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ABSTRACT

This study presents a hybrid numerical weather predictmteir{NWP) and a Gaussian process regression (GPR) model
for near surface wind speed prediction up to 72 hours als#iagl data partitioned on atmospheric stability class to
improve model performance. NWP wind speed data from Kneneteorological office was corrected using a GPR
model, where the data was subdivided using the atmospahitity class calculated using the Pasquill-Gifféraner
method based on observations at the time of predidiftmmethod was validated using data from 15 UK MIDAS (Met
office Integrated Data Archive System) sites with a 9 mtmaihing and 3 month test period. Results are also sfmwn
hub height wind speed prediction at one turbine. Additiprnaower output is predicted for this turbine by tratiag

hub height wind speed to power using a turbine power cWhée various forecasting methods exist, limited methods
consider the impact of atmospheric stability on prgaticaccuracy. Therefore the method presented in this giuedy a
new way to improve wind speed predictions. Outputs ghewsPR model improves forecast accuracy over thenatigi
NWP data, and consideration of atmospheric stability éuntbduces prediction errors. Comparing predicted power
output to measured output reveals power predictions aremlenced, demonstrating the potential of this noved win

speed prediction technique.

Keywords:
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1. INTRODUCTION

An increasing awareness of the environmental impafcsthropogenic greenhouse gas emissions has motivated a
dramatic increase in renewable energy, a significamtgotion of which is produced by wind turbines. As of October
2016 there is over 14 GW of installed wind capacity inUKe[1], although this is set to rise further as the UK
government continues towards the target of 15% renewablgyeme020. While the wind resource in the UK is
abundant, its variable and intermittent nature can dasses with maintaining a secure and constant supply of
electricity. Wind power predictions allow supply and dewh of electricity to be carefully managed, reducing tis¢ co
impact on power system operators and aiding the integratiaind energy in the electricity systd@]. However, their
accuracy has a direct impact on grid reliability andifabflity. Barthelmie et al[3] show that short term forecasting can

increase the price obtained for electricity sold by adoi4% but that the value was dependent on the forecasteagc

Wind power is highly sensitive to terrain, local and oegl weather systems and obstacles such as buildingd. Wi

exhibits seasonal and diurnal patterns alongside stoclmégii frequency variabilitj4d]. Consequently, it is complex to
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accurately predict in advance. Forecasting wind power oiriursically relies on estimates of wind speed. Whilst
methods for predicting wind power exist, improvements auiacy could still be made. Current methods cover various
time scales, from less than a minute to days or wieekdvance. Reviews of currently available techniquesiaea dpy

[5] and[6]. Methods can be broadly categorised as statisticalencahweather prediction (NWP) or hybrid models.

Statistical methods predict wind speed by analysing pattemisserved time series. Examples include a seasonally
adjusted ARMA (auto-regressive moving average) model prexsday Torres et aJ7] which is used to predict wind
speeds up to 10 hours in advance. The study showed improgemrent persistence model but noted that the model
was only valid over short time periods. Other exampliesatistical methods include an f-ARIMA (fractional auto-
regressive integrated moving average) model presentéd\asseri and Seetharaman [8]. In this model, resdts ar
shown to be superior to a persistence model up to 48 &tatistical prediction methods can be effective okerts

time scales (up to a few hours) but cannot usually preciicirately further in advance.

NWP models aim to resolve complex numerical systerestablish global and local weather patterns based onveloser
initial conditions. While these are more accurata ttatistical models over longer time periods, some diffigalt
encountered in solving numerical systems at a high rézoldtie to the complexity of atmospheric conditions dgtl h
computational costs. NWP models are expensive to runsually only available from large organisations such as
government meteorological departments. A high quality Ns\fitovided by the UK meteorological office (the Met
Office), which employs a 1.5 km resolution model acrossti@ested within a lower resolution global moga.

