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ABSTRACT 

Chemical-based oil recovery method has promising applications but suffers the problem of large 

quantity of chemical loss inside the reservoir. This work proposes an innovative concept of using 

nanodroplets as carriers for surfactants/polymers and control their release inside porous media to 

increase oil recovery in water-wet reservoirs. Comparing to conventional surfactant flooding, the 

proposed concept could not only reduce the adsorption of surfactant on rock surface, but also ease 

the problem of unstable surfactant slug injection and release surfactant slowly inside a reservoir. 

The oil recovery efficiency was evaluated for micelles and nanodroplet forms of surfactants blend 

in a customized core flooding system and the differential pressures were monitored to evaluate the 

injection stability of flooding fluids. The retention of surfactants was analyzed by high-

performance liquid chromatography after the core flooding tests. The experiments confirm the 

advantages of nanodroplets as surfactant carriers.  The results show that the new approach 

promoted tertiary oil recovery around ~8%, while reducing the adsorption of surfactants almost 

half on the surface of sandstone rock comparing to the micelle form. 

Keywords: Enhance oil recovery, Controlled delivery, Nanodroplets, Surfactant retention, 

Micelles injection. 
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1. Introduction 

In recent years surfactant flooding have attracted a great deal of attention due to the progress in 

surfactant technology and its high efficiency in enhanced oil recovery (EOR). Surfactant flooding 

or surfactant/polymer flooding has been commercially used in pilot scale for EOR after the primary 

and secondary recovery, particularly in USA and China [1]. For example, the required 2-12 wt.% 

concentration of sensitive surfactant to high temperatures and high salinity (HT-HS) in initial 

development (1970-1980) has been dramatically decreased to the range of 0.5-2 wt.% of surfactant 

that resist over HT-HS. Surfactant flooding is becoming increasingly attractive for EOR 

applications [2-4]. Some recent studies have some the potential of cationic microemulsions for 

mobilization and displacement of heavy oils inside conventional Berea sandstones, artificially 

fractured and heterogeneous cores [5,6]. At low surfactant concentrations, the performance of 

surfactant solution and microemulsion was found to be similar for Berea sandstone and limestone 

cores, but increased oil recovery rate was observed by microemulsions at high surfactant 

concentrations.  

Surfactant and/or polymers increase the oil recovery rate by targeting the capillary-trapped and 

un-swept oil.  The capillary and relative permeability depends on the wetting behavior of the rock, 

which significantly affects the oil recovery efficiency. In strong water-wet rocks or at the end of 

water flooding stage in moderate water-wet rocks, a great proportion of oil droplets remains 

permanently trapped by capillary effects at the pore scale, which increases the residual oil 

saturation [7, 8]. This is because water formed a film on the rock surface, which ultimately leads 

to water bridging at the pore throats trapping oil droplets within the pores (Fig. 1a).  

The process of surfactant flooding could be generally divided into three main stages: i) the 

surfactant solution is injected in the form of micelles to the reservoir; ii) the micelles flows through 

the pores of reservoir rock to reach the oil bank, where surfactant micelles contact with crude oil 

to form a bi-continues microemulsion phase formation at optimum conditions (e.g. salinity); and 

iii) bi-continues microemulsion phase pushes the oil bank to  the production well after water post-

flooding, which is schematically shows in Fig. 1b [9, 10]. 
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a) 

  

b) 

Fig. 1. (a) Oil droplets trapping in a water-wet rock, and (b) different stages of surfactant 

flooding. 

  

One of the main challenges during this process is the high loss of surfactants due to the 

surfactant adsorption on rock surfaces before reaching the trapped oil. Moreover, the highly 

Water post-flooding        
Surfactant solution          
Bi-continuous microemulsion          

Water-wet porous media Trapped oil droplets 

Water bridging path 

Production well               

Crude oil bank               

Injection well               



4 

 

concentrated micelles produce a cloudy and unstable surfactant slug, which is undesirable for the 

injection. All these increase the cost of tertiary flooding process and make it difficult for large 

scale application of surfactant-based flooding techniques [11, 12]. There are lots of research on 

the formation of bi-continues microemulsions at optimum conditions and phase behavior 

evaluation of crude oil with surfactants solution [13-15], however few has been focused on 

surfactants delivery to oil bank. 

