies
The study of network evolution plays an increasingly cru-network structure to be described in terms of variables sisch
cial role in modelling and predicting the structural vadarof  temperature, associated with the internal structure (Védiady,
complex networks (Wolstenholme and Walden, 2015). Previ2017b). There are also models developed to learn the pattern
ous studies have addressed this problem from the perspgctivof network evolution. Examples here include generativesand
of both the local and the global characterization of networktoregressive models which allow the detailed evolutiondfes
structure. At the local level, the aim is to model how the de-connectivity structure to be estimated from noisy or uraart
tailed connectivity structure changes with time (Lacasalet inputdata (Han et al., 2015).
2008). Speci cally, networks grow and evolve with the addi-
tion of new components and connections, or the rewiring of However, both the global and the local methods require to us
connections from one component to another (Barabasi and Ato develop models that can be tted to the available data by es
bert, 1999; Ernesto and Naomichi, 2008). On the other handimating their parameters, which describe how verticesrat
at the global level, the aim is to model the evolution of char-through edges and how this interaction evolves with time (Wu
acteristics which capture the structure and hence theiamct and Yang, 2013). There are few methods that are both sim-
of a network and allow dierent types of network function to ple and e ectively predict the evolution of network structure
(Tambo et al., 2016). Motivated by the need to Il this gaphiet
literature and to augment the methods available for unaiedst
Corresponding author: Teh:44-01904-32-5492; ing the evolution of time-varying networks, there have baen
e-mail: jw1157@york.ac.uk (Jianjia Wang) number of attempts to extend the scope of probabilistic gene
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tive models using various forms of regressive or autorajyes outnumber the unidirectional edges (weakly directed gsaph
models (Han et al., 2015; Andreas et al., 2015). Howevesghe Here we focus on the strongly directed graphs, where edges ar
essentially local models are parameter intensive and alsimp purely unidirectional and there are no bi-directional eddgaur
approach is to coach the model in terms of howadtlent node  model distinguishes between the in and out degrees of esrtic
degree con gurations co-occur on the edges connecting therand we develop Euler-Lagrange equations for how the distrib
(Wang et al., 2017b). tions quantities evolve with time.

In recent work we have addressed the problem by detailing 1N remainder of the paper is organized as follows. In Sec.2,
a generative model of graph-structure (Han et al., 2015) aniy® Provide a detailed analysis of entropy changes in dynamic
have shown how it can be applied to network time series us_r_1etworks and develop models for degree_ statistics by m@imi
ing an autoregressive model (Andreas et al., 2015). Oneeof thind the von Neumann entropy change using the Euler-Lagrange
key elements of this model is a means of approximating th&duations. We theoretically analyse both undirected and .dl
von Neumann entropy of both directed and undirected graph€cted networks separately. In Sec.3, we conduct numerical
(Han et al., 2012). von Neumann entropy is the extension ofXPeriments on the synthetic and real-world time-varyiag n
the Shannon entropy de ned over the re-scaled eigenvaliies /0rks and apply the resulting characterization of netwerdk e
the normalised Laplacian matrix. A quadratic approximage  lution. Finally, we conclude the paper and make suggestions
the von Neumann entropy gives a simple expression for the erfor future work.
tropy associated with the degree combinations of nodesifigrm
edges (Wang et al., 2017a). In accordance with intuitioos¢h 2. Variational Principle on Graphs
edges that connect high degree vertices have the lowespgntr
while those connecting low degree vertices have the highest  2.1. Preliminaries
tropy (Aytekin et al., 2016; Wang et al., 2017b). Making con- LetG(V: E) be an undirected graph with node Seand edge
nections between low degree vertices is thus entropically u setE  V V, and letjVj represent the total number of nodes
favourable. Moreover, the tting of the generative model to on graphG(V; E). The adjacency matriA of a graph is de ned
dynamic network structure involves a description length cr as
terion which describes both the likelihood of the goodndss o g .
t to the available network data together with the approxiena A= 1 if(uv) 2E
von Neumann entropy of the tted network. This latter term 0 otherwise.
regulates the complexity of the tted structure (Wolstelmhe : _P
and Walden, 2015; Andreas et al., 2015), and mitigates againTh%?;?]z:jn?gEE;ggﬂi?ai‘matr‘f(\g?t”ﬁ"e graplG s de ned
over- tting of the irrelevant or unllkely structure. Morger, . - p LD}, whereL = D A'is the Laplacian matrix
the change in entropy of the two vertices forming an edge be-

