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Abbreviations: 

NMJ  Neuromuscular Junction 

HRP  Horse Radish Peroxidase 

TEM  Transmission Electron Microscopy 

SPT1  Serine Palmitoyl Transferase 

SPTLC1/2 Serine Palmitoyl Transferase Light Chain 1/2 

EMS  ethyl methyl sulphonate 

HSAN1 Hereditary Sensory and Autonomic Neuropathy Type 1 

LSD  Lysosomal Storage Disease 

TOF  Train of Five 

Page 2 of 52

John Wiley & Sons

Journal of Comparative Neurology



For Peer Review

� �

 

(%
������,$$$�'��	
-�

Sphingolipids are found in abundance at synapses and have been implicated in 

regulation of synapse structure, function and degeneration. Their precise role in 

these processes, however, remains obscure. Serine PalmitoylEtransferase (SPT) 

is the first enzymatic step for synthesis of sphingolipids. Analysis of the 

���������	 larval neuromuscular junction revealed mutations in the SPT enzyme 

subunit, �	
��
����� resulted in deficits in synaptic structure and function. 

Although neuromuscular junction (NMJ) length is normal in �	
� mutants, the 

number of boutons per NMJ is reduced to ~50% of the wild type number. 

Synaptic boutons in �	
� mutants are much larger but show little perturbation to 

the general ultrastructure. Electrophysiological analysis of �	
� mutant synapses 

revealed strong synaptic transmission coupled with predominance of depression 

over facilitation. The structural and functional phenotypes of �	
� mirrored 

aspects of �	����� (���), a small IgEdomain adhesion molecule also known to 

regulate synaptic structure and function. Mutant combinations of �	
� and ��� 

generated large synaptic boutons, while �	
� mutants showed abnormal 

accumulation of Bsg at synapses, suggesting that Bsg requires sphingolipid to 

regulate structure of the synapse. In support of this, we found Bsg to be enriched 

in lipid rafts. Our data points to a role for sphingolipids in the regulation and fineE

tuning of synaptic structure and function while sphingolipid regulation of synaptic 

structure may be mediated via the activity of Bsg. 

�
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In 1967, Derry and Wolfe (Derry and Wolfe, 1967) identified a prominent 

enrichment of glycosphingolipids within synaptic structures in the mammalian 

brain. To date our understanding of the role of these enigmatic lipids in synapse 

structure and function has yet to be fully elucidated. Sphingolipids are major lipid 

components of the plasma and endomembrane system and have been 

implicated in many forms of neuropathy and neurodegeneration (for review see 

(Sabourdy et al., 2015)). Sphingolipids are proposed to generate structure in 

membranes due to their rigidity and association with cholesterol (see (Munro, 

2003)). They are also known to be potent signalling molecules regulating 

processes such as apoptosis, proliferation, migration and responses to oxidative 

stress (reviewed in (Lahiri and Futerman, 2007)).  

  

Numerous neurological and neurodegenerative conditions are directly 

attributable to the inability to synthesise or catabolise sphingolipids. The failure to 

synthesise all or particular sphingolipids gives rise to a number of neurological 

conditions such as infantEonset symptomatic epilepsy (loss of GM3 ganglioside 

synthesis (Simpson et al., 2004), bovine spinal muscular atrophy (loss of 3E

ketohydrosphingosine reductase (Krebs et al., 2007) and hereditary sensory and 

autonomic neuropathy type 1 (HSAN1; recessive and dominant mutations in 

serine palmitoyl transferase subunit 1 (
����� (Bejaoui et al., 2001; Dawkins et 

Page 4 of 52

John Wiley & Sons

Journal of Comparative Neurology



For Peer Review

� �

al., 2001)). Conversely failure to catabolise sphingolipids in the lysosome 

generates a subset of lysosomal storage diseases/disorders (LSD’s) known as 

sphingolipidoses, of which there are approximately 14 identified separate genetic 

conditions (reviewed in (Kacher and Futerman, 2006)). Sphingolipids are now 

suggested to have a prominent role in the onset and progression of Alzheimer’s 

disease (Grimm et al., 2005) while the production after bacterial infection of 

autoimmune antibodies to gangliosides present at the neuromuscular synapse is 

likely to cause the dramatic and often lethal paralysis seen in GuillainEBarré and 

MillerEFisher syndromes (Roberts et al., 1994; Willison et al., 1997). The 

presence of sphingolipids at the synapse is further attested by the ability of 

tetanus and botulinal toxins to effect their entry to synapses via coEattachment to 

synaptic glycosphingolipids (Nishiki et al., 1996; Deinhardt et al., 2006).  

   

While the presence of sphingolipids (in particular, glycosphingolipids) at the 

synapse is well established, little is known about their functional or structural role 

in the operational life of the synapse. Some in vitro studies have addressed the 

role of sphingolipids at synapses in the context of sphingolipid/cholesterol 

microdomains and indicate roles in the function and localisation of 

neurotransmitter receptors, (Brusés et al., 2001; Hering et al., 2003) and synaptic 

exocytosis (Salaün et al., 2005; Darios et al., 2009; Chan and Sieburth, 2012; 

Chan et al., 2012). The prominence of sphingolipids in neurological disease 

suggests that absence or accumulation of sphingolipids can exert an influence in 

synaptic function and indicates an inappropriately large gap in our knowledge 
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regarding the actions of these lipids at the synapse. In the above outlined 

context, roles for sphingolipids in synapse structure and function remain to be 

determined. To this end, we have undertaken an analysis of sphingolipid function 

at a model synapse, the third instar neuromuscular junction of ���������	. We 

have examined mutations in 
���/
����� (Serine Palmitoyltransferase, Long 

Chain Base Subunit 2), which encodes an essential subunit of the Serine 

Palmitoyltransferase (SPT) heterodimer necessary for the initial step in 

sphingolipid synthesis, for defects in neuromuscular synapse structure. We 

present evidence to suggest that sphingolipids are essential for synaptic 

structure and function, and structural regulation may be mediated partially 

through function of the Ig domain adhesion protein Basigin/CD147 (Bsg).  

