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Abstract 21	

Plants suffer multiple, simultaneous assaults from above and below ground. In the laboratory, 22	

pests and/or pathogen attack are commonly studied on an individual basis. The molecular 23	

response of the plant to attack from multiple organisms and the interaction of different defence 24	

pathways is unclear. The inducible systemic responses of the potato (Solanum tuberosum L.) host 25	

plant were analysed to characterise the plant-mediated indirect interactions between a sedentary, 26	

endoparasitic nematode (Globodera pallida) and a phloem-sucking herbivore (Myzus persicae). 27	

The reproductive success of M. persicae was greater on potato plants pre-infected with G. pallida 28	

compared to control plants. Salicylic acid (SA) increased systemically in the leaves of potato 29	

plants following nematode and aphid infection singly with a corresponding increase in expression 30	

of SA-mediated marker genes. An increase in jasmonic acid (JA) associated with aphid infection 31	

was suppressed when plants were co-infected with nematodes. Our data suggests a positive, 32	

asymmetric interaction between a sedentary endoparasitic nematode and a sap-sucking insect. 33	

The systemic response of the potato plant following infection with G. pallida indirectly 34	

influences the performance of M. persicae. This work reveals additional secondary benefits of 35	

controlling individual crop pests.  36	

Keywords: 37	

Aboveground-belowground interactions; aphids; induced defences; jasmonic acid; plant parasitic 38	

nematodes; salicylic acid 39	

 40	

 41	
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Introduction 42	

Plants are simultaneously attacked by a number of invading organisms, both above and below 43	

ground. Pests and pathogens sharing the same host can, despite their spatial separation, together 44	

elicit a response that is more complex than the additive response of those sole agents (van Dam & 45	

Heil, 2011). Infection of a host plant that carries a pre-existing pest or pathogen burden will 46	

influence the success of the secondary or primary infection, depending on a range of factors 47	

including the species under investigation, the sequence of pest arrival, the severity of the 48	

infestation (Erb et al., 2011; Johnson et al., 2012; Huang, et al, 2016; Papadopoulou and van 49	

Dam, 2017), and the changes in primary and secondary metabolites in the shared plant tissues 50	

(Bezemer et al., 2003; Wardle et al., 2004; Schoonhoven et al, 2005; van Geem et al, 2016). 51	

Given this context dependency, it is unsurprising that both positive and negative effects of below-52	

ground organisms on those above-ground have been reported. For example, a positive indirect 53	

influence by generalist root herbivores resulted in an increased abundance of a tephritid (Diptera: 54	

Tephritidae) seed predator and two of its dominant parasitoids (Hymenoptera: Chalcidoidea) on 55	

the marsh thistle (Masters et al., 2001), whereas negative indirect effects of wireworms below 56	

ground led to a reduced performance and fecundity of the beet armyworm, a major foliage 57	

feeding pest of cotton (Bezemer et al., 2003).   58	

Host-mediated interactions between plant-feeding organisms are particularly significant in 59	

agricultural systems: many economically important crops are attacked simultaneously by 60	

aboveground insect pests, such as aphids, and by belowground pathogens, such as plant parasitic 61	

nematodes. Aphids, the largest group of phloem feeders, use their stylet-like mouthparts to feed 62	

on photoassimilates found in the phloem sieve elements (Pollard, 1972). Aphids also transmit 63	
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viruses, which can adversely affect the fitness of the host plant (Dixon, 1998). Primarily, their 64	

importance is as vectors of virus diseases but due to their ability to reproduce rapidly (Foster et 65	

al., 2000), high populations can also result in substantial reductions in yield (Kolbe, 1970). Cyst 66	

nematodes are a group of highly evolved sedentary endoparasites and are pathogens of temperate, 67	

subtropical and tropical plant species. Following root penetration, cyst nematode second-stage 68	

juveniles migrate intracellularly towards the vascular cylinder where each chooses an initial 69	

syncytial cell from which it will form a highly metabolically active feeding site (Lilley et al., 70	

2005). Large scale gene expression profiling has identified genes that are differentially regulated 71	

by cyst nematode infection following a compatible interaction (Alkharouf et al., 2006; Ithal et al., 72	

2007, Szakasits et al., 2009) and many genes related to metabolic pathways including 73	

phytohormone regulation are up-regulated in the host plant (Uehara et al., 2010). Salicylic acid 74	

(SA)-dependent signalling seems to be crucial for resistance against biotrophic pathogens 75	

(Glazebrook, 2005; Loake & Grant, 2007) and cyst nematodes have been reported to activate a 76	

strong salicylic acid-mediated defence response in shoots of Arabidopsis thaliana from five days 77	

post inoculation (Wubben et al., 2008).  78	

Although cyst nematodes and aphids may share the same host, their infection of the plant is 79	

temporally as well as spatially separated: nematodes infect plants soon after roots emerge, while 80	

aphids colonise plants later in the year, once there is sufficient biomass above ground (van 81	