The application of nanodroplets as carriers to deliver drug substances has been intensively 

investigated in the nano-medicine area [16, 17]. Nanodroplets are unique carriers for drug 

ingredient because of high encapsulation rate, enhanced stability of the active ingredient, and 

enhanced ocular penetration.  In this work, we borrow the concept of the controlled drug delivery, 

and propose an innovative concept of using nano-droplets as carriers for surfactants/polymer and 

control their release inside porous media to increase oil recovery. The surfactant molecules are 

encapsulated inside pre-synthesized oil nanodroplets via their hydrocarbon chains. For water-wet 

reservoirs, these nanodroplets would reduce the adsorption of surfactant molecules on rock 

surface, and prevent aggregation by distributing surfactant molecules on the interface of oil-

nanodroplets. Furthermore, comparing to micro-droplets, it is expected that the increased total 

surface area of nanodroplets provides more surfaces for surfactants adsorption, which could lead 

to a transparent and stable injectable surfactant solution.  

To validate the new concept, nanodroplets of n-hexane were synthesized in brine by using the 

synergic effect of sodium dodecyl sulphate (SDS) and Sorbitan monooleate (Span) blend at the 

optimum salinity. The blend of anionic-nonionic surfactants was used since the mixture of 

stabilizers play a key role in the formation of thermodynamically stable microemulsions [18, 19]. 

The surfactants adsorption and oil recovery efficiency were evaluated for surfactant flooding in 

the sandstone core in the forms of micelles and nanodroplets injection.   

 

2. Experimental Procedure 

2.1. Materials  

Analytical grade materials including n-hexane, sodium chloride, Span 80, SDS and 2-butanol 

were purchased from Sigma-Aldrich and used without further processing. The mineral oil 

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCwQFjAB&url=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma%2Fp4780&ei=Nis2Veq7AqPjywPiyYH4BA&usg=AFQjCNEgs6Va5vepATHSNMLaVB9lLoYmCg&bvm=bv.91071109,d.bGQ
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(Keratech 24 MLP, viscosity on file is 24 cSt at 40 °C) were purchased from Kerax Ltd. (United 

Kingdom). 

2.2. Nanodroplets and micelles synthesis  

On the molecular level, emulsifiers should remain bounded to the surface of the oil droplets to 

reduce the interfacial tension (IFT) between oil and water. Moreover, bounded molecules at the 

interface should prohibit the coalescence of the droplets. Therefore, the selection of right surfactant 

is essential for the synthesis of any microemulsion. It has been shown that using a single surfactant 

alone is usually not effective to produce microemulsions [20]. Blending of surfactants with 

different hydrophile–lipophile balance (HLB) values is a versatile way to obtain an appropriate 

HLB value. Generally, blends of nonionic and anionic surfactants are used in nanodroplet 

formation. Based on our previous experience, SDS and Span 80 stabilizers were selected for the 

synthesis of microemulsion in this study.   

The HLB values of the chosen surfactants have been found to be the key factors for the 

formation of microemulsion [21, 22]. The HLB numbers of SDS and span 80 are 40 (highly 

hydrophilic) and 4.3 (highly oiliphilic) respectively. Therefore, the adjustment of a wide range of 

hydrophilicity-lipophilicity becomes possibly adjusting the amount of SDS and span 80 [23]. In 

addition, SDS and span 80 are the most commonly used surfactants that are available with high 

purities.  The retention time of SDS and span 80 surfactants is also different at the outlet of HPLC 

column [24]. High purity and different retention times are necessary factors for producing a 

reliable calibration plot and so as to the determination of each surfactant concentration.  