 

 ��
����
���	� 
���	
�

 

"���
���)
���	� ����
����
�

���������	 stocks were raised on standard yeast, sugar and agar medium at 

25°C (4% yeast, 8% sucrose, 1.2% agar, 3.6 mM calcium chloride, 0.65g/l 

ferrous sulphate, 6.5 g/l potassium sodium tartrate, 0.4 g/l sodium chloride and 

0.4 g/l manganese chloride, 0.065% Nipagin, 0.0005% Bavistin).  
�����	
� 

alleles were a kind gift from John Roote (The University of Cambridge, UK), ��� 

stocks were gifted by Aaron DiAntonio (Washington University, USA) and ��
�

�	
����, �	
���� �� and �	
�� were a gift from Takashi AdachiEYamada 

(Gakushuin University, Japan), ��� mutants and rescue transgenes were a gift 
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from Anne Ephrussi (EMBL, Heidelberg). All other stocks were obtained from the 

Bloomington ���������	 Stock Center.    

 

.�������
����
��
����

Third instar wandering larvae were dissected in PBS and fixed in 3.7% 

formaldehyde/PBS for 7 min. Following washes larvae were stained using the 

appropriate antibody in 0.1% PBT. Primary antibodies were used at the following 

concentrations Cy3 conjugated αEHRP (1:200, goat, Jackson ImmunoResearch, 

Stratech Scientific), αEsyt (1:2000, rabbit, (West et al., 2015)), αEnc82 (1:50, 

mouse, DSHB), αEdlg (1:50, mouse, DSHB), αEGluRIIb (1:2500, rabbit, a kind gift 

from Aaron DiAntonio, Washington University, St Louis Missouri, (Marrus et al., 

2004) DiAntonio et al, 1999), αEBsg (1:200, Rat, a kind gift from Anne Ephrussi, 

EMBL, Heidelberg (Besse et al., 2007)). Cy3, Cy5 and FITC conjugated 

secondary antibodies were used at 1:200 (goat, Jackson ImmunoResearch, 

Stratech Scientific). A comprehensive list of antibodies can be found in 

supplementary table 1. 

 

/�
�������
�������

Intracellular microelectrode recordings were made from Muscles 6 and 7 in 

abdominal segments 3 and 4 of filleted third instar larval preparations bathed in 

HL3 saline, using standard techniques (Powers et al., 2016). The concentrations 

of Ca2+ and Mg2+ in the saline were reduced (to 0.4 mM and  10 mM respectively) 

in order to depress mean quantal content of EJPs (Excitatory junction potential 
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(evoked transmitter release)), thereby increasing sensitivity to differences in 

synaptic strength between the ���������	 lines we tested (Dodge and 

Rahamimoff, 1967)(Guan et al., 2017). The reduced EJP amplitude under these 

conditions also obviated correction of EJP amplitudes for nonElinear summation 

(McLachlan and Martin, 1981). Preparations were mounted in a recording 

chamber (bath volume approximately 1 ml) on the stage of an Olympus BX50WI 

upright, fixed stage microscope and visualised using 10x or 20x waterEdipping 

objectives. Glass capillary microelectrodes with resistances 15E40 MN were 

pulled using a BrownEFlaming P87 puller (Sutter Instruments, Novato, USA), 

filled with 3M KCl and mounted on an MPE85 HuxleyEtype micromanipulator 

(Sutter Instruments). The reference electrode was an Ag/AgCl pellet connected 

to the system ground. Membrane potentials were recorded using pClamp 10 

(Clampex) software via an HS2A headstage (0.1x gain) connected to a 

Geneclamp 500 amplifier and Digidata 1550B interface (all Molecular Devices, 

Sunnyvale, USA). Segmental nerves were aspirated into a micropipette with a 

heatEpolished tip, aperture 10E15 Om, and stimulated with trains of four or five 

(TOF) supramaximal pulses (nominally 10V, 0.1E0.2 ms duration; interval 50 ms, 

ie 20Hz; programmed in Clampex) triggering a DS2 stimulator (Digitimer, Welywn 

Garden City, UK). Three pulse trains were delivered at 5 s intervals and each 

train was preceded by either a positive or negative rectangular 100 ms, 1 nA 

current pulse delivered through the recording microelectrode. The voltage 

deflection (after subtraction of electrode resistance) was used to calculate input 

resistance and qualitatively check membrane time constant as indicators of 
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membrane integrity. Recordings from muscles with input resistances less than 

1.5 MN or time constant less than 5 ms were rejected (Powers et al., 2016). 

Spontaneous EJPs (miniEJPs) were recorded in the absence of nerve 

stimulation over a period of up to 60s. EJP recordings were analysed using 

pClamp 10.6 and miniEJPs were measured using Minianalysis (Synaptosoft, 

Atlanta, USA). Mean frequency of miniEJPs was estimated from the inverse of 

their mean intervals. EJP and miniEJP amplitudes were corrected to an arbitrary 

standard membrane potential of E65 mV before calculating quantal content by the 

direct method (Ribchester, 2011). An index of synaptic facilitation (!: positive 

values indicating facilitation, negative values indicating depression) was 

calculated from the change in quantal content of the first ("�) and either the fifth 

("�) or occasionally the fourth EJP, according to the formula !#"��"���$ 

 

.���������	�0��������������

Imaging and quantification of synaptic structure was performed as described in 

(West et al., 2015). Briefly, synaptic bouton numbers at muscles 6/7 

hemisegment A3, were determined by counting each distinct, spherical, antiE

synaptotagmin–positive varicosity contacting the muscle. As synaptic bouton 

number has been shown to increase proportionally with muscle surface area 

synaptic bouton numbers were normalized against muscle surface area by 

dividing the bouton number by the muscle surface area and multiplying by mean 

wildEtype muscle surface area as described by (Milton et al., 2011). Muscles and 

synapses were imaged at room temperature using a camera (AxioCam HRC) on 
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an inverted fluorescence microscope (Axiovert 200; Carl Zeiss) using Plan 

Neofluar 10×/0.3 NA and 40×/0.75 NA lenses, with AxioE Vision Rel. 4.8 software 

(Carl Zeiss). Measurements were made from images using ImageJ (National 

Institutes of Health). Confocal images were obtained using a confocal 

microscope (LSM 710 Axio Observer Z1; Carl Zeiss). ZEstacked images of single 

NMJ’s were obtained using a Plan Apochromat 63×/1.4 NA oil objective. ZEstack 

projections of muscle 4 NMJ’s were analyzed using ImageJ to quantify bouton 

diameter, NMJ length, and satellite bouton number. Bouton diamE eter was 

measured as the width across a bouton at the widest point (Milton et al., 2011). 

NMJ length was measured using the NeuronJ ImageJ plugin.  

