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assemblage characteristics showed that the sites on Kilimanjaro and the Taita Hills had higher proportions of
forest specialists in croplands compared to the Africa-wide average. Local human population density, forest
cover and vegetation greenness also differed significantly between the independent and Africa-wide datasets.
Biodiversity models including those variables performed better, particularly in croplands, but still could not
accurately predict the magnitude of local species responses to most land uses, probably because local features

of the land management are still missed.

Overall, our study demonstrates that local factors mediate biodiversity responses to land use and
cautions against applying biodiversity models to local contexts without prior knowledge of which factors are

locally relevant.

Keywords:

Biodiversity model; Birds; Eastern Arc Mountains; Homegardens; Kilimanjaro; PREDICTS; Taita Hills;
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Introduction

Humanity drives global biodiversity decline in many different ways (Butchart et al. 2010). Among the different
pressures, anthropogenic land-use change has been shown to have the most severe impact on terrestrial biodiversity
(Foley et al. 2005; Jetz et al. 2007; Gibson et al. 2011). A change in land use might greatly reduce the amount or quality
of habitat available to species, or contribute to landscape fragmentation resulting in declining species abundance and/or
local extinctions (Brooks et al. 2002). Therefore it is of particular interest to understand how assemblages of species
respond to land use, and if they can persist in a human-modified landscape (Gardner et al. 2007). Statistical biodiversity
models are increasingly applied over broad extents to predict the response of species assemblages to land use (Loh et al.
2005; Scholes and Biggs 2005; Alkemade et al. 2009; Newbold et al. 2014a; Newbold et al. 2015). Such models can be
based on data from many different taxonomic groups, and can inform policy-makers about biodiversity trends and
influence ongoing international debates about relevant mitigation schemes (Pereira et al. 2010; Leadley et al. 2014;
CBD 2014). However, in generalising across a wide area, such models likely miss local factors that mediate species’

response to land use.

Most biodiversity models employ a coarse land-use classification scheme (eg. Scholes and Biggs 2005;
Alkemade et al. 2009; Newbold et al. 2014a; Newbold et al. 2015) that cannot capture the full variability of local land-
use systems, often missing important land-use categories such as agroforestry (Scholes and Biggs 2005; Newbold et al.
2015). Others ignore the differential responses of taxonomic groups (Alkemade et al. 2009), which can be important
(e.g., Gibson et al. 2011; Murphy and Romanuk 2014; Newbold et al. 2014a). Some biodiversity models of local species
richness and abundance have found environmental variables such as land-use intensity, human population density and
metrics derived from vegetation-greenness data to be influential (Newbold et al. 2014a; De Palma et al. 2015). It is
however unclear if the inclusion of these variables is relevant in understanding how the local environment mediates
biodiversity responses to land use. Similarly it has been shown that functional characteristics can help explain species’
varying responses to land use on a broad scale (Owens and Bennett 2000; Flynn et al. 2009; Newbold et al. 2013; De
Palma et al. 2015), but to our knowledge no previous studies have evaluated whether those responses are consistent in a
local context. Comparing estimates derived from biodiversity models with local independent data, where the detailed
environmental conditions are known and taken into account, could help to identify some of the important local factors
that mediate biodiversity responses to land use and ultimately provide insight on how to improve the applicability of

biodiversity models.
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Addressing the question of how biodiversity responds to land use is especially important in sub-Saharan
Africa, where the congruent and patchy distribution of both biodiversity and human population leads to a high risk of
biodiversity loss (Balmford et al. 2001; Burgess et al. 2007a; Pfeifer et al. 2012). In this study we investigated
biodiversity responses to land use in two study areas in east Africa each with different geological, evolutionary and
land-use history. We explicitly test if (1) the response of avian diversity to land use is different in those study areas
compared to a taxonomically and geographically broad Africa-wide model of local biodiversity responses to land use,
(2) investigate potential explanations for any mismatches using remote-sensed data and information on species’
ecological characteristics and threat status, to identify the local factors that mediate the local response of biodiversity to
land use; and (3) make recommendations for additional factors to be included in biodiversity models and sampling

choices for biodiversity surveys.

Methods
Assemblage composition data

To generate African-wide estimates of how local species richness and abundance respond to land use, we used
the database of the Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (PREDICTS)

project (Hudson et al. 2014; www.predicts.org.uk). While these data cover a broad extent, each individual sampling

location covered only a small scale (of comparable grain-size to our independent data — see below). We used only the
data sources for Africa (extracted 28/07/2014, see Table SI 1) with land use in each site classified as primary vegetation
(1285 sites), secondary vegetation (485), plantation forest (441), cropland (612) and urban (33) habitat (see Hudson et
al. 2014 for definitions). Note that ‘urban’ land use referred to all areas of human settlement, including rural villages.
Additionally, we also used the information on land-use intensity according to the classification developed by the
PREDICTS Project, which combines information on management intensity and proportion of each site impacted (SI
Table 2; Hudson et al. 2014). This classification was used so that different land uses could be compared across the
different studies, both in the African-wide dataset and the independent field data, and necessarily means that some of the

variability in land-use systems is omitted.

We collected independent field data for birds (herein called ‘independent data’) along two transects on the
southern slopes of Mount Kilimanjaro, Tanzania and the Taita Hills, Kenya (Figure 1). Both landscapes are known for
their long history of human modification (Conte 2010; Heckmann et al. 2014), while having a contrasting geological
age (~ 30 mil. years for Taita compared to ~2 mil. years for Kilimanjaro, see Platts et al. 2011), and each has different

sets of endemic species (Hemp 2006a; Burgess et al. 2007b). Data on bird species richness and abundance were
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collected visually and audibly using standardized 10-minute fixed-time point counts (Bibby et al. 2000), of 50-m radius,
along each of the transects. While more accurate estimates of biodiversity can be obtained by taking into account
detection probability (Buckland et al. 2008), our sampling methodology was chosen to match the sampling scheme of
bird studies in the PREDICTS database. Because detectability is likely to be higher in more open habitats, which are
often those with higher human land-use activity, our estimates of the effects of human land use on biodiversity (from
both the African-wide and independent datasets) are likely to be conservative. Point counts (N=147) were located along
the two transects to represent the land uses in the African-wide dataset, and were visited twice between March and May
2014. Sites were spread across a wide elevational range in both transects (836-2142 m on Taita and 715-1735 m on
Kilimanjaro). Some land use types could only be sampled in particular elevational ranges. For example, primary
vegetation only occurs in high elevations on both transects (Figure 1, Figure S4-D). Our survey captured local diversity
with total sampling effort comparable to similar studies in the African-wide dataset (24 hours on Kilimanjaro and 25
hours on Taita Hills, compared with an average of 35.15+£15.92 (SD) sampling hours in the African-wide dataset).
Seasonal changes in the abundance of certain bird species might introduce bias into our field study; however, a resurvey
of some of the sites in the Taita Hills in a different climatic season showed similar responses of avian diversity to land
use (Norfolk et al. in press). Species identity was determined following commonly used visual taxonomic guides and
assisted by audio recordings from freely available bird-sound databases (Stevenson and Fanshawe 2004;
http://www.xeno-canto.org ). In total, 172 different bird species were observed at 147 locations in the two study
transects. All sites were classified into the same land uses and land-use intensity as in the African-wide dataset: primary
vegetation (39 sites), secondary vegetation (31), plantation forest (27), cropland (69) and urban (14); and within these
land uses, minimal, light and intense use-intensity. In the analyses, we treated the Kilimanjaro (74 sites) and Taita Hills
(73 sites) transects as independent field studies owing to their distance from each other (~100km) and different

geological and evolutionary history.

Environmental and assemblage-structure data

We tested whether site-specific variation in land-use intensity, human population density, forest cover and
metrics describing vegetation greenness and vegetation removal mediate local responses to land use in the independent
data compared with the African-wide model estimates. We focussed on those variables because previous biodiversity
models have highlighted their importance for biodiversity (e.g. Newbold et al. 2014a) and because they are readily
available. We extracted forest cover in the year 2000 (the most recent year for which percent forest cover estimates are
available at a fine scale) from recently published remote-sensing data at 30-m resolution (Hansen et al. 2013). For

vegetation greenness and vegetation removal measures, we extracted data from the Moderate Resolution Imaging
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Spectroradiometer (MODIS) MOD13Q1 product (the Normalized Difference Vegetation Index; NDVI) at 250-m
resolution. Vegetation removal was estimated by calculating the area under the curve of a linear interpolation of NDVI
over the three years prior to and including the year of the study following a method first suggested by Tucker et al.
(1981), and adjusted for differences in climate seasonality (Newbold et al. 2014a). Mean NDVI over the same time span
was used as a measure of average vegetation greenness, to represent continuous gradients of vegetation density not
captured by the forest cover dataset. We chose NDVI as our vegetation indicator (rather than, for example, the
Enhanced Vegetation Index) for comparability with previous models (Newbold et al. 2014a). For human population, we
used Africa-wide high-resolution (100-m) population density (people per km?) estimates for the year 2010 (adjusted to

match UN national estimates) from the www.worldpop.org.uk datasets (Linard et al. 2012). Finally, we included local

estimates of elevation from the Shuttle Radar Topography Mission (SRTM) at 90-m resolution (Jarvis et al. 2008).