Emden et al., 1969). This temporal separation may give rise to asymmetric interactions, whereby 82	

nematodes influences the performance of aphids, but aphids do not impact on nematodes. There 83	

is some evidence to support this in that there are more studies demonstrating that nematodes have 84	

an effect on the performance and fecundity of aphids than vice versa (Kutyniok & Müller, 2012). 85	
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The mechanism underpinning this asymmetric interaction may be changes to plant biomass, 86	

although changes in primary and secondary metabolites appear to be more important at least in 87	

some cases. For example, a mixed nematode infection of Pratylenchus, Meloidogyne and 88	

Heterodera spp. has been reported to reduce the fecundity of Schizaphis rufula without 89	

significantly affecting plant biomass (Vandegehuchtee et al., 2010). Similarly, an increase in 90	

phenolic content in foliar parts of plants has been reported following infection with plant parasitic 91	

nematodes (Kaplan et al., 2008; van Dam et al., 2005), which had a negative effect on the 92	

survival rate of above-ground herbivores. In a study of interactions between the soybean aphid 93	

and the soybean cyst nematode, alate aphids preferred plants without nematodes over nematode-94	

infested plants, though the performance and population growth of aphids feeding on nematode-95	

infested plants was either unaffected or even slightly improved (Hong et al., 2010). Systemic 96	

changes to primary and secondary metabolites have been reported in Arabidopsis thaliana 97	

infected with the beet-cyst nematode Heterodera schachtii (Hoffmann et al., 2010). A similar 98	

response to H. schachtii in Brassica oleracea was subsequently reported to cause reduced aphid 99	

population growth and disturbed feeding relations between plants and aphids (Hol et al., 2013).  100	

Phytohormones such as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) are, or are at 101	

least partly, shared by both abiotic and biotic stress signalling, indicating the likelihood of 102	

crosstalk and convergence of mechanisms in these molecular pathways. Research aimed at 103	

developing stress-tolerant crops is therefore increasingly focussing on crosstalk between 104	

phytohormones (Miller et al, 2010; Denancé et al, 2013; Kissoudis et al, 2014). Crosstalk 105	

between different molecular signals is a way in which plants can fine-tune their responses to 106	

stress by controlling gene expression (Pieterse et al, 2012; Lazebnik et al, 2014). Phytohormones 107	
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can act either at their site of synthesis or systemically elsewhere in the plant (Peleg and 108	

Blumwald, 2011), thus attack from a pathogen at one position in a plant may indirectly affect a 109	

secondary arriving pest through plant-mediated interactions. Complex interactions between SA, 110	

JA and ET, however are influenced by the invading pest or pathogen and the timing of the 111	

infection (Ton et al, 2009; Dicke et al, 2009; Atkinson et al, 2015).    112	

In this study we examined plant-mediated interactions between the plant parasitic nematode, 113	

Globodera pallida and the generalist aphid Myzus persicae Sulzer (Hemiptera:Aphididae) in the 114	

potato crop (Solanum tuberosum cv. Désirée). The potato cyst nematode G. pallida is an 115	

important pathogen of potato crops that can cause reported yield losses in excess of 50% 116	

(Trudgill, 1986) and the species is estimated to be present in 64% of potato-growing fields in 117	

England and Wales (Minnis, 2002). M. persicae feeds on a large variety of plants belonging to 118	

different families and worldwide is the most important insect pest of potato (Radcliffe, 1982). 119	

Although there is an increasing number of studies on nematode-aphid interactions in the model 120	

species Arabidopsis thaliana (Kutyniok et al, 2012, Kutyniok et al, 2014), the plant-mediated 121	

mechanisms responsible for such effects at both the biochemical and molecular level remain 122	

unexplored in crop plants. Using a combination of molecular and biochemical techniques, we test 123	

the hypothesis that systemic changes in endogenous phytohormones and the expression of 124	

associated genes can indirectly influence these plant-mediated interactions between organisms 125	

feeding above and below ground. We examine the induced systemic defence response of potato 126	

plants following nematode infection and how these responses impact on aphid-induced SA 127	

production which is required for systemic acquired resistance (SAR), leading to the expression of 128	

PR-genes. We also describe levels of endogenous JA and the expression of a gene involved in 129	

Comment [GH[2]: Change	
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jasmonate signalling. Finally, we show the impact of G. pallida pre-infection of potato plants on 130	

M. persicae abundance.  131	

Materials and Methods 132	

Aphids and nematodes  133	

Nymphs of the peach-potato aphid (Myzus persicae) were obtained from the James Hutton 134	