Transmission electron microscopy was performed as described previously in 

(West et al., 2015). Third instar wandering larvae were dissected and fixed in 0.1 

M NaPO4, pH 7.4, 1% glutaraldehyde, and 4% formaldehyde, pH 7.3, overnight. 

Fixed larval preparations were washed 3× in 0.1 M NaPO4 before incubation in 

OsO4 (1% in 0.1 M NaPO4; 2 h). Preparations were washed 3× in distilled water 

before incubation in 1% uranyl acetate. Preparations were washed (3× distilled 

water) and dehydrated through a graded ethanol series; 20% increments starting 

at 30% followed by two 100% changes and then 2× 100% propylene oxide. 

Preparations were incubated in a graded series of epon araldite resin (in 

propylene oxide); 25% increments culminating in 3× 100% changes. Individual 

muscles were then dissected out. These were then transferred into embedding 

molds, and the resin was polymerized at 60°C for 48 h. Resin mounted 

preparations were sectioned (60–70 nm) using glass knives upon a microtome 
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(Ultracut UCT; Leica) and placed onto grids. Preparations were subsequently 

incubated in uranyl acetate (50% in ethanol), washed in distilled water, and 

incubated in lead citrate. Sections were imaged using a transmission electron 

microscope (TECNAI 12 G2; FEI) with a camera (Soft Imaging Solutions 

MegaView; Olympus) and Tecnai user interface v2.1.8 and analySIS v3.2 (Soft 

Imaging Systems). Quantification of active zone length, number of synaptic 

vesicles localized within 250 nm of the TEbar active zone, synaptic vesicle 

diameter and mitochondrial size was performed using ImageJ. Representative 

images were taken from at least 3 animals per genotype.  

 

����	������/1�����������	��

�
������������

Methodology for purification of lipid rafts was adapted from (FernandezEFunez et 

al., 2009) and (Zhai et al., 2004). Briefly 50 third instar larvae of (w1118) were 

sonicated in 250 �l cold TNET buffer (100 mM Tris, 0.2 mM EGTA, 150 mM 

NaCl, 0.3 M Sucrose, pH 7.5, 1% TritonEX, 1x protease inhibitor) and incubated 

on ice for 30 min.. Debris was removed by centrifugation at 3000g for 10 min. 

and 200 �l of crude supernatant extract mixed with 400 �l of 60% OptiprepTM in 5 

ml. 5% OptiprepTM was underlaid with 1.8 ml 30% OptiprepTM which was 

underlaid by the OptiprepTM and extract mixture in 5.1 ml ultracentrifuge tubes. 

Gradients were spun at 43,865 RPM for 1 hour at 4°C in a Beckman Coulter 

OptimaTM LE100 XP Ultracentrifuge using a VTi90 Rotor. Following centrifugation 

10 500 �l fractions were collected from the bottom and analysed via western 
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blotting. Antibodies against the α Subunit of the Na+/K+ ATPase (1∶100,000, 

mouse, DSHB) and Syntaxin (1:50, mouse, DSHB) were used as negative and 

positive controls for lipid rafts, respectively. AntiEBsg (1:1500, rat) was a kind gift 

from Dr. Anne Ephrussi (EMBL Heidelberg, Germany). HRPEconjugated 

secondary antibodies were from Cell signaling technology.  A comprehensive list 

of antibodies can be found in supplementary table 1. 

 

�

���
�

 


��
��2�	�������������
�/


������������������	�

 

SPT acts in the first enzymatic step in the de novo synthesis of sphingolipids, 

catalysing the condensation of LEserine with palmitoylEcoA to generate 3E

ketosphinganine and further subsequent sphingolipid derivatives. SPT is 

composed of two subunits, SPTLC1 and SPTLC2. Previously we have 

demonstrated that expression of ���������	 SPTLC1 (dSPT1) bearing a 

neomorphic mutation associated with HSAN1, and aberrant sphingolipid 

production, induced morphological aberrations in synapse growth at the 

���������	 third instar larval Neuromuscular Junction (NMJ) (Oswald et al., 

2015). In order to determine the role of sphingolipids in the regulation of synaptic 

morphology we looked to characterise further the role of 
����� in regulating 

the structure and growth of the ���������	 larval neuromuscular synapse. Lethal 

and hypomorphic mutations in the ���������	 
�����% gene&% �	
�& have 
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previously been identified (Ashburner, 1982; AdachiEYamada et al., 1999). Here, 

using iPCR, we mapped the insertion sites of the two �Eelement insertions within 

the �	
� locus (Figure 1). �'�(�	
��� �� was mapped to 97 nucleotides upstream of 

the start ATG codon while �'�(�	
)*��+�, mapped 52 nucleotides downstream of 

the first exon (Figure 1b). The �	
�� allele has previously been identified as an 

EMS induced point mutation leading to the amino acid change S429N (Sasamura 

et al., 2013). The �	
�- allele is an additional EMS induced mutation while �	
�� is 

a spontaneous mutation (Ashburner, 1982). Using this series of mutants, we 

screened for allelic combinations that generated an early/late pupal lethality 

(Figure 1a), giving an optimal penetration of the phenotype and a reduction in 

sphingolipid content for an analysis of the 3rd instar NMJ. �	
���� ����	
�� 

transheterozygotes and �	
���� �� homozygotes were identified as giving an 

optimal lethal phase for studying synaptic growth and structure. In addition it has 

previously been demonstrated that l	
���� ����	
�� transheterozygotes and �	
�%

��� �� homozygotes present with just 5.5% and 2.5% sphingolipid content (Herr et 

al., 2003), respectively, compared to wildtype. A schematic of the �	
� alleles 

utilised in this study is given in Figure 1b. All mutant combinations were found to 

be lethal. 

 

�	��� �����
�3�
�����(%
������� ����������
 

 

Using the ���������	 third instar larval NMJ as a model synapse we identified 

both transheterozygous and homozygous �	
� mutants displaying significant 
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perturbations to gross morphological NMJ structure. This was characterised by a 

significant decrease in synaptic bouton number coupled with an increase in 

bouton size (Figure 2aEe). It was also observed that mutants showed the 

presence of spurElike structures emanating from terminal boutons (Figures 2d), 

suggesting either partially formed synaptic extensions, or collapse of a bouton. 

�	
� mutants showed no significant variance in the length of the NMJ arbour or 

muscle surface area when compared to wildtype (Figure 3aEb).   

Despite significant perturbations at the gross morphological level, at a subE

cellular level preE and postE synaptic structures appear unperturbed, with no 

observable alteration to either the preEsynaptic active zone marker 

nc82/bruchpilot or postEsynaptic markers GluRIIA and DiscsElarge (DLG) (Figure 

3cEe). There was also no difference in Futsch or FasII (Supplementary Fig. 1). 