We investigated the range of species’ characteristics within assemblages in both the Africa-wide dataset and the
independent sites, because these characteristics can influence responses to land use (Owens and Bennett 2000; Flynn et
al. 2009; Newbold et al. 2013; De Palma et al. 2015) and thus might mediate the effect of land use on biodiversity
locally. Due to the limited coverage and biased data on non-vertebrate species in publicly available databases, we
limited this comparison to avian species in both datasets. The analysis was further restricted to records in the
assemblage data that were determined to species level (98.4% of records), and matched to scientific names in the
catalogue of life (http://catalogueoflife.org/, see Hudson et al. 2014). In this analysis we focus on ecological rather than
morphological characteristics as for many of the African bird species in our analysis morphological traits are still
unavailable. We calculated assemblages’ average geographic range size, habitat specialization and IUCN threat status.
To estimate range size, we calculated the log-transformed total area of bird species' extent-of-occurrence range maps
(Birdlife International 2012), after first converting the range map to a 1° grid and restricting it to the continent of Africa.
Range size were log-transformed after visual exploration of the data revealed a strong right-skew of range sizes. The
current TUCN threat status for each species was obtained using an automatic query of the TUCN web-api

(http://api.iucnredlist.org/; accessed 05/11/2014). We grouped all species with threat categories CR (Critically

endangered), EN (Endangered) and VU (Vulnerable) as threatened species, and species currently assessed as NT (Near
threatened) and LC (Least concern) as non-threatened; species classified as NE (Not evaluated) or DD (Data deficient)
were not included further in the analysis. IUCN threat was included owing to its high relevance to policy and decision
makers. Finally, we downloaded information on species’ habitat preferences from IUCN to assess the percentage of
individuals in assemblages that are forest specialists, defined as those species for which any kind of forest habitat is
considered to be of major importance. For each site, we calculated, for all occurring bird species: 1) the average log-

transformed range size; and the proportion of 2) forest specialist species; and 3) threatened bird species.
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1
2 167
3
4 168  Data analysis
5
7 169 For each site and dataset, we calculated two biodiversity metrics: species richness as the number of unique observed
g 170 taxa; and total species abundance as the sum of the abundances of all taxa (corrected where there was varying sampling
1 ? 171  effort within the published studies, Newbold et al. 2014a). We first modelled the average impact of land use with the
12 172 African-wide dataset, using generalized linear mixed-effects models (GLMMs: Bolker et al. 2009), with a Gaussian
13
14 173 distribution of errors for log-transformed abundance values and a Poisson distribution for species richness. The use of
15
16 174 GLMMs was necessary to account for differences among studies (e.g. differences in sampling methods, sampling effort
17
18 175 and taxonomic group sampled). These differences were accounted for by including the study identity as a random
19
20 176  intercept. We tested if inclusion of taxonomic grouping as a random intercept improved the model (lower Akaike’s
g; 177 information criterion — AIC); it did not. We also tested whether two other random terms improved model fit: 1) any
gi 178  spatial block of sampled sites, such as point counts along transects; and 2) land use as a random slope nested within
25 179  study. For both models, the best random-effects structure (lowest AIC) contained a random slope of land use nested
26
27 180  within study, and a random intercept for study identity. Initial models were constructed using the recorded land-use
28
29 181  category as a single explanatory variable. Average species richness and total abundance in different land uses in the
30
31 182 independent data were then compared with the coefficients of the land-use-only biodiversity model, with
32 . _
33 183  correspondence assessed using Z-statistics (Cohen et al. 2013), defined as Z = ——2independent” Dbroad-scale  \hore
34 JSEbianependent+ SEbgroad—scule
gg 184 equals the slope of the modelled effect and SEb its standard error. A z-score is a standardized measurement that
gg 185  quantifies the offset of one value from a normally distributed mean with values smaller than 1.96 generally indicating
39 186  non-significant deviations (Cohen et al. 2013). Because of study-level methodological differences we could only
0
41 187 calculate relative biodiversity values. We used primary vegetation as a baseline for both datasets and calculated the
42
43 188 percentage difference in each other land-use category. Some of the differences between the African-wide model and
44
45 189  independent data might be because the independent data focused only on birds. To assess the extent to which this was
46
47 190 the case, we also developed a African-wide model with the same structure but only containing bird data from the
jg 191  African-wide dataset (1090 sites).
50
51 192 To test whether the addition of more environmental information than just land use could improve the
52
53 193 correspondence between the independent data and the African-wide biodiversity model, we developed a second set of
54
55 194  GLMMs of species richness and total abundance using the African-wide dataset. In these models we again fitted land
gg 195 use, but this time also land-use intensity (including in interaction with land use) and all continuous environmental
gg 196  variables (see above). We subjected this model to a model-selection process, by fitting models with all possible additive
60
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combinations of explanatory variables and selecting the model with the lowest AIC value. The goodness of fit (AIC and
R?, assessed against the model-training data) of the new model and the land-use-only model were compared, and we
assessed the importance of the included covariates by summing the AIC weights of all models containing each variable
(Burnham & Anderson, 2002). To assess the change in correspondence with the independent data both the best-
performing model and a land-use-only model were used to predict abundance and species richness at the independent

field-study sites, using the environmental variables.

We tested the residuals of both the land-use-only and the overall best-fitting model for spatial autocorrelation
using a Moran's I test. None of the individual studies showed significant autocorrelation within our models (SI Figure
2). All analyses were performed in R (ver. 3.2.2, R Core Team 2014) mainly using Ime4 (ver. 1.10, Bolker et al. 2009;
Bates et al. 2014) for model fitting, AICcmodavg for model selection (ver. 2.0.3, Mazerolle 2015), spdep for spatial
autocorrelation tests (ver. 0.5-88, Bivand and Piras 2015) and MODISTools (ver. 0.94.6, Tuck et al. 2014) for obtaining

NDVI data.

Results

Responses to land use of both biodiversity metrics were largely consistent between the modelled African-wide
estimates and the independent data, although there were large discrepancies for some land uses (Figure 2; log-
abundance: median absolute Z = 0.991, range = 0.06 — 5.76, species richness: median absolute Z = 0.728, range = 0.037
— 2.877). The biggest discrepancy between the independent data and the African-wide biodiversity model was for
cropland sites: the independent sites (especially in the Taita Hills transect) had much higher total abundance and species
richness than predicted from the Africa-wide dataset (Figure 2). This discrepancy became smaller for abundance if the
African-wide model was based only on bird data, but this was not the case for the species richness model (SI Figure 3).
There was large uncertainty around the means, especially in the African-wide dataset, reflecting a wide range of

responses among different studies (SI Figure 1).

There were considerable differences in local environmental conditions between the Africa-wide and
independent field datasets (Figure 3). Mean vegetation greenness (NDVI) of independent sites in primary vegetation,
secondary vegetation and plantation forest were lower than the average African site, whereas the opposite was true for
cropland and urban sites in the Taita Hills. Forest cover was higher in primary vegetation and cropland at sites on both
independent transects. Independent sites had a higher human population density than the average African sites in all
land-use categories, especially urban sites, which had up to 2.5 to 4 times higher density than the African-wide average

(Figure 3).
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The full model based on the African-wide dataset, and including all environmental variables as explanatory
variables, showed a better fit to the data for both total abundance (AAIC = 1591.91, Ar’gimm = 0.08) and species
richness (AAIC = 4562.48, Ar’gimm = 0.02). However, these models still only explained a low proportion of the
observed variation in total abundance (marginal r’gpyv= 0.09) and species richness (r’g = 0.03). Across all candidate
models, land use, land-use intensity, their interaction, and vegetation removal were of the greatest relative importance
for explaining abundance and species richness (for each of these variables, summed AIC weights, Y AIC,, = 1). Human
population density was of high importance for species richness (3> AIC,, = 1), but less important for abundance (3 AIC,,
= 0.589). Mean vegetation greenness of the three years before the sampling was more important for abundance (Y AIC,,
= 0.944) than for species richness (3 AIC,, = 0.506). Elevation was not selected among the explanatory variables in the
best model, and was of lower importance for both species richness (3 AIC,, = 0.270) and abundance (3 AIC,, = 0.316).
Furthermore, elevation did not show a significant correlation with species richness (p > 0.05) at the independent field
sites. However the abundance of bird species in the Taita Hills decreased significantly with increasing elevation (P <
0.001, Figure S4-B). We found the difference between model-predicted values and observed values in the independent
data to be quite mixed depending on the model used, the biodiversity metric considered, and the land use in question
(Figure 4). For abundance the land-use-only model (average absolute difference = 19.81%) performed slightly worse in
predicting relative abundance compared to the best selected model (average absolute difference = 18.83%), while for
species richness the land-use-only model predictions were closer to the observed (average absolute difference =
15.47%) than those from the best selected model (average absolute difference = 27.44%). A notable exception was
cropland, for which the predictions made by the full model with all environmental factors were substantially better than

those made by the land-use only model (Figure 4).

Bird species at our independent sites were on average more wide-ranged species compared to bird species at
sites in the African-wide dataset (Figure 5), with the exception of primary forests in the Taita Hills, where significantly
more narrow-ranged species were found. Sites in the independent dataset had similar or lower proportions of forest
specialist species than the sites in the African-wide dataset, with the exception of primary vegetation and cropland in the
Taita Hills where the proportion of forest specialist birds was higher (Figure 5). Our independent sites had similar
proportions of threatened bird species as the average site in the African-wide dataset, but higher proportions in primary

vegetation in the Taita Hills study area (Figure 5).

Discussion
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Our results show that independently observed local biodiversity responses to land use are mostly consistent
with an African-wide model estimates. While species richness consistently declines with increasing levels of human
land use in most cases (Figure 2), the total abundance stays fairly stable. However, the African-wide model showed that
responses to land use vary substantially among different studies (Figure S1); this heterogeneity is especially apparent in
urban sites, perhaps because local factors, such as vegetation greenness and proximity to nearby forests, mediate
responses. It should be noted however that there are only few urban studies in Africa in the database, indicating that
there is a need for further research on the effect of urbanization on biodiversity in this continent. We could not detect
any influence of elevation on species richness in either of our independent sites or the African-wide dataset. However,
bird abundance decreased with elevation in the Taita Hills, which could be explained by the fact that the low elevation
areas receive many nutrients and water, thus increasing resources and diversity of land cover available for many bird
species. Similarity of species composition decreased with increasing elevational distance between sites (Figure S4-C),
thus indicating a turnover of species assemblages with elevation. Land use has likely added to this effect and might
have altered the natural elevational gradient in species richness (McCain 2009). The interaction between elevation and
land use however could not be tested with confidence as land use in both study transects is not spread equally across
elevations (Figure S4-D). In particular, primary vegetation sites are significantly higher in elevation than other land uses
(see next section for possible implications of this for the results). The biggest discrepancy between the biodiversity
estimates was for cropland: the independent data had higher values of both biodiversity metrics than predicted from the
Africa-wide dataset. This might partly reflect the fact that the field survey sampled only birds: bird-only models of the
African-wide datasets decreased the mismatch within cropland, at least for abundance (SI Figure 3). Previous research
has shown that taxonomic groups can show different responses to land use (Lawton et al. 1998; Schulze et al. 2004;
Newbold et al. 2014a). Birds are highly mobile species, often dependent on various habitats in the surrounding
landscape (Haslem and Bennett 2008) and show seasonal fluctuations of activity. Therefore our independent field data
will reflect neither the whole assemblage present in the study area nor the general effect of land use on biodiversity. The
discrepancy emphasizes the need to collect field data for a set of taxonomic groups that are as representative as
possible. In addition to real taxonomic differences in responses to land use, it is likely also that surveying of different
taxonomic groups is done at different spatial scales, which could also cause apparent differences in responses among
taxa (note however that a previous study using the same dataset found little effect of sampling scale on relative
differences in diversity among land uses; Newbold et al. 2015). On the other hand, the African-wide model omits

several aspects of the local environmental and ecological conditions, which we discuss in the following sections.

