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 23 

TEXT 24 

Uniquely, with respect to Middle Pleistocene hominins, anatomically modern humans do not 25 

possess marked browridges, and have a more vertical forehead
1
 with mobile eyebrows that 26 

play a key role in social signalling and communication
2-3

. The presence and variability of 27 

browridges in archaic Homo and their absence in ourselves have led to debate concerning 28 

their morphogenesis and function, with two main hypotheses being put forward; that 29 

browridge morphology is the result of the spatial relationship between the orbits and the 30 

braincase
4
, and that browridge morphology is significantly impacted by biting mechanics

5
. 31 

Here we virtually manipulate browridge morphology of an archaic hominin (Kabwe 1), 32 

showing that it is much larger than the minimum required to fulfil spatial demands and that 33 

browridge size has little impact on mechanical performance during biting. Since browridge 34 

morphology in this fossil is not driven by spatial and mechanical requirements alone, the role 35 

of the supraorbital region in social communication is a potentially significant factor. We 36 

propose that conversion of the large browridges of our immediate ancestors to a more vertical 37 

frontal in modern humans allowed highly mobile eyebrows to display subtle affiliative 38 

emotions
6
. 39 

40 
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Why anatomically modern humans lack, and our Middle Pleistocene ancestors posessed, a 41 

pronounced supraorbital ridge is an unresolved debate, with the focus on structural and 42 

mechanical rather than social signalling roles. The spatial hypothesis considers browridges to 43 

be “only a reflection of the spatial relationship between two functionally unrelated cephalic 44 

components, the orbit and the brain case”
4 
(p. 281). Additionally, brain and basicranial 45 

morphology 
7-9

 and the orientation of the face relative to the cranial vault influences 46 

browridge morphology
10

. Browridges also scale allometrically, with individuals of bigger 47 

species growing proportionally bigger ones
11, 12

. However, basicranial morphology, facial 48 

hafting
13

 and facial size differ little between Kabwe 1 (Homo heidelbergensis, dated from 125 49 

- 300 kya b.p.
14

)
 
and Neanderthals and so do not explain why the comparably large faces of 50 

near relatives such as Neanderthals do not manifest equally massive browridges. On the other 51 

hand the differences between these archaic members of our genus and modern humans in 52 

brow morphology may well relate to gracilisation, our reduced facial size and its allometric 53 

consequences. 54 

Importantly, the cranial gracilization that humans underwent has also been associated with 55 

prosociality
15-16

. Selection for increased sociality and tolerance has been argued to be 56 

associated with evolutionary changes in cranial form (reduction of browridge and upper facial 57 

size) via changes in hormonal reactivity that have pleiotropic effects in skeletal form, 58 

physiology and behavior, termed ‘self-domestication’
15-16

 (sensu Hare and colleagues
17

). This 59 

hypothesis finds support from several studies of non-human mammals (dogs vs. wolfs, 60 

selected vs non-selected foxes, bonobos vs. chimpanzees) that were able to demonstrate that 61 

domestication and increased social tolerance trigger a set of changes that include 62 

physiological, morphological and behavioral variables (for a review see
16

).  63 

This association between cranial gracilization, prosociality and self domestication has also 64 

been hypothesized for bonobos, who, relative to chimpanzees, present a gracile cranium
18

 65 
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with smaller browridges
19

, prosocial behaviour and are hypothesized as self-domesticated
16-

66 

17
. This thus suggests a selective trade off between expressing dynamic affiliative signals and 67 

permanent competitive signals which affects the shape and size of the cranium in general and 68 

the browridge in particular. More affiliative based social relationships in bonobos, with 69 

frequent consolation
20

, are associated with both a reduced browridge and greater attention to 70 

the eye area in social communication
21

 than in common chimpanzees. Despite this 71 

association it should be noted that bonobos are significantly smaller than chimpanzees
18

 and 72 

that, as predicted by the allometric hypothesis
11

, browridges are expected to be proportionally 73 

smaller. 74 

For modern humans, gracilisation and reduction of the facial skeleton results in significant 75 

changes to the supraorbital region, rendering the contour between the orbits and forehead 76 

more vertical and smooth. For the frontalis belly of occipito-frontalis there are particular 77 

consequences. We note that its vector of action changes to be more vertical and for the 78 

eyebrows this means they have the potential to move vertically over a relatively larger area, 79 

and of being more readily observed and more mobile (Supplementary figure 1). 80 

Alternatively the mechanical hypothesis explains larger brows in terms of resistance to 81 

masticatory loadings. While not necessarily opposed to the spatial hypothesis, it posits that 82 

mechanical loadings experienced by the skull during biting and food pre-processing
5,22-25