N di ¢ hs d q th duct of the d dD denotes the degree diagonal matrix whose elements are
ween di erent eépochs depends on the product ot Ine degree of, o , byD(u; u) = dy and zeros elsewhere. The element-wise
one vertex and the degree change of the second vertex. In oth £

. ression ot is
words, the change in entropy depends on the structure of the P

(1)

8
degree change correlations. %1 ifu=vandd,, O
The aim of this paper is to explore whether our model of net- [, = § 1sd1=dv ifu, vand (;;v) 2 E (2)
work entropy can be extended to model the way in which the ) ’ otherwise.

node degree distribution evolves with time, taking intocaot
the e ect of degree correlations caused by the degree structukgs Network Entropy
of edges. We exploit this property by modelling the evolatio

f network str r ing the Euler-Lagran iongr. . . L
of network structure using the Euler-Lagrange equations. O cept of density matrix from quantum mechanics in the net-

variational principle is to minimise the changes in entrdpy- . . : .
ing the evolution (Wang et al., 2017b). Using our approxima-Work domain. They obtain the density matrix for a network by

tion of the von Neumann entropy, this leads to update equsitio :ﬁ_ts;:”nnugr;gzfg;n:égaetgriir?lttzpligar? r;n:trix b_[y th_lt_ahre v-ol rl]
for the node degree which include theeets of the node de- grapn, 1.€. = ;-

gree correlations induced by the edges of the network (Ye,et a

2014). It is e ectively a type of diusion process that models

Severini et al. (Passerini and Severini, 2008) exploit thre- ¢

Neumann entropy of the network is then de ned as the Shan-
non entropy of the scaled Laplacian eigenvalugs...., v and

how the degree distribution propagates across the network. 's given by

fact, it has elements similar to preferential attachmeatéBasi

and Albert, 1999), since it favours edges that connect hagh d ) Ul .

gree nodes (Wang et al., 2017a,b). S= Tr[ log ]= Tr( log )= JVIJ log JVIJ (3)

This model can also be extended to directed graphs. In prior =t

work we have developed approximate expressions for the voBecause of the overheads involved in computing the Laplacia
Neumann entropy of directed graphs (Ye et al., 2014), censideigensystem (which is cubic in the number of nodes), Han et
ering the cases where there is a) a mixture of unidirectiandl al.(Han et al., 2012) render the computation of entropy more
bidirectional edges, b) where the unidirectional edgesidata  tractable by making a second order approximation to the Shan
(strongly directed graphs) and c) where the bidirectiodgles  non entropy. In so -doing they re-express the entropy itrimse
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of the traces of the normalised Laplacian and its square. Thprocess into a variational setting of the Euler-Lagranggaeq
resulting approxminate von Neumann entropy depends on thion (Wang, 2013), and consider the system which optimises
degrees of pairs of nodes forming edges, and is given by the functional

Z,

110 @ E@= G taw;aw d ®

I\ jVj2 ()2E dydy . ; ;

o . _wheret is time, q(t) is the variable of the system as a function
The approximation of von Neumann entropy avoids the cubigf time, andq(t) is the time derivative ofj(t). Then, the Euler-

complexity of computing the Laplacian eigensystem andgjive | agrange equation is given by

a formula for computing the von Neumann entropy which is
at most quadratic in the number of nodes. This allows it to @& t: q(t); q(t) 1@ tq(t);q(t) =0 (9)
be used to e ciently compute the entropy of networks. It has @ dt @

been shown to be an ective tool for characterizing structural  Here we consider an evolution which changes just the edge
properties of networks, with extremal values for the cyald a ¢onnectivity structure of the vertices and does not chahge t

S=1

fully connected graphs (Han et al., 2015). _ number of vertices in the graph (Nuno et al., 2011). As a tesul
For directed graphs on the other hand, the approximate Voghe factors 1 % and % are constants and do notect the
Y]

Neumann entropy is related to the in-degree and out-dedree go|ytion of the Euler-Lagrange equation.