Impoverished species pool
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One explanation for the difference in biodiversity between cropland sites on the Taita Hills and the average
cropland site in the Africa-wide model could be that the primary vegetation in Taita Hills has already suffered more
biodiversity loss than the average primary-vegetation site in the African-wide dataset. The Taita Hills have a high
degree of habitat fragmentation and the lowest overall forest cover in all of the Eastern Arc Mountains (Newmark 1998;
Platts et al. 2011), reflecting the long history of human modification and disturbance in the area (Newmark 1998;
Brooks et al. 1998; Heckmann et al. 2014). Such conditions might have influenced the response of species richness to
land use by leaving assemblages that are impoverished and relatively insensitive to further land-use disturbance
(Filippi-Codaccioni et al. 2010); the resulting biota might also show different associations between species

characteristics and sensitivity than seen in newly impacted regions (Fritz et al. 2009).

The greater Kilimanjaro area and the Taita Hills have been used by humans for many centuries (Heckmann et
al. 2014). Expeditions undertaken by German missionaries visiting Mount Kilimanjaro noted that the land was already
extensively used in the 19th century (Borjeson 2009) and similar evidence suggests that the agricultural terraces of the
Taita Hills are centuries old (Conte 2010). These sources indicate that both landscapes have experienced human
influence for many centuries. The loss of natural vegetation seems to have accelerated in the last century owing to
increasing human population density, colonial forestry operations (Brooks et al. 1998; Hemp 2005; Burgess et al.
2007b; Platts et al. 2011) and the ongoing shift from traditional forms of crop cultivation to monoculture farming (Soini
2005; Hemp 2006b). Biodiversity models would benefit from incorporating estimates of land-use history, but the

currently available data (e.g. Klein Goldewijk et al. 2011) are too coarsely resolved to be very useful.

Our study sites had on average a similar proportion of forest-dependent species in primary vegetation, but a
smaller proportion in plantation forest sites than in the African-wide dataset (Figure 5). However, the average number of
narrow-ranged and threatened bird species was higher on the Taita Hills compared to sites across Africa, which reflects
the high conservation value of large continuous forest in this global biodiversity hotspot (Burgess et al. 2007b), and
suggests that not all sensitive species have yet been lost from assemblages at the Taita Hills. It has been suggested that
plantation forests could support conservation efforts if appropriately managed (Brockerhoff et al. 2008). However, this
does not seem to be the case for our field sites: plantation forests, such as Eucalyptus, pine and Cypress stands on Taita
Hills had lower abundance and species richness than either primary or secondary vegetation (Figure 2), emphasizing the
importance of natural vegetation for local biodiversity conservation (Brooks et al. 1998; Farwig et al. 2008; Gibson et
al. 2011). Overall, our results support evidence (Owens and Bennett 2000; Flynn et al. 2009; Newbold et al. 2013; De
Palma et al. 2015) that accounting for functional characteristics can add precision to African-wide biodiversity models

for certain well-studied taxonomic groups.
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It is also possible that the species pool appears impoverished because the reference primary vegetation sites
were located at high elevations, which are probably less diverse naturally. However, this is unlikely to explain our
results entirely for three reasons. First, cropland had relatively high biodiversity even when compared with secondary
vegetation, which like cropland was found at lower elevations in our field study areas. Second, other human land uses
didn’t have as high biodiversity as cropland despite also being found at low elevations. Third, the observed mismatch in
biodiversity in croplands can be best explained by the occurrence of low-intensity agroforestry systems (known locally

as ‘homegardens’), which were located at higher elevations than more intensively used croplands.

High-diversity cropland

Cropland sites in our independent dataset had relatively high diversity and a possible reason could be the
management mode, since the majority of these sites were tropical agroforestry systems known locally as
‘homegardens’, which occur in mid-high elevational ranges. Tropical homegardens, such as the Chagga homegardens
on Kilimanjaro, have many biodiversity-beneficial characteristics of agroforestry systems such as higher indigenous
tree density and permanent or semi-permanent cultivation cycles, thus ensuring consistent vegetation cover and
provision of valuable microhabitats (Hemp 2006a; Scales and Marsden 2008; Jose 2009). They can thus contribute to
the persistence of species in human-modified landscapes (Bhagwat et al. 2008; Kabir and Webb 2008; Gardner et al.
2009), a conclusion which our study supports. The landscape context and proximity to nearby remaining forest

fragments could also have led to an increase in species richness.

We show that the cropland sites in our independent dataset have slightly higher forest cover and mean vegetation
greenness than the typical cropland site in Africa (Figure 3). These environmental factors might help explain the
discrepancies in estimated avian diversity, and led to better predictions of bird diversity in croplands when included in
the models (Figure 4). We suggest that more research on broad-scale environmental variables that are locally relevant is
needed to improve models of biodiversity responses to land use. In addition to differences in environmental variables,
along both independent study transects, cropland sites were composed of slightly more forest-dependent species than
the average cropland site in Africa, showing that the local environmental features of cropland are associated with
retention of at least some forest species. We suggest that agricultural management practices and land-use dynamics are
important factors to consider in biodiversity models, either by considering the intensity of human land use (Newbold et
al. 2015), explicitly recognising agroforestry as distinct land-use type (Alkemade et al. 2009), or by including remote-
sensed information on vegetation greenness or tree cover in cropland (Pettorelli et al. 2005; Hansen et al. 2013;

Newbold et al. 2014a).
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Conclusion

We identified important local factors that mediate biodiversity's response to land use. Biodiversity models
might be inaccurate if used to predict land-use impacts on biodiversity at local scales if local conditions do not conform
to the average conditions seen in the African-wide dataset. This highlights the importance of local surveys that identify
the local conditions and influencing variables before applying generalized biodiversity models in a local context. On the
other hand, field data sets need to consider a wide, representative set of taxa in order to be representative of
biodiversity's response to land use. The inclusion of local land management information, vegetation data from remote
sensing, and species characteristics information can make biodiversity models more applicable to local settings.

However more research is needed to identify which variables are locally relevant.
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Table 1: Best-fit model from among those using all possible combinations of explanatory variables for the African-wide dataset. Pseudo-R? values were computed following

(Nakagawa and Schielzeth 2013).

Model terms Model K AIC A AIC LogLik DF (resid) R? (marginal) R*> (conditional)
Land use*Land use
intensity + log(Population
density) +  Vegetation
removal + mean Vegetation

greenness log-Abundance 34 3844.27 0 -1888.13 1515 0.088 0.876
Land use 22 5436.18 159191  -2696.09 2224 0.009 0.879
~1 18 5440.37 1596.1  -2702.18

Land use * Land use
intensity + log(Population
density) +  Vegetation
removal + Forest cover +

mean Vegetation greenness Species richness 35 10920.67 0 -5425.34 1984 0.034 0.926
Land use 22 15483.15 4562.48  -7719.58 2834 0.013 0.919
~1 18 15484.08 4563.41 -7724.04
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Figure 2: The response of species richness and total abundance to land use, from the Africa-wide model and the

independent field data. Land-use categories are primary vegetation (PV), secondary vegetation (SV), plantation forest

(PL), cropland (CL) and urban (UR). All coefficients are visualized as proportional difference to primary vegetation

(PV), which was set at a baseline of 100%. Error bars show one standard error. Labels on top show the Z-statistic,

which quantifies the distance between the independent data and the African-wide modelled estimates, taking into

account the uncertainty in both cases. Z-statistics further from zero indicate greater mismatch.
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Figure 3: Difference in environmental variables in different land uses, between the Africa-wide and the

independent field data (‘Kilimanjaro’ and ‘Taita’). Boxes show the inter-quartile range, while lines show the full

range of the data (or 1.5 times the upper and lower quartiles if less extreme). Abbreviations as in Figure 2.
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Figure 4: Difference between the relative observed biodiversity values at the field sites, and predicted biodiversity

values from the best-selected model and a land-use-only model (see Table 1). Predicted values were obtained by

applying the models to the estimated environmental covariates at the field study sites. The predicted model estimates

were subtracted from the observed field values. Thus, positive values indicate a model predicting lower biodiversity

than was observed with overall smaller bars indicating better fit to the observed. Primary vegetation was used as the

baseline and abbreviations are as in Figure 2.
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Figure 5: Average assemblage structure in terms of bird species’ characteristics, for the Africa-wide and the independent
29 (‘Taita’ and ‘Kilimanjaro”) datasets, in different land uses. Range size was measured as the average (log-transformed)
31 extent of occurrence across Africa of all bird species recorded at each site, forest specialism was classified based on the
33 TUCN classification of habitat preference, and threat status was from the [IUCN Red List (species classified as critically
35 endangered, endangered or vulnerable were considered to be ‘threatened’). For each sites, we calculated the average

37 proportions of species classified as forest specialist or as threatened. Proportions of forest specialist and threatened

39 species was arcsin-squareroot transformed to better highlight differences. Error bars show the standard error of the

mean.
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Figure S1: For the broad-scale dataset (black points) and the field sites (coloured points), the relative species
richness and abundance values (compared to primary vegetation as a baseline) of all land uses for each
individual study. The figure shows that our field-study estimates are always within the range of modelled study-
level estimates in the broad-scale dataset. Land-use categories are primary vegetation (PV), secondary
vegetation (SV), plantation forest (PL), cropland (CL) and urban (UR).
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Table S1: Full list and description of studies in the broad-scale dataset. Studies that looked at multiple taxonomic groups were split into individual studies for the analysis.