 83 

impact decisively on the morphology of the browridges
5
. Studies focusing on fossil 84 

hominins
26

, extant humans
5,27-28

 and other extant non-human primates
29-31

 support this 85 

hypothesis, while it has been challenged by studies of non-human primates that failed to 86 

record elevated strains in the browridge during masticatory system loading
29-31

. 87 

In addition to the above, other hypotheses have been proposed to explain large browridges. 88 

These include protection from blows to the head
32-33

, protection of the eyes in aquatic 89 
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environments
34

, provision of sunshade (Barton, 1895 in 
35

), and prevention of hair from 90 

obscuring vision
36

, but have not been strongly supported by evidence and so are not widely 91 

held as feasible. Another factor that could explain the morphology of the browridge of 92 

Kabwe 1 is its massive frontal sinus. However the sinus appears to have no critical 93 

mechanical function during biting
37-38

 and grows and develops secondarily to the browridge
1
. 94 

Thus, after several decades of research, conflicting views still exist with regard to the 95 

mechanisms that give rise to large or small browridges and their function. Hypotheses that 96 

link the development of modern human browridge morphology to changes in sociality have 97 

tended to be set aside in favour of mechanical and spatial ones, aiming to explain large 98 

browridges rather than the causes and consequences of small ones. 99 

While there is strong support for a spatial explanation of larger brow ridges in archaic vs 100 

modern humans, in that facial reduction reduces the need for large brows to accommodate the 101 

orbito frontal junction, this does not explain why the browridge of Kabwe 1 is much larger 102 

than that of Neanderthals despite generally similar facial size. It may be for mechanical 103 

reasons as noted above or it may be larger for other reasons such as social communication. 104 

If it can be shown that the browridges of Kabwe 1 are much larger than is demanded by 105 

spatial requirements and have no mechanical function, then explanations of the very large 106 

browridge of Kabwe 1 in terms of social communication become more tenable and the 107 

consequences of interactions of small brows in modern humans with sociality, display and 108 

social communication become a focus of interest. 109 

One of the reasons that spatial and mechanical explanations of large brows in archaic humans 110 

have not been falsified is because of the impossibility of carrying out in vivo experimental 111 

manipulations. However, recent advances in virtual functional simulation offer a way 112 

forward
39-41

. Through virtual modeling and manipulation of the Kabwe 1 cranium we show 113 
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that the browridge is much larger than the minimum size required to accommodate the 114 

disjunction between orbits and frontal bone. Thus, spatial requirements not fully explain the 115 

browridge of this specimen. 116 

Next, improved craniofacial resistance to masticatory loads, as a consequence of the larger-117 

than-needed browridge, is assessed through Finite Element Analysis (FEA). This allows us to 118 

virtually manipulate the morphology of the browridge while simulating masticatory system 119 

loadings to assess the impact of variations in form on functional performance. Thus, the skull 120 

of Kabwe 1 was virtually reconstructed to restore its original morphology
42

 and two 121 

additional versions of the model were created in which the form of the browridge was 122 

progressively reduced to the minimum required to bridge the gap between the face and 123 

neurocranium (simulating the spatial hypothesis
4
). FE models were then created and loaded 124 

to simulate biting to assess the impact of different browridge morphologies on the 125 

biomechanical performance of the facial skeleton of Kabwe 1. This specimen was used in this 126 

study because it presents an extremely well developed, indeed iconic, browridge. 127 

Our findings show that the browridges of Kabwe 1 are larger than is needed to fulfill spatial 128 

requirements in accommodating the orbitofrontal junction and that they have no marked role 129 

in resisting masticatory loading. As such, sociality and social communication must be 130 

considered in relation to both the larger than needed browridges of Kabwe 1 and the reduced 131 

browridges and more vertical forehead of modern humans. 132 

 133 

RESULTS 134 

The browridge can be much reduced in size, but not eliminated, without creating any 135 

significant disjunction between orbits and the frontal bone. Thus, while the spatial 136 
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relationship between the orbits and frontal
4,7

 partly explains the large browridge of Kabwe, it 137 

appears to greatly exceed what would be required to simply bridge the gap (spatial model). 138 