The proper surfactants ratio (in the presence of 2-butanol as co-surfactant) for microemulsion 

synthesis was obtained based on several initial tests, which indicated a synergistic effect between 

SDS and Span 80 in forming stable O/W emulsions. The composition of emulsions was selected 

as 90 wt% brine (at different salinities), 3.6 wt% 2-butanol, 2.25 wt% n-hexane, 2.7 wt% SDS and 

1.3 wt% Span 80. Different oil-in-water emulsions were synthesized at various salinities ranging 

from 0 to 10 wt% NaCl to find the optimum oil nanodroplets characteristics in brine. The optimum 

salinity was selected when the IFT between the emulsion and mineral oil reached to the lowest 

value. The IFT and hydrodynamic size of oil droplets in emulsion were measured using a 

goniometer (CAM 2008, KSV instruments Ltd. Finland) and dynamic light instrument (Zeta sizer 

http://www.kerax.co.uk/product/keratech-24-mlp/
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Nano ZS, Malvern), respectively.  The optimum salinity was obtained as 5 wt.% NaCl in current 

study, and a comprehensive discussion about the salinity scan test is provided in section 3.1. The 

concentration of SDS and span 80 in surfactant solution (micelles slug) were set equal to 

microemulsion. The composition of surfactant solution was selected as 96 wt.% brine (at optimum 

salinity), 2.7 wt.% SDS and 1.3 wt.% Span 80. An Anton Paar MCR 301 rheometer equipped with 

a cone plate module CP75 was used for the measurement of viscosity of surfactant solution 

(micelles slug) and microemulsion (nanodroplets slug). The shear rate (γ) was varied between 100 

and 1000 s-1 at 22 °C. Dynamic measurements were performed with frequencies ranging between 

1 and 100 rad/s (i.e., 0.159 to 15.92 Hz). The nanodroplets and micelles slug has shown in 

supporting document (Fig. S1).  

 

2.3. Porous medium preparation 

For preparation of porous media, the sandstone rock was crushed into single grains, sieved into 

narrow grain size fractions (ASTM Standard Testing Sieves, Retsch Ltd) and washed with water 

for several times, which was followed by settling and decanting to remove all dust particles. The 

residual wet sand particles were dried at 80 ºC for 5 days. The SEM (FEI Quanta FEG 650) and 

EDX (80mm X-Max SDD detector) analysis of particles are shown in Fig. 2a & c.  

  

a) 
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b)   

c)                                      

d)                                                    
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Fig. 2. a) SEM photos sandstone particles, b) Elemental mapping of rock using an energy dispersive X-

ray spectroscopic, c) distribution of aluminium components in analyzed section, d) wettability of 

sandstone rock, CA= 20.09º, which were used in experiments. 

 

The Edx micrographs vividly show the existence of major fraction of silicate crystals and minor 

fraction of aluminosilicate mineral. A large part of each rock was polished for contact angle 

experiment. The wettability of rock was measured by a goniometer (CAM 2008, KSV instruments 

Ltd. Finland), which shows the strong water-wet surfaces of sandstone particles (CA= 20.09º, Fig. 

2d). The BET surface area of sandstone were calculated equal 0.877±0.001 (m²/g) using a 

Micromeritics TriStar 3000 gas adsorption instrument. 

The initial bulk of particles was divided to different portions (each 50 g) using a sample splitter 

(Fig. S2). For each core flooding test, one portion of grain sample (250-425 micron) was packed 

into glass tubes to create unconsolidated sand packing column. The dried particles were first 

saturated in saline water (5 wt.% NaCl), and then deposited into a glass column in 1.5 cm 

increments with 0.5~1 cm thick of water on the top of particles. After the formation of a layer of 

1.5 cm, vibration was accomplished for 3 minutes using a vortex mixer (Scientific Fisher), with 

the amplitude of vibration represented by 8 on the vibrating table’s dial.  The column was kept 

vertically and particle bounce was avoided during vibration. To prevent particles migration during 

the core flooding test, a PTFE filter with the pore size of 10 um (Mitex membrane filter 

LCWP02500, Millipore Ltd. UK) was placed at both ends of the column. The parameters for the 

packed porous media was illustrated in Table 1. 

Table 1. Characterization of porous media for surfactant retention experiments. 