Institute, Invergowrie, Dundee, Scotland. The aphids were asexual clones of a wild population 135	

isolated in Scotland (Kasprowicz et al., 2008). Aphid colonies were maintained on potato plants 136	

(S. tuberosum L. cv. Désireé) inside a mesh cage in a containment glasshouse at 20-22 °C under a 137	

16 h/8 h light/dark cycle. Only apterous (wingless) aphids were used and transferred to 138	

experimental plants using a fine paintbrush. 139	

Cysts of G. pallida were extracted from infected soil stocks using the Fenwick can method 140	

(Fenwick, 1940). Infective second-stage juveniles (J2s) were hatched from the cysts following 141	

treatment with 1% sodium hypochlorite aqueous solution (Huengens et al., 1996). J2 nematodes 142	

were stored in autoclaved tap water at 10°C and their viability was checked prior to use by 143	

observation using a stereobinocular microscope. 144	

Pest and pathogen infection and sample collection 145	

Potato tuber cuttings (S. tuberosum L. cv. Désireé) were planted in 18 cm pots containing 146	

pesticide-free compost. Growth took place in a glasshouse at 20-22 °C under a 16 h/8 h light/dark 147	

cycle for a period of three weeks. For potato plants infected with nematodes only, ten thousand J2 148	

nematodes suspended in six millilitres of autoclaved tap water were introduced into the compost 149	

Comment [GH[3]: Change	
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around the roots of each potato plant. Uninfected potato plants used as a control were mock-150	

inoculated with autoclaved tap water. At 14 days post inoculation (dpi), a fully expanded terminal 151	

leaf from the top of each plant was excised using fine tweezers, divided into three samples for 152	

RNA, SA and JA extractions and immediately snap frozen in liquid nitrogen. Five-week old 153	

potato plants were used for infection with aphids alone so ensuring each set of experimental 154	

plants were the same age. Twenty apterous aphids of various life-stages were transferred to the 155	

second fully expanded leaf with a fine paintbrush and confined to the abaxial surface of the leaf 156	

in a 2.5 cm diameter clip-cage. Aphid-free clip-cages were used in control experiments. After 48 157	

hours, aphids were carefully removed and the leaf was excised and sampled as previously 158	

described. Co-infected potato plants were initially inoculated with ten thousand J2 nematodes, 159	

then 14 days later 20 apterous aphids were applied to either infected or control plants for 48 hours 160	

as previously described. Co-infected samples were collected 48 hours post infection (hpi) with 161	

aphids.   162	

RNA extraction, cDNA synthesis & qRT-PCR for the analysis of PR-gene expression 163	

Total RNA was prepared from frozen leaf tissue of control and infected potato plants using the 164	

RNeasy® Plant Mini Kit (Qiagen, Inc., Valencia, CA, USA). First-strand cDNA was synthesised 165	

from 1000 ng RNA using SuperScript II reverse transcriptase (Invitrogen, Carlesbad, CA) and 166	

Oligo(dT)17  primer (500 µg/ml) following the manufacturer’s instructions. Quantitative reverse 167	

transcriptase (qRT)-PCR was carried out on the resulting cDNA using Brilliant III Ultra-Fast 168	

SYBR
®

 Green Master Mix and a Mx3005P (v. 4.10) instrument (Agilent Technologies, La Jolla, 169	

CA). Genes for expression analysis were selected according to their previously recorded 170	

involvement in biotic stress responses (Kombrink et al., 1988; Matton and Brisson, 1989; 171	
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Fidantsef et al., 1999; Reiss and Horstmann, 2001; Wang et al., 2005) (see results section for 172	

further details). Potato ELONGATION FACTOR 1-α was used to normalise the results (Nicot et 173	

al., 2005). Sequences of primers used for amplification of each gene are detailed in Supporting 174	

Information Table S1. Sequences for the chosen genes were found on the National Center for 175	

Biotechnology Information website (www.ncbi.nlm.nih.gov) and primers were designed using 176	

the online Primer 3 software (http://primer3.ut.ee/). Controls for qRT-PCR included reactions 177	

containing no template. All primer pairs had an amplification efficiency of 93-101% and R
2
 178	

correlation coefficients for standard curves ranged between 0.94 and 0.99. qRT-PCR was 179	

performed on five biological replicates for control and infected samples and each reaction was 180	

carried out in triplicate. Ct values were determined using the MxPro software. Relative 181	

expression between control and infected samples was determined using the 2(-Delta Delta C(T)) 182	

method (Livak and Schmittgen, 2001).  183	

Extraction and quantification of salicylic acid 184	

Salicylic acid (SA) extraction was performed on leaf tissue that had been treated with aphids and 185	

nematodes both singly and in combination using a modified protocol derived from Raskin et al. 186	