the nodes (Ye et al., 2014). First, the edgeBét divided into

two subset&; andE;, whereE; = f(u; v)j(u;v) 2 Eand ,u) < 2.4, Undirected Graphs

Egis the set of unidirectional edge&, = f(u;v)j(u;v) 2 Suppose that two undirected graj@is= (V;; E)) andGys ¢ =
Eand ¢;u) 2 Egis the set of bidirectional edges. The two (v, :E, ,) represent the structure of a time-varying complex
edge-sets satisfy the conditios[ E, = E;E1\ E; = ;. With  network at two consecutive epochandt + t respectively.
this distinction between unidirectional and bidirectibedges,  Then the change of approximate von Neumann entropy be-
the analogous approximation for the von Neumann entropy ofveen two sequential undirected graphs can be written a

a directed graph is, 1 X di v+ .+
38 9 S = S(G " ) S(G ) = —— u v v u u v
1 1 X dn X 1 B o t % (Uv)2E;E° du(du + w)d(dv+ )
SEL N vEE  dpgee doiges ©) (10)
V] IVI” 7 (wv)2e Ov Oy (uv2E, 4 TV

where  is the change of degree for nodg.e., ,=d ' di;
v Is similarly de ned as the change of degree for natlee.,

To simplify the expression according to the relative impor- . o\
plify P g P v = di* v di. The entropy change is sensitive to degree

tance of the sets of unidirectional and bidirectional edges orrelations for pairs of nodes connected by an edae
andE,, the von Neumann entropy can be further approximate& P y ge.

to distinguish between weakly and strongly directed graphs We aim to study evolutions that minimise the entropy change
For weakly directed graphs, i.6E1j | Eoj most of the edges associated with the structure of the degree change coomsat

are bidirectional, and we can ignore the summation @ein i.e. minimise the entropy change between time intervalsrin

Eq.(5), rewriting the remaining terms in curly brackets as derto rgpresent the Ch"’“?ge of gntropy more accurately,,\)yere
approximate the denominator in Eq.(10) to the quadratim ter

1 g X odro, odr § and apply the Euler-Lagrange equatiGn= S with the en-

_ 1 ot gms tropy change to obtain
Sw=1 JVJ M§ W? (6) Py g

* (uv)2E

“ GW%@:A&%@;NH:%V+$£+”V (11)
For the strongly directed graph the unidirectional edges-do u=v

inate, i.e.jE1j | Ejj, there are few bidirectional edges, andwe For the vertex indexed with degreed, the Euler-Lagrange

can ignore the summation ovies in Eq.(5), giving the approx- equation in Eq.(9) gives,

imate entropy as @ d@ _
8 9 @ die. (12)
1 1 2X  gn B @ dt@.y
Seg=1 — — U (7)  First, solving for the partial derivative of the degigkg we nd
* Vi 2ivP .§(U;V)2E dindgee

@ _dy, v+2d, u+2 uv

Thus, both the strongly and weakly directed graph entropies @, did2 (13)
depend on the graph size and the in-degree and out-degr¢fe detailed analysis above not only involves the terms $o r
statistics of edge connections (Ye et al., 2014). order in the node degree change but also those of second order

i.e. degree dierence correlations of the formu v.
2.3. Euler-Lagrange Equation Then computing the partial time derivative to the rst order

We would like to understand the dynamics of a networkdegree dierence y, we obtain
which evolves so as to minimise the entropy change between @ d,+ v
di erent sequential epochs. To do this we cast the evolution @, = d2d2 (14)

u uv
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Substituting Eg.(13) and Eq.(14) into Eq.(12), For two weakly directed grapt@), = (V;; E) andG, "' =
) (Vi+ t; Et+ 1), representing the structure of a time- varymg com-

@ da@& = 2% dyu =0 (15) plex network at two consecutive epodiandt+ t respectively,

@, dt@, did2 the change of von Neumann entropy is given by
Treeesdoillétrig:cfgstuler-Lagrange equation in terms of node de Swa = S(GY)  S(GLy) (20)
9 : _ 1 X @ry+ry) rgtryry

R TR 16) AV e 5
dy ro(ru + rv)(dLn i?"' di/n ILT)

whereC is the constant term coming from the integral of the (dindim2

di erential equation. This leads to a detailed degree update
equation which involves a square termdgfd, and plus a con-
stantC. Since it considers the ects of second order terms in
the change of von Neumann entropy, this solution is accimate
predicting the degree distribution by ry are the change of degree ratio for the nadand nodev
As aresult, solving the Euler-Lagrange equation which min reﬁ%ecltévelly L ;
imises the change in entropy over time gives a relationséip b e Euler-Lagrange equation forgives
tween the degree changes of nodes connected by an edge. Singg s .  d @Sy 20y +r)(dM 4 gin in)

where ™ is the change of in-degree for nodei.e., n =
dingt + t) dn(t); ™ is similarly de ned as the change of