Mutants did, however, show an apparent disruption to plasma membrane 

antigens recognised by the antiEhorse radish peroxidase (HRP) antibody, leading 

to an uneven distribution of HRP labelling (Figure 2d, 3cEe, and supplementary 

Fig. 2a). Perturbed HRP staining was not observed in wildtype animals.  

At an ultrastructural level individual synaptic components also appear normal 

(Figure 3fEj), showing no significant aberration to active zone size, synaptic 

vesicle number or synaptic vesicle size (Figure 3hEj). One notable observation, 

however, is the number of enlarged mitochondria observed throughout the 

nervous system of �	
� mutants (Fig. 3g, Supplementary Fig. 2.). No significant 

difference in the total number of mitochondria was observed between genotypes 
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(data not shown). Taken together these initial findings suggest that sphingolipid 

is essential for maintaining synapse structure at a gross morphological level. 

 

� �� �
����� �
�  �������
	� ����� "
'
�� ������
� ��� ��
� (%

��
� ���

�����������	
�

 

Boutons are added to the neuromuscular junction during progression through the 

larval instars (Zito et al., 1999). The counting of boutons commonly stands proxy 

for NMJ size in many studies of the larval neuromuscular junction (Schuster et 

al., 1996). On initial observation, the �	
� mutant NMJ appeared to be of normal 

length despite having a reduced bouton count. Having identified a defect in 

bouton structure, we then examined NMJ length in relation to bouton structure. 

By counting boutons per NMJ  arbour while simultaneously measuring the length 

of the NMJ we found that in sphingolipid depleted NMJ’s the overall length of the 

NMJ was indistinguishable from wildtype while boutons per NMJ was found to be 

significantly reduced by ~50%, compared to wildEtype (Figures 2 and 4aEc).%�	
� 

mutants showed no reduction in muscle surface area (Figure 3h), indicating that 

reduced bouton number was not as a result of reduced muscle size. Branching 

patterns of NMJ’s were also indistinguishable between sphingolipid depleted 

NMJ’s and wildEtype (Figure 4d).  

 

To ascertain whether sphingolipid deficient �	
� mutant NMJ’s were capable of 

further synaptic growth, we combined the �	
���� ����	
���� �� mutant with the 
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synaptic overgrowth mutant �������� (���) (Wan et al., 2000; Collins et al., 2006). 

NMJ’s in the ���.�/0�	
���� ����	
���� �� mutant combination were found to be 

capable of growth well above wildtype length (Fig 5). In the �����	
� mutant 

combination, boutons per unitElength were generated at around 50% of the ��� 

figure alone. This is similar to the comparison between wildEtype and �	
� where 

�	
� produces ~50% less boutons per unit length compared to wildEtype. 

Collectively this data indicates a defect in NMJ synaptic structure, but not overall 

NMJ length regulation, in the absence of sufficient sphingolipid.  

 

/1��


����������
��

��

������������������
�

 

Having ascertained that sphingolipid is essential to the generation or 

maintenance of mature synaptic structure, we examined the relative sphingolipid 

contribution of the preE and postEsynaptic compartments. To facilitate this, we 

employed the �	
���� ����	
���� �� mutant and rescued lace function in either the 

preEsynaptic compartment alone, using the panEneuronal ��	1EGAL4 driver, or the 

postEsynaptic compartment alone, using the muscle expressing 2��EGAL4 

driver. We also performed a global rescue using �343���EGAL4 driven expression 

of UASE�	
�. Here we found that presynaptic expression of lace (��	1EGAL4) 

failed to recover bouton structure or number in the �	
���� ����	
���� �� 

background (Figure 5). In contrast rescue of lace function in the postEsynaptic 

muscle compartment induced a nearly complete rescue of both reduced synaptic 

bouton number and bouton enlargement (Figure 5). Global expression of UASE
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�	
� was sufficient to completely rescue all aspects of NMJ perturbation in �	
� 

mutants (Figure 5). We also examined a role for glia in the sphingolipid regulation 

of NMJ structure. Glial expression of lace, using the ����Egal4 driver, was 

sufficient to rescue both reduced synaptic bouton number and enlarged bouton 

size in �	
���� ����	
���� ��% mutants (supplementary figure 3). Interestingly the 

postEsynaptic rescue of lace function induced the formation of excessive ‘satellite’ 

boutons (Figure 5d). Satellite boutons are small boutons sprouting from the main 

synaptic arbour (Beumer et al., 1999; Koh et al., 2004; Marie et al., 2004). These 

data suggest a partial nonEcellEautonomous role for sphingolipids in the 

regulation of synaptic growth and structure. Feeding ���������	 larvae  

sphingosine, the product of serine palmitoyl transferase activity can rescue some 

phenotypes caused by loss of SPT (AdachiEYamada et al., 1999). Our data 

points to an ability to rescue the sphingolipid deficiency NMJ phenotype with 

global, muscular or glial expression, but not neuronal expression.  

 

�	���������
�
��'�����
�

	�
��������
��
������

Sphingolipids have previously been implicated in the synaptic vesicle cycle 

(Salaün et al., 2005; Darios et al., 2009; Chan and Sieburth, 2012; Chan et al., 

2012) and in the localisation and function of neurotransmitter receptors (Brusés 

et al., 2001; Hering et al., 2003). Having observed significant perturbations to 

NMJ morphology, but not ultrastructure, we carried out an electrophysiological 

analysis in �	
� mutants to determine the role that sphingolipids might play in the 

regulation of synaptic activity. 
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Mutant �	
� larvae showed a significant increase (~50%) in both evoked EJP 

amplitude (Figure 6aEb, Supplementary Tables 2&3) and quantal content (Figure 

6c) at both muscles 6 and 7, compared to wildEtype controls. No significant 

difference in input resistance or resting membrane potential was observed 

between genotypes (Figure 6dEe). Expression of lace under the control of the 

global driver �343���EGal4 was sufficient to alleviate both elevated evoked EJP 

amplitude and quantal content in �	
� mutant larvae (Figure 6bEc). At the 

Ca2+/Mg2+ concentrations used in the present experiments, consistent synaptic 

facilitation during TrainEofEFive (TOF) stimulation was observed in wildtype larvae 

but not in �	
� mutants (Figure 6f). Specifically, �	
� mutant larvae show a 

consistent and constant EJP size during the TOF stimulus at NMJs in both 

muscles 6 and 7, compared to wildEtype larvae (Figure 6f). This difference in EJP 

consistency during the TOF stimulus was partially rescued by global (�343���E

Gal4) expression of lace in the �	
� mutant background (Figure 6f).  Mutant �	
� 

synapses also showed a significant increase in mini frequency (Muscle 7, Figure 

6g) and Quantal size (Muscle 6, Figure 6h), compared to wildtype. These 

phenotypes, however, were not rescued by expression of wildtype lace (�343���E

Gal4, Figure 6gEh). 