Other NWP models exist, such as MM5, Prediktor and HIRUBMNWP models can resolve complex systems of
equations defining global and local weather systems. Howthay can be limited by their horizontal resolutidn.

some sites, complex terrain can affect wind conditionsimvthe 1.5 km in which they are resolved. Furthermore,

different site characteristics can affect how predictiopsadjusted to hub height wind speed predictions

Hybrid systems combine a number of models, such asistdtetd physical models. Of particular interest is the
combination of NWP and statistical methods which allogeiiced prediction errors compared to an NWP or statistical
model used in isolation. For example, Larson and Wedttiikuse an NWP model in conjunction with statistical
models such as artificial neural networks (ANN), suppector machines or conditional neural networks to pteditd
speeds up to 2 hours ahead. The study looks at the use ibé afeather prediction data and shows an improvement
over persistence forecasting. More recently, Warad. ¢11] presented aANN model incorporating wavelet transform,
variational mode decomposition and phase space reconmtrudiibrid models incorporating GPR have not been
extensively applied for wind speed prediction but ther@aamall number of previous studies. Zhang gtl&] combine

an autoregressive model with GPR for probabilisticdigpeed forecasting. The model was used to predict meds hou
wind speed one hour ahead for wind speeds at 3 wind farmsria.Ghirthermore, Hu et 4lL3] combine empirical
wavelet transform, partial auto correlation functéord GPR to predict wind speeds at one wind warm in Chilma

results are shown for both half hourly wind speed presfidtip to 2 hours ahead) and hourly wind speed prediction (up
to 4 hours ahead). The model presented in this paper foousead speed forecasts further in advance, presenting a
hybrid NWP and GPR model for wind speed predictions up tooties ahead and shows the impact of subdividing input
data by atmospheric stability class. This study thuseptes novel contribution to the literature on GPR wdstor

wind speed forecasting.
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provides a summary of some of the currentliadole forecasting methods, and the results of applyiageth
methods. The methods listed cover both wind speed and fangeasting methods and both hybrid and statistical
forecasting techniques. The error metrics used to preseitsrgary across the literature but an attempt is nade t
consolidate the results in a comparable wagr wind speed forecasting methods root mean squared erroERMS
mean absolute error (MAE) and mean absolute percentage e®EMire shown where possible. For wind power
forecasting RMSE and MAE are normalised by capacityléaaomparison between installations of different size
giving NRMSE, NMAE and MAPE as comparison statistics for groferecasts. Definitions for RMSE, MAE and
MAPE are given within the methodology section in equations @nt011 whilst NRMSE and NMAE are defined in
equations 13 and 14, all of which are given in sectioift8re sufficient detail is given in the literature, thsults are
shownin comparison to the persistence model. The persistendel fiooecasts wind speed or power by assuming the
forecasted value is equal to that of the prior time pehoélies upon the auto correlation seen in wind speedpower
time series and is commonly used as a benchmarkddelhperformance to allow a comparison between foreodsta
different datasets are used.

The wind speed prediction methods reviewed in Table Jpdemof 4 statistical methods and 6 hybrid methods and
cover a variety of timescales, from 1 hour ahead tchb2@s ahead. Firstly comparing short term predictiohenCet al.
[14], Wang et al. [11], Cadenas et al. [15], Hu €tL8], Zhang et al[12] and Torres at V] all present results for
prediction up to 4 hours in advance. The method presentédrbss et al. [7] is a statistical method, whilst ditieer are
hybrid methods. For these methods MAE varies betWetand 1.14ms? for a forecast 1 hour ahead and RMSE
varies between 0.26 and 1.5 “hisr a forecast 1 hour ahedebr all these prediction methods except that presented by
Wang et al[11] the difference between MAE and RMSE for the diffénmodels is small. However, Wang et[all]

show much lower errorSMAPE has a large variation for forecasts 1 hour ahetdtive largest (21%) reported by
Zhang et al[12] and the smallest (8.5%) reported by Wang et al. [11]. Thistical model presented by Torres e{d.
shows very similar results to the hybrid models preseoyeother authors at this timescale.

Kavasseri and Seetharamf8], Torres et al[7], Chen et al[14] and Louka et al. [16] show results for forecasting
methods further in advance, (5-120 hours ahead). The mettsodssed by Kavasseri and Seetharaman [8] and Torres
et al.[7] are statistical, whilst Chen et al. [14] and Louka dtl&] present hybrid methods. The results from Kavasseri
and Seetharaman are difficult to compare to the othdradetdue to how the results are aggreg&@éthe other
methods, Torres et dl/] only show results for forecasts up to 10 hours aheadtitlka et al[16] presents results up
to 120 hours ahead and Chen efBd] up to 72 hours ahead. The hybrid methods presenteduialet al[16] and
Chen et al. [14