First author
Naidoo
Davis
Hoffmann
O'Connor
Scott
Lachat
Bouyer
Basset
Graeme Shannon
Farwig
Henschel
Munyekenye
Oke
Devineau
Hylander
Hayward
Lehouck
Nicolas
Dures
Jacobs

Haarmeyer

Year

2004

2005

2005

2005

2006

2006

2007

2008

2008

2008

2008

2008

2009

2009

2009

2009

2009

2009

2010

2010

2010

Journal title

Animal Conservation
Environmental Entomology
Belgian Journal of Zoology
Journal of Applied Ecology
Biological Conservation
Biodiversity and Conservation
Biological Conservation
Conservation Biology

Journal of Tropical Ecology
Forest Ecology & Management
PhD Thesis

Ostrich

African Scientist

Biodiversity and Conservation
Conservation Biology

South African Journal of Wildlife
Research

Oikos

Biodiversity and Conservation
Biological Conservation
Journal of Insect Conservation

Biological Conservation

DOI
10.1017/51367943003001185

10.1603/0046-
225x(2005)034[1081:eo0doas]2.0.co;2

10.1111/j.1365-2664.2005.01065.x
10.1016/j.biocon.2005.07.014
10.1007/s10531-004-1234-6
10.1016/j.biocon.2007.04.001
10.1111/j.1523-1739.2008.01017.x
10.1017/50266467408004951

10.1016/j.foreco.2008.03.042

10.2989/0STRICH.2008.79.1.4.361

10.1007/510531-008-9574-2
10.1111/j.1523-1739.2008.01097.x
10.3957/056.039.0108
10.1111/j.1600-0706.2009.17300.x
10.1007/510531-008-9572-4
10.1016/j.biocon.2009.12.019
10.1007/s10841-010-9270-x

10.1016/j.biocon.2009.11.008

NrSites

96

12

11

22

36

184

12

20

15

86

272

211

167

84

204

24

39

17

Land use classes

Primary Vegetation,Secondary Vegetation,Cropland

Primary Vegetation,Plantation forest
Secondary Vegetation

Primary Vegetation,Cropland

Cropland,Secondary Vegetation,Primary Vegetation
Primary Vegetation,Secondary Vegetation,Plantation

forest

Primary Vegetation,Secondary Vegetation,Cropland

Secondary Vegetation,Urban

Primary Vegetation

Plantation forest,Primary Vegetation,Secondary

Vegetation

Primary Vegetation

Secondary Vegetation,Primary Vegetation,Plantation

forest

Primary Vegetation,Plantation forest,Secondary

Vegetation

Cropland,Primary Vegetation
Plantation forest,Primary Vegetation
Primary Vegetation

Primary Vegetation

Secondary Vegetation,Cropland,Primary Vegetation

Primary Vegetation
Primary Vegetation

Secondary Vegetation
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Taxon

Birds
Invertebrates
Mammals
Plants
Reptiles,Mammals
Invertebrates
Plants,Invertebrates
Invertebrates
Plants

Birds
Mammals
Birds
Invertebrates
Plants

Plants

Other
Other,Birds
Mammals
Birds
Invertebrates

Plants

SpeciesRichnes
94

34

220

17

67

44
114
27
129
26
329
224
48
39
11
81
46

131
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Marsh
Gaigher
Safian
Neuschulz
Schumann
Phalan
Granjon
D'Cruze
Muchane
Siebert
Wiafe
Malonza
Norfolk
Ofori-Boateng
Oke

Adum
Nakashima
Ndang'ang'a
Reynolds
Hassan
CIFOR
Norfolk
Bdsing

Wronski

2010

2010

2011

2011

2011

2011

2011

2011

2012

2012

2012

2012

2012

2013

2013

2013

2013

2013

2013

2013

2013

2013

2014

2014

Biological Conservation
Journal of Insect Conservation
Journal of Insect Conservation
Oikos

Biological Conservation
Science

Mammalian Biology

Animal Conservation
International Journal of Biodiversity
and Conservation

Plant Ecology and Evolution
Journal Of Ecology and Natural
Environment

Herpetotropicos

Agriculture, Ecosystems and
Environment

Biotropica

African Journal of Ecology
Conservation Biology

African Zoology

Ostrich

African Zoology

British Journal of Applied Science &
Technology
www.cifor.org/mla

Basic and Applied Ecology

Journal of Arid Environments

Journal of Molluscan Studies
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10.1016/j.biocon.2010.03.010
10.1007/s10841-010-9286-2
10.1007/s10841-010-9343-x
10.1111/j.1600-0706.2011.19097.x
10.1016/j.biocon.2011.06.018
10.1126/science.1208742
10.1016/j.mambio.2011.06.003
10.1111/j.1469-1795.2011.00459.x
10.5897/ijbc12.030
10.5091/plecevo.2011.501

10.5897/JENE11.144

10.1016/j.agee.2012.08.007
10.1111/j.1744-7429.2012.00887.x
10.1111/aje.12029
10.1111/cobi.12006
10.3377/004.048.0212
10.2989/00306525.2013.860929
10.3377/004.048.0217

10.9734/BJAST/2014/2200

10.1016/j.baae.2013.10.004
10.1016/j.jaridenv.2014.02.011

10.1093/mollus/eyu008

90

10

36

166

32

119

12

92

64

13

30

48

333

56

32

100

36

37

Primary Vegetation,Secondary Vegetation,Plantation
forest

Primary Vegetation,Plantation forest

Primary Vegetation,Secondary Vegetation,Plantation
forest

Primary Vegetation,Cropland,Secondary Vegetation
Cropland,Primary Vegetation

Primary Vegetation,Plantation forest

Primary Vegetation,Urban,Cropland

Primary Vegetation,Secondary Vegetation,Plantation
forest

Primary Vegetation,Cropland

Primary Vegetation,Secondary Vegetation,Plantation
forest,Urban,Cropland

Primary Vegetation

Primary Vegetation,Plantation forest

Primary Vegetation,Cropland

Primary Vegetation,Secondary Vegetation
Secondary Vegetation,Primary Vegetation

Primary Vegetation,Plantation forest

Secondary Vegetation,Primary Vegetation
Cropland,Secondary Vegetation

Secondary Vegetation

Primary Vegetation

Plantation forest,Secondary Vegetation,Cropland
Primary Vegetation,Plantation forest,Urban

Primary Vegetation

Primary Vegetation,Secondary Vegetation
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Invertebrates,Birds
Other
Invertebrates
Birds

Plants
Birds,Plants
Mammals
Reptiles
Other

Plants
Mammals
Amphibia
Invertebrates
Amphibia
Invertebrates
Amphibia
Mammals
Birds

Birds

Birds

Plants

Plants
Mammals

Invertebrates
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22
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90

330
21

11

799

20
16
30
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74
78
90
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84
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Figure S2: Tests for spatial autocorrelation within the model residuals, showing the distribution of P-values from
sets of Moran's tests on the residuals associated with each individual study. Significant autocorrelation (P <
0.05) is indicated by the vertical red line.

ACV submitted manuscript



OCoONOOOPR~WN =

ACV: For review purposes only - please do not distribute Page 30 of 49

log(Abundance) Species Richness
160 ‘
100 oV
140 ¢
|
90
o
=
120
@ L
° 80
g’ \4 \ 4
5
< 100 ov
8 »
e 70
Y
80 i
60
60
50
PV sV PL CL UR PV sV PL CL UR

Dataset: =3~ All taxonomic groups <~ Only birds @~ Cropland field transects

Figure S3: The response of species richness and total abundance to land use, from the Africa-wide model (open
symbols) and the independent field data for cropland (closed symbols). Here, the Africa-wide models are shown
for all taxonomic groups (open circles) and for birds only (open triangles). Land-use categories are primary
vegetation (PV), secondary vegetation (SV), plantation forest (PL) and cropland (CL). There is no urban
category (UR) for comparison as there were insufficient numbers of urban sites in the broad scale dataset for
birds. All values are expressed as the percentage of the baseline values in primary vegetation. Error bars show
one standard error.
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Figure S4: Effect of elevation (in m) on species richness, log-abundance and species composition for our independent field
sites at Taita and Kilimanjaro. Generalized linear model with Poisson errors (for Species richness) and Gaussian errors (for
log-abundance) were fitted independently for each transect. Changes in composition were assessed as Sorensen similarity
index between all pairs of sites and fitted against the absolute difference in elevation between sites using generalized linear
models with Gaussian errors. (A) There was no significant effect of elevation on species richness for either transect, but there
was a significant effect for log-abundance in the Taita Hills (B). (C) Species assemblage similarity decreases with
elevational differences between sites. (D) Distribution of the land-use classes of our independent sites across the elevational
range of both study transects. Land use abbreviations as in Figure S1.
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Table S2: The PREDICTS project (Hudson et al., 2014, www.predicts.org.uk ) land use and land-use intensity
matrix to which all study sites have been classified.
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Minimal use

Light use

Intense use

Primary forest
(forest composed of
native vegetation,
which is not known
to have been
destroyed during
historical times)

Any threats identified
are very minor (e.g.,
very light use) or
very limited in the
scope of their effect
(e.g., hunting of a
particular species of
limted ecological
importance).

One or more threats of
moderate intensity (e.g.,
selective logging) or
breadth of impact (e.g.,
bushmeat extraction),
which are not severe
enough to markedly change
the nature of the
ecosystem.

One or more threats that is
severe enough to markedly
change the nature of the
ecosystem (e.g., clear-
felling).