in-degree for node, i.e., n=dnt+ t) d't). ry,and

we are concerned with understanding how network structure @ @, (dndn2 =0 (21)
changes with time, the solution of the Euler-Lagrange equa- ! vy

tion provides a way of modelling the ects of these structural and similarly forr, gives

changes on the degree distribution across nodes in the rietwo i i in

The update equation for the node degree is at time epaais @ Swd E @Swg _ 2ru(d) v+ W) =0 (22)

t+ tis @, dt @r, (dndin)2
|

X X Combining the Eq.(21) and Eq.(22), the relationship betwee
dif t=di+ o =diy = (17)  dnandd" is
vV u v u tv in in
| s v (23)
In other words by summing over all edges connected to node di o

u, we increment the degree at nagdue to changes associated Thus, for the weakly directed graph, there exists a lineaieco
with the degree correlations on the set of connecting edyes. Ilation between {?:diun and {p:d{/”_
then leverage the solution of the Lagrange equation to &ynpl

the degree update equation, to give the result 2.5.2. Strongly Directed Graphs
X I For a strongly directed graph the von Neumann entropy in
dir t=d + % ,+C (18) Eq_.(6) can be expressed in terms of in-degree and in.ouedegr
v u dy ratio as 8
1 1 §X 2 8
This can be viewed as a type of dision process, which up- Ssa=1 jVj >V § dndin3 2 (24)
dates edge degree so as to satisfy constraints on degregechan VI~ wwee
correlation so as to minimise the entropy change betwees tim  For two strongly directed grapl@! , = (V;; Er) andGt, t =

epochs. Speci cally, the update of degree re ects the@s (v, ;E (), the change of von Neumann entropy is
of correlated degree changes between nodes connected by an

edge. Sea=S(GY ") S(GLy (25)
1 X didy r r(dy Pedp )
ZJVJZ (U;v)2E;E° (d:‘jnd{/n)z

2.5. Directed Graphs

2.5.1. Weakly Directed Graphs
In order to accommodate directed edges, we consider thehere I is the change of in-degree for node I is similarly

nodeu and letd! be the number of edges incident on vertexde ned as the change of in-degree for nade

uor in-degree and3" be the number of edges leaving vertex Now we apply the Euler-Lagrange equation to the changes

or out-degree. The ratio of in-degree to out-degreg is % of entropy for strongly directed graph. The partial derivebf

the ratiory is

andr, = ;gu We use this ratio to re-write the directed graph @ Sy dn in 4 gin in
— u

entropies in terms of the node in- degree and tteundegree @, g2 2 (26)
ratio. As a result the weakly directed graph entropy is o “ (di'd?) o
8 9 And the partial time derivative to the rst order ratio dirence
1 1 88X rr\B ryis
Swi=l & =53 Wg (19) @Sy __2 27)
V] 2)Vje? (uv)2E didy @ry d,'_]nd\',n



Then, the solution of the Euler-Lagrange equatiorrfazan be
computed as

@Sw d@Sw_ 2] Dedp )
@ry, dt @ry (dndi)?

Similarly, applying the Euler-Lagrange equation on the in-
degred], we get

0 (29)

@Ssq d @Ssq _ Tu(d]! V+d] ) +dP(ru
podael (A)3()?

(29)
Substituting Eq.(28) into Eq.(29), the relationship bedwd,
andr, can be obtained

2dM ry) 0

in
u _

My
@
u

y (30)

Therefore, the Euler Lagrange dynamics leads to a linear

relationship betweelﬁgj-.'“n2 and r—r for strongly directed graphs.

. . . . in
arises from the incremental analysis of the rafic- %
u

in din out
— u u u
“TE ey
and as a result )
rU _ IL? SUt 32
R 42
Combining with Eq.(30) gives the growth equation
out 1 in
d§“‘ = Ed—{? (33)

which is the out-degree grows at half the rate of the in-degre
In the next section we explore empirically how well this rela
tionship is observed.

3. Experimental Evaluation

3.1. Data Sets
Synthetic Networks: We generate three kinds of com-

(c) Scale-free Networks
. u . . .
This should be compared to the analogous relatlonshlp Wh'CEig. 1. Visualization of dynamic network structures in time evolution for

three network models (Erdos-Rényi random graphs, WattsStrogatz small-
world networks, Barabasi-Albert scale-free networks)

process has four stages, namely, the embryonic (1-30xgllarv
(31-40), pupal (41-58) and adulthood (59-66). The vertines
the network are gene identities which vary in number from 588
to 4028 at di erent time epochs. This hence tests the ability of
our method to deal with networks of variable size. The gene
expression patterns are modelled as a binary Markov random
eld (Song et al., 2009) which allow the edge connectionsdo b
determined.

