
This is a repository copy of Speculate: discovering conditional equations and inequalities
about black-box functions by reasoning from test results.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/129495/

Version: Accepted Version

Proceedings Paper:
Braquehais, Rudy and Runciman, Colin orcid.org/0000-0002-0151-3233 (2017) Speculate:
discovering conditional equations and inequalities about black-box functions by reasoning
from test results. In: Proceedings of the ACM SIGPLAN Haskell Symposium 2017. ACM ,
pp. 40-51.

https://doi.org/10.1145/3122955.3122961

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Speculate: Discovering Conditional Equations and Inequalities
about Black-Box Functions by Reasoning from Test Results

Rudy Braquehais
University of York

rmb532@york.ac.uk

Colin Runciman
University of York

colin.runciman@york.ac.uk

Abstract

This paper presents Speculate, a tool that automatically conjec-

tures laws involving conditional equations and inequalities about

Haskell functions. Speculate enumerates expressions involving

a given collection of Haskell functions, testing to separate those

expressions into apparent equivalence classes. Expressions in the

same equivalence class are used to conjecture equations. Repre-

sentative expressions of different equivalence classes are used to

conjecture conditional equations and inequalities. Speculate uses

lightweight equational reasoning based on term rewriting to discard

redundant laws and to avoid needless testing. Several applications

demonstrate the effectiveness of Speculate.

CCSConcepts •Software and its engineering→Software test-

ing and debugging; •Theory of computation →Program spec-

ifications;

Keywords formal specification, property-based testing, Haskell.

ACM Reference format:

Rudy Braquehais and Colin Runciman. 2017. Speculate: Discovering Condi-

tional Equations and Inequalities about Black-Box Functions by Reasoning

from Test Results. In Proceedings of Haskell’17, Oxford, United Kingdom,

September 7–8, 2017, 13 pages.

DOI: 10.1145/3122955.3122961

1 Introduction

Writing formal specifications for programs is hard, but nevertheless

useful. Formally specifying a program can contribute to under-

standing, documentation, and regression testing using a tool like

QuickCheck [6].

This paper presents a new tool called Speculate. Given a collec-

tion of Haskell functions and values bound to monomorphic types,

Speculate automatically conjectures a specification containing equa-

tions and inequalities involving those functions. Both equations

and inequalities may be conditional. In these respects we extend

previous work by other researchers on discovering unconditional

equations [8, 22]. As Speculate is based on testing, its results are

speculative.

Speculate enumerates expressions by combining free variables,

functions and values provided by the user (§3). It evaluates these

expressions for automatically generated test cases to partition the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Haskell’17, Oxford, United Kingdom

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5182-9/17/09. . . $15.00
DOI: 10.1145/3122955.3122961

expressions into apparent equivalence classes. It conjectures equa-

tions between expressions in the same equivalence class. Then, it

conjectures conditional equations (⇒) and inequalities (≤) from

representatives of different equivalence classes (§4). Speculate uses

lightweight equational reasoning to discard redundant equations

and to avoid needless testing. Speculate is implemented in Haskell.

Example 1.1. When provided with the integer values 0 and 1, the

functions id and abs, and the addition operator (+), Speculate first

discovers and prints the following apparent equations:

id x == x

x + 0 == x

abs (abs x) == abs x

x + y == y + x

abs (x + x) == abs x + abs x

abs (x + abs x) == x + abs x

abs (1 + abs x) == 1 + abs x

(x + y) + z == x + (y + z)

Similar equational laws are found by the existing tool QuickSpec

[8, 22]. But Speculate goes on to print the following apparent

inequalities:

x <= abs x

0 <= abs x

x <= x + 1

x <= x + abs y

x <= abs (x + x)

x <= 1 + abs x

0 <= x + abs x

x + y <= x + abs y

abs (x + 1) <= 1 + abs x

Finally, it prints these apparent conditional laws:

x <= y ==> x <= abs y

abs x <= y ==> x <= y

abs x < y ==> x < y

x <= 0 ==> x <= abs y

abs x <= y ==> 0 <= y

abs x < y ==> 1 <= y

x == 1 ==> 1 == abs x

x < 0 ==> 1 <= abs x

y <= x ==> abs (x + abs y) == x + abs y

x <= 0 ==> x + abs x == 0

abs x <= y ==> abs (x + y) == x + y

abs y <= x ==> abs (x + y) == x + y

The total execution time for Speculate to generate all the above

laws is about 3 seconds. Speculate is implemented as a library, and

the total application-specific source code required for this example

is less than 10 lines. �

Haskell’17, September 7–8, 2017, Oxford, United Kingdom Rudy Braquehais and Colin Runciman

1.1 Contributions.

The main contributions of this paper are:

1. methods using automated black-box testing and equational

reasoning to discover apparent conditional equations and

inequalities between functional expressions;

2. the design of the Speculate tool, which implements these

methods in Haskell and for Haskell functions;

3. a selection of small case-studies, investigating the effective-

ness of Speculate.

1.2 Road-map.

The paper is organized as follows: §2 defines expressions, expres-

sion size and a complexity ordering on expressions; §3 describes

how to use Speculate; §4 describes how Speculate works internally;

§5 presents example applications and results; §6 discusses related

work; §7 draws conclusions and suggests future work.

2 Definitions

Expressions and their sizes All expressions formed by Speculate

have monomorphic types. Expressions, and their sizes, are:

Constants constant data-value and function symbols of size 1, e.g.,

• 0 :: Int,

• ’a’ :: Char,

• (+) :: Int -> Int -> Int

Variables variable symbols, also of size 1, such as

• x :: Int,

• f :: Int -> Int;

Applications type-correct applications of functional expressions to

one or more argument expressions, including partial applications,

such as

• id y :: Int of size 2,

• (1+) :: Int -> Int of size 2,

• x + (y + 0) :: Int of size 5.

The size of an application is the number of constant and variable

symbols it contains.

To avoid an explosive increase in the search-space, we do not in-

clude other forms of Haskell expression such as lambda expressions

or case expressions.

A complexity ordering on expressions When there is redun-

dancy between laws, Speculate has to decide which to keep and

which to discard. As a general rule, it keeps the simplest laws. It

also presents final sets of laws in order of increasing complexity.

An expression e1 is strictly simpler than another expression e2, if

the first of the following conditions to distinguish between them is:

1. e1 is smaller in size than e2,

e.g.: x + y < x + (y + z);

2. or, e1 has more distinct variables than e2,

e.g.: x + y < x + x;

3. or, e1 has more variable occurrences than e2,

e.g.: x + x < 1 + x;

4. or, e1 has fewer distinct constants than e2,

e.g.: 1 + 1 < 0 + 1;

5. or, e1 precedes e2 lexicographically,

e.g.: x + y < y + z.

A similar ordering is used in QuickSpec [8, 22].

import Test.Speculate

main :: IO ()

main = speculate args

{ constants =

[constant "+" ((+) :: Int -> Int -> Int)

, constant "id" (id :: Int -> Int)

, constant "abs" (abs :: Int -> Int)

, background

, constant "0" (0 :: Int)

, constant "1" (1 :: Int)

, constant "<=" ((<=) :: Int -> Int -> Bool)

, constant "<" ((<) :: Int -> Int -> Bool)

]

}

Figure 1. Program used to obtain the results in §1.