 

�	���  �����
� �
4
��� �� �
������
���� �
�'

�� ���
� ��	� ��
����� ��� ��
�

�
������������
����

�
�������
�� 

Previous studies have identified that the Ig family protein Basigin/CD147 (Bsg) is 

required preE and postEsynaptically to restrict synaptic bouton size and regulate 
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bouton number. ��� mutants were shown to display significantly enlarged 

boutons and a reduction in synaptic bouton number, while the overall NMJ size 

remained close to wildEtype (Besse et al., 2007), a phenotype similar to �	
�. ��� 

mutants also show an elevated evoked EJP amplitude, mini amplitude and mini 

frequency similar to �	
� mutants (Besse et al., 2007) with an additional release 

asynchrony.  As with sphingolipids, ��� has also been implicated in the 

regulation of actin cytoskeleton dynamics, with mutants showing accumulation of 

mitochondria (Curtin et al., 2005), perturbed synaptic structure and an early lethal 

phase (Besse et al., 2007). As such we asked whether a functional interaction 

existed between ��� and the loss of sphingolipid function generated in �	
� 

mutants and whether Bsg localisation was also altered in �	
� mutants. 

Here we show that heterozygous �	
���� ������ mutant combinations phenocopy 

both �	
� and ��� mutants, displaying an ~ 50% reduction in synaptic bouton 

number, coupled with significantly enlarged synaptic boutons (Figure 7 aEc). As 

has previously been shown (Besse et al., 2007) heterozygous mutations in either 

��� or �	
� alone show no variance from wildtype. 

Having identified an apparent genetic relationship between ��� and �	
� we next 

looked to determine the abundance and localisation of Bsg in �	
� mutants. Here 

we show that, as previously identified, Bsg is present at the NMJ. However we 

also demonstrate there to be a significant increase in the amount of Bsg 

accumulating at �	
� mutant NMJ’s when compared to wildtype (Figure 7dEf). 

Relative HRP was also quantified as a control (Figure 7f) with no significant 

variance observed between �	
� mutants and wildtype. 
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Sphingolipids are major constituents of lipid rafts, specialised membrane 

microdomains that act to regulate membrane dynamics, endocytic process and 

cell signalling events, amongst other processes. Previous studies have 

implicated Bsg in the regulation of signalling complexes within lipidEraft like 

domains in cancer (Grass et al., 2013). We then proposed that the accumulation 

of Bsg observed at the NMJ of �	
� mutants may relate to its presence within 

lipid raft microdomains. To determine whether Bsg was present in microdomains 

in ���������	& lipid rafts were isolated via optiprep gradient fractionation. The 

presence of Bsg within lipid raft fractions was confirmed by identification of its 

presence within floating fractions 9 and 10, which were also positive for the 

known lipid raft marker Syntaxin (Figure 7g) (Chamberlain et al., 2001; Lang et 

al., 2001). The transmembrane ion pump Na+/K+ ATPase, which is excluded 

from lipid rafts and enriched in nonElipid raft membranes (FernandezEFunez et al., 

2009), was not. Taken together these findings suggest that Bsg is localised 

within lipid raft microEdomains and that a functional interaction exists between 

sphingolipids and Bsg in the regulation of synaptic structure. 

�

3�
��

����

&�
����
����
����������	
����
����


�

The enrichment of sphingolipids at synapses has been long known (Derry and 

Wolfe, 1967). Assigning functions for these enigmatic lipids at the synapse has 

remained problematic. Ablation of gangliosides in mouse has identified subtle 

defects in neurotransmission (Zitman et al., 2008; 2010; 2011) while loss of G3E
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ganglioside synthesis results in an infantile onset epilepsy (Simpson et al., 2004), 

the mechanism for which remains obscure. A specific role for sphingosine has 

been identified in promoting SNARE protein fusion and synaptic exocytosis 

(Darios et al., 2009).  

Many sphingolipid species present in the outer leaflet of the plasma membrane 

are found in association with cholesterol as ‘lipid rafts’. Neurons receive 

supplementary cholesterol from glia which is essential for supporting synapse 

maturation and additional synaptogenesis (Mauch et al., 2001) suggesting 

cholesterol, and potentially lipid rafts, are rate limiting for these processes. 

Depletion of both cholesterol and sphingolipids together has been shown to 

reduce and enlarge dendritic spines with eventual loss of synapses in 

hippocampal neurons in culture possibly due to reduced association with lipid 

rafts of synapse structure promoting proteins such as PostESynaptic Density 

protein 95 (PSD95) (Hering et al., 2003). In this present study, we have reduced 

synthesis of sphingolipids with a mutation in 
�����, and examined the 

development of neuromuscular synapses in the ���������	 larval preparation. 

This approach has allowed us to study the genetic depletion of sphingolipids at 

an identified synapse ��% 1�1�% and investigate a role for sphingolipids in the 

regulation of synaptic structure and activity. As part of this study, we have also 

identified a potential role for the Ig domain cell adhesion protein Bsg in 

sphingolipid dependent regulation of synaptic structure. 

 

�����������	
���
��
5���
	������������
����

�
�������
�
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On examination of sphingolipid deficient synapses, we observed a disruption to 

the normal synaptic structure. We found that synaptic boutons were enlarged and 

the overall numbers of boutons reduced by ~50% while the length of the 

neuromuscular synapse remained indistinguishable from wildtype. This 

phenotype is highly reminiscent of the reduction of synapse number, but increase 

in synapse size observed in hippocampal neurons in culture depleted for lipid 

rafts (Hering et al., 2003). Nevertheless, we were surprised that beyond the 

structural deficit of the synapse, the ultrastructure of the synapse was remarkably 

intact, suggesting a role in fineEtuning of synaptic properties.  