Further, when models with reduced browridges are compared with that with the original 139 

browridge there are no marked intra-bite differences among models in strain magnitudes and 140 

orientations (Figures 1 and 2), whereas inter-bite comparisons show clear differences in strain 141 

magnitudes and orientations (Figure 3). Visual examination of strains experienced by the 142 

cranium indicates a slight increase in the strain magnitudes experienced by the lateral 143 

margins of the ridges and over the frontal bone with decreasing browridge size. This increase 144 

in strain magnitudes is most marked over the post-orbital sulcus of the model with the 145 

smallest browridge (Figure 2). It is unknown if these would be sufficient for biomechanical 146 

bone adaptation to occur, as predicted by the mechanostat model
43

. Thus it is possible that, to 147 

some extent, the growth and development of the browridge may be mechanically driven. 148 

However, the increases in strain magnitudes resulting from progressive reduction of the 149 

browridge are slight and thus unlikely to fully explain the massive browridge of Kabwe 1. 150 

When considering strains experienced by the face under the same bite, only very small 151 

differences were found between models (Figure 4). The geometric morphometric analysis of 152 

changes in size and shape shows that loaded models cluster tightly by bite rather than by 153 

browridge morphology (Figure 5). Thus the vectors of deformation (changes in size and 154 

shape) connecting the unloaded and loaded models reflect almost identical modes and 155 

magnitudes of deformation in the same bite, irrespective of browridge morphology. 156 

 157 

DISCUSSION 158 
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These results demonstrate that the browridge is significantly larger than is required to bridge 159 

the gap between orbits and the frontal. Further, changing the morphology of the browridge 160 

does not impact in any substantial way on the mode or magnitude of deformation experienced 161 

by the face during biting. As such we falsify spatial
4
 and mechanical

5,22-25
 hypotheses as 162 

complete explanations of the large browridge of this fossil. Rather, the findings suggest that 163 

the browridge in Kabwe 1 likely has other causes. 164 

Relevant in this regard is the work of Hylander and Johnson
44

 who have demonstrated that 165 

facial bony structures, such as the paranasal swellings in Mandrillus sphinx, form due to 166 

factors that are neither spatial nor mechanical. Rather they reflect social behaviour and 167 

structure; these structures underlie the vibrant soft tissue colourings of the muzzle of male 168 

mandrills, which bear an important function in social signalling and display
45-46

. Growth and 169 

development of the swellings in Mandrillus leucophaeus has been related to androgen 170 

production
47

. In humans the browridge is a sexually dimorphic anatomical trait
48

 that has 171 

been identified as relevant in the perception of an individual by others
49-50 

 and its growth and 172 

development have also been related to androgen production, along with general facial sexual 173 

dimorphism
51

. In this regard we note that the vermiculate bone found over the browridge of 174 

Kabwe 1 presents macroscopic similarities to the bone found in the paranasal swellings of 175 

Mandrillus. Although vermiculate bone is less frequent in modern humans than other middle 176 

and late Pleistocene hominins
32

, it is more frequent in men than in women
52

 and hence its 177 

formation is likely related to hormonal factors. It is, therefore, plausible that the morphology 178 

of the browridge of Kabwe 1 might also be related to factors such as sexually dimorphic 179 

display and social signalling. Like antlers, they are fixed, and have been hypothesized to 180 

signal dominance or aggression
14

. 181 

Facial reduction in H. sapiens, which has been related to changes in brain and basicranial 182 

morphology
7-9

, and food pre-processing and biting mechanics
5,22-25

, is accompanied by 183 
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gracilisation of the brows, and the development of a more vertical frontal. The upper facial 184 

morphological changes found in H. sapiens position the frontal bone more vertically, 185 

inevitably altering the mechanical functioning of the frontalis belly of the occipito-frontalis 186 

muscle, causing contraction to raise the supraorbital skin whereas previously it would have 187 

pulled it more posteriorly over the browridge and the low, more horizontal forehead 188 