(1989). One millilitre (1 ml) of methanol (90%) was added to ground, frozen leaf tissue, and the 187	

resulting mixture was vortexed for one minute followed by sonication in a bath for five minutes. 188	

After centrifugation for five minutes at 14,104 g, the supernatant was collected and the pellet was 189	

re-extracted with 500 µl methanol (100%), vortexed for one minute, re-sonicated for five minutes 190	

and re-centrifuged at 14, 104 g for a further five minutes. Both supernatants were combined and 191	

dried using a GeneVac (EZ-2 series). For free SA quantification the dried samples were re-192	

suspended in 250 µl of 5% trichloracetic acid (TCA) and vortexed. The sample was extracted 193	

Comment [GH[5]: Change	
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twice in cyclohexane and ethyl acetate (1:1), vortexed vigorously and centrifuged at 14,104 g for 194	

one minute. The top organic phase was removed and dried using a GeneVac (EZ-2 series). The 195	

remaining phase was subjected to acid hydrolysis using 8M HCl and incubated at 80°C for one 196	

hour to quantify sugar-conjugated (or stored) SA. The sugar-conjugated (or stored) SA sample 197	

was extracted twice in cyclohexane and ethyl acetate (1:1), vortexed vigorously and centrifuged 198	

at 14,104 g for one minute. The top organic phase was removed and dried using a GeneVac. The 199	

pooled stored SA extract was re-suspended in 600 µl of water and acetonitrile (95:5) and 200	

quantified by high-pressure liquid chromatography (HPLC). Analysis was performed using a 201	

Supelcosil™ LC-18 column (250 x 4.6 mm, 5 µm). An injection volume of 20 µl was separated 202	

under isocratic conditions using a mobile phase of water, acetonitrile (HPLC grade) and formic 203	

acid (60:40:0.1) at a flow rate of 1 ml/min. SA was detected using a Dionex RF 2000 204	

Fluorescence Detector operated at an emission wavelength of 400 nm and an excitation 205	

wavelength of 303 nm respectively. SA was determined and quantified by comparing peaks of 206	

recovered SA using calibration standards. Total SA was calculated as the amount of free SA in 207	

plant samples to the amount of sugar-conjugated (or stored) SA in plant samples. The efficiency 208	

of SA recovery was calculated by using a deuterium-labelled internal standard of SA-d6. Twelve 209	

biological replicates were used for each condition analysed.     210	

Jasmonic Acid Quantification 211	

Leaf tissue was harvested as previously described. The samples were ground into a powder in a 212	

Tissue Lyser LT (Qiagen, Hilden, Germany) and 1 ml extraction solvent (methanol/H2O/formic 213	

acid; 80:19:1, v/v/v) was added and mixed. Samples were sonicated at 4°C for 5 minutes, agitated 214	

for 30 minutes at 4°C and centrifuged at 12,000 g for 10 minutes at 4°C. The extraction 215	

Comment [GH[6]: Change	
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procedure was repeated with 500 µl solvent and the supernatants were combined. Jasmonic acid 216	

was analysed on a UPLC AxION 2 TOF MS system coupled with an Altus SQ Detector (Perkin 217	

Elmer, UK). For the chromatographic separation the solvents were 0.1 % HCO2H in ultrapure 218	

water (A) and 0.1 % HCO2H in methanol (B), the column was a C18 100 X 1.2 mm (Perkin 219	

Elmer, UK) and the flow rate was set at 0.35 ml min
-1

. The binary analytical gradient used was as 220	

follows: 0 min, 1 % B; 20 min, 100 % B; 22 min, 100% B; 25 min, 1% B. The compound 221	

quantification was assured by calibration curve standards in the range of 5 – 50 ng/ml. The data 222	

analysis was performed using Empower 3 software (Waters, UK).    223	

Aphid Abundance    224	

To test the effect of G. pallida infection on aphids, ten apterous adults were placed in a 2.5 cm 225	

diameter clip cage on a fully expanded, terminal leaf second from the top of a potato plant pre-226	

infected with 10,000 J2 nematodes 14 days previously or mock-inoculated with water. After 24 227	

hours all aphids except for five nymphs were removed. The five nymphs were allowed to develop 228	

and the number of aphids inside the clip-cage were counted for 8 days to determine the 229	

abundance of aphids on nematode-infested plants and non-infected control plants. Five biological 230	

replicates for each condition were used in the experiment.                             231	