 

Porous media property Value 

Length (mm) 72 ± 2 

Diameter (mm) 24 

Bulk volume (mL) 37.4± 0.9 

Pore volume, (mL) 13.25± 0.32 

Porosity (vol %) 35.4± 2.5 

Absolute permeability (mD) 90-110 

 

 

https://en.wikipedia.org/wiki/Silicate_minerals
http://www.azonano.com/ads/abmc.aspx?b=159
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2.4. Core-flooding experiments for surfactants retention evaluation 

The experiments for the evaluation of surfactant retention were performed in a core-flooding 

set-up, as shown in Fig. 3. A piston pump (Series I, Cole-Parmer Instrument Co. Ltd.) was used to 

inject brine during the flooding process. A syringe pump (KDS 410, KD Scientific Inc. USA) was 

used for injecting mineral oil, surfactant solution and microemulsion with different syringes to 

avoid overlap contamination. A pressure transducer (PX409-150DWUV, Omega Engineering 

Ltd.) was used to measure the pressure drop during experiments. 

 

 

Fig. 3. Experimental core flooding set-up. 

Different stages of flooding for surfactant retention measurement have been performed 

sequentially as follows: 

• 100 mL brine flooding at the optimum salinity (5 wt.%) at a flow rate of 2 mL/min in order 

to make sure that the column is fully saturated by brine and allow enough time for sand 

grain depositing. 

• 20 mL nanodroplet or micelles slug was injected at flow rate of 0.5 mL/min (total 

surfactants amount equal to 800 mg).  

• 40 mL brine post flooding (5 wt.%) was conducted at a flow rate of 1 mL/min.  
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The effluents liquid for chemicals slug injection and brine post flooding were collected to 

determine the surfactant concentration. It was important to develop sensitive and reliable analytical 

methods to measure concentration of anionic-nonionic surfactants blend, and then to evaluate the 

performance of controlled surfactant delivery by the synthesized microemulsion. Chemical oxygen 

demand (COD), potentiometric titration or spectroscopy method were used in previous studies for 

the estimation of surfactant concentrations before and after equilibration with rock surfaces [25-

27]. However, all of these methods have their limitations and could not give a correct estimation 

for the amount of surfactants blend adsorption on rock surface when the emulsion is formed in 

porous media [28]. For instance, both COD and potentiometric titration method are not compatible 

with organic phases, and the spectroscopy method could not measure the component concentration 

for a mixture of different classes of surfactants.  

High-performance liquid chromatography (HPLC), which has good compatibility with organic 

and aqueous phases in emulsions, was selected as a reliable and accurate method. In this method, 

different retention time of surfactants in the outlet of HPLC’s column is used to estimate the 

concentrations of different classes of anionic and nonionic surfactants separately. The use of HPLC 

to characterize surfactant concentrations in emulsions has been the subject of some considerable 

previous works [29-31], but none has been used for the evaluation of surfactant retention in the 

form of micelles and nanodroplets in a saline# environment.  

A Thermo Acclaim surfactant plus HPLC column (Thames Restek Ltd., UK) of dimensions 

3 mm×150 mm and particle size of 5 μm was used in this study. This type of column is compatible 

with aqueous and organic phases and is appropriate for the analysis of a wide variety of surfactant 

types at high salinity [32-34]. HPLC measurements were performed in an Agilent 1290 Infinity 

UHPLC.  Chemstation and Chromeleon software were used for instrument control and processing 

the chromatograms, respectively. Different primary methods of analysis were examined with UV 

and ELSD detector to find the appropriate condition of HPLC analysis. Finally, the mobile phase 

of MeCN/0.1% Ammonium Acetate, Gradient of 25-85% MeCN over 30 mins then holding at 

85% for 10 mins, flowrate of 0.6 mL/min, column temperature of 34 °C and UV (diode array 

detector, λ=254 nm) were selected as appropriate conditions for SDS and Span 80 surfactants 

analysis.  
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As generating a proper calibration plot is essential for the measurement of surfactant 

concentration, a series of standard samples within the concentration range of 0.005-0.3 g/mL were 

prepared from a stock solution of 0.4 g/mL for each stabilizer separately. The standard surfactant 

solutions were prepared using SDS in brine and span 80 in n-hexane.  The standard solutions were 

analyzed by HPLC to obtain the calibration plot, from which it was possible to calculate 

chromatogram areas as a linear function of the surfactant concentration. The area peak of each 

sample was specified by Chemstation software. Some of selected chromatograms of standard 

samples have been illustrated in supporting information (Fig. S3). The area peak values versus 

standard concentrations and fitted line through the data are shown in Fig. 4. The coefficients of 

determination (R2) higher than 0.95 confirm the good linearity between the standard concentrations 

and the responses of the HPLC detector. After core flooding experiments, the collected effluent 

(i.e., from the outlet of coreholder) was analyzed with HPLC method. The concentration of each 

surfactant was determined by comparing the related peak area in effluent’s chromatogram with the 

calibration plot (Fig. 4). 