 

Synapses depleted for sphingolipids were capable of greater growth when 

combined with the synaptic overgrowth mutation �������� (���) (Wan et al., 

2000). Our data suggests the mutations in �	
� and sphingolipid depletion 

decouples bouton structure from normal synaptic length. Large boutons are 

observed in mutants of "������%	�	����%5��%'"	5(&%���
�%1����%'��1(&%�	6������%

'�	6(% "�5�	% '"�5(&% and% ��	���4����"�4�	�% '�44(, components of the TGFEß 

pathway that is known to regulate synaptic growth (Aberle et al., 2002; Sweeney 

and Davis, 2002; Rawson et al., 2003; McCabe et al., 2004). However these 

mutations reduce synaptic length by ~50% and ultrastructural synaptic defects 

such as nonEplasma membrane attached active zones (TEbars), large endosomal 

vesicles and ripples in preEsynaptic periEactive membranes are observed 

(McCabe et al., 2004). One obvious ultrastructural defect that is present in 

sphingolipid depleted synapses is enlarged mitochondria (Figure 3g, 
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supplementary figure 2). Enlarged mitochondria are observed in a number of 

sensory neuropathies (see (Vital and Vital, 2012) for review) and it is of interest 

that dominant mutations in 
����� (Bejaoui et al., 2001; Dawkins et al., 2001) 

and SPTLC2 (Penno et al., 2010; Oswald et al., 2015) that generate aberrant 

sphingolipids give rise to Hereditary and Sensory Neuropathy Type 1 (HSAN1) 

where enlarged mitochondria are often observed. This may be attributable to a 

recognised role for sphingolipids in mitochondrial fission (Ciarlo et al., 2010).  

 

To dissect the spatial requirement for sphingolipid regulation of synapse structure 

we rescued the �	
� mutant with a rescue transgene, expressed globally, preE or 

postEsynaptically. We found that we could rescue synaptic bouton size and 

number with a global expression of the rescue transgene (Figure 5), but no 

aspects of the phenotype could be rescued with a preEsynaptic expression. 

Perturbed NMJ morphology could also be rescued by glial or postEsynaptic 

expression of �	
�, however postEsynaptic muscle expression generated a partial 

rescue, with an excess of ‘satellite’ boutons, a phenotype normally associated 

with integrin dysfunction (Beumer et al., 1999) or endocytic defects (Koh et al., 

2004; Marie et al., 2004). Previous data feeding �	
� mutant larvae with 

sphingosine, the product of the SPT enzyme, partially rescued �	
� mutant 

associated phenotypes (AdachiEYamada et al., 1999) Taken together with our 

analysis, there is a strong suggestion that sphingolipid precursors such as 

sphingosine may be able to act nonEcell autonomously, and traffic between cells 
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to support synapse structure and function, but not when supplied from the 

nervous system. 

�

�����������	
���
��
5���
	������
������������
����������������

Analysis of EJP and miniEJP characteristics at the 3rd instar larval NMJ reveals 

mutations in �	
� produce, at the Ca2+/Mg2+ concentrations we used, a small but 

significant increase in synaptic strength, accompanied by a change in shortEterm 

plasticity, with synaptic depression predominating over synaptic facilitation. NMJs 

with highEquantal content EJPs normally show synaptic depression during paired 

or shortEtrain repetitive stimulation, while those with a low basal quantal content 

show synaptic facilitation (Lnenicka and Keshishian, 2000; Lnenicka et al., 2006). 

Further analysis is required, for instance using a range of Ca2+ concentrations, to 

establish whether this apparent change in synaptic plasticity is commensurate 

with a greater basal synaptic strength in the �	
� mutant larvae, or whether it 

represents a specific effect of the mutation, disrupting the normal link between 

mechanisms that couple basal quantal content to shortEterm synaptic plasticity. 

7�% 1���� and ��% 1�1� analysis has suggested a role for sphingolipids in synaptic 

vesicle endocytosis (Salaün et al., 2005;� Shen et al., 2014) and exocytosis 

(Darios et al., 2009; Chan and Sieburth, 2012; Chan et al., 2012) in addition to a 

role in neurotransmitter distribution (Brusés et al., 2001; Hering et al., 2003). We 

observe no evident defects in neurotransmitter receptor distribution. Interestingly, 

ablation of major subsets of gangliosides and subsequent analysis of synaptic 

function at the NMJ in a mouse model reveals a more pronounced runEdown of 

Page 24 of 52

John Wiley & Sons

Journal of Comparative Neurology



For Peer Review

� ��

neurotransmitter release upon sustained stimulation, consistent with the data we 

have presented here (Zitman et al., 2008; 2011). We cannot however, directly 

attribute the apparent deficit in synaptic facilitation we observed here in �	
� 

mutants to exoE or endocytosis, at this point. 

�

�����������	
� ���
����� '���� ��
����� ��� �
�����
� 
�������� 
�������
� ��� ��
�


����

���

We noted a strong phenotypic similarity at the larval neuromuscular synapse 

between the �	
� mutants and mutations in the small Ig domain adhesion protein 

�	���������8+ (Besse et al., 2007). Bsg is a glycoprotein localised in the plasma 

membrane that is known to genetically interact with integrins (Curtin et al., 2005) 

during development of the ���������	 eye. In ��� mutants, synaptic boutons at 

the larval neuromuscular junction are enlarged in size and reduced in number 

with a modest reduction in synaptic span (Besse et al., 2007). Bsg has previously 

been localised to sphingolipid enriched lipid rafts in invading epithelial breast 

cells (Grass et al., 2013) and we observed that Bsg is abundant in the lipid raft 

associated membrane fraction, coEsedimenting with syntaxin, a known 

component of lipid rafts (FernandezEFunez et al., 2009). We cannot say at this 

juncture if Bsg function is directly regulated by sphingolipids. Indeed, recruitment 

of Bsg to lipid rafts can be critical for the recruitment of other protein factors such 

as claudinE5 in retinal vascular epithelial cells (Arima et al., 2016). However, 

given the genetic interaction between ��� and �	
�, with 4��0�	
�%

transheterozygous double mutants phenocopying both �	
� and 4�� mutants, our 
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data suggests Bsg and sphingolipids genetically interact to regulate synaptic 

structure. We interpret this interaction as indirect; the loss of sphingolipid 

generated in the �	
� mutant affecting Bsg function to regulate synapse structure 

and function 

 