(Supplementary figure 1). Having lost a large low browridge, our ancestors gained the 189 

possibility of greater range, subtlety and visibility, of movement of the skin overlying the 190 

frontal, particularly affecting movements of the eyebrow. This suggestion is consistent with 191 

the work of Parr and colleagues
53

, who suggest that the absence of specific movements of the 192 

brows in chimpanzees when compared to humans may relate to the presence of large 193 

browridges (see below). Effectively these anatomical changes enhance the capacity of the 194 

frontalis muscle to move eyebrows over the frontal, a key component of social signalling and 195 

non-verbal communication in our highly socially complex species. 196 

Our mobile hairy eyebrows are crucial in subtle signalling behaviours. The eye region is 197 

known to develop increasing social significance in a human evolutionary context
54-55

 198 

however the mobility of eyebrows specifically has received little attention. Mobile eyebrows, 199 

without the constraints of a pronounced browridge, allow subtle affiliative emotions to be 200 

expressed (Supplementary table 3), such as the rapid ‘eyebrow flash’ , lasting around 1/6
th

 of 201 

a second, found cross culturally as a sign of contact readiness and recognition
56

. A slow 202 

eyebrow raise is in contrast a sign of surprise and in particular social indignation
57

. The facial 203 

expression of sympathy, shown by pulling eyebrows up at the middle
58

 has the advantage of 204 

removing need for the direct contact which is used to express sympathy in chimpanzees
59

. 205 

Subtle dynamic movements of eyebrows are also a key component of identifying 206 

trustworthiness
60

 as well as identifying subtle indications of deception. Any constraints on 207 

muscle movements in the supraorbital region affect emotional expressions and in turn social 208 
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relationships, for example individuals who receive a cosmetic procedure (botox) that reduces 209 

muscle activity in the forehead and so affects eyebrow movement are less able to empathise 210 

with and identify other’s emotions
61

. 211 

When compared to our species, our nearest living relatives, chimpanzees, show minimal 212 

differences in underlying facial musculature
62

, however differences in facial morphology, 213 

pigmentation and other superficial characteristics impact upon the range and subtlety of their 214 

emotional expressions
53,63

. As in humans, chimpanzees express emotions through the 215 

stretching of skin across prominent browridges but lack subtleties in eyebrow movement and 216 

signalling that modern humans display. This is apparent through the inability of chimpanzees 217 

to move the inner and outer brows independently (activated by the medial and lateral parts of 218 

the frontalis muscle, respectively) and to present the ‘brow lower’ action (activated by the 219 

corrugator, depressor supercilli and procerus muscles, and significant in identifying sadness 220 

and anger in humans) 
53,63

. The absence of these movements has been associated with the 221 

presence of a large browridge, which precludes marked saliency of these movements and thus 222 

of signalling function to conspecifics
53

. Similarly, other non-human primates, such as 223 

macaques
64

, gibbons
65

 and orangutans
66

, are also unable to move their inner and outer brows 224 

independently and display brow-lowering (excluding orangutans, which are able to perform 225 

the latter). Moreover, human eyebrows overlie a vertically flatter brow and hairless forehead, 226 

hence increasing eyebrow visibility and signalling
63

. 227 

The relative selective trade-offs between a pronounced browridge (a permanent social signal) 228 

and capacities to dynamically express affiliative pro-social emotions through highly mobile 229 

eyebrows are complex. Moreover competitive and collaborative strategies typically exist 230 

together, and vary dynamically through time and space
67

. Even in modern hunter-gatherers 231 

more competitive and collaborative individuals tend to spatially locate together
68

. We should 232 

thus expect a long period of differing facial forms, reflecting differing social strategies, both 233 
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within and between groups before the selective advantages of expressing complex pro-social 234 

emotions becomes stable. This pattern seems typical of archaic humans, with substantial 235 

variability in the definition of browridges amongst early modern humans at Jebel Irhoud for 236 

example
69

. 237 

 238 

  239 
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METHODS 240 

The Kabwe 1 cranium reconstruction
70

 was based on a CT scan provided by the Natural 241 

History Museum, London (courtesy of Robert Kruszynski). After reconstruction, two 242 

additional models were created in which the morphology of the browridge was the only 243 

anatomical region modified. The models were then directly converted into voxel based finite 244 

element models and used to simulate three different bites (left central incisor, left second 245 

premolar, left second molar) to assess the biomechanical performance of the facial skeleton 246 

during these bites. 247 

 248 

Skull reconstruction and model creation 249 

A complete description of the reconstruction of Kabwe 1 is presented by Godinho and 250 