 

Fig. 4. HPLC calibration data for SDS in brine and Span 80 in n-hexane. 
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2.5. Core-flooding experiments for oil recovery evaluation 

 

Three main flooding stages were accomplished in all experiments as follow: 

• 100 mL injection of brine at optimum salinity (5 wt.%) into the glass column at a flow rate of 

2 mL /min in order to make sure the column is fully saturated by brine and allow enough time 

for glass beads depositing. 

• Oil saturation was performed by injecting mineral oil at a flow rate of 0.5 mL/min until an 

irreducible water saturation of Swi =30% was achieved.  

• Brine flooding for initial stage of oil recover was performed with 1 mL/min flow rate was 

fixed at. The brine injection was continued for 3 pore volume (PV) when the oil production 

became negligible (secondary oil recovery).  

• Tertiary flooding at a flow rate of 1 mL/min was done according to Table 2. 

Table 2. Tertiary core flooding condition for evaluation of oil recovery efficiency. 

 

Main fluid 

 

Volume injection of  

Main fluid (mL) 

Initial water 

saturation 

(%) 

OOIP (mL) Post brine flooding (mL) 

Micelles 20 12.8 8.7 30 

Nanodroplets 20 12.8 9.0 30 

 

The effluent was collected in a 50 mL graduated cylinder marked in 0.1 mL divisions in order to 

determine the accumulate oil recovery (Fig. S4). 

 

3. Results and discussion 

3.1. Formation of oil nanodroplets at optimum salinity 

As explained in section 2.2, the emulsion was fabricated under different salinities. The 

transparency of emulsion samples containing NaCl at 5 and 7 wt% show the formation of oil 

nanodroplets inside the emulsion, whereas when the amount of NaCl was in different values, the 

emulsion was not fully formed and the oil/water phase, even became segregated at 10 wt.% of 



13 

 

NaCl (Fig. 5. (a) Image of O/W microemulsion samples containing NaCl from 0 wt% to 10 wt%, 

(b) average size of oil nanodroplets at different weight percent of NaCl. 

a). Corresponding to the 

macroscopic image of transparence shown in Fig. 5. (a) Image of O/W microemulsion samples 

containing NaCl from 0 wt% to 10 wt%, (b) average size of oil nanodroplets at different weight 

percent of NaCl. 
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a, the IFT results in  

Fig.  consistently show that with the presence of 5 wt% of NaCl, the IFT between 

microemulsion and mineral oil was reduced to very low value, i.e., <0.01 mN/m, with a tiny drop 

hanging on the syringe tip, due to the sufficient formation of microemulsion. Therefore 5 wt% of 

NaCl was selected as the optimum salinity in next experiments. By diverting away from 5 wt%, 

the IFT increased, and when the salinity increases to 10 wt%, the emulsion became unstable and 

oil/water phases were eventually segregated. Similarly, the size determined by DLS method in Fig. 

5b shows the same trend with transparence and IFT.  
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Fig. 5. (a) Image of O/W microemulsion samples containing NaCl from 0 wt% to 10 wt%, (b) 

average size of oil nanodroplets at different weight percent of NaCl. 

 

Fig. 6. The interfacial tension between microemulsion and mineral oil. Insets are images of 

microemulsion samples hanging on the needle tip. The volume of microemulsion sample is 

consistent with the trend of IFT. 

Increasing salinity could decrease the mutual solubility between water and surfactant. At lower 

salinities (i.e., <3 wt %), more surfactant molecules are dispersed in water phase. Therefore the 

steric and electrostatic repulsion between oil droplets is too weak and unable to overcome the 

hydrogen bonds of water molecules. As the salinity increases, the distribution of surfactant in water 

and oil phase is changed, which leads to the decrease of IFT and formation oil nanodroplets. At 

very high salinity values (e.g. 10 wt %), the screening impact of the extra electrolytes compress 

the electrical double layers around droplets, leading to the separation of the O/W phases. 