Data Analysis 232	

The effects of the treatments on gene expression and the levels of endogenous phytohormones JA 233	

and SA were determined using a Mann-Whitney U test. A Mann-Whitney U test was also carried 234	

out to compare the abundance of aphids on nematode infected plants against non-infected control 235	

plants.  236	
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Results 237	

Infection of potato plants with Globodera pallida or Myzus persicae elicits a SA-mediated 238	

systemic defence pathway in the leaves. 239	

There was a significant increase in endogenous SA in the leaves of potato plants 14 days after 240	

infection with G. pallida. The level of free SA was significantly greater in nematode-infected 241	

plants compared to non-infected control plants (mean ± standard error), 571.33 ± 70.09 ng/g FW 242	

for infected plants and 231.20 ± 27.21 ng/g FW for control plants (Mann-Whitney U = 497.5, P = 243	

0.001, sig ≤ .05, 2-tailed) (Fig. 1A). The presence of nematodes also significantly increased total 244	

levels of SA in leaves of potato plants, (4541.42 ± 268.2 ng/g FW for nematode-infected plants 245	

and 2132.77 ± 758.57 ng/g FW for control plants, P ≤ 0.01) (Fig. 1A). These results suggest an 246	

activation of the systemic acquired resistance (SAR) pathway in the leaves of potato plants, 247	

which is mediated by salicylic acid (Gaffney et al., 1993).  248	

An elevated level of the endogenous phytohormone SA is known to lead to the expression of 249	

pathogen-related (PR) genes, some of which are commonly used molecular markers of SAR 250	

(Bowling et al., 1994; Cao et al., 1994; Uknes et al., 1993). We therefore measured the 251	

expression of PR-1, PR-2 and PR-5, all of which are co-ordinately regulated by SA (Cao et al., 252	

1994), in nematode-infected plants 14 dpi. Transcripts of all three PR-genes were detected in leaf 253	

tissue from both infected and non-infected potato plants. However only the expression of PR-5 254	

was significantly induced in nematode infected plants (Mann-Whitney U = 1.000, P = 0.027) 255	

(Fig. 1C). Transcripts of PR-5, which encodes a thaumatin-like protein, were approximately 256	

three-fold higher in nematode-infested plants relative to control plants (Fig. 1C).  257	
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Five-week old potato plants infected with aphids were analysed for endogenous SA and the 258	

expression of SA-mediated defence genes. There was a significant increase in free (686 ± 76 ng/g 259	

FW, P ≤ 0.001), stored (7010 ± 547 ng/g FW, P ≤ 0.001) and total (8046 ± 555 ng/g FW, P ≤ 260	

0.001) SA in the leaves of potato plants infected with aphids compared to control plants (Free: 261	

276 ± 32 ng/g FW; Stored: 3581 ± 392 ng/g FW; Total: 4055 ± 396 ng/g FW) (Fig. 2A). The 262	

expression of SA-mediated genes PR-1 (P ≤ 0.001) and PR-5 (P ≤ 0.001) was also significantly 263	

elevated. There was no significant increase in PR-2 expression (Fig. 2C).  264	

Infection with Myzus persicae but not Globodera pallida elicits a JA-mediated systemic 265	

defence pathway in the leaves of potato plants. 266	

In addition to SA-mediated effects, it is well established that jasmonic acid (JA) has an important 267	

role in the plant defence pathway. Hence we also measured endogenous levels of JA as well as 268	

transcript levels of JAZ-1, which is a nuclear-localised protein involved in jasmonate signalling in 269	

addition to PR-3. There was a significant increase in endogenous jasmonic acid in the leaves of 270	

plants infected with aphids (729 ± 22 ng/g FW) compared to control plants (356 ± 88 ng/g FW) 271	

(P ≤ 0.025) (Fig. 2B). In addition there was a significant increase in transcript levels of PR-3 (P ≤ 272	

0.001) and JAZ-1 (P ≤ 0.001) (Fig. 2C). However, there was no significant increase in 273	

endogenous levels of the phytohormone JA in nematode-infected plants 14 dpi (Mann-Whitney U 274	

= 66.000, P = 0.76, sig ≤ .05, 2-tailed) (Fig. 1B) or in the expression of genes involved in the 275	

signalling of JA, PR-3 (P ≤ 0.11) or JAZ-1 (P ≤ 0.286) (Fig. 1C) suggesting that nematode 276	

infection does not elicit a systemic JA defence response in the leaves of potato plants.  277	
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Co-infection with both G. pallida and M. persicae elicits an additive SA defence but a 278	

reduction in the JA defence signalling pathway in the leaves of potato plants.  279	

The SA-mediated defence pathway was investigated in the leaves of potato plants that had been 280	

infected with both G. pallida and M. persicae. There was a significant increase in the levels of 281	

stored (9943 ± 1522 ng) and total SA (10750 ± 1557 ng) in the leaves of dual infected plants 282	

compared to the controls (Stored: 4665 ± 906 ng; Total: 5409 ± 930 ng; P ≤ 0.012) (Fig. 3A). 283	