3 How Speculate is Used

Speculate is used as a library (by “import Test.Speculate”).

Unless they already exist, instances of the Listable typeclass [4]

are declared for needed user-defined datatypes (step 1). Constant

values and functions are gathered in an appropriately formulated

list, and passed to the speculate function (step 2).

1. Provide typeclass instances for used-defined types

Speculate needs to know how to enumerate values to test equality

between expressions. So, where necessary, we declare type-class

instances for user-defined types. Speculate provides instances for

most standard Haskell types and a facility to derive instances for

user-defined data types using Template Haskell [19]. Writing

deriveListable ''<Type>

is enough to create the necessary instances. See [4] for how to

define such instances manually, and why that is desirable in some

cases.

Then, to provide the instance information to Speculate, for two

types named Type1 and Type2, write the following:

instances = [ins "x" (undefined :: Type1)

, ins "i" (undefined :: Type2)]

2. Call the speculate function Constant values and functions

are gathered in a record of type Speculate.Args and passed to the

speculate function. Constants we want to know laws about are

included in an Args field, the constants list. Other constants that

appear in laws, but not as the primary subjects, are those occurring

in the constants list after the special constant background.

Example 1.1 (revisited). Figure 1 shows the program used to

obtain the results in §1. �

Speculate limits the size of expressions considered, and the num-

ber of test cases used. By default it:

• considers expressions up to size 5;

• considers inequalities between expressions up to size 4;

• considers conditions up to size 4;

• tests candidate laws for up to 500 value assignments.

The speculate function allows variations of these default settings

either by setting Args fields or in command line arguments.

Speculate: Discovering Conditional Equations and Inequalities Haskell’17, September 7–8, 2017, Oxford, United Kingdom

4 How Speculate Works

In summary, Speculate works by enumerating expressions and eval-

uating test instances of them. In order for that to work effectively,

Speculate uses equational reasoning (§4.1). Speculate determines,

in the following order, apparent:

1. equations and equivalence classes of expressions (§4.2);

2. inequalities (§4.3);

3. conditional equations (§4.4).

To encapsulate values of different types, Speculate uses the

Data.Dynamic module [1] provided with GHC [23] and declares a

type to encode Haskell expressions.

4.1 Equational Reasoning based on Term Rewriting

Following QuickSpec [22], Speculate performs basic equational

reasoning based on unfailing Knuth-Bendix Completion [3, 13]. The

aims are to prune the search space avoiding needless testing, and to

filter redundant laws so that the output is more useful to the user.

Completion The Knuth-Bendix Completion procedure takes a set

of equations and produces a confluent term rewriting system [2, 13]:

a set of rewrite rules that can be used to simplify, or normalize,

expressions. To check if two expressions are equal, we can check

if their normal forms are the same. The completion procedure has

two problems: failure in the presence of unorientable equations and

possible non-termination. Speculate solves these problems similarly

to QuickSpec as detailed in the following paragraphs.

Unorientable equations To deal with unorientable equations, we

use the technique of unfailing completion [3] which allows unori-

entable equations to be kept in a separate set from rules. Checking

for equivalence using normalization is still sound, but incomplete

(the fact that two expressions are equivalent may be undetected).

We can use unorientable equations to improve the check for equiv-

alence between expressions e1 and e2: first normalize both e1 and

e2; then take the equivalence closure using the set of unorientable

equations; finally, if one of the expressions in the closure of e1 is

equivalent to one of the expressions in the closure of e2 then they

are equivalent. To ensure termination, we impose a configurable

bound on the number of closure applications.

Non-termination To deal with non-termination of the completion

procedure, we impose a limit on the size of generated rules, discard-

ing any rules where the left-hand size is bigger than the maximum

expression size we are exploring.

4.2 Equations and Equivalence Classes of Expressions

Speculate finds equations in a similar way to QuickSpec 2 [22]. As

QuickSpec 2 has many features, like support for polymorphism, use

of external theorem provers for reasoning and several configuration

options, we chose to reimplement a core variant before extending it

with support for conditional equations and inequalities. Differences

to QuickSpec are highlighted in §6.

This section summarizes how Speculate finds equations.

State Speculate processes each expression in turn, transforming

a state. Speculate keeps track of:

• a theory (§4.1) based on equations discovered so far;

• a set of equivalence classes of all expressions considered so

far, and for each of them a smallest representative.

Table 1. Equivalence classes and equations after initialization by

considering all expressions of size 1.

equivalence classes

type repr. others

Int x —

Int 0 —

Int 1 —

Int -> Int id —

Int -> Int abs —

Int -> Int -> Int (+) —

equations

no equations

Table 2. Equivalence classes and equations after considering all

expressions of size 2.

equivalence classes

type repr. others

Int x id x

Int 0 abs 0

Int 1 abs 1

Int abs x —

Int -> Int id —

Int -> Int abs —

Int -> Int (x+) —

Int -> Int (0+) —

Int -> Int (1+) —

Int -> Int -> Int (+) —

equations

id x == x

abs 0 == 0

abs 1 == 1

Considering an expression Speculate considers an expression

E by trying to find an equivalence-class representative R that is

equivalent to E:

• If expression E is found equivalent to R using equational

reasoning, then E is discarded. The equations already tell us

that E = R.

• If expression E is found equivalent to R using testing, then

the new equation E = R is inserted into the theory and E is

inserted into R’s equivalence class.

Initialization The algorithm starts by considering single-symbol

expressions in the signature and one free variable for each type. After

this initialization, Speculate knows all equivalence classes between

expressions of size 1.

Example 1.1 (revisited). Table 1 shows the equivalence classes

after initialization for the example from §1 with 0, 1, id, abs and

(+) in the signature. As yet there are no equations. �

Generating and considering expressions Speculate generates

expressions in size order until the size limit is reached. Expressions

are constructed from type-correct applications of equivalence-class

representatives.

Example 1.1 (revisited). Using the size 1 representatives in Table

1, Speculate generates all candidate expressions of size 2: id x,

id 0, id 1, abs x, abs 0, abs 1, (x+), (0+), (1+).

Then, it considers all those expressions to arrive at the equations

and equivalence classes shown in Table 2.

Haskell’17, September 7–8, 2017, Oxford, United Kingdom Rudy Braquehais and Colin Runciman

Table 3. Equivalence classes and equations after considering all

expressions of size 3.

equivalence classes

type repr. others

Int x id x, x + 0

Int 0 abs 0

Int 1 abs 1

Int abs x abs (abs x)

Int x + 1 1 + x

Int x + x —

Int->Int id —

...

equations

id x == x

abs 0 == 0

abs 1 == 1

x + 0 == x

0 + x == x

x + 1 == 1 + x

abs (abs x) == abs x

The process of considering expressions is repeated with expres-

sions of further sizes. Table 3 shows equivalence classes after

considering all expressions of size 3. �

Multiple variables The algorithm described so far is only able

to discover laws involving one distinct variable of each type. Fol-

lowing QuickSpec, dealing with multiple variables is based on the

following observation and its contrapositive:

Multi ⇒ Single For a several-variables-per-type equation to be

true, its one-variable-per-type instance should be true as well, for

example:

∀x y z.(x + y) + z = x + (y + z) ⇒ ∀x .(x + x) + x = x + (x + x)

¬ Single ⇒ ¬ Multi If a one-variable-per-type equation is false,

all its several-variable-per-type generalizations are false as well,

for example:

∃x .(x + x) + x , x + (x + x) ⇒ ∃x y z.(x + y) + z , x + (y + z)

So, we only test a multi-variable equation when its single variable

instance is true.