3.2. Evaluation Surfactant Adsorption 
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The higher surfactant concentration in effluent solution implies on lower adsorbed surfactant 

on packed surface for surfactant solution. Fig. 7 shows the chromatogram of collected solutions 

from the core holder after injecting surfactants blend in forms of micelles and nanodroplets.  

According to the chromatogram, there is no obvious peak in collecting samples after the flooding 

stage (Fig. 7a & c). At this stage, the surfactant molecules diffuse inside pores during the chemical 

slug flowing through the core. A part of surfactant molecules was adsorbed on rock surface and 

no molecules were extracted from the column during chemical flooding. Some tiny peaks in Fig. 

7a & c are signal noises which may appear in the chromatogram of HPLC method. The surfactant 

molecules reached the outlet of column and started to leave the porous media during the brine post 

flooding stage. The retention time of surfactants peaks were specified by red ovals in the collected 

solution chromatogram (Fig. 7b & d) after comparing with pure surfactant chromatogram (Fig. S3, 

supporting document). There are a few extra peaks in collected solution chromatograms compared 

to pure surfactants, which is due to existence of impurities in the effluent solution. Probably some 

unknown minerals in silica grains carried by displacing fluids were collected at the outlet, which 

leads to appearance of extra peaks at chromatogram.  

The retention time and area of chromatogram peaks for each surfactants in collected solutions 

are illustrated in Table 3. The surfactants adsorption amount on surface rocks were calculated 

based on the area of peaks, which also was provided in Table 3. Higher surfactants concentration 

were found in collected solution after nanodroplets injection comparing to the micelles form, 

which shows a more efficient delivery of surfactant in the form of nanodroplets.  
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a)  

b)  
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c)    

d)   

Fig. 7. Chromatogram of collected solution after (a, b) nanodroplet flooding and post brine 

flooding; (c, d) micelles flooding and post brine flooding. 

 

Table 3. Areas of peaks and surfactants adsorption on rock surface. 

Main fluid 

 

Retention 

time (min) 

Area 

(mAU×min) 

Adsorption on rock 

surface (mg/grock) 

Adsorption on rock 

surface (mg/m2) 

SDS-nanodroplets 

Injection 
16.52 6.41 1.53 1.74 

SDS-micelles 16.50 5.06 3.49 3.98 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 44.9

-5.0

10.0

20.0

30.0

45.0
ELSD Test #42 [modified by chmhplc] DAD_Signal_A
mAU

min

1 - 1.418

2 - 3.529

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 44.9

-20

50

100

150

180
ELSD Test #39 Sample 4 SDS-Span emulsion DAD_Signal_A
mAU

min

1 - 1.435

2 - 5.4533 - 5.774
4 - 16.041
5 - 16.517

6 - 20.208

7 - 25.763

8 - 30.293

SDS 
Span 80 



19 

 

Injection 

Span 80-nanodroplets 

Injection 
25.76 20.93 1.75 1.99 

Span 80- micelles 

Injection 
25.81 9.88 4.14 4.72 

 

Fig. 8 proposes the adsorption mechanism of surfactant blends on rock surfaces in the forms of 

micelles and nanodroplets. The surfactants are captured inside oil droplets by their hydrocarbon 

chains, reducing the chance of molecule attaching on rock surface by hydrophilic heads. However, 

when the wettability of the rock is oil-wet the attachment of oil droplets is increased, which leads 

to more surfactants retention compared to micelles form.  

 

Fig. 8. The proposed mechanism for the adsorption of micelles form and nanodreoplets on rock 

surface. 

 

3.3. Oil recovery efficiency 

The results of oil recovery efficiency by the injection of surfactants blend in forms of micelles 

and nanodroplet are presented in Table 4. Fig. 9 also shows the accumulate oil recovery 
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efficiencies, which is relative to the original oil-in-place (OOIP) after oil saturation, for three 

different stages: brine flooding, tertiary recovery and brine post-brine flooding. For more accurate 

estimation of oil recovery efficiency, 2.25 wt% of n-hexane (0.45 g in 20 mL of initial sample) 

which was used for synthesis of nanodroplets was added to OOIP in case of nanodroplet injection. 