Financial Networks: The nancial networks consist of the
daily prices of 3,799 stocks traded continuously on the New
York Stock Exchange over 6000 trading days. The stock prices
were obtained from the Yahoo! nancial database (Silva et al
2015). A total of 347 stock were selected from this set, for
which historical stock prices from January 1986 to February
2011 are available. In our network representation, the siode
correspond to stock and the edges indicate that there is a sta
tistical similarity between the time series associated wlie
stock closing prices (Silva et al., 2015). To establish ithgee

plex network models, namely, a) Erdos-Rényi random graplstructure of the network we use a time window of 20 days is

model, b) Watts-Strogatz small-world model (Watts and Stro
gatz, 1998), and c) Barabasi-Albert scale-free modeldBasi
and Albert, 1999; Barabasi et al., 1999). These are creatad w

to compute the cross-correlation cogients between the time-
series for each pair of stock. Connections are created katwe
a pair of stock if the cross-correlation exceeds an emplyica

a xed number of vertices with changing the parameters withdetermined threshold. In our experiments, we set the ebrrel

the network structure evolution. For the Erdos-Rényidam
graph, the connection probability is monotonically inwieg
at the uniform rate of 0.005. Similarly, the link rewiringgt-
ability in the small-world model(Watts and Strogatz, 1988)

tion coe cient threshold to the value to= 0:85. This yields a

time-varying stock market network with a xed number of 347
nodes and varying edge structure for each of 6,000 tradiysg da
The edges of the network, therefore, represent how thengosi

creases uniformly between 0 to 1 as the network evolves. Fqsrices of the stock follow each other.

the scale-free model (Barabasi et al., 1999), one vertedded
to the connection at each time step.

Drosophila Gene Regulatory Networksthe time-evolving
network represents the DNA microarrays expressed atredi
ent developmental stages from fertilization to adulthoodrty
the life cycle of Drosophila melanogaster. The developmient

3.2. Synthetic Experiments

We rst conduct experiments on the synthetic networks. We
generate three kinds of time-evolving network models from
Erdos-Rényi random graphs, Watts-Strogatz small-wost
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Fig. 3. Visualization of degree distribution in network evdution with principle component analysis (Erdos-Rényi random graphs, Watts-Strogatz small-
world networks, Barabasi-Albert scale-free networks).

works, and Barabasi-Albert scale-free networks to eveloar
theoretical analysis.

25 T T

-o-BA Scale Free ,E
Using the degree update equation derived from the principl 20 |- WS Small World
-&-ER Random Graph

of minimum entropy change and the Euler-Lagrange equatiol

in Eq.(18), we turn our attention to synthetic network data t

characterize the structural variance in network modelg. 1Fi

shows the visualization of the time evolution for three ctexp

networks. We x the number of vertices to 200, for the ran-

dom graphs and evolve the networks from an initially sparse

set of edges with a low value of the connection probability. A ii

the connection probability increases, the structure ofréime ¥

dom graph exhibits a phase transition to a state with a high de ‘ ‘ ‘ ‘ ‘ ‘

sity of connection and a giant connected component. A phas o 5 10 15 20 2 30

transition can also be observed for the Watts-StrogatzIsmal Time Step

world model, as the rewiring probability evolves with time. ][:'gt: The ‘:egfie d'sc:”:’““g”de"‘g with thedd' erent xa'“\‘jv OI t";‘te Stefs

Commencing from a regular fing lattice, the network strietu 2o Bl Boqes Tl L, o o The degree

evolves to a small-world network with high rewiring problabi  prediction error increases quickly after time step t = 20.

ity, and then to an Erdos-Rényi random graph structurdn wit

unit rewiring probability. For the scale-free network, ghalu-

tion takes place via preferential attachment. The noddstvé  ries. Fig.2 shows the simulation results and degree digtoib

highest degree have the largest probability to receive imd®.  comparisons. The predicted degree distribution resuftiomg

This process produces several high degree nodes or hubes in thyler-Lagrange dynamics for the simulated networks t quit

network structure. well to the observed distributions. This provides empiraa-
Now we explore whether the Euler-Lagrange equation caflence that the Euler-Lagrange equation accurately peetfiet

capture structural properties in the time evolution. Weaise ~ Short-term evolution of the dierent network models.