Primary Non-Forest
(native vegetation,
which has not been
destroyed recently
enough for there to
be any discernible
impact on vegetation

Any threats identified
are very minor (e.g.,
very light use) or
very limited in the
scope of their effect
(e.g., hunting of a
particular species of

One or more threats of
moderate intensity (e.g.,
selective logging) or
breadth of impact (e.g.,
bushmeat extraction),
which are not severe
enough to markedly change

One or more threats that is
severe enough to markedly
change the nature of the
ecosystem (e.g., clear-
felling).

architecture) limted ecological the nature of the
importance). ecosystem.
Mature Secondary As for Primary As for Primary Vegetation- | As for Primary Vegetation-

Vegetation
(previously destroyed
vegetation recovering
to natural state rather
than being managed
to maintain it in a
non-natural state;
architecture, if not
diversity,
approaching original
complexity)

Vegetation-Minimal
use

Light use

Intense use

Intermediate
Secondary
Vegetation
(previously destroyed
vegetation recovering
to natural state rather
than being managed
to maintain it in a
non-natural state;
mixed architecture or
mid-successional
stage of recovery)

As for Primary
Vegetation-Minimal
use

As for Primary Vegetation-
Light use

As for Primary Vegetation-
Intense use

Young Secondary
Vegetation
(previously destroyed
vegetation recovering

As for Primary
Vegetation-Minimal
use

As for Primary Vegetation-
Light use

As for Primary Vegetation-
Intense use
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to natural state rather
than being managed
to maintain it in a
non-natural state;
mainly ruderal
species and simple
architecture; early-
successional stage)

Secondary
Vegetation
(indeterminate age)
(previously destroyed
vegetation recovering
to natural state rather
than being managed
to maintain it in a
non-natural state; age
indeterminate)

As for Primary
Vegetation-Minimal
use

As for Primary Vegetation-
Light use

As for Primary Vegetation-
Intense use

Plantation forest

Extensively managed
or mixed timber,
fruit/coffee, oil-palm
or rubber plantations
in which native
understorey and/or
other native tree
species are tolerated,
which are not treated
with pesticide or
fertiliser, and which
are not clear-felled.

Monoculture
fruit/coffee/rubber
plantations with limited
pesticide input, or mixed
species plantations with
significant inputs.
Monoculture timber
plantations of mixed age
with no clear-felling.
Monoculture oil-palm
plantations with no clear-
felling.

Monoculture
fruit/coffee/rubber plantations
with significant pesticide
input.

Monoculture timber
plantations with similarly
aged trees or timber/oil-palm
plantations with extensive
clear-felling.

Cropland Low-intensity farms, | Medium intensity farming, | High-intensity monoculture
typically with small | typically showing some but | farming, typically showing
fields, mixed crops, | not many of the following: | many of the following
crop rotation, little or | large fields, annual features: large fields, annual
no inorganic fertiliser | ploughing, inorganic ploughing, inorganic fertiliser
use, little or no fertiliser application, application, pesticide
pesticide use, little or | pesticide application, application, irrigation,
no ploughing, little or | irrigation, no crop rotation, | mechanisation, no crop
no irrigation, little or | mechanisation, rotation.
no mechanisation. monoculture crop. Organic

farms in developed
countries often fall within
this category, as may high-
intensity farming in
developing countries.
Pasture Pasture with minimal | Pasture either with Pasture with significant input

input of fertiliser and
pesticide, and with
low stock density

significant input of
fertiliser or pesticide, or
with high stock density

of fertiliser or pesticide, and
with high stock density (high
enough to cause significant
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(not high enough to
cause significant
disturbance or to stop
regeneration of
vegetation).

(high enough to cause
significant disturbance or
to stop regeneration of
vegetation).

disturbance or to stop
regeneration of vegetation).

Urban

Extensive managed
green spaces;
villages.

Suburban (e.g. gardens), or
small managed green
spaces in cities.

Fully urban with no
significant green spaces.
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1
2

3 Table S3: Full model selection table for (log-transformed) abundance. All possible combinations of land use (PREDICTS.LU), land-use intensity (PREDICTS.LUI) Land use/Land-use
4 intensity interaction (LUInter), log-transformed human population density (logpop), forest cover (FC2000), elevation (elev), mean NDVI (meanNDVT) and vegetation offtake (yield.ndvi.corr)
5 were fitted. Shown are the model covariates, the parameter count (K), AIC, delta AIC, the Model likelihood (ModelLik), AIC weights (AICWt), log-likelihood (LL) and cumulative AIC
6 weights (Cum.Wt). ModelLik and AICwt are rounded to the fifth decimal for visual display.

7

8 Model covariates K AIC Delta AIC ModelLik AICWt LL Cum.Wt

9 -

10 LUInter + logpop + yield.ndvi.corr + meanNDVI 34 3844.269 0 1.00000 0.29457 1888.13 0.294573

11 -

]2 LUInter + yield.ndvi.corr + meanNDVI 33 3845.503 1.234303 0.53948 0.15892 1889.75 0.453489

12 LUInter + logpop + yield.ndvi.corr + meanNDVI+elev 35 3846.001 1.732176 0.42059 0.12390 -1888 0.577384

15 §

16 LUInter + yield.ndvi.corr + FC2000 + meanNDVI 34 3846.449 2.17982 0.33625 0.09905 1889.22 0.676434

17  LUinter + logpop + yield.ndvi.corr + FC2000 + -

18 meanNDVI 35 3846.626 2.357402 0.30768 0.09063 1888.31 0.767067

19 -

20 LUinter + yield.ndvi.corr + meanNDVI + elev 34 3846.748 2.479162  0.28951 0.08528 1889.37 0.852348

21 LUInter + logpop + yield.ndvi.corr + FC2000 + -

22 meanNDVI + elev 36 3847.765 3.496445 0.17408 0.05128 1887.88 0.903628

23 -

24 LUInter + yield.ndvi.corr + FC2000 + meanNDVI + elev 35 3848.256 3.987263 0.13620 0.04012 1889.13 0.943749

LUInter + yield.ndvi.corr 32 3850.436 6.167005 0.04580 0.01349 1893.22 0.95724

29 LUInter + logpop + yield.ndvi.corr 33 3850.454 6.185683 0.04537 0.01337 1892.23 0.970605
g? LUInter + logpop + yield.ndvi.corr + FC2000 34 3851.611 7.342244  0.02545 0.00750 1891.81- 0.978102
gg LUInter + yield.ndvi.corr + FC2000 33 3851.969 7.700208 0.02128 0.00627 1892.9§; 0.984369
§§ LUInter + logpop + yield.ndvi.corr + elev 34 3852.429 8.160732 0.01690 0.00498 1892.21- 0.989348

37 LUInter + yield.ndvi.corr + elev 33 3852431 8.162312 0.01689 0.00497 1893.22 0.994323

LUInter + logpop + yield.ndvi.corr + FC2000 + elev 35 3853.589 9.319884 0.00947 0.00279 1891.79 0.997111

42 LUInter + yield.ndvi.corr + FC2000 + elev 34 3853.966 9.697042 0.00784 0.00231 1892.98 0.999421
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PREDICTS.LU + PREDICTS.LUI + logpop +
yield.ndvi.corr + meanNDVI

PREDICTS.LU + PREDICTS.LUI + yield.ndvi.corr +
meanNDVI

PREDICTS.LU + PREDICTS.LUI + logpop +
yield.ndvi.corr + meanNDVI + elev
PREDICTS.LU + PREDICTS.LUI + logpop +
yield.ndvi.corr + FC2000 + meanNDVI
PREDICTS.LU + PREDICTS.LUI + yield.ndvi.corr +
FC2000 + meanNDVI

PREDICTS.LUI + logpop + yield.ndvi.corr + meanNDVI
PREDICTS.LU + PREDICTS.LUI + yield.ndvi.corr +
meanNDVI + elev

PREDICTS.LU + PREDICTS.LUI + logpop +
yield.ndvi.corr + FC2000 + meanNDV!I + elev

PREDICTS.LUI + yield.ndvi.corr + meanNDVI
PREDICTS.LU + PREDICTS.LUI + yield.ndvi.corr +
FC2000 + meanNDVI + elev
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27

26

28

28

27

23

27

29

22

28

PREDICTS.LUI + logpop + yield.ndvi.corr + meanNDVI +

elev

PREDICTS.LUI + logpop + yield.ndvi.corr + FC2000 +
meanNDVI

PREDICTS.LU + PREDICTS.LUI + logpop +
yield.ndvi.corr

PREDICTS.LU + PREDICTS.LUI + yield.ndvi.corr
PREDICTS.LUI + yield.ndvi.corr + FC2000 + meanNDVI

PREDICTS.LUI + yield.ndvi.corr + meanNDVI + elev
PREDICTS.LU + PREDICTS.LUI + logpop +
yield.ndvi.corr + FC2000

PREDICTS.LUI + logpop + yield.ndvi.corr + FC2000 +
meanNDVI + elev

24

24

26

25

23

23

27

25

3859.728

3860.643

3861.481

3861.597

3862.253

3862.341

3862.545

3863.326

3863.473

3864.119

3864.234

3864.25

3864.83

3864.874

3865.166

3865.441

3866.031

3866.128

15.45902

16.37373

17.2122

17.32805

17.98379

18.07208

18.27588

19.05705

19.2043

19.85003

19.96501

19.9814

20.56122

20.60512

20.89678

21.17186

21.76258

21.85887

0.00044

0.00028

0.00018

0.00017

0.00012

0.00012

0.00011

0.00007

0.00007

0.00005

0.00005

0.00005

0.00003

0.00003

0.00003

0.00003

0.00002

0.00002

0.00013

0.00008

0.00005

0.00005

0.00004

0.00004

0.00003

0.00002

0.00002

0.00001

0.00001

0.00001

0.00001

0.00001

0.00001

0.00001

0.00001

0.00001
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1902.86

1904.32

1902.74

-1902.8

1904.13

1908.17

1904.27

1902.66

1909.74

1904.06

1908.12

1908.13

1906.41

1907.44

1909.58

1909.72

1906.02

1908.06

0.99955

0.999632

0.999686

0.999737

0.999774

0.999809

0.999841

0.999862

0.999882

0.999896

0.99991

0.999923

0.999934

0.999943

0.999952

0.999959

0.999965

0.99997
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1
2

Z PREDICTS.LU + PREDICTS.LUI + yield.ndvi.corr + -

5 FC2000 26 3866.494 22.22537 0.00001 0.00000 1907.25 0.999975
5  PREDICTS.LU + PREDICTS.LUI + logpop + .

7 yield.ndvi.corr + elev 27 3866.822 22.55307 0.00001 0.00000 1906.41 0.999978
8 i,

9 PREDICTS.LU + PREDICTS.LUI + yield.ndvi.corr + elev 26 3866.874 22.60495 0.00001 0.00000 1907.44 0.999982
10  PREDICTS.LUI + yield.ndvi.corr + FC2000 + meanNDVI -