It can be seen that, even though having the similar oil recovery efficiencies for these two scenarios, 

nanodroplet considerably improved the oil recovery efficiency by 15.9% OOIP (from 68.7% to 

84.6%) in tertiary flooding stage whereas micelles only saw 8.1% OOIP incensement. The photos 

of collected oil amount after each stage of flooding have been shown in Fig. S4.  

 

 

 

Table 4. Oil recovery efficiency by using surfactants blend in form of micelles and nanodroplets. 

Main fluid 

 

Efficiency after 

secondary flooding, % 

OOIP  

Efficiency after 

tertiary flooding, % 

OOIP 

Ultimate Efficiency after 

brine post flooding, % 

OOIP 

Enhanced oil 

recovery 

efficiency, % 

Micelles 66.6 70.1 74.7 8.1 

Nanodroplets 68.7 80.4 84.6 15.9 
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Fig. 9.  Tertiary oil recovery obtained by micelles and nanodroplets injection. 

 

Fig. 10 shows the differential pressure for core flooding during oil recovery experiments. The 

average pressure for micelles injection was mainly around 27 psi and fluctuated very heavily, with 

the highest value up to 68 psi. The high fluctuation of pressure is probably because of aggregated 

surfactant micelles, which behaved like large particles. These aggregated micelles carrying 

momentum from one part of the liquid to another by their motion or even maybe sediment in 

porous media. While starting from 6.1 psi, the pressure for nanodroplets injection was slightly 

higher than the brine flooding at the beginning, and experienced rapidly increase in 1.5 PV, 

however overall it kept under 20 psi for the whole flooding process. Using nanodroplets prevented 

the formation of aggregated micelles by distributing surfactants on large O/W interface. However, 

structure of nanodroplets phase was changed when contacting with the oil bank, which terminate 

to higher pressure. The processes of phase change and slurry formation are much slower than those 

happened for surfactant micelles, which introduced a gradually increasing trend instead of heavy 

fluctuations.   
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Fig. 10. The differential pressure for (a) surfactant solution, (b) microemulsion. 

 

One of the other factors leading to higher oil recovery rate is higher viscosity of nanodroplets 

slug compared to the micelles form [35-37]. Several parameters (e.g. type of surfactant head 

polarity, microemulsion phase type) could influence the viscosity of microemulsion [38]. The 

effect of microemulsion viscosity on oil recovery efficiency needs in-depth analysis before 

applying microemulsion in field-scale EOR. Significantly higher viscosity of microemulsion 

(especially bi-continuous phase) relative to the brine and oil phases could results in viscous 

fingering phenomena since unfavorable mobility ratios occur between the phases [39, 40]. Fig. 11 

shows the viscosity of injection solution in the forms of microemulsion and micelles in current 
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study. According to Fig. 11, the formation of oil nanodroplets in continuous brine phase improve 

the viscosity, which is beneficial for the mobility control during slug injection. 

 

Fig. 11. Viscosity of displacing fluids (a) surfactant solution, (b) microemulsion. 

 

4. Conclusion 

 

The new concept of using nanodroplets as carriers for controlled delivery and release of 

surfactants/polymer inside porous media was investigated in this work. The surfactants retention 

and oil recovery efficiency of surfactants blend in the forms of micelles and nanodroplets were 

investigated. The accuracy and capability of the HPLC method allowed us to efficiently quantify 

the adsorption of the surfactant blends of sodium dodecyl sulphate and Sorbitan monooleate on 

silica porous media.  The results show that the new concept, surfactant delivery by nanodroplets, 

reduced the adsorption of surfactants in the porous medium by nearly 50%, comparing to micelles 

flowing through the porous media packed with crushed sandstone rock grain. The lower and more 

stable pressure drop for nanodroplet in core-flooding indicate that surfactants were released 

slowly, resulting in ~8% OOIP higher oil recovery rate than that for the micelle form. In addition, 

much smoother pressure profile was observed, contrasting to the large pressure fluctuations related 

to micelles, in the stage of surfactant blend injection, which shows the good injectability of the 
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nanodroplets.  All these support that the use of using nanodroplets for surfactants delivery could 

have great potential for EOR applications.   
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