model to predict the network structure at subsequent tiefgsst ~ To visualise how the dierent networks evolve over extended

and simulate the degree distribution. We then to compare théme intervals, we apply the principal component analyéthe

predicted degree distribution with that from the origiriale se-  degree distribution to project the degree distributiorusages

iz{
; ]
STHLS AL ?ggﬁ{ﬁ

o 'ﬂgﬁfg

Degree Distribution Error
o
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for the networks into a low dimensional space. To commence . _Before/After Black Monday
we normalize the degree distributions so that the bin cdsten —o—Orignial Network Degree
sum to unity, and then we construct a long vector from the nor: 300 ¢ *_Simulated Network Degree | |
malised bin contents. We then construct the covariance me
trix for the set of long vectors representing the observed de
gree distributions for the sample of networks. Finally, \pels
principal component analysis to the sample covarianceixnatr
for the sample of observed vectorised network degree distri
butions. We project both the observed and predicted distrib
tions into the principal component space spanned by the leac
ing three eigenvectors of the covariance matrix. In this,way .. T Y "
we visualise the evolution of the observed and predictedeadeg o 200 49 80 80 “;‘)egr;em Mo 60 @ 200 220
distributions in the principal component space. The resar¢
ShO_Wﬂ in Fig.3. The red points are the _orlglnal netW(.)rk aistr Fig. 5. Degree distribution of originally observed networks and simulated
butions and the blue ones are the predicted ones. Fig.3yclean,qqyorks beforeafter Black Monday.
shows that for all three network models the predicted nééwor
degree distribution evolves in a similar manner to the olesbr During Black Monday
network degree distribution. e

Then, we explore the ect of length of time step on the per-
formance of the degree distribution prediction accurady.4~
shows the degree distribution error with a dient value of the
time step for the three derent network models. The predic-
tion error shown is the standard error over the normalisad bi
contents (the standard deviation of the elience in observed
and predicted bin contents, divided by the square root of the
number of bins). The longer the time intervals the higher
the prediction error in the degree distribution. For thed@n B,
graph, the errors sharply increase around the step20. This % 20 40 e 0 100 1 140 160 1@ 26 220
is because, during the evolution, the random graph undsigoe degree
phase transition from being sparsely connected to contgiai
giant connected component. At large time intervals, thelipre Fig. 6. Degree distribution of originally observed networl§ and simulated
. . - networks during Black Monday. The network becomes disconneted and
tions fail because of the presence of this giant component. most vertices are disjoint, which results in the degree disibution following

A similar behaviour can be observed in the sample of smallthe power-law.
world networks. As the time step interval increases, theee a
two instants in time separating three drent evolution mod- ) )
els. The rst event occurs around = 15 and the second at 3-3-1. Undirected Drosophila Gene Regulatory Networks

t = 25. The reason is that, during the evolution, the struc- T0 commence, we represent the Drosophila gene regulatory
ture of network changes from a regular lattice at the begipni Networks as undirected graphs evolving from the embryonic
to a small-world network, and then nally takes on a similar Stage to the adulthood stage. The four phases of the Drdaophi
structure to a random graph. These three epochs and the-assdtf€ cycle in genes represent the structural variationaéngene
ated with a structural transitions impact on the perforneasfc ~ regulatory network connections.
degree distribution prediction. Finally, the degree préidh er- We compare the computed von Neumann entropy of the net-
ror for the scale-free network gI’OWS SIOle and Smoothbhth work with that Computed from the degree evolution pl’ediCted
the time step, since there are no signi cant structure ftmms DYy the Euler-Lagrange model in Eq.(18). Fig.7 plots the two
during the evolution. As a result, the topology of the sdade=  entropies for the entire life cycle of Drosophila developie
network remains stable. Overall, increasing the value ef th The four developmental phases, namely, embryonic (red, line
time interval results in a reduction of the prediction aesmyr  larval (black line), pupal (blue line), and adulthood (gréiee)
Our new model is capable of capturing the local trends agisin are represented by dérent colours. The entropy predicted by
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from the structural changes during the evolution. the Euler-Lagrange model exhibits a similar time series-com
pared to that obtained with the von Neumann entropy computed
3.3. Real-world Networks from the observed degree distribution. In other words, #e d

For real-world network evaluation, we test our method ongree distribution predicted by the Euler-Lagrange equetid
data provided by the Drosophila genes and the New York Stockectively captures the changes in structure due to devesoah
Exchange. We rst evaluate the undirected networks with thechanges in the gene regulatory networks.
life cycle of Drosophila genes dataset. Then we constriet th
time sequential undirected and directed networks whiclsisbn  3.3.2. Undirected Financial Networks
of the daily prices of 3,799 stocks traded continuously an th  Now we simulate the behaviour of the nancial market net-
New York Stock Exchange over 6000 trading days. works. Here we focus on how the degree distribution evolves
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namic model can reproduce the topological changes that occu
during the nancial crisis.