There was no significant difference in the levels of free SA in the leaves of plants that were co-284	

infected (691 ± 45 ng) compared to the controls (743 ± 146 ng) (Fig. 3A). There was no 285	

significant increase in transcript levels of SA-mediated defence genes (Fig. 3A). The significant 286	

increase in the levels of stored SA indicates that the SA-mediated defence pathway is up-287	

regulated in the leaves of potato plants; however it has not been converted into free SA.  288	

There was no significant changes in the levels of endogenous JA in plants that had been co-289	

infected with both pests (372 ± 73 ng) compared to the controls (392 ± 64, P ≤ 0.855) (Fig. 3B). 290	

Similarly, when the expression of genes involved in the JA signalling pathway were analysed, 291	

there was no significant differences between the leaves co-infected plants and control plants (Fig. 292	

3C). Due to a significant increase in endogenous levels of JA and the expression of SA-mediated 293	

defences in the leaves of plants infected with aphids only, the reduction of JA in co-infected 294	

plants may indicate an antagonistic suppression of JA by the additive increase in SA caused by 295	

both nematode and aphid infection together. 296	

 297	
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The peach-potato aphid, Myzus persicae has a higher abundance on potato plants pre-298	

infected with Globodera pallida 299	

There was a significant increase in the abundance of aphids reared on potato plants pre-infected 300	

with nematodes for 14 days compared with aphids reared on non-infected control plants (Mann-301	

Whitney U = 3.000, P = 0.011, sig ≤ .05, 2-tailed) (Fig. 4).  302	

Discussion 303	

Our results show how the molecular and biochemical response of the potato plant to attack by a 304	

below-ground pathogen, in this case plant-parasitic nematodes, can indirectly influence herbivore 305	

populations above ground through systemic changes in endogenous phytohormones and 306	

expression of associated genes. 307	

Plant Responses to Cyst Nematode and Aphid Infection Singly and in Combination 308	

Previous studies have revealed that defence signalling pathways are involved in compatible 309	

interactions of plants with cyst nematodes (Heterodera and Globodera spp.) (Ithal et al., 2007; 310	

Jammes et al., 2005; Wubben et al., 2008). Similarly, it is well known that many plant defence 311	

signalling pathways are up-regulated in response to aphid feeding (De Vos, et al, 2005; 312	

Kusnierczyk, et al, 2008; Broekgaarden, et al, 2011). Our analysis has shown that expression of 313	

PR-5, a molecular marker commonly used to indicate activation of systemic acquired resistance 314	

(SAR) (Unkes et al., 1992; Bowling et al., 1994), was significantly increased in leaves of potato 315	

plants following infection with G. pallida for 14 days and also in the leaves of five-week old 316	

plants infected with M. persicae for 48 hours. This correlates with the significant increase in free 317	

and total SA in leaves of potato plants: the accumulation of the phytohormone SA is required for 318	
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the activation of SAR in distal tissues of the infected plant (Gaffney et al., 1993). Taken together 319	

these results indicate activation of an SAR-induced potato defence pathway following parasitism 320	

by G. pallida and infection with M. persicae singly. There was no significant increase in the 321	

expression PR-1 or PR-2 in the leaves of nematode-infected potato plants at the time-point 322	

examined. Expression of the orthologous genes was reported to increase in the leaves of 323	

Arabidopsis thaliana in response to cyst nematode infection, however this increase was transient 324	

and varied considerably between investigations (Wubben et al., 2008; Hamamouch et al., 2011). 325	

The length of time post-infection, together with the initial nematode burden, may be critical in 326	

determining if PR-gene induction is observed. It is well documented that there is mutual 327	

antagonism between SA and JA signalling pathways (Pieterse et al., 2012), therefore the 328	

phytohormone JA and the expression levels of the JA-dependent associated genes PR-3 and JAZ-329	

1, a nuclear-localised protein involved in jasmonate signalling (Thines et al., 2007) were 330	

quantified. No significant differences were found between nematode-infected plants and control 331	

plants in either the amount of JA or the expression of PR-3 and JAZ-1, suggesting that infection 332	

with the potato cyst nematode does not alter the jasmonic acid signalling pathway in the potato 333	

plant at 14 dpi. Alternatively, this could indicate antagonistic cross-talk between the SA and 334	

jasmonic acid pathways following infection with G. pallida, as both endogenous SA and the 335	

expression of PR-5 was significantly up-regulated. In contrast, it was found that aphid infection 336	

induced the JA signalling pathway in the leaves of potato plants as both JA and the expression of 337	