11 + elev 24 3867.113 22.84442 0.00001 0.00000 1909.56 0.999985
12 -

13 PREDICTS.LUI + logpop + yield.ndvi.corr 22 3867.314 23.04509 0.00001 0.00000 1911.66 0.999988
14 -

15 PREDICTS.LUI + yield.ndvi.corr 21 3867.667 23.39856 0.00001 0.00000 1912.83 0.999991
1? PREDICTS.LU + PREDICTS.LUI + logpop + ]

18 yield.ndvi.corr + FC2000 + elev 28 3868.021 23.75271 0.00001 0.00000 1906.01 0.999993
19 §

20 PREDICTS.LUI + logpop + yield.ndvi.corr + FC2000 23  3868.45 24.181 0.00001 0.00000 1911.22 0.999994
21  PREDICTS.LU + PREDICTS.LUI + yield.ndvi.corr + -

2o FC2000 + elev 27 3868.494 24.22498 0.00001 0.00000 1907.25 0.999996
23 -

24  PREDICTS.LUI + yield.ndvi.corr + FC2000 22 3869.212 24.94299 0.00000 0.00000 1912.61 0.999997
25 -

26  PREDICTS.LUI + logpop + yield.ndvi.corr + elev 23 3869.314 25.04508 0.00000 0.00000 1911.66 0.999998
27 i,

28 PREDICTS.LUI + yield.ndvi.corr + elev 22 3869.659 25.38994 0.00000 0.00000 1912.83 0.999999
28 PREDICTS.LUI + logpop + yield.ndvi.corr + FC2000 + )

21 elev 24 3870.449 26.18066 0.00000 0.00000 1911.22 1
32 PREDICTS.LUI + yield.ndvi.corr + FC2000 + elev 23 3871.2 26.93107 0.00000 0.00000 -1912.6 1
33 .

34 LUinter + logpop + meanNDVI 33 4104.084 259.8153 0.00000 0.00000 2019.04 1
35 -

36 LUInter + meanNDVI 32 4104.626 260.3575 0.00000 0.00000 2020.31 1
37 -

38  LUInter + logpop + meanNDVI + elev 34 4104.875 260.6064 0.00000 0.00000 2018.44 1
39 i,

40 |Uinter + meanNDVI + elev 33 4105.689 261.4202 0.00000 0.00000 2019.84 1
j; LUInter + logpop + FC2000 + meanNDVI 34 4106.072 261.8027 0.00000 0.00000 - 1
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OCoONOOOPA~WN =

LUInter + FC2000 + meanNDVI

LUInter + logpop + FC2000 + meanNDVI + elev
LUInter + FC2000 + meanNDV!I + elev

PREDICTS.LU + PREDICTS.LUI + logpop + meanNDVI
PREDICTS.LU + PREDICTS.LUI + logpop + meanNDVI +
elev

PREDICTS.LU + PREDICTS.LUI + meanNDVI
PREDICTS.LU + PREDICTS.LUI + logpop + FC2000 +
meanNDVI

PREDICTS.LU + PREDICTS.LUI + meanNDVI + elev
PREDICTS.LUI + logpop + meanNDVI

PREDICTS.LU + PREDICTS.LUI + FC2000 + meanNDVI
PREDICTS.LU + PREDICTS.LUI + logpop + FC2000 +
meanNDVI + elev

PREDICTS.LUI + logpop + meanNDVI + elev
PREDICTS.LUI + meanNDVI

PREDICTS.LU + PREDICTS.LUI + FC2000 + meanNDVI +
elev

PREDICTS.LUI + logpop + FC2000 + meanNDVI

PREDICTS.LUI + meanNDVI + elev

PREDICTS.LUI + logpop + FC2000 + meanNDVI + elev
PREDICTS.LUI + FC2000 + meanNDVI
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33

35

34

26

27

25

27

26

22

26

28

23

21

27

23

22

24
22

4106.525

4106.836

4107.525

4115.069

4116.165

4116.171

4117.069

4117.528

4117.746

4118.117

4118.16

4118.978

4119.061

4119.43

4119.745

4120.508

4120.976
4121.021

262.2567

262.5672

263.256

270.8006

271.8961

271.9019

272.8005

273.2592

273.4771

273.8479

273.8911

274.7094

274.7927

275.1616

275.476

276.2392

276.707
276.752

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000
0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000
0.00000
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2019.04

2020.26

2018.42

2019.76

2031.53

2031.08

2033.09

2031.53

2032.76

2036.87

2033.06

2031.08

2036.49

2038.53

2032.72

2036.87

2038.25

2036.49
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1
2
3

2038.51
4
5 .
6 PREDICTS.LUI + FC2000 + meanNDVI + elev 23 4122.429 278.1605 0.00000 0.00000 2038.21
7 -
8 LUInter 31 4225.365 381.0963 0.00000 0.00000 2081.68
9 -
10  LUInter + logpop 32 4225.82 381.5512 0.00000 0.00000 2080.91
11 -
12 LUInter + logpop + elev 33 4226.453 382.1839 0.00000 0.00000 2080.23
13 }
]‘5" LUInter + elev 32 4226.827 382.558 0.00000 0.00000 2081.41
1? LUInter + logpop + FC2000 33 4226.911 382.6424 0.00000 0.00000 2080.46
18 i
19 LUInter + FC2000 32 4227.284 383.0152 0.00000 0.00000 2081.64
20 )
21 LUInter + logpop + FC2000 + elev 34 4228.217 383.9483 0.00000 0.00000 2080.11
22 -
23  LUInter + FC2000 + elev 33 4228.751 384.482 0.00000 0.00000 2081.38
24 -
25  PREDICTS.LU + PREDICTS.LUI + logpop 25 4235.15 390.8816 0.00000 0.00000 2092.58
26 -
g; PREDICTS.LU + PREDICTS.LUI 24 4235.861 391.5927 0.00000 0.00000 2093.93
gg PREDICTS.LU + PREDICTS.LUI + logpop + elev 26 4236.647 392.3783  0.00000 0.00000 2092.32
31 X
32 PREDICTS.LU + PREDICTS.LUI + logpop + FC2000 26 4236.832 392.5627 0.00000 0.00000 2092.42
33 .
34  PREDICTS.LU + PREDICTS.LUI + elev 25 4237.493 393.224  0.00000 0.00000 2093.75
35 -
36  PREDICTS.LU + PREDICTS.LUI + FC2000 25 4237.756 393.4871 0.00000 0.00000 2093.88
37 .
38  PREDICTS.LUI + logpop 21 4238.026 393.7577 0.00000 0.00000 2098.01
39 -
40 PREDICTS.LU + PREDICTS.LUI + logpop + FC2000 + elev 27 4238.336 394.0672 0.00000 0.00000 2092.17
j; PREDICTS.LUI 20 4239.075 394.8065 0.00000 0.00000 -
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OCoONOOOPA~WN =

PREDICTS.LU + PREDICTS.LUI + FC2000 + elev
PREDICTS.LUI + logpop + elev

PREDICTS.LUI + logpop + FC2000

PREDICTS.LUI + elev

PREDICTS.LUI + FC2000

PREDICTS.LUI + logpop + FC2000 + elev
PREDICTS.LUI + FC2000 + elev

PREDICTS.LU + logpop + yield.ndvi.corr
PREDICTS.LU + logpop + yield.ndvi.corr + elev
PREDICTS.LU + logpop + yield.ndvi.corr + meanNDVI +
elev

PREDICTS.LU + logpop + yield.ndvi.corr + meanNDVI
PREDICTS.LU + logpop + yield.ndvi.corr + FC2000 +
meanNDVI

PREDICTS.LU + logpop + yield.ndvi.corr + FC2000 +
meanNDVI + elev

PREDICTS.LU + logpop + yield.ndvi.corr + FC2000
PREDICTS.LU + logpop + yield.ndvi.corr + FC2000 +
elev

PREDICTS.LU + yield.ndvi.corr + meanNDVI + elev

PREDICTS.LU + yield.ndvi.corr + elev

PREDICTS.LU + yield.ndvi.corr
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26

22

22

21

21

23

22

24

25

26

25

26

27

25

26

25

24

23

4239.396

4239.561

4239.69

4240.732

4240.955

4241.24

4242.624

5044.166

5044.487

5044.706

5044.963

5045.708

5045.857

5046.105

5046.487

5050.417

5050.672

5051.06

395.1272

395.2922

395.4208

396.4633

396.6866

396.9717

398.3557

1199.898

1200.219

1200.437

1200.694

1201.439

1201.589

1201.836

1202.218

1206.148

1206.403

1206.791

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

ACV submitted manuscript

2099.54
-2093.7

2097.78

2097.84

2099.37

2099.48

2097.62

2099.31

2498.08

2497.24

2496.35

2497.48

2496.85

2495.93

2498.05

2497.24

2500.21

2501.34

2502.53
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1
2

3 )
g PREDICTS.LU + yield.ndvi.corr + meanNDVI 24 5051.557 1207.288 0.00000 0.00000 2501.78
6 PREDICTS.LU + yield.ndvi.corr + FC2000 + meanNDVI + -
7 elev 26 5052.229 1207.961 0.00000 0.00000 2500.11
8 i,
9 PREDICTS.LU + yield.ndvi.corr + FC2000 + elev 25 5052.411 1208.142 0.00000 0.00000 2501.21
10 -
11 PREDICTS.LU + yield.ndvi.corr + FC2000 24 5053.017 1208.748 0.00000 0.00000 2502.51
12 -

13 PREDICTS.LU + yield.ndvi.corr + FC2000 + meanNDVI 25 5053.148 1208.879 0.00000 0.00000 2501.57
14 -

]g yield.ndvi.corr 19 5055.335 1211.067 0.00000 0.00000 2508.67
]; PREDICTS.LU + logpop + meanNDVI 24 5307.316 1463.047 0.00000 0.00000 2629.66;
;g PREDICTS.LU + logpop + meanNDVI + elev 25 5308.63 1464.361 0.00000 0.00000 2629.31-
g; PREDICTS.LU + logpop + FC2000 + meanNDVI 25 5308.73 1464.461 0.00000 0.00000 2629.36;