In Fig.8, we show network visualizations corresponding to
three di erent instants of time around the Black Monday crisis.
In order to compare the simulated network structures riegult
from the current model, we show the connected components
(community structures) at three-time epochs. As the nétwor
approaches the crisis, the network structure changesiple

and the community structure substantially vanishes. Oslg-a

gle highly connected cluster at the centre of the network per
sists. These features can be observed in both the simugation
and original time evolution of the networks. At the crisiep,
most stocks are disconnected, meaning that the pricesevnlv
dependently without strong correlations to the remaintoglks
During the crisis, the persistent connected componenbéshi

a more homogeneous structure as shown in Fig.8. Compared
to the rst order model (Wang et al., 2017a), our new second
order network prediction gives structures that more ciosel
semble the original network structure. After the crisi® tret-
work preserves most of its existing community structure and
begins to reconnect again. This result also agrees with nd-
ings in other literature concerning the structural orgatiimn of
nancial market networks (Silva et al., 2015).

Finally, we explore the anomaly detection in dynamic net-
works. We validate our framework by analysing the entropy
di erences between simulated networks and actual stock mar-
ket networks in the New York Stock Exchange (NYSE). In or-
der to quantitatively investigate the relationship betwae-
nancial crisis and network entropy changes, we analyse a set
of well-documented crisis periods. These crisis periods ar
with time. We compare the simulated structure and the obmarked alongside the curve of the rst order entropyatience
served network properties and provide a way to identify than Fig.9, for all business days in our dataset.
consequence of structural variations in time-evolvinguoeks. The literature in the nancial domain usually identi es the

Our procedure is as follows. We rst select a network at apotential crashes using either a) the trading volumes (@hes
particular epoch from the time series and simulate its gi@iu et al., 2015), b) the variation of expected returns (Bali biod
using the degree update equation in Eq.(18). Then we compag@kimian, 2009) or ¢) Spearman’s rank correlation (Alanyal
the degree distributions for the real network sampled atha su et al., 2013). Recently, machine learning techniques, sisch
sequent time and the simulation of the degree distributiten a conditional random elds, support vector machines and-arti
an identical elapsed time. One of the most salient eventgein t cial neural networks, have been used to identify tradintepas
NYSE is Black Monday. This event occurred on October 19,using various criteria on speci ¢ nancial datasets (Chbogd
1987, during which the world stock markets crashed, drappinand Garg, 2008). Unfortunately, the complexity of thesadat
in value in a very short time. driven methods is generally high due to the combination df mu

We compare the prediction of consecutive time steps at diftiple techniques. By contrast, our entropy based analysias-
ferent epochs, befofafter and during the Black Monday crisis. ily e ected using our dynamic model which clearly indicates
The results are shown in Fig.5 and Fig.6. The most obvioushe nancial crises.
feature is that the degree distribution for the networkieef
and after Black Monday is quite dérent to that during the cri- 3.3.3. Directed Financial Networks
sis period. During the Black Monday crisis, a large number of We extend our study to directed graph representations of the
vertices in the network is disconnected. Thisresults inegge  New York Stock Exchange data. To extract directed graphs
law degree distribution. However, for time epochs beforé an from the stock times series data we compute the correlation
after Black Monday, the disconnected nodes recover their inwith a time lag. We measure the correlation over 30-day win-
teractions to one another. This increases the number of comlows separated by a time and then select the lag that results i
nections among vertices and causes departures from the powtbe maximum correlation. As with undirected graphs we thves
law distribution. This phenomenon is also observed in the ne old the correlation to establish edges representing ictiers
works simulated networks using our degree update equatiobetween stock. We determine the directionality of the edges
This is an important result that shows empirically that tine-s  using the sign of the lag. All the resulting edges are uniire
ulated networks re ect the structural properties of thegral  tional. We, therefore, explore how the time evolution falfo
networks from which they are generated. Moreover, our dyour model for strongly directed graphs.