PR-3 and JAZ-1 were significantly up-regulated compared to control plants.   338	

Co-infection of the potato with both G. pallida and M. persicae had a different and unique impact 339	

on the levels of endogenous phytohormones and expression of defence-related genes compared to 340	
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plants that had been infected with each pest singly. An additive effect on SA was observed in co-341	

infected plants, an effect that may be assumed when two pests are applied to a plant. However, a 342	

reduced JA effect was noted in dual infected plants even though JA was present in the leaves of 343	

plants infected with aphids in isolation. There is literature to suggest that phytohormones do not 344	

act independently of one another. The interaction between SA and JA is complex with the main 345	

interaction between these two pathways being mutual antagonistic (Kunkel and Brooks, 2002). 346	

SA has been shown to have an inhibitory effect on jasmonic acid in tomato (Doherty, et al, 1988; 347	

Pena-Cortés et al, 1993) and in Arabidopsis (Gupta, et al, 2000; Clarke, et al, 2000). Therefore, a 348	

lack of JA in the leaves of co-infected plants could be construed as antagonistic crosstalk because 349	

although infection with plant-parasitic nematodes did not elicit the JA defence pathway in potato 350	

plants, infection with aphids alone did.  351	

Herbivore Responses to Plant Parasitic Nematode Infection 352	

Plant-mediated interactions between plant parasitic nematodes and aerial pests studied to date 353	

have been variable: susceptibility to shoot pathogens and resistance to phloem feeders have been 354	

reported with the outcome depending on the parasitic strategy of the nematode involved in the 355	

interaction (Biere and Goverse, 2016).  To the best of our knowledge there have been no studies 356	

of plant-mediated interactions between the potato cyst nematode and specialised above-ground 357	

pests or pathogens of potato, however there have been reports of interactions between G. 358	

rostochiensis and below-ground pathogens such as the soil-borne fungus of potato, Rhizoctonia 359	

solani (Back et al., 2006). A reduced aphid performance was reported when Plantago lanceolata 360	

(Wurst and van der Putten, 2007) was infected with the migratory nematode, Pratylenchus 361	

penetrans. Similarly, a decrease in the fecundity of aphids was observed when Agrostis capillaris 362	
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was infected with a mixture consisting of ectoparasites and migratory endoparasites (Bezemer et 363	

al., 2003). Reports using sedentary endoparasites have found negative or neutral impacts on 364	

aphids. An infection of H. schachtii on B. oleracea resulted in reduced growth and fecundity of a 365	

specialist aphid species, Brevicoryne brassicae as well as a generalist species, M. persicae (Hol, 366	

et al, 2013). However, in another study using a mix of different parasitic nematode species, no 367	

effect on the performance of B. brassciae was found (Kabouw et al., 2011). Our observation that 368	

G. pallida, a sedentary endoparasitic nematode, indirectly and positively influences the 369	

abundance of M. persicae highlights how aphids may be more damaging to the potato crop in 370	

areas where G. pallia is present compared to such areas where there is no infection, however this 371	

requires further investigation. Our study is in contrast to these previous studies and to our 372	

knowledge is the first to report the combined molecular and biochemical response of the potato to 373	

nematode infection.   374	

Systemic plant resistance to insect herbivores is mediated by the SA and JA wound signalling 375	

pathways and the, usually antagonistic, crosstalk between them (Pieterse et al., 2012; Stam et al., 376	

2014). In addition to their role in regulating resistance to biotrophic pathogens, SA-mediated 377	

defensive pathways are known to be induced by phloem-feeding insects, and there have also been 378	

reports suggesting that SA itself is an effective chemical defence against phloem-sucking 379	

herbivory animals (Kaloshian and Walling, 2005; Donovan et al., 2013). As expected, we found 380	

induction of the SA pathway in response to nematodes, but any adverse effects of this on the 381	

aphids are likely to be negated by the benefits of SA-mediated reductions of the JA-mediated 382	

pathway responsible for plant resistance to herbivores (Lazebnik et al., 2014). Indeed, aphids are 383	

believed to circumvent the plant’s immune system by eliciting the SA signalling pathway in order 384	

to antagonise and suppress the JA one, which is important in mediating resistance to phloem 385	
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feeders (Zhu-Salzman et al., 2004; Ellis et al., 2002). Thus, our observation of more aphids 386	

present on nematode infested plants could reflect circumvention of the SA-mediated defence 387	

pathway of the potato plant by M. persicae. Our analysis of the JA-mediated defence pathway in 388	

the potato plant showed no up-regulation of endogenous JA or expression of PR-3 or JAZ-1 in 389	

leaves of potato plants infected with nematodes when compared to control plants. Aphids could 390	

benefit from the situation in which the hormone has not been elicited or even suppressed.  391	

Conclusion 392	

Our biochemical and molecular data reveal the potential mechanisms underpinning a positive 393	

asymmetric interaction between a sedentary endoparasitic nematode and a sap-sucking insect. 394	

The SA pathway and PR defence gene expression is altered in the potato plant following infection 395	

with G. pallida and these changes indirectly influence the performance of the peach potato aphid 396	

M. persicae. Our study highlights how multiple stresses elicit a unique molecular and 397	

biochemical response compared to singly stressed plants. It also demonstrates the importance of 398	

analysing hormonal crosstalk when seeking to understand plant defensive responses to co-399	

incident attack by pests and pathogens. 400	
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Figure	1.	Quantification	of	endogenous	salicylic	acid	and	jasmonic	acid	and	analysis	of	

PR-gene	expression	by	qRT-PCR	in	the	leaves	of	potato	plants	(Solanum	tuberosum	cv.	