O'Higgins
70

. Thus, here we briefly report the reconstruction. Automated, semi-automated and 251 

manual segmentation of the cranium was performed using Avizo
® 

(version 7.0). Manual 252 

segmentation was required to remove sedimentary matrix present in the maxillary and 253 

sphenoidal sinuses. When possible, reconstruction of missing parts was performed by 254 

mirroring preserved contralateral elements and warping them to the existing structures. When 255 

small gaps were present, Geomagic
®

 (Studio 2011) was used to fill them using the surface of 256 

surrounding structures as the reference for interpolation. Portions of a CT reconstruction of a 257 

cadaveric Homo sapiens skull were used to reconstruct part of the occipital and missing tooth 258 

crowns for which there were no antimeres preserved. 259 

Once the reconstruction was complete (model 1), the frontal sinuses were infilled to allow 260 

later excavation of this region to produce variant morphologies. Analysis of the impact of 261 

infilling the sinus in model 1 showed that the surface strains over the brow-ridge and 262 
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elsewhere in the cranium did not differ significantly between the models with hollow and 263 

filled frontal sinus
38

. The morphology of the brow-ridge was manipulated, using Geomagic
®

, 264 

by decreasing its size (model 2) and creating a post orbital sulcus in model 3 (Figure 1). 265 

Voxel based finite element models were then generated by direct conversion using the 266 

vox2vec software. 267 

 268 

Constraints 269 

Identical constraints were applied to all models using the FEA software tool, VoxFE
71

. The 270 

models were constrained at the temporo-mandibular joints (laterally, superoinferiorly and 271 

anteroposteriorly) and a third constraint was applied at the simulated bite point 272 

(superoinferiorly) in each of the biting simulations (left central incisor, left second pre-molar, 273 

left second molar). 274 

 275 

Material properties 276 

Following prior sensitivity studies that showed only local effects of differentiating the 277 

material properties of teeth and the surrounding bone these were assigned the same material 278 

properties in all the models used in this study. Further, sensitivity analyses that assessed the 279 

effect of model simplifications in a human cadaveric cranium
72

, a cranium of Macaca 280 

fascicularis
73

 and a varanoid lizard mandible
74

 show that infilling of trabecular bone stiffens 281 

the skull and so reduces strain magnitudes but that the distribution of regions of high and low 282 

strain and of global modes (rather than magnitudes) of deformation are not much affected. 283 

Allocating teeth the same material properties as bone has the effect of locally reducing strain 284 

gradients in the alveolar region, with little effect elsewhere. This is relevant to the present 285 
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study because trabecular bone is neither well enough preserved nor imaged at sufficient 286 

resolution to accurately represent it in a finite element model and the dentition is incomplete 287 

and required reconstruction. As such, in all models, trabecular bone and teeth were not 288 

separately represented and were allocated the same material properties as cortical bone. 289 

Based on prior sensitivity analyses we expect this to have little impact on the mode of 290 

deformation of the loaded cranium, but to reduce the degree to which it deforms. 291 

Cortical bone, trabecular bone and the teeth were allocated isotropic properties, with a 292 

Young’s modulus of 17 Gpa. and a Poisson’s ration of 0.3. The modulus of elasticity was 293 

derived from nanoindentation studies of cortical bone in a cadaveric Homo sapiens skull
72

. 294 

The resulting value of 17 Gpa is within the range of values found in previous studies
75-76