Fig. 7. Comparison of the evolution of the entropy of Drosopia gene reg-
ulatory networks using von Neumann entropy and the simulatbn with the
Euler-Lagrange model. The four developmental phases are emnyonic (red
line), larval (black line), pupal (blue line), and adulthood (green line).

Original Networks

Simulated Networks

B #FGPSF #MBDL .POEBZ C %VSJOH #MBDL .POE

Fig. 8. The visualization of network structure at three specc days in Black
Monday nancial crisis. The red line corresponds to the entopy di erence
for the original networks and the grey line is the Euler-Lagrange model.



Fig. 9. The von Neumann entropy di erence in NYSE (1987-2011) for original nancial networks ad simulated networks. Critical nancial events, i.e.,
Black Monday, Friday the 13th mini-crash, Early 1990s Recesion, 1997 Asian Crisis, 9.11 Attacks, Downturn of 2002-2@0 2007 Financial Crisis, the
Bankruptcy of Lehman Brothers and the European Debt Crisis,are associated with large entropy di erences.

rors, as well as the tted slope, during the period arounda:Bla
Monday. Here we provide the regression error, for a) the ex-
ible tting of the slope and b) the regression for a xed value
of the slope. In the time interval around Black Monday, both
the linear regression parameter and its error changes thbrup
This is because there are substantial structura@inces in the
network evolution. During the Black Monday, many nodes be-
come disconnected and the connected components of vertices
become small and fragmented. Only a small number of com-
munity structures remain highly inter-connected. DuringdR
Fig. 10. The cumulative distribution of parameterr, = di"=d3" in directed Monday itself, although th_e slopg of the regression lineei®z
nancial networks before/during/after the Black Monday. The distribution the scatter about the line is relatively small.
shrinks during the Black Monday crisis. Furthermore, the linear regression error sequence fonthe e
tire directed nancial network time series is shown in Fib.1
The peaks in the regression error correspond closely todhe o
currence of the nancial crisis. Our analysis in the directe
graph is e ective and e cient to detect the abnormal structure
n dynamic networks. The most striking observation is that t
argest peaks of regression can be used to identify the-corre
sponding nancial crisis. This shows that the theoreticadls-
sis of minimising the change of directed entropy is seresitiv
signi cant structural changes in networks. The nanciakes
are characterized by signi cant entropy changes, where&s o
Mside these critical periods remains stable.

First, we investigate how the distribution Qf evolves with
the time. Fig.10 shows the distribution at threeefient time
epochs, i.e., before, during and after Black Monday. Here
the parameter, reveals the relationship between in-degree an
out-degree for each vertex. As shown in Fig.10, during the
Black Monday, the cumulative distribution becomes concen-
trated over a small range of values around unity. This resect
the fact that a substantial fraction of vertices becometsal
during the Black Monday, without the out-edges. The remain
ing connections exist with a balance between in-degreeand o
degree. After Black Monday, the network structure begins to
recover as the cumulative distribution widens to returnt$o i 4 ~gnclusion
previous shape.

From the analysis leading to Eq. (23) there is a linear rela- . . .
In this paper, we explore how to model the time evolution

tionship between the quantltleé— and gr. In order to test of networks using a variational principle. We use the Euler-
whether this relat|onsh|p holds in pract|ce Fig.12 showester | agrange equations to model the evolution of undirected and
plots of - versusd for epochs before, during and after the directed networks that undergo changes in structure by min-
Black Monday crisis. This provides evidence that theretexds imising the change in von Neumann entropy. This treatment
linear relationship between the fractional in-degree glesand  leads to the model of how the node degree varies with time and
the degree ratio change. By tting a linear regression to thecaptures the eects of degree change correlations introduced
sequence of scatter plots for the time series, we explore howy the edge-structure of the network. In other words, bexzaus
the slope parameters of the regression line and the regnessiof these correlations, the variety of one degree determnihees
error evolve with time. Fig.13 shows the linear regressien e translation in connected nodes.
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We conduct the experiments on a time-series of networks
; representing life cycle of Drosophila and the stock trades o

the NYSE. Our model is capable of predicting how the degree

_ 1 distribution evolves with time. Moreover, it can also bedisg

£oe ! 1 detect abrupt changes in network structure.

% e m@w&mww ﬁ:r , P In the future, it would be interesting to study @irent vari-

5 ‘ *.l‘\ 1z ational models for the network evolution, based on miningsi

%0-4729 !rg J0 di erent physical quantities or dérent forms of the entropy. It

£ 5 would also be interesting to understand the dynamics ofquan
02 o tities such as the edge density and its variance.
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