23  PREDICTS.LU + logpop + FC2000 + meanNDVI + elev 26 5310.204 1465.936 0.00000 0.00000 -2629.1
24 -

25  PREDICTS.LU + meanNDVI 23 5312902 1468.634 0.00000 0.00000 2633.45
26 -
g; PREDICTS.LU + meanNDVI + elev 24 5313.982 1469.714 0.00000 0.00000 2632.99
gg PREDICTS.LU + FC2000 + meanNDVI 24 5314.777 1470.508 0.00000 0.00000 2633.39
31 i
32 PREDICTS.LU + FC2000 + meanNDVI + elev 25 5315.931 1471.662 0.00000 0.00000 2632.97
33 -
34 meanNDVI 19 5316.582 1472.313 0.00000 0.00000 2639.29
35 -
36  PREDICTS.LU + logpop + FC2000 + elev 25 5434.084 1589.816 0.00000 0.00000 2692.04
37  PREDICTS.LU + FC2000 + elev 24 5439.595 1595.326  0.00000 0.00000 -2695.8
38 -
39 PREDICTS.LU + logpop + elev 24  5432.11 1587.842  0.00000 0.00000 2692.06
j? PREDICTS.LU + logpop + FC2000 24 5432.402 1588.133 0.00000 0.00000 -2692.2
42 PREDICTS.LU + elev 23 5437.656 1593.387 0.00000 0.00000 -
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OCoONOOOPA~WN =

ACV

PREDICTS.LU + FC2000
PREDICTS.LU + logpop
elev

FC2000

logpop

PREDICTS.LU

23

23

19

19

19

22

5438.17

5430.475

5441.679

5442.255

5435.91

5436.183

1593.901

1586.206

1597.41

1597.986

1591.641

1591.915

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000
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2695.83

2696.08

2692.24

2701.84

2702.13

2698.96

2696.09
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Table S4: Full model selection table for species richness. All possible combinations of land use (PREDICTS.LU), land-use intensity (PREDICTS.LUI) Land use/Land-use intensity interaction
(LUlInter), log-transformed human population density (logpop), forest cover (FC2000), elevation (elev), mean NDVI (meanNDVI) and vegetation offtake (yield.ndvi.corr) were fitted. Shown
are the model covariates, the parameter count (K), AIC, delta AIC, the model likelihood (ModelLik), AIC weights, log-likelihood (LL) and cumulative AIC weights (Cum.Wt). ModelLik and

AICwt are rounded to the fifth decimal for visual display

Model covariates

LUInter + logpop + yield.ndvi.corr + FC2000 +
meanNDVI

LUInter + logpop + yield.ndvi.corr

LUInter + logpop + yield.ndvi.corr + meanNDVI
LUInter + logpop + yield.ndvi.corr + FC2000
LUInter + logpop + yield.ndvi.corr + FC2000 +
meanNDVI + elev

LUInter + logpop + yield.ndvi.corr + elev

LUInter + logpop + yield.ndvi.corr + meanNDVI + elev

LUInter + logpop + yield.ndvi.corr + FC2000 + elev
PREDICTS.LU + PREDICTS.LUI + logpop + yield.ndvi.corr

K

35

33

34

34

36

34

35

35
26

AIC

10920.67

10920.71

10921.62

10921.71

10922.65

10922.7

10923.62

10923.7
10931.15

Delta AIC ModellLik

0

0.034688

0.952034

1.038024

1.975058

2.025582

2.951892

3.032539
10.48308

1.00000

0.98281

0.62125

0.59511

0.37250

0.36320

0.22856

0.21953
0.00529

AICWt

0.22634

0.22245

0.14062

0.13470

0.08431

0.08221

0.05173

0.04969
0.00120

ACV submitted manuscript

LL

5425.34

5427.35

5426.81

5426.85

5425.32

5427.35

5426.81

5426.85

Cum.Wt

0.226343

0.448794

0.589411

0.724109

0.808421

0.89063

0.942363

0.992052
0.99325
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1
2

3 5439.58

g PREDICTS.LU + PREDICTS.LUI + logpop + yield.ndvi.corr -

6 + FC2000 + meanNDVI 28 10931.56 10.89099 0.00432 0.00098 5437.78 0.994227
7 PREDICTS.LU + PREDICTS.LUI + logpop + yield.ndvi.corr -

8 + FC2000 27 10931.95 11.27773 0.00356 0.00081 5438.97 0.995032
9 -

10  PREDICTS.LUI + logpop + yield.ndvi.corr 22 10932.3 11.63023 0.00298 0.00067 5444.15 0.995707
11 PREDICTS.LUI + logpop + yield.ndvi.corr + FC2000 + -

12 meanNDVI 24 10932.45 11.78284 0.00276 0.00063 5442.23 0.996332
13 PREDICTS.LU + PREDICTS.LUI + logpop + yield.ndvi.corr -

]‘5" + meanNDVI 27 10932.5 11.82845 0.00270 0.00061 5439.25 0.996944
1? PREDICTS.LUI + logpop + yield.ndvi.corr + FC2000 23 10932.57 11.89915 0.00261 0.00059 5443.28 0.997534
18 PREDICTS.LU + PREDICTS.LUI + logpop + yield.ndvi.corr -

19 * elev 27 10933.14 12.4702 0.00196 0.00044 5439.57 0.997977
o9 PREDICTS.LU + PREDICTS.LUI + logpop + yield.ndvi.corr -

21 +FC2000 + meanNDVI + elev 29 10933.55 12.88052 0.00160 0.00036 5437.78 0.998338
22 -

23  PREDICTS.LUI + logpop + yield.ndvi.corr + meanNDVI 23 10933.74 13.06877 0.00145 0.00033 5443.87 0.998667
24  PREDICTS.LU + PREDICTS.LUI + logpop + yield.ndvi.corr -

25  +FC2000 + elev 28 10933.94 13.27108 0.00131 0.00030 5438.97 0.998964
26 -

27 PREDICTS.LUI + logpop + yield.ndvi.corr + elev 23 10934.3 13.62841 0.00110 0.00025 5444.15 0.999213
gg PREDICTS.LUI + logpop + yield.ndvi.corr + FC2000 + ;

30 meanNDVI + elev 25 10934.47 13.79464 0.00101 0.00023 5442.23 0.999442
31 PREDICTS.LU + PREDICTS.LUI + logpop + yield.ndvi.corr -

30 meanNDVI + elev 28 10934.5 13.82666 0.00099 0.00023 5439.25 0.999667
33  PREDICTS.LUI + logpop + yield.ndvi.corr + FC2000 + -

34 elev 24 10934.61 13.94325 0.00094 0.00021 5443.31 0.999879
35 PREDICTS.LUI + logpop + yield.ndvi.corr + meanNDVI + -

36 elev 24 10935.74 15.0676  0.00053 0.00012 5443.87 1
37  LUInter + yield.ndvi.corr + meanNDVI + elev 34 11404.4 483.7311 0.00000 0.00000 -5668.2 1
38 -

?18 LUInter + yield.ndvi.corr + elev 33 11404.63 483.962 0.00000 0.00000 5669.32 1
j; LUInter + yield.ndvi.corr + FC2000 + meanNDVI +elev 35 11404.68 484.0101 0.00000 0.00000 5667.34 1
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LUInter + yield.ndvi.corr + meanNDVI

LUInter + yield.ndvi.corr

LUInter + yield.ndvi.corr + FC2000 + meanNDVI
LUInter + yield.ndvi.corr + FC2000 + elev
LUInter + yield.ndvi.corr + FC2000

PREDICTS.LU + PREDICTS.LUI + yield.ndvi.corr + elev
PREDICTS.LU + PREDICTS.LUI + yield.ndvi.corr
PREDICTS.LU + PREDICTS.LUI + yield.ndvi.corr +
meanNDVI + elev

PREDICTS.LU + PREDICTS.LUI + yield.ndvi.corr +
FC2000 + meanNDVI + elev

PREDICTS.LU + PREDICTS.LUI + yield.ndvi.corr +
meanNDVI

PREDICTS.LU + PREDICTS.LUI + yield.ndvi.corr +
FC2000 + meanNDVI

PREDICTS.LUI + yield.ndvi.corr + elev

PREDICTS.LUI + yield.ndvi.corr + meanNDVI + elev
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33

32

34

34

33

26

25

27

28

26

27

22

23

PREDICTS.LUI + yield.ndvi.corr + FC2000 + meanNDVI +

elev

PREDICTS.LU + PREDICTS.LUI + yield.ndvi.corr +
FC2000 + elev

PREDICTS.LU + PREDICTS.LUI + yield.ndvi.corr +
FC2000

PREDICTS.LUI + yield.ndvi.corr

PREDICTS.LUI + yield.ndvi.corr + FC2000

PREDICTS.LUI + yield.ndvi.corr + meanNDVI

24

27

26
21
22

22

11405.08

11405.1

11405.59

11406.44

11406.95

11418.47

11418.7

11418.73

11418.88

11419.12

11419.5

11419.7

11419.82

11419.84

11420.16

11420.45
11420.6
11420.8

11420.97

484.4091

484.4339

484.9176

485.772

486.2824

497.7985

498.0322

498.0565

498.2072

498.446

498.8267

499.0331

499.1495

499.1689

499.4901

499.7748
499.9254
500.1341

500.3002

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000
0.00000
0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000
0.00000
0.00000