Synaptic sphingolipids have previously been implicated in synaptic vesicle 

release (Darios et al., 2009; Chan and Sieburth, 2012; Chan et al., 2012), 

endocytosis (Salaün et al., 2005), neurotransmitter receptor localisation (Hering 

et al., 2003; Brusés et al., 2001) and maintenance of synaptic activity (Zitman et 

al., 2008; 2011). However other roles at the synapse for these enigmatic lipids 

remain elusive. Two potential functions for sphingolipid at the synapse are 

suggested by our study. Mitochondrial uptake of Ca2+ shapes Ca2+ dependent 

responses (Mammucari et al., 2018). The enlarged mitochondria we observe in 

�	
� mutants may impinge on Ca2+ uptake to affect synaptic facilitation. A further 

deficit in Ca2+ handling at the synapse is suggested by the recent finding that Bsg 

is an obligatory subunit of plasma membrane Ca2+EATPases (PMCAs). PMCAs 

extrude Ca2+ to the extracellular space, and knockEout of Bsg considerably 

affects Ca2+ handling by PMCAs (Schmidt et al., 2017). Sphingolipid deficient 

synapses in the �	
� mutant have deficits in Bsg function which may in turn have 

an effect on Ca2+ dynamics via PMCA function.  

 

Ablation of sphingolipid synthesis at a ���������	 model synapse supports a role 

for sphingolipids in maintenance of synaptic activity and regulation of synaptic 
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structure. Our analysis also points to sphingolipid dependent regulation of 

synaptic structure via function of the small IgEdomain protein Bsg. The precise 

regulation of synapse structure and function is a potent mechanism underlying 

synaptic plasticity and we suggest that the presence of sphingolipids at synapse 

may partially reflect this function.  
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�������������4�4���������������	�

�� Complementation analysis between �	
� mutants was used to identify allelic 

combinations� that gave an optimal penetration, generating an early/late pupal 

lethality, for analysis of the 3rd instar neuromuscular junction. Percentages shown 

represent the number of unbalanced transheteroygous flies that eclosed for 

those crosses where transheterozygotes survived to adulthood, baseline = 50%. 
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%� Gene schematic showing the location of the two �Eelement insertions mapped 

to the lace locus in this study (�'�(�	
)��� �� and �'�(�	
)*��+�,) as well as the 

previously mapped EMS induced �	
�� mutation.    

 

 

"����
� $� ��

� ��� �����������	� �����

�
� �
�	
� ��� /�����
	� �������

��������
������
�� ��

�7%� ���������	 third instar larvae presenting with homozygous or 

transheterozgous mutations in �	
� display a significant reduction in synaptic 

bouton number (ANOVA p < .001, with postEhoc Dunnett’s comparison to 

wildtype controls: *** p < .001). �7
� Reduced synaptic bouton number is coupled 

with a significant increase in mean synaptic bouton size, associated with an 

increased frequency of synaptic boutons displaying a surface area > 8 �m2 in 

lace mutants. �	
� mutants also displayed spurr like protrusions from terminal 

boutons (arrow heads, a and d). Scale bars = 10 �m.  

 

"����
�8�����������6�����
��
�(��
���9������
	�����	��� �����
�

 

�7%� �	
� mutants show no change in total NMJ length or muscle surface area. �; 

ANOVA; p < .064, %:�ANOVA; p < .616. 

�7
� PreE (nc82) and postE (discs large and GluRII) synaptic markers appear 

unchanged at an immunohistochemical level in lace mutants. Scale bars  = 5 �m. 
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�7#� Ultrastructural examination reveals no significant perturbation to active zone 

length (h), synaptic vesicle number (i) or synaptic vesicle diameter (j). Enlarged 

mitochondria (asterisk) are observed in lace mutants (g). Scale bars = 1 �m.  

 

 

"����
�;� �	��� �����
�(�
�6���%�
����"����
�����������<��'����

�7%� Combining �	
� mutants with the synaptic overgrowth mutant �������� 

revealed double mutants show a ~ 50% reduction in bouton number, compared 

to ���% alone. This is comparable to the ~ 50% reduction observed in �	
� 

mutants, compared to wild type. ���0�	
� double mutants, however,  remain 

capable of further synaptic growth showing a significant increase in synaptic 

length (�) and branching (	), comparable to that seen in ��� single mutants. 

ANOVA p < .001, with postEhoc Dunnett’s comparison to wildtype controls: *** p 

< .001 and Tukey between group’s comparison: ### p < .001. 

 

"����
� =�� (%
������ ��������� (�����
����
� 6��� %
� ���������� (��
4���
	� %��

!�
�7�/1��


����������
���

�7��� �Global (TubulinEGal4) expression of UASE�	
� was sufficient to completely 

allieviate both the increase in synaptic bouton size (b) and reduction in synaptic 

bouton number (c) observed in lace mutants. PostEsynaptic (2��EGal4) 

expression of UASE�	
� elicits an almost complete rescue of both enlarged 

synaptic bouton size and reduced bouton number. PreEsynaptic (9�	1EGal4) 

expression of lace is insufficient to rescue aberrant synaptic architecture. ���
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ANOVA; p < .001 with post hoc Dunnett’s comparison to wildtype: *** p <.001, ** 

p < .01 and Tukey comparison within groups vs Gal4 control ###  p <.001, ## p < 

.01 or vs lace mutant $$$ p <.001. %��ANOVA; p < .000 with post hoc Dunnett’s 

comparison to wildtype: *** p <.001, and Tukey comparison within groups vs 

Gal4 control ###  p <.001 or vs lace mutant $$$ p <.001.  
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��� representative intracellular recording traces, showing evoked EJP responses 

to TOF stimulation and spontaneous (mini) EJPs.�

%�� �	
� mutant (�	
���� ��/�	
���� ��) larvae show significantly (ANOVA with postE

hoc Tukey comparison between groups, ** p<.01) elevated evoked EJP 

amplitudes at muscles 6 and 7 compared to wildtype larvae and larvae 

expressing �	
� globally (tubulinEgal4) in a �	
� mutant background (rescues). 

Box and whisker plots demonstrate the median, interquartile range and the range 

of recorded values.  

��� �	
� mutant (�	
���� ��/�	
���� ��) larvae show a significant increase (ANOVA 

with postEhoc Tukey comparison between groups, * p<.05, ** p<.01) in quantal 

content at muscles 6 and 7 compared to wildtype larvae and larvae expressing 

�	
� globally (tubulinEgal4) in a �	
� mutant background (rescues). Box and 

whisker plots demonstrate the median, interquartile range and the range of 

recorded values.  
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	7
��No significant variance in input resistance or resting membrane potential 

was observed between genotypes. 