Example 1.1 (revisited). When exploring expressions of size 5,

Speculate finds that

(x + x) + x == x + (x + x)

then proceeds to test all its generalizations to find that

(x + y) + z == x + (y + z) �

Finding commutativity After processing expressions of size 3

we might expect to have found commutativity of addition (+).

However, it is not found by the algorithm just described. To find

commutativity and other similar laws, we must also consider gen-

eralizations of a representative expression equated with itself. For

example, x + y == y + x is a generalization of x + x == x + x.

Expressions with several variables per type Speculate has to

find classes of expressions with several variables per type before

searching for inequalities (§4.3) and conditional equations (§4.4).

For each representative expression with at most one variable per

type, Speculate considers its possible generalizations up to n vari-

ables, merging expressions into the same equivalence class if either

of the following is true:

1. they normalize to the same expression using the theory;

2. they test equal.

Table 4. How the number of expressions and classes increases with

the size limit (for example 1.1).

max. 2 variables max. 3 variables

size limit #-exprs. #-classes #-exprs. #-classes

1 4 4 5 5

2 12 6 15 8

3 44 12 60 18

4 172 23 250 39

5 748 36 1180 68

6 3436 72 5840 153

7 16492 114 30285 287

Summary So far, we have unconditional equations and equiva-

lence classes of expressions.

4.3 Inequalities between Class Representatives

A naïve approach To find inequalities (< and ≤), a naïve ap-

proach enumerates all possible expressions and computes all ≤

relations. But it blows up as the size limit increases.

Example 1.1 (revisited). With a limit of 7 symbols, we would

have to check over a quarter of a billion pairs of expressions (16492×

16492, see Table 4). Using the default number of tests, 500, we would

perform over one hundred billion evaluations. Even if we waited

for that computation to complete, we would still have the problem

of filtering redundant laws.

A slightly less naïve approach If we instead insert True and <=

in the background signature, then generate equations, inequalities

will appear in the output as:

(LHS <= RHS) == True

In this way, no explicit support for inequalities is needed. For

QuickSpec to discover the law (x + y <= abs x + abs y) == True

it is enough to set it to explore expressions up to size 9. In about

28s, QuickSpec will print this law along with 125 other laws (see

Table 9). The algorithm described in the rest of this section is faster,

discovering an equivalent law in about 1s among only 43 other

laws. See §6 for further comparison with QuickSpec.

A be�er approach The actual method used in Speculate is based

on two observations:

1. the number of non-functional equivalence classes is far

smaller than the number of expressions (Table 4);

2. we already have all equivalence classes and their smallest

representatives as a by-product of finding unconditional

equations.

So, Speculate finds inequalities in three steps:

1. list all pairs of class representatives;

2. test to select pairs that are related by ≤;

3. discard redundant inequalities.

Example 1.1 (revisited). Here are the inequalities found by list-

ing and selecting pairs related by ≤ before discarding redundant

inequalities:

1. 0 <= 1 4. 0 <= abs x 7. y <= y + 1

2. x <= abs x 5. 0 <= abs y 8. 0 <= 1 + 1

3. y <= abs y 6. x <= x + 1 9. 1 <= 1 + 1

Speculate: Discovering Conditional Equations and Inequalities Haskell’17, September 7–8, 2017, Oxford, United Kingdom

Examples of redundancy include: inequalities 2 and 3 are equiva-

lent; inequalities 4 and 5 are equivalent; inequality 8 is implied by

inequalities 1 and 9.

Discarding redundant inequalities. To discard redundant in-

equalities, Speculate uses the complexity order defined in §2. This

is done in three steps, described in the following three paragraphs.

1. Instances Speculate discards more complex inequalities that are

instances of simpler inequalities.

Example 1.1 (revisited). The following 4 inequalities are dis-

carded

3. y <= abs y (implied by 2. x <= abs x)

5. 0 <= abs y (implied by 4. 0 <= abs x)

7. y <= y + 1 (implied by 6. x <= x + 1)

9. 1 <= 1 + 1 (implied by 6. x <= x + 1)

to arrive at

1. 0 <= 1 6. x <= x + 1

2. x <= abs x 8. 0 <= 1 + 1

4. 0 <= abs x

2. Consequences of transitivity Speculate discards consequences

of transitivity e1 ≤ e2 ∧ e2 ≤ e3 ⇒ e1 ≤ e3 when both antecedents

(e1 ≤ e2 and e2 ≤ e3) are either simpler than the consequence

(e1 ≤ e3), or instances of inequalities simpler than the consequence.

Example 1.1 (revisited). The inequality 0 <= 1 + 1 is discarded

as it is a consequence of 0 <= 1 and x <= x + 1.

3. Instances modulo equivalence closure For all pairs of inequalities

I1 and I2 where I1 is simpler than I2, if any of the expressions in the

bounded equivalence closure (§4.1) of I2 is an instance of any of

the expressions in the bounded equivalence closure of I1, Speculate

discards I2.

4.4 Conditional Equations between Class Representatives

In this section, we detail how conditional equations are generated

based on the equational theory (§4.2), class representatives (§4.2)

and inequalities (§4.3) between boolean values.

A digraph of candidate conditions There is a connection be-

tween conditional laws and inequalities. Using the standard defini-

tion of Boolean <= we could define:

(==>) = (<=)

We already have information about <= from the previous step (§4.3).

We can build a digraph of boolean expressions ordered by implica-

tion as shown in Figure 2. We include False and True.

Discovering conditional laws For each pair of representatives

e1 and e2 from different equivalence classes, we search for the

weakest conditions under which each of them holds. Instead of

searching through all possible conditions from class representatives

we use the digraph of conditions to prune the search space. We

make a fresh copy of the digraph and repeat the following until

there are no unmarked nodes:

1. pick an arbitrary unmarked node with condition c;

2. check c ⇒ e1 = e2 by evaluating it for a set number of test

cases;

p

True

False

x < 0 1 < xabs x <= 0

x <= 0

1 <= abs x

1 <= x 1 < abs x

0 <= x

abs x <= 1

x <= 1

Figure 2. Conditions ordered by logical implication for Example

1.1 from §1 when considering expressions of at most one distinct

variable of each type.

False

p x < 0 abs x <= 0

x <= 0 abs x <= 1

x <= 1

⇒

p

x <= 0

x <= 1

abs x <= 1

⇓

x <= 0

Figure 3. Possible transformations performed on the ordering

structure from Figure 2 when searching for the weakest condition

for x + abs x == 0 to hold.

3. if all tests pass then mark c as visited and remove all nodes

from which c can be reached as these are for stronger con-

ditions than c .

4. if any test fails remove c and all nodes reachable from it as

these are for weaker conditions than c .

The remaining nodes are the weakest conditions for which e1 = e2.

The algorithm is sound modulo testing.

Example 1.1 (revisited). Suppose we are trying to find the weak-

est condition for which x + abs x == 0 holds. We may start

by considering 1 < x ==> x + abs x == 0 for which tests

fail: the node for 1 < x and all five nodes reachable from it are

removed from the graph, yielding the first graph in Figure 3. We

may then consider x <= 0, for which all tests succeed: we mark

it as visited and remove three other nodes from which it can be

reached, yielding the second graph in Figure 3. Fast-forwarding to

the end, we are left with a single node: the condition x <= 0 is

the weakest condition for x + abs x == 0 to hold.

Haskell’17, September 7–8, 2017, Oxford, United Kingdom Rudy Braquehais and Colin Runciman

Filtering redundant conditional laws In brief, we discard a

conditional equation c1 ⇒ e1 = e2 if we also have a conditional

equation c0 ⇒ e1 = e2 and either c1 = c0 according to the theory

(§4.2), or c1 ⇒ c0 according to the implication digraph.

5 Example Applications and Results

In this section, we use Speculate:

• to find laws about simple functions on lists (§5.1);

• to find a complete implementation of insertion sort (§5.2);

• to find ordering properties of binary-tree functions (§5.3);

• to find ordering properties of digraph functions (§5.4);

• to find an almost complete axiomatisation for

regular-expression equivalence (§5.5).

Then, in §5.6 we give a summary of performance results for all

these applications.

We emphasize what is new compared with QuickSpec [8, 22]. So

we often omit details of reported unconditional equations where

QuickSpec produces similar results. In §6 we shall summarise

differences with QuickSpec, including some reasons why the tools

may give slightly different sets of unconditional equations.

Sometimes, for the sake of space, we discuss only a selection

of inequalities and conditional equations, but always note where

others are also generated.

5.1 Finding properties of basic functions on lists

Given the value [], the operators (:) and (++), and the functions

head and tail, all with Int as element type, Speculate first reports

the following equations:

xs ++ [] == xs

[] ++ xs == xs

(xs ++ ys) ++ zs == xs ++ (ys ++ zs)

(x:xs) ++ ys == x:(xs ++ ys)

head (x:xs) == x

tail (x:xs) == xs

Exactly the same laws are found by QuickSpec [8, 22].

Lexicographic ordering But Speculate goes on to print the fol-

lowing inequalities, assuming the default lexicographical ordering

Haskell derives for lists.

[] <= xs

xs <= xs ++ ys

xs <= head xs:tail xs

xs ++ ys <= xs ++ (ys ++ zs)

The law xs <= head xs:tail xs may seem strange, but it is

correct, even when xs = []. As (:) is non-strict:

[] <= head []:tail []

[] <= ⊥:⊥

Subsequence ordering Speculate allows the user to request in-

equalities based on orderings other than an Ord instance. For

example, if we provide as an Args field (§3)

instances =

[ordWith (isSubsequenceOf :: [Int]->[Int]->Bool)]

then Speculate uses isSubsequenceOf (from Data.List) as <= for

lists of Ints, and reports the following inequalities:

[] <= xs

xs <= x:xs

xs <= xs ++ ys

xs <= ys ++ xs

xs <= tail (xs ++ xs)

[x] <= x:xs

xs <= head xs:tail xs

x:xs <= x:(y:xs)

xs ++ ys <= xs ++ (ys ++ zs)

xs ++ ys <= xs ++ (zs ++ ys)

x:xs <= x:(xs ++ ys)

x:xs <= x:(ys ++ xs)

xs ++ ys <= xs ++ (x:ys)

[x,y] <= x:(y:xs)

xs ++ [x] <= xs ++ (x:ys)

Automatically checking given orderings Before starting to com-

pute conjectures, Speculate checks by testing that the requested

inequality ordering is reflexive and antisymmetric with respect to

(==), and transitive. If not, it refuses to go further. For example, if

we set (/=) as an ordering function for the type [Int], Speculate

reports:

Error: (<=) :: [Int] -> [Int] -> Bool

is not an ordering (not reflexive,

not antisymmetric, not transitive)

5.2 Sorting and Inserting: deducing their implementation

With [] and (:) in the background signature, and functions insert

and sort from Data.List in the foreground, Speculate first reports

7 equations. QuickSpec produces a different but similar set of 7

equations. Both QuickSpec and Speculate find the base case of

insert and the recursive case of insertion sort:

insert x [] == [x]

sort (x:xs) == insert x (sort xs)

By default, Speculate hides laws with no variables. If we switch on

the option to reveal them, Speculate also reports the base case for

sort:

sort [] == []

If we also include <= and < for the element type in the back-

ground, Speculate reports the two conditional recursive cases

x <= y ==> insert x (y:xs) == x:(y:xs)

x < y ==> insert y (x:xs) == x:insert y xs

completing a full implementation of insertion sort synthesised from

results of black-box testing.

5.3 Binary search trees

In this section, we apply Speculate to functions on binary search

trees, with the following datatype.

data BT a = Null | Fork (BT a) a (BT a)

We declare two search trees equivalent if they contain the same

elements. Also, tree a is less than or equal to tree b if all elements

of tree a are present in tree b.

Speculate: Discovering Conditional Equations and Inequalities Haskell’17, September 7–8, 2017, Oxford, United Kingdom

instance (Eq a, Ord a) => Eq (BT a) where

(==) = (==) `on` toList

instance (Eq a, Ord a) => Ord (BT a) where

(<=) = isSubsequenceOf `on` toList

Equations If we apply Speculate to

insert :: Ord a => a -> BT a -> BT a

delete :: Ord a => a -> BT a -> BT a

isIn :: Ord a => a -> BT a -> Bool

it first reports 14 equations, including:

insert x (insert x t) == insert x t

delete x (delete x t) == delete x t

isIn x (insert x t) == True

isIn x (delete x t) == False

We find that insertion and deletion of an element x are idempotent,

and that they appropriately determine the outcomes of subsequent

membership tests.

Inequalities Speculate then reports 11 inequalities. The first

three are:

Null <= t

t <= insert x t

delete x t <= t

That is: the least tree is an empty tree; inserting elements makes

trees larger; deleting elements makes trees smaller.

Another group of five inequalities are about combinations of

some pair of the functions insert, delete and isIn:

delete x t <= delete x (insert y t)

insert x (delete y t) <= insert x t

delete x (insert y t) <= insert y (delete x t)

isIn x t ==> isIn x (insert y t)

isIn x (delete y t) ==> isIn x t

Conditional equation Speculate also reports this conditional

equation:

x /= y ==>

insert y (delete x t) == delete x (insert y t)

Applied to distinct elements, insert and delete commute.

5.4 Digraphs

In this section, we apply Speculate to a directed-graph library based

on the following adjacency-list datatype

data Digraph a = D [(a,[a])]

where values of the parametric type a are identified with nodes

of the digraph.

With elem and [] in the background, we apply Speculate to the

following functions:

empty :: Digraph a

addNode :: Ord a => a -> Digraph a -> Digraph a

addEdge :: Ord a => a -> a -> Digraph a -> Digraph a

preds :: Ord a => a -> Digraph a -> [a]

succs :: Ord a => a -> Digraph a -> [a]

isNode :: Ord a => a -> Digraph a -> Bool

isEdge :: Ord a => a -> a -> Digraph a -> Bool

isPath :: Ord a => a -> a -> Digraph a -> Bool

subgraph :: Ord a => [a] -> Digraph a -> Digraph a

The subgraph ns function extracts the subgraph of its argument

with nodes restricted to those listed in ns.

We define an ordering on digraphs as follows.

instance Ord a => Ord (Digraph a) where

g1 <= g2 = all (`elem` nodes g2) (nodes g1)

&& all (`elem` edges g2) (edges g1)

The ordering relationship holds if all nodes and edges of g1 are

also present in g2.

Equations Speculate reports 15 equations. For example, they

include these commutativity rules about addNode and subgraph:

addNode x (addNode y a) == addNode y (addNode x a)

subgraph xs (subgraph ys a) ==

subgraph ys (subgraph xs a)

Conditional Equations Of the two reported conditional equa-

tions, the most interesting is:

elem x xs ==> subgraph xs (addNode x a)

== addNode x (subgraph xs a)

Indeed, addNode x and subgraph xs commute when x is

an element of xs.

Inequalities Speculate reports a dozen inequalities. These five

are general laws about the relative extent of graphs.

empty <= a

a <= addNode x a

subgraph xs a <= a

a <= addEdge x y a

addNode x a <= addEdge x y a

Other inequalities involve empty or give simple rules about isNode,

isEdge and isPath. They are all correct, but we omit them to save

space.

5.5 Regular Expressions

In this section, we use Speculate to conjecture properties about

regular expressions. As we shall see, this is a muchmore demanding

example. We shall reach the limits of what we can dowith Speculate.

We declare the following datatype RE a with a parametric type

a for the alphabet.

data RE a = Empty

| None

| Lit a

| Star (RE a)

| RE a :+ RE a

| RE a :. RE a

We declare the Listable instance

instance Listable a => Listable (RE a) where

tiers = cons0 Empty

\/ cons0 None `ofWeight` 1

\/ cons1 Lit \/ cons1 Star

\/ cons2 (:+) \/ cons2 (:.)

Haskell’17, September 7–8, 2017, Oxford, United Kingdom Rudy Braquehais and Colin Runciman

Table 5. Regular Expression Axioms, the size of the largest side (LHS/RHS) and whether each is found by Speculate.

Basic / Common Axioms expr. size found

1. Identity (+) E + ∅ ≡ E 3 yes

2. Idempotence (+) E + E ≡ E 3 yes

3. Commutativity (+) E + F ≡ F + E 3 yes

4. Associativity (+) E + (F +G) ≡ (E + F) +G 5 yes

5. Null (.) E∅ ≡ ∅E ≡ ∅ 3 yes

6. Identity (.) Eϵ ≡ ϵE ≡ E 3 yes

7. Left distributivity E(F +G) ≡ EF + EG 7 yes (after almost 3 days)

8. Right distributivity (E + F)G ≡ EG + FG 7 yes (after almost 3 days)

9. Associativity (.) E(FG) ≡ (EF)G 5 yes

Salomaa (1966) Axioms [18]

S10. Left expansion (∗) E∗ ≡ ϵ + E∗E 6 entailed by E∗E ≡ EE∗ and K10

S11. Inner expansion (∗) E∗ ≡ (ϵ + E)∗ 4 yes

S12. Inference (ewp) E ≡ EF +G ⇒ E ≡ GF ∗ if ewp(F) 10 no

Conway (1971) Axioms [9]

C10. Elimination (+∗) (E + F)∗ ≡ (E∗F)∗E∗ 8 no

C11. Elimination (.∗) (EF)∗ ≡ ϵ + E(FE)∗F 10 no

C12. Idempotence (∗∗) (E∗)∗ ≡ E∗ 3 yes

C13. Expansion (∗) E∗ ≡ (En)∗E<n (n > 0) — no

Kozen (1994) Axioms [14]

K10. Left expansion (∗) ϵ + EE∗ ≡ E∗ 6 yes

K11. Right expansion (∗) ϵ + E∗E ≡ E∗ 6 entailed by E∗E ≡ EE∗ and K10

K12. Left inequality F + EG ≤ G ⇒ E∗F ≤ G 7 degenerate case: F +GG ≤ G ⇒ G(F +G) ≤ G (3 days)

K13. Right inequality F +GE ≤ G ⇒ FE∗ ≤ G 7 degenerate case: F +GG ≤ G ⇒ FG∗ ≤ G (3 days)

We declare a three-symbol alphabet, also with a Listable instance:

newtype Symbol = Symbol Char deriving (Eq, Ord, Show)

instance Listable Symbol where

tiers = cons0 (Symbol 'a')

\/ cons0 (Symbol 'b') `ofWeight` 1

\/ cons0 (Symbol 'c') `ofWeight` 2

The ofWeight applications make these constructions appear less

frequently in the test value enumeration.

Testing equivalence by matching We wish to define equiva-

lence of REs by equality of string-matching outcomes. To do so, we

define a function to translate the RE representation into the string

format used by an existing library 1 for matching.

translate :: (a -> Char) -> RE a -> String

The library exports (=˜) where s =˜ e if s matches e. Using

translate and =˜, we define:

match :: (a -> Char) -> [a] -> RE a -> Bool

match f xs r = map f xs =~ translate f r

So, for example:

> match id "aa" (Star (Lit 'a') :. Lit 'b')

False

> match id "aa" (Star (Lit 'a') :. Star (Lit 'b'))

True

1Text.Regex.TDFA from the regex-tdfa package.

With match defined, we can now implement approximate equiva-

lence and ordering of regular expressions based on a limited number

of membership tests:

testMatches :: (Listable a, Show a, Charable a, Ord a)

=> RE a -> [Bool]

testMatches = map (\e -> match toChar e r)

$ take 120 list

(/==/), (/<=/) :: RE Symbol -> RE Symbol -> Bool

r /==/ s = testMatches r == testMatches s

r /<=/ s =

and $ zipWith (<=) (testMatches r) (testMatches s)

Failing first a�empts In our first attempts using this approach,

execution times were excessive. Even after caching up to ten mil-

lion textMatches results, a 30-minute run produced some wrong

equations due to insufficient testing! Our solution was down-sizing.

Starting small We reconfigure Speculate to produce equations

only up to size 3. After a couple of minutes, it prints:

1. r :+ r == r

2. Star (Star r) == Star r

3. r :+ None == r

4. r :. Empty == r

5. r :. None == None

6. Empty :. r == r

7. None :. r == None

8. r :+ s == s :+ r

Speculate: Discovering Conditional Equations and Inequalities Haskell’17, September 7–8, 2017, Oxford, United Kingdom

All these are sensible and correct laws about regular expressions.

So now we declare canonicalRE as follows:

canonicalRE :: (Eq a, Ord a) => RE a -> Bool

canonicalRE (r :+ s) | r >= s = False -- by 1&8

canonicalRE (Star (Star r)) = False -- by 2

canonicalRE (r :+ None) = False -- by 3

canonicalRE (None :+ r) = False -- by 3&8

canonicalRE (r :. Empty) = False -- by 4

canonicalRE (r :. None) = False -- by 5

canonicalRE (Empty :. r) = False -- by 6

canonicalRE (None :. r) = False -- by 7

canonicalRE _ = True

and use it to refine our Listable instance by adding ‘suchThat‘

canonicalRE.

Equations of size 4 With the updated Listable instance, Specu-

late considers a greater range of candidate equations with the same

number of tests. Configured to produce equations up to size 4, it

prints the following new laws:

r :+ Star r == Star r

Star r :. r == r :. Star r

Star (r :+ Empty) == Star r

Empty :+ Star r == Star r

Now we repeat the process, further refining canonicalRE, and so

the Listable instance, on the basis of these conjectured laws.

Equations of size 5 and 6 We reduce the number of tests to 200

and again repeat the process for sizes 5 and 6. Speculate prints

seven equations of size 5 and nine of size 6 — including axioms 5, 9

and K10 from Table 5.

Inequalities and equations of size 7 Configured to explore

equations and inequalities of size 7, Speculate finds the distributive

laws 7 and 8 from Table 5. At last, Speculate finds all the com-

mon laws from all three axiomatisations of regular expressions. It

also finds the following degenerate cases of Kozen’s conditional

inequalities — crucial ingredients in his complete axiomatisation:

r :+ (s :. s) <= s ==> r :. Star s <= s

r :+ (s :. s) <= s ==> s :. (r :+ s) <= s

Summary This case study was “a stretch”. We wanted to see how

far we could get with Speculate. With patience, we can get very

close to a complete axiom system, but with the current version of

Speculate it is just out of reach.

5.6 Performance Summary

Performance results are summarized in Table 6. Leaving aside the

regular-expression application, Speculates takes up to a few seconds

to consider expressions for up to size 5. Our tool and examples

were compiled using ghc -O2 (version 8.0.1) under Linux. The

platform was a PC with a 2.2Ghz 4-core processor and 8GB of RAM.

6 Related Work

QuickSpec The QuickSpec tool [8, 20–22] discovers equational

specifications automatically. Our technique is an extension that

allows production of conditional equations and inequalities. Quick-

Spec inspired us to start working on Speculate. Table 7 shows a

summary of differences between QuickSpec 1, QuickSpec 2 and

Speculate.

In principle QuickSpec can generate conditional equations, but

only with conditions restricted to applications of a set of declared

predicates. Consider the following example from [22]. When asked

to generate laws about zip and (++), both QuickSpec and Speculate

produce the following equations:

zip xs (xs ++ ys) == zip xs xs

zip (xs ++ ys) xs == zip xs xs

These laws are valid but they have conditional generalizations:

length xs == length ys ==>

zip xs (ys ++ zs) == zip xs ys

length xs == length ys ==>

zip (xs ++ zs) ys == zip xs ys

In Speculate, it is enough to have (==) and length among the

background constants to obtain the more general laws.

QuickSpec can only discover these more general laws given quite

explicit directions. By providing length in the background and

setting the following in QuickSpec’s predicates field

predicates =

[predicate (undefined :: Proxy "eqLen") eqLen]

where

eqLen :: [Int] -> [Int] -> Bool

eqLen xs ys = length xs == length ys

QuickSpec is able to find the more general laws in the form:

eqLen xs ys ==> zip xs (ys ++ zs) == zip xs ys

eqLen xs ys ==> zip (xs ++ zs) ys == zip xs ys

With regards to how laws are reported, we made a different

design choice to QuickSpec. QuickSpec reports laws as soon as

they are discovered, so the user sees progress as QuickSpec runs.

Speculate only reports laws after running the completion procedure,

so later laws can be used to discard earlier ones. Speculate also, by

default, does not report variable-free laws like sort [] == [].

QuickSpec has support for polymorphism: if an equation is

discovered for a polymorphic version of a function it can be used

as a pruning rule for all its monomorphic instances. Speculate

does not yet support that polymorphism; it requires monomorphic

instances.

To double-check Speculate’s reimplementation of the basic equa-

tion generating machinery in QuickSpec: (1) we compared Specu-

late output with QuickSpec output to check if there was anymissing

equation, and (2) we compared performance of the two tools. This

comparison is summarized in Table 8. QuickSpec 2 is a little bit

faster than Speculate — early profiling indicates that we were not

as smart as the QuickSpec authors when implementing our term

rewriting and completion engine.

Table 9 presents needed size limits and times to generate some

inequalities and conditional laws for QuickSpec 2 and Speculate.

Results in tables 8 and 9 are based on QuickSpec 1 version 0.9.6

and on QuickSpec 2 development version from 11 May 2017 with

git commit hash 3c6e010. At the time of writing, developers are

working on improving support for conditional laws in QuickSpec.

Haskell’17, September 7–8, 2017, Oxford, United Kingdom Rudy Braquehais and Colin Runciman

Table 6. Summary of Performance Results: figures are mean values across all runs; size limit = maximum number of expression size; #-tests

= maximum number of test-cases for any property; time = rounded elapsed time and space = peak memory residency (both from GNU time).

configured size limit for maximum resources number of reported

Example eqs. ineqs. cond. eqs. #-vars #-tests time space eqs. ineqs. cond. eqs.

(+) and abs (§1) 5 4 4 2 500 3s 7MB 23 17 4

5 5 5 2 500 25s 7MB 23 44 4

6 5 5 3 500 2m 37s 8MB 43 44 24

List (§5.1) 5 4 – 3 500 < 1s 7MB 6 6 –

7 6 – 3 500 31s 9MB 7 30 –

Insert Sort (§5.2) 5 – 3 2 500 < 1s 7MB 11 – 2

6 – 5 3 500 5s 8MB 16 – 8

7 – 6 3 500 1m 27s 12MB 12 – 12

Binary Trees (§5.3) 5 4 4 2 500 < 1s 7MB 16 4 1

6 5 5 3 500 14s 7MB 16 22 5

Digraphs (§5.4) 5 4 4 2 500 1s 8MB 15 12 2

6 5 5 3 500 1m 52s 10MB 27 30 34

6 5 5 3 6000 2m 22s 23MB 25 30 17

Regexes (§5.5) 3 – – – 500 1m 30s < 6GB 8 – –

4 – – – 400 9m 11s < 6GB 12 – –

5 – – – 200 17m 13s < 6GB 19 – –

6 – – – 200 1h 26m 32s 6GB 28 – –

7 7 – 2 200 2d 22h 30m 10s 6GB 130 699 –

Table 7. Speculate contrasted with QuickSpec 1 and QuickSpec 2.

QuickSpec 1 QuickSpec 2 Speculate

Testing Strategy random random enumerative

(QuickCheck) (QuickCheck) (LeanCheck)

Direct discovery of equations yes yes yes

of inequalities no no yes

of conditional equations no restricted yes

Reported equations as discovered as discovered after completion

Constant laws (laws with no variables) yes yes hidden by default

How search is bounded depth-bounded size-bounded size-bounded

Explicit treatment of polymorphic functions no yes no

Support for pruning by external theorem provers no yes no

Performance (see Table 8) slowest fastest median

Table 8. Timings and equation counts when generating unconditional equations using Speculate, QuickSpec 1 and QuickSpec 2. In QS1,

expressions are primarily explored up to a certain depth [8], so, for a fair comparison, we have introduced a depth limit in QS2 and Speculate.

size depth max. Runtime in seconds #-reported equations

Example limit limit #-tests QS1 QS2 Speculate QS1 QS2 Speculate

(+) and abs (§1) 6 4 500 4s < 1s < 1s 10 13 9

7 4 500 7s < 1s 2s 14 15 14

0, 1, +, × (Int) 7 4 500 95s 3s 6s 9 13 9

List (§5.1) 7 4 500 52s < 1s < 1s 28 7 7

8 4 500 10m 31s < 1s < 1s 40 7 7

Speculate: Discovering Conditional Equations and Inequalities Haskell’17, September 7–8, 2017, Oxford, United Kingdom

Table 9. Needed size limits and times to generate some inequalities and conditional laws for QuickSpec 2 and Speculate. Speculate is able to

find some laws much faster as they appear when exploring a smaller size.

Needed Needed # reported

size limit max #-tests Runtime laws

Example Target Law QS2 Spl. QS2 Spl. QS2 Spl. QS2 Spl.

(+) and abs (§1) x <= abs x 4 2 500 500 < 1s < 1s 12 3

x <= abs (x + x) 6 4 500 500 < 1s < 1s 36 23

x + y <= x + abs y 8 4 500 500 8s < 1s 82 23

x + y <= abs x + abs y 9 5 500 500 34s 1s 125 43

(or x + y <= abs x + y)

Binary Trees (§5.3) isIn x t ==> isIn x (insert y t) 9 5 2000 500 37s 1s 34 39

Regexes (§5.5) F +GE ≤ G ⇒ E∗F ≤ G 14 7 (o p e n r e s e a r c h p r o b l e m)

CoCo The CoCo (Concurrency Commentator) tool [24] generates

specifications for concurrent Haskell programs containing laws

about refinement or equivalence of side effects. Drawing upon

the techniques used in QuickSpec and Speculate, CoCo also works

by testing, and can be seen as QuickSpec/Speculate to discover

equivalences and refinements between concurrent expressions.

HipSpec QuickSpec and Speculate can only provide apparent laws

as their results are based on testing. The HipSpec system [7] auto-

matically derives and proves properties about functional programs.

HipSpec first uses QuickSpec to discover conjectures to prove. Then,

using inductive theorem proving, it automatically generates a set

of equational theorems about recursive functions. Those theorems

can be used as a background theory for proving properties about a

program.

Hipster The Hipster system [12] integrates QuickSpec with the

proof assistant Isabelle/HOL. Hipster speeds up and facilitates the

development of new theories in Isabelle/HOL by using HipSpec to

discover basic lemmas automatically.

Daikon The Daikon tool [11] automatically discovers apparent

invariants in imperative programs. Those invariants include: pre-

conditions and postconditions of statements, equational relation-

ships between variables at a given program point and equations

between functions from a library. Unlike QuickSpec and Specu-

late, Daikon is aimed at imperative programs, written in languages

such as: C, C++, Java and Perl. Daikon works by testing potential

invariants against observed runtime values.

FitSpec The FitSpec tool [4] provides automated assistance in the

task of refining specifications. To do so, it tests mutant variations

of functions under test against a given property set, recording any

surviving mutants that pass all tests. The user is prompted to

strengthen the property set or to remove redundant properties. It

has been applied to QuickSpec results and could also be applied to

Speculate results.

Property-based testing Since the introduction of QuickCheck

[6], several other property-based testing libraries and techniques

have been developed, such as SmallCheck, Lazy SmallCheck [16, 17]

and Feat [10]. These tools automatically test properties describing

Haskell functions meaning that Speculate results can be used as

properties for regression tests.

7 Conclusions and Future Work

Conclusions In summary, we have presented a tool that, given a

collection of Haskell functions, conjectures a specification involving

apparent inequalities and conditional equations. This specification

can contribute to understanding, documentation and properties for

regression tests. As set out in §3 and §4, Speculate enumerates, tests

expressions and reasons from test results to produce its conjectures.

We have demonstrated in §5 Speculate’s applicability to a range of

small examples, and we have briefly compared in §6 some of the

results obtained with related results from other tools.

Value of reported laws The conjectured equations and inequalities

reported by Speculate are surprisingly accurate in practice, despite

their inherent uncertainty in principle. These conjectures provide

helpful insights into the behaviour of functions. For the sorting

example in §5.2, we were even able to synthesise a complete imple-

mentation. When Speculate finds an apparent but incorrect law,

increasing the number of tests per law is a simple and effective

solution (§5.4). The special treatment of inequalities and condi-

tional equations makes possible the generation of laws previously

unreachable by a tool such as QuickSpec [8, 22].

Ease of use Arguably, a tool is easier to use if it requires less work

from the programmer. As we illustrated in §3, writing a minimal

program to apply Speculate takes only a few lines of code. The

speculate function parses command-line arguments to allow easy

configuration of test parameters. If only standard Haskell datatypes

are involved, no extra Listable instances are needed. If user-

defined data types can be freely enumerated without a constraining

data invariant, instances can be automatically derived.

However, often we do need to restrict enumeration by a data

invariant, and a crude application of a filtering predicate may be

too costly, with huge numbers of discarded values. Effective use of

Speculate may require careful programming of custom Listable

instances, even if suitable definitions can be very concise. The

Speculate library does not currently incorporate methods to derive

enumerators of values satisfying given preconditions [5, 15].

Future Work We note a few avenues for further investigation

that could lead to improved versions of Speculate or similar tools.

Improve performance when generating inequalities The algorithm

to generate equations is partly based on the observation that, for

an equation to be true, its one-variable-per-type instance must

Haskell’17, September 7–8, 2017, Oxford, United Kingdom Rudy Braquehais and Colin Runciman

be true. So, Speculate initially considers one-variable-per-type

equations, generalizing them to their several-variable versions only

if they are found true (§4.2). The same applies to inequalities:

for x + y <= x + abs y to be true x + x <= x + abs x must be

true. Speculate does not yet exploit this and does some unnecessary

testing.

Parallelism As a way to improve performance, particularly when

dealing with costly test functions such as in the regular expressions

example (§5.5), we could parallelise parts of Speculate. For example,

divide the testing of laws among multiple processors.

Automated generation of efficient Listable instances Right now, to

use Speculate, Listable instances have to be explicitly declared.

Speculate could take the constructors of a type in its constants

list (§3) and automatically construct a generator for values of that

type. This generator could be improved as new equations are

discovered. If for a given type constructor Cons, we discover that

Cons x y == Cons y x, in further tests, we would only apply

Cons to ordered x and y. This is what we did manually in our

regular-expressions example (§5.5).

Improve filtering of redundant inequalities and conditions Although

Speculate already filters out a lot of redundant inequalities and

conditional equations, there is still room for improvement. Recall

these laws from Example 1.1:

1. x == 1 ==> 1 == abs x

2. abs x <= y ==> abs (x + y) == x + y

3. abs y <= x ==> abs (x + y) == x + y

By interpreting the condition as a variable assignment, the first law

is an instance of 1 == abs 1. The other two laws are equivalent

by the commutativity of addition (+).

Special treatment of conjunctions and disjunctions Although not

explored much in the examples in this paper, conjunctions (&&) and

disjunctions (||) can often occur as conditions of properties [17].

In the current version of Speculate, logical operators are treated as

regular functions. In future versions we could treat them specially,

exploiting their properties of commutativity and associativity to

reduce the search space.

Checking that given equivalences are congruences In §5.1, we men-

tion that before running any tests, Speculate checks whether given

equality (==) functions are equivalences (reflexive, symmetric and

transitive). Speculate also assumes, but does not check, that given

== functions are congruences: in any expression e , suppose we

replace a subexpression s by s ′, where s ≡ s ′, to obtain e ′ as the

whole: then we require e ≡ e ′. Future versions of Speculate should

check for congruence.

Detecting and using equivalences and orderings In the current ver-

sion of Speculate, the user has to say which equivalence (==) and

ordering (<=) functions to use. Or, in the case of standard types, the

user has to explicit provide functions to override the standard ones.

The algorithm to compute equations can work with any function

that is a congruent equivalence. Similarly, the algorithm to compute

inequalities, can work with any function that is an ordering. Spec-

ulate could detect any given functions that have these properties

and autonomously search for laws based on them.

Availability

Speculate is freely available with a BSD3-style license from:

• h�ps://hackage.haskell.org/package/speculate

• h�ps://github.com/rudymatela/speculate

This paper describes Speculate as of version 0.2.5.

Acknowledgements

We thank Nick Smallbone for hospitality and many interesting

discussions about QuickSpec; Maximilian Algehed for helping with

running one of QuickSpec’s examples; Ivaylo Hristakiev for dis-

covering a bug in our term unification algorithm; and anonymous

reviwers for their comments on earlier drafts.

Rudy Braquehais is supported by CAPES, Ministry of Education

of Brazil (Grant BEX 9980-13-0).

References
[1] 2017. Haskell’s Data.Dynamic library documentation. h�ps://hackage.haskell.

org/package/base/docs/Data-Dynamic.html. (2017).
[2] Franz Baader and Tobias Nipkow. 1999. Term Rewriting and All That. Cambridge

University Press.
[3] Leo Bachmair, Nachum Dershowitz, and David A. Plaisted. 1989. Completion

Without Failure. In Resolution Of Equations In Algebraic Structures. Vol. 2. Aca-
demic Press, Boston, 1–30.

[4] Rudy Braquehais and Colin Runciman. 2016. FitSpec: refining property sets for
functional testing. In Haskell’16. ACM, 1–12.

[5] Lukas Bulwahn. 2012. Smart Testing of Functional Programs in Isabelle. In LPAR
2012 (LNCS 7180). Springer, 153–167.

[6] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In ICFP’00. ACM, 268–279.

[7] Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. 2012. Hip-
Spec: Automating inductive proofs of program properties. In Workshop on Auto-
mated Theory eXploration: ATX 2012.

[8] Koen Claessen, Nicholas Smallbone, and John Hughes. 2010. QuickSpec: Guess-
ing Formal Specifications Using Testing. In TAP 2010. Springer, 6–21.

[9] John Horton Conway. 1971. Regular algebra and finite machines. Chapman and
Hall.

[10] Jonas Duregård, Patrik Jansson, and Meng Wang. 2012. Feat: functional enumer-
ation of algebraic types. In Haskell’12. ACM, 61–72.

[11] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen Mccamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. 2006. The Daikon system for
dynamic detection of likely invariants. Science of Computer Programming 69, 1
(2006), 35–45.

[12] Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen. 2014. Hip-
ster: Integrating Theory Exploration in a Proof Assistant. Springer.

[13] Donald Knuth and Peter Bendix. 1983. Simple Word Problems in Universal
Algebras. In Automation of Reasoning. Springer, 342–376.

[14] Dexter Kozen. 1994. A completeness theorem for Kleene algebras and the algebra
of regular events. Information and Computation 110, 2 (1994), 366–390.

[15] Fredrik Lindblad. 2007. Property Directed Generation of First-Order Test Data.
In TFP’07. 105–123.

[16] Jason S. Reich, Matthew Naylor, and Colin Runciman. 2013. Advances in Lazy
SmallCheck. In IFL’13. Springer, 53–70.

[17] Colin Runciman, Matthew Naylor, and Fredrik Lindblad. 2008. SmallCheck and
Lazy SmallCheck: Automatic Exhaustive Testing for Small Values. In Haskell’08.
ACM, 37–48.

[18] Arto Salomaa. 1966. Two complete axiom systems for the algebra of regular
events. Journal of the ACM (JACM) 13, 1 (1966), 158–169.

[19] Tim Sheard and Simon Peyton Jones. 2002. Template Meta-programming for
Haskell. In Haskell’02. ACM, 1–16.

[20] Nicholas Smallbone. 2011. Property-based testing for functional programs. Licen-
tiate Thesis. Chalmers University of Technology.

[21] Nicholas Smallbone. 2013. Lightweight verification of functional programs. Ph.D.
Dissertation. Chalmers University of Technology.

[22] Nicholas Smallbone and Moa Johansson. 2017. Quick specifications for the busy
programmer. (2017). h�p://www.cse.chalmers.se/~nicsma/papers/quickspec2.
pdf Accepted for publication in JFP, Cambridge University Press.

[23] The GHC Team. 1992–2017. The GlasgowHaskell Compiler. h�ps://www.haskell.
org/ghc/. (1992–2017).

[24] Michael Walker and Colin Runciman. 2017. Cheap Remarks about Concurrent
Programs. (2017). Accepted for presentation at TFP’17.

	Abstract
	1 Introduction
	1.1 Contributions.
	1.2 Road-map.

	2 Definitions
	3 How Speculate is Used
	4 How Speculate Works
	4.1 Equational Reasoning based on Term Rewriting
	4.2 Equations and Equivalence Classes of Expressions
	4.3 Inequalities between Class Representatives
	4.4 Conditional Equations between Class Representatives

	5 Example Applications and Results
	5.1 Finding properties of basic functions on lists
	5.2 Sorting and Inserting: deducing their implementation
	5.3 Binary search trees
	5.4 Digraphs
	5.5 Regular Expressions
	5.6 Performance Summary

	6 Related Work
	7 Conclusions and Future Work
	References