0.00000
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5669.54

5670.55

5668.79

5669.22

5670.48

5683.23

5684.35

5682.36

5681.44

5683.56

5682.75

5687.85

5686.91

5685.92

5683.08

5684.22
-5689.3
-5688.4

5688.49
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1
2

3 -
g PREDICTS.LUI + yield.ndvi.corr + FC2000 + meanNDVI 23 11421.28 500.6133 0.00000 0.00000 5687.64
5 -
7 PREDICTS.LUI + yield.ndvi.corr + FC2000 + elev 23 11421.38 500.707 0.00000 0.00000 5687.69
8 -
9 LUInter + logpop + FC2000 + meanNDVI 34 12226.23 1305.556 0.00000 0.00000 6079.11
10  PREDICTS.LU + PREDICTS.LUI + logpop + FC2000 + -
11 meanNDVI 27 12226.74 1306.072  0.00000 0.00000 6086.37
12 PREDICTS.LUI + logpop + FC2000 + meanNDVI 23 12226.8 1306.13  0.00000 0.00000 -6090.4
13 B
]‘5" LUInter + logpop + meanNDVI 33 12227.66 1306.987 0.00000 0.00000 6080.83
1? LUInter + logpop + FC2000 + meanNDV!I + elev 35 12228.07 1307.399 0.00000 0.00000 6079.03
18 )
19 PREDICTS.LU + PREDICTS.LUI + logpop + meanNDVI 26 12228.26 1307.591 0.00000 0.00000 6088.13
o9 PREDICTS.LU + PREDICTS.LUI + logpop + FC2000 + -
21 meanNDVI + elev 28 12228.63 1307.955 0.00000 0.00000 6086.31
22 -
23  PREDICTS.LUI + logpop + meanNDVI 22 12228.68 1308.011 0.00000 0.00000 6092.34
24 -

25  PREDICTS.LUI + logpop + FC2000 + meanNDVI + elev 24 12228.75 1308.077 0.00000 0.00000 6090.37
26 -

27 LUlnter + logpop + meanNDVI + elev 34 12229.59 1308.917 0.00000 0.00000 6080.79
28  pPREDICTS.LU + PREDICTS.LUI + logpop + meanNDVI + ;
gg elev 27 12230.22 1309.546  0.00000 0.00000 6088.11
g; PREDICTS.LUI + logpop + meanNDVI + elev 23 12230.67 1310.003 0.00000 0.00000 6092.34
33  PREDICTS.LU + logpop + yield.ndvi.corr + FC2000 + -
34 meanNDVI + elev 27 13336.61 2415.942 0.00000 0.00000 6641.31
35 PREDICTS.LU + yield.ndvi.corr + FC2000 + meanNDVI + -
36 elev 26 13801.11 2880.439 0.00000 0.00000 6874.55
37 -

38  PREDICTS.LU + logpop + FC2000 + meanNDV!I + elev 26 14733.83 3813.157 0.00000 0.00000 7340.91
39  PREDICTS.LU + logpop + yield.ndvi.corr + meanNDVI + -
40 glev 26 13336.11 2415.439 0.00000 0.00000 6642.05

PREDICTS.LU + logpop + yield.ndvi.corr + FC2000 + 26 1333496 2414.288 0.00000 0.00000 -
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OCoONOOOPA~WN =

elev

PREDICTS.LU + logpop + yield.ndvi.corr + FC2000 +
meanNDVI

LUInter + FC2000 + meanNDV!I + elev

LUInter + logpop + FC2000 + elev

PREDICTS.LU + PREDICTS.LUI + FC2000 + meanNDVI +
elev

PREDICTS.LU + PREDICTS.LUI + logpop + FC2000 + elev
PREDICTS.LUI + FC2000 + meanNDVI + elev
PREDICTS.LUI + logpop + FC2000 + elev

PREDICTS.LU + FC2000 + meanNDVI + elev
PREDICTS.LU + yield.ndvi.corr + meanNDVI + elev
PREDICTS.LU + yield.ndvi.corr + FC2000 + elev
PREDICTS.LU + yield.ndvi.corr + FC2000 + meanNDVI
PREDICTS.LU + logpop + meanNDVI + elev
PREDICTS.LU + logpop + FC2000 + elev

PREDICTS.LU + logpop + FC2000 + meanNDVI
PREDICTS.LU + logpop + yield.ndvi.corr + elev

PREDICTS.LU + logpop + yield.ndvi.corr + meanNDVI

PREDICTS.LU + logpop + yield.ndvi.corr + FC2000
LUInter + meanNDVI + elev
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26

34

34

27

27

23

23

25

25

25

25

25

25

25

25

25

25
33

13334.97

12712.74

12507.21

12710.92

12506.67

12713.04

12506.89

15196.37

13800.42

13799.38

13801.49

14733.24

15022.37

14732.41

13334.12

13334.33

13333.33
12713.08

2414.301

1792.066

1586.54

1790.252

1585.998

1792.369

1586.223

4275.702

2879.748

2878.709

2880.816

3812.567

4101.702

3811.744

2413.448

2413.657

2412.661
1792.414

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000
0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000
0.00000
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6641.48

6641.49

6322.37

6219.61

6328.46

6226.33

6333.52

6230.45

7573.19

6875.21

6874.69

6875.74

7341.62

7486.19

7341.21

6642.06

6642.16

6641.67
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1
2
3

6323.54
4
5 -
6 LUInter + FC2000 + elev 33 12991.25 2070.58 0.00000 0.00000 6462.63
7 -
8 LUInter + FC2000 + meanNDVI 33 12712.49 1791.819 0.00000 0.00000 6323.24
9 -
10 LUlInter + logpop + elev 33 12507.03 1586.36  0.00000 0.00000 6220.52
11 -

nter + logpop + . . . . .

12 Ll I FC2000 33 12505.21 1584.541 0.00000 0.00000 6219.61
12 PREDICTS.LU + PREDICTS.LUI + meanNDVI + elev 26 12711.19 1790.52  0.00000 0.00000 -6329.6
]g PREDICTS.LU + PREDICTS.LUI + FC2000 + elev 26 12989.29 2068.618 0.00000 0.00000 6468.64
17 )
18 PREDICTS.LU + PREDICTS.LUI + FC2000 + meanNDVI 26 12710.82 1790.154 0.00000 0.00000 6329.41
19  PREDICTS.LU + PREDICTS.LUI + logpop + elev 26 12506.79 1586.124 0.00000 0.00000 -6227.4
20 -
21 PREDICTS.LU + PREDICTS.LUI + logpop + FC2000 26 12504.67 1584.001 0.00000 0.00000 6226.34
22 -
23  PREDICTS.LUI + meanNDVI + elev 22 12713.32 1792.65 0.00000 0.00000 6334.66
gg PREDICTS.LUI + FC2000 + elev 22 12991 2070.331 0.00000 0.00000 -6473.5
gg PREDICTS.LUI + FC2000 + meanNDVI 22 12711.88 1791.211 0.00000 0.00000 6333.94
28 R}
29 PREDICTS.LUI + logpop + elev 22 12507.38 1586.705 0.00000 0.00000 6231.69
30 -
31 PREDICTS.LUI + logpop + FC2000 22 12504.9 1584.226  0.00000 0.00000 6230.45
32 -
33  PREDICTS.LU + meanNDVI + elev 24 15195.45 4274.784  0.00000 0.00000 7573.73
34 -
35  PREDICTS.LU + FC2000 + elev 24 15484.83 4564.155 0.00000 0.00000 7718.41
gg PREDICTS.LU + FC2000 + meanNDVI 24  15196.4 4275.727 0.00000 0.00000 -7574.2
gg PREDICTS.LU + yield.ndvi.corr + elev 24 13798.43 2877.761  0.00000 0.00000 6875.22
p -
4? PREDICTS.LU + yield.ndvi.corr + meanNDVI 24 13800.48 2879.805 0.00000 0.00000 6876.24
42  PREDICTS.LU +yield.ndvi.corr + FC2000 24 13799.83 2879.156  0.00000 0.00000 -
43
44
45
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PREDICTS.LU + logpop + elev

PREDICTS.LU + logpop + meanNDVI
PREDICTS.LU + logpop + FC2000

PREDICTS.LU + logpop + yield.ndvi.corr
LUInter + elev

LUInter + meanNDVI

LUInter + FC2000

LUInter + logpop

PREDICTS.LU + PREDICTS.LUI + elev
PREDICTS.LU + PREDICTS.LUI + meanNDVI

PREDICTS.LU + PREDICTS.LUI + FC2000
PREDICTS.LU + PREDICTS.LUI + logpop
PREDICTS.LUI + elev

PREDICTS.LUI + meanNDVI
PREDICTS.LUI + FC2000

PREDICTS.LUI + logpop

PREDICTS.LU + elev
PREDICTS.LU + meanNDVI

PREDICTS.LU + FC2000

PREDICTS.LU + yield.ndvi.corr
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24

24
24

24

32

32

32

32

25

25

25
25
21

21
21

21

23
23

23

23

15021.23

14731.66
15020.81

13332.33

12990.03

12717.09

12990.54

12505.03

12988.17

12710.87

12988.73
12504.8
12990.2

127121
12989.59

12505.38

15483.53
15195.21

15484.67

13798.48

4100.56

3810.987
4100.139

2411.659

2069.356

1796.419

2069.865

1584.36

2067.496

1790.197

2068.064
1584.125
2069.529

1791.428
2068.921

1584.713

4562.863
4274.539

4564.004

2877.807

0.00000

0.00000
0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000
0.00000
0.00000

0.00000
0.00000

0.00000

0.00000
0.00000

0.00000

0.00000

0.00000

0.00000
0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000
0.00000
0.00000

0.00000
0.00000

0.00000

0.00000
0.00000

0.00000

0.00000
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6875.91

7486.62

7341.83
-7486.4

6642.16

6463.01

6326.54

6463.27

6220.52

6469.08

6330.43

6469.37
-6227.4
-6474.1

6335.05
-6473.8

6231.69

7718.77
-7574.6

7719.34

6876.24
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PREDICTS.LU + logpop 23 15019.67 4098.996 0.00000 0.00000 7486.83

PREDICTS.LU + PREDICTS.LUI 24 12987.55 2066.878 0.00000 0.00000 6469.77

elev 19 15485.01 4564.34  0.00000 0.00000 7723.51
10 B
11 meanNDVI 19 15195.93 4275.261 0.00000 0.00000 7578.97
12 -

13 FC2000 19 15485.48 4564.81  0.00000 0.00000 7723.74
14 -

15 yield.ndvi.corr 19 13798.94 2878.275 0.00000 0.00000 6880.47

logpop 19 15024.02 4103.345 0.00000 0.00000 7493.01

og LUinter 31 12989.25 2068.584 0.00000 0.00000 6463.63
21  PREDICTS.LUI 20 12988.61 2067.938 0.00000 0.00000 -6474.3

22 -
23  PREDICTS.LU 22 15483.15 4562.482  0.00000 0.00000 7719.58

OCoONOOOPA~WN =
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