��� Synaptic facilitation index (!: positive values indicating facilitation, negative 

values indicating depression) calculated from the change in quantal content of 

the first ("�) and either the fifth ("�) or occasionally the fourth EJP, according to 

the formula !#"��"���$% Box and whisker plots demonstrate the median, 

interquartile range and the range of recorded values (ANOVA with postEhoc 

Tukey comparison between groups, * p<.05).�

����	
� mutant (�	
���� ��/�	
���� ��) larvae show a significant (ANOVA with postE

hoc Tukey comparison between groups, * p<.05) increase in spontaneous (mini) 

release frequency at muscle 7 compared to wildtype larvae. Box and whisker 

plots demonstrate the median, interquartile range and the range of recorded 

values. �

����	
� mutant (�	
���� ��/�	
���� ��) larvae show a significant (ANOVA with postE

hoc Tukey comparison between groups, * p<.05) increase in quantal size at 

muscle 6, compared to wildtype larvae. Box and whisker plots demonstrate the 

median, interquartile range and the range of recorded values. �
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�7��� Heterozygous �	
����� double mutants phenocopy both �	
� and ��� 

transheterozygotes, displaying a significant reduction in synaptic bouton number  
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and enlargement of synaptic boutons�� ANOVA; p < .001 with post hoc 

Dunnett’comparison to wildtype: *** p < .001, ** p < .01 and Tukey 

comparision within groups ### p< .001, # p < .05. 

	7�� Bsg was shown to accumulate at NMJs in �	
� mutants, showing a  

significant increase in mean antiEBsg fluorescence compared to wildtype. Mean 

relative HRP fluorescence was also quantified, as a control, and showed no 

variance from wildtype. Student’s TEtest; p < .000 (	) and p < .745 (
). 

�. Gradient fractionation revealed to Bsg to be present within floating fractions 9 

and 10, along with the lipid raft marker Syntaxin, demonstrating Bsg to be 

present in lipid raft microdomains in ���������	 larvae. 

 

��

�����
�
������"����
����"��
�����	�"�
..���
����
����%
	�����	���������
��

�7%�� representative images showing no variance in the localisation of Futsch or 

FasII at the third instar NMJ between wildtype and lace mutant larvae. Scale 

bars; a = 2 �m,  b = 10 �m. 

 

�����
�
������"����
�$��/�����
	� �������	��������	��� �����
�

�7%�� Transmission electron micrographs showing enlarged mitochondria with 

axon bundles of lace mutant larvae. Scale bars, a = 2 �m, b = 500 nm.  

�. Quanification of mitochondria size in wildtype and lace mutant larvae, wildtype; 

n = 15 axon bundles, N = 3 animals, lace; n = 18 axon bundles, N = 3 animals. 

Student tEtest p < .01. 
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	. micrographs showing enlarged mitochondria (mitoEGFP) within synaptic 

boutons of lace mutant larvae (arrow heads). Scale bar = 10 �m. 
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�7��� Glial expression of lace under the control of the glial driver RepoEGal4 

rescues morphological defects in lace mutant NMJ’s including reduced bouton 

number (b) and increased bouton size (c). ANOVA; p < .001 with post hoc 

Dunnett’s comparison to wildtype: *** p <.001 and Tukey comparison within 

groups ###  p <.001,  
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Supplementary Table 2.  

�

Muscle 6 

EM 

(mV) 

Rin  

(MΩ) 

mEJP  

(mV) 

mEJP f  

(s
-1

) 

Corrected 

EJP  

(mV) 

M1  

(quanta) 

Facilitation Index  

(m5/m-1) 

Wildtype -53.4 4.56 0.46 1.45 14.8 34.6 0.31 

N=8 larvae 

n=12 muscles 

(-57.6, 

-49.2) 

(3.42, 

5.70) 

(0.37, 

0.55) (0.96, 1.95) (12.2, 17.5) 

(26.0, 

43.2) (0.19, 0.43) 

lace
5
/ lace

5
 -55.4 4.06 0.65* 2.05 24.5** 39.3* 0.00* 

N=8 larvae 

n=19 muscles 

(-57.4, 

-53.4) 

(3.15, 

4.98) 

(0.55, 

0.76) (1.62, 2.47) (21.7, 27.2) 

(33.7, 

44.9) (-0.04, 0.05) 

lace
5
/ lace

5
,UAS-

lace;Tubulin-Gal4 -53.3 5.27 0.7 2.4 14.2 21.3 0.19 

N=8 larvae 

n= 21 muscles 

(-58.4, 

-48.2) 

(4.12, 

6.42) 

(0.59, 

0.80) (1.71, 3.08) (12.0, 16.3) 

(17.1, 

25.6) (0.03, 0.35) 

ANOVA with post-hoc Tukey comparison between groups  

 * P<0.05 compared with either Wildtype or Rescue 

 ** P<0.05 compared with both Wildtype and Rescue 

�

 

Supplementary Table 3.  

�

Muscle 7 

EM 

(mV) 

Rin  

(MΩ) 

mEJP  

(mV) 

mEJP f  

(s
-1

) 

Corrected 

EJP  

(mV) 

M1  

(quanta) 

Facilitation Index  

(m5/m-1) 

Wildtype -51.8 5.983 0.62 1.06 14.8 20.9 0.43 

N=8 larvae 

n=15 muscles 

 

(-56.7, -

46.9) 

(4.90, 

7.07) 

(0.49, 

0.74) 

(0.79, 

1.33) 

(12.2, 

17.5) (14.6, 27.2) (0.23, 0.64) 

lace
5
/ lace

5
 -52.8 4.38 0.75 1.54* 23.8** 32.9** 0.04* 

N=8 larvae 

n=16 muscles 

(-55.3, -

50.4) 

(3.26, 

5.51) 

(0.67, 

0.84) 

(1.26, 

1.83) 

(19.1, 

28.6) (24.7, 41.0) (-0.02, 0.11) 

lace
5
/ lace

5
,UAS-

lace;Tubulin-Gal4 -48.3 5.94 0.81 1.63 12.6 17.1 0.22 

N= 8 larvae 

n=20 muscles 

(-53.2, -

43.4) 

(4.62, 

7.25) 

(0.68, 

0.93) 

(1.33, 

1.94) 

(11.0, 

14.7) (13.2, 21.0) (0.05, 0.38) 

ANOVA with post-hoc Tukey comparison between groups     

 * P<0.05 compared with either Wildtype or Rescue 

 ** P<0.05 compared with both Wildtype and Rescue 
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