. 295 

 296 

Muscle loads 297 

Loads were applied to the model to represent the actions of six muscles active during biting: 298 

right and left temporalis, right and left masseter, right and left medial pterygoid. Absence of 299 

the mandible precludes direct estimation of the direction of muscle force vectors and 300 

estimation using bony proxies of anatomical cross sectional areas (and so maximum forces) 301 

of muscles that attach to the mandible (masseter and medial pterygoid). However, given that 302 

three versions of the same model with identical loads and constraints are to be compared, it 303 

matters little that applied muscle force vectors approximate rather than replicate 304 

physiological loadings. Significantly more important is that these forces are identical between 305 

models and so do not, in themselves, produce differences in strains (modes of deformation) 306 

between models. As such, the maximum estimated muscle forces estimated from a Homo 307 

sapiens cadaveric head were applied identically to each model
72

 (Supplementary table 1). The 308 

directions of muscle force vectors were estimated by scaling a Homo neanderthalensis 309 
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mandible (Tabun 1 specimen) to the Kabwe 1 skull. These directions were applied to all 310 

models and simulations. While this mandible is not from the same fossil it provides a 311 

reasonable estimate of muscle vectors. The impact of error in the estimation of the orientation 312 

of the muscle vectors was assessed in a sensitivity analysis in which muscle vectors were 313 

varied through 5º anteroposteriorly and mediolaterally. Results showed that regions of high 314 

and low strain varied very little in location (Supplementary figure 3) while the average 315 

magnitude of strains varied from ~2% in mediolateral manipulation to ~5% in anteroposterior 316 

changes (Supplementary table 4). 317 

 318 

Model solution and analysis 319 

The finite element models 1-3 were solved using VoxFE
71

. The resulting deformations of the 320 

finite element models were compared through (1) visual assessment of strain magnitudes and 321 

directions of maximum (ε1) and minimum (ε3) principal strains, (2) plotting of ε1 and ε3 at 322 

30 nodes (points) located in the facial skeleton, common to all models (Supplementary figure 323 

2), (3) an analysis of changes in size and shape between loaded and unloaded models of a 324 

configuration of 33 landmarks (points) from the whole cranium (Supplementary figure 3 and 325 

supplementary table 2). The size and shape analysis employs geometric morphometrics to 326 

compare changes in size and shape between the unloaded and loaded models. This consists of 327 

an initial registration step comprising scaling to unit size and then translation of landmark 328 

configurations to their centroids, with subsequent rotation to minimise the sum of squared 329 

distances between each scaled, translated configuration and the mean configuration. This is 330 

followed by rescaling of each configuration to its original centroid size and by a PCA of the 331 

resulting size and shape coordinates
77-78

. This analysis leads to a quantitative comparison of 332 
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global model deformations (changes in size and shape) in terms of the directions (modes) and 333 

magnitudes (degree or extent) of deformation arising from loading. 334 

 335 

Data availability statement 336 

Data subject to third party restrictions. 337 

The data that support the findings of this study are available from the authors but restrictions 338 

apply to the availability of these data, which were used under license for the current study, 339 

and so are not publicly available. Data are however available from the authors upon 340 

reasonable request and with permission of the Centre for Human Evolution Studies, The 341 

Natural History Museum, London. 342 
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FIGURE LEGENDS 587 

 588 

Figure 1: Models 1 - 3. Model 1 represents the original reconstruction of Kabwe 1; model 2 589 

represents the reconstruction of Kabwe 1 with a reduced browridge; model 3 represents the 590 

reconstruction of Kabwe with a reduced browridge and a post-orbital sulcus. 591 
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 592 

Figure 2: Strain contour plots of the biting simulations. Maximum principal strains (ε1) are 593 

represented in columns 3-5, and minimum principal strains (ε3) in columns 5-7. Model 1 is 594 

represented in rows 1, 4 and 7; model 2 in rows 2, 5 and 8; model 3 in rows 3, 6 and 9) under 595 

the different simulated bites. 596 

 597 

Figure 3: Strain contour plots and strain directions of ε1 (rows 1, 3 and 5) and ε3 (rows 2, 4 598 

and 6) over the maxilla (see inset frontal view for location) in the different models (model 1 599 

in left column; model 2 in middle column; model 3 in right column) under the different bites 600 

simulated. The bottom left inset shows the anatomical region included in vector plots. 601 

 602 

Figure 4: Plots of facial strains experienced by the models at 30 anatomical points. 603 

 604 

Figure 5: Size and shape Principal Components Analysis (PCA) of the unloaded and loaded 605 

models in the three different simulated bites. 606 

 607 
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