Désirée)	 infected	 with	 the	 potato	 cyst	 nematode,	 Globodera	 pallida.	 A.	 Levels	 of	

endogenous	salicylic	acid	in	leaves	of	potato	plants	infected	with	G.	pallida	14	days	post	

inoculation	(dpi).	B.	Levels	of	endogenous	jasmonic	acid	in	leaves	of	potato	plants	infected	

with	G.	 pallida	 14	 dpi.	C.	 Expression	 levels	 of	PR-genes	 in	 the	 leaves	 of	 potato	 plants	

infected	 with	G.	 pallida	 at	 14	 dpi.	 The	 presented	 data	 are	 the	 mean	 fold	 changes	 ±	

standard	errors	of	biological	replicates	in	both	graphs.	The	PR	transcript	levels	are	relative	

to	uninfected	control	tissue	(baseline	set	at	0)	from	different	biological	replicates	(Mann-

Whitney	U,	*	P	<	0.05,	n	=	5	(qPCR	and	JA	analysis),	n=12	(Endogenous	SA)).	
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Figure	2.	Quantification	of	endogenous	salicylic	acid	and	jasmonic	acid	and	analysis	of	PR-

gene	expression	by	qRT-PCR	in	the	leaves	of	potato	plants	(Solanum	tuberosum	cv.	Désirée)	

infected	with	the	peach-potato	aphid,	Myzus	persicae.	A.	Levels	of	endogenous	salicylic	acid	

in	leaves	of	potato	plants	infected	with	M.	persicae	48	hours	post	inoculation	(hpi).	B.	Levels	

of	endogenous	jasmonic	acid	in	leaves	of	potato	plants	infected	with	M.	persicae	48	hpi.	C.	

Expression	levels	of	PR-genes	in	the	leaves	of	potato	plants	infected	with	M.	persicae	48	hpi.	

The	presented	data	are	the	mean	fold	changes	±	standard	errors	of	biological	replicates	in	

both	graphs.	The	PR	transcript	levels	are	relative	to	uninfected	control	tissue	(baseline	set	at	

0)	 from	 different	 biological	 replicates	 (Mann-Whitney	 U,	 *	 P	 <	 0.05,	 n	 =	 5	 (qPCR	 and	 JA	

analysis),	n=12	(Endogenous	SA)).	
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Figure	3.	Quantification	of	endogenous	salicylic	acid	and	jasmonic	acid	and	analysis	of	PR-

gene	expression	by	qRT-PCR	in	the	leaves	of	potato	plants	(Solanum	tuberosum	cv.	Désirée)	

infected	with	 both	 the	 potato	 cyst	 nematode,	Globodera	 pallida	 and	 the	 peach-potato	

aphid,	Myzus	 persicae.	 A.	 Levels	 of	 endogenous	 salicylic	 acid	 in	 leaves	 of	 potato	 plants	

infected	with	G.	pallida	14	dpi	and	M.	persicae	48	hours	post	inoculation	(hpi).	B.	Levels	of	

endogenous	jasmonic	acid	in	leaves	of	potato	plants	infected	with	G.	pallida	14	dpi	and	M.	

persicae	48	hpi.	C.	Expression	levels	of	PR-genes	in	the	leaves	of	potato	plants	infected	with	

G.	pallida	14	dpi	and	M.	persicae	48	hpi.	The	presented	data	are	the	mean	fold	changes	±	

standard	errors	of	biological	replicates	in	qRT-PCR	graphs.	The	PR	transcript	levels	are	relative	

to	uninfected	control	tissue	(baseline	set	at	0)	from	biological	replicates	(Mann-Whitney	U,	*	

P	<	0.05,	n	=	5	(qPCR	and	JA	analysis),	n=12	(Endogenous	SA)).	
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 704	

Figure 4: No choice performance assays of M. persicae on potato plants pre-infected with 10,000 G. 705	

pallida J2s for 14 days or non-infected control potato plants. Black dots represent aphids present on plant 706	

pre-infected with nematodes. White dots represent aphids present on non-infected control plants. There 707	

were more M. persicae present on nematode-infested plants from Day 2 to Day 8 compared to non-708	

infected control plants (n=5, ** = P<0.01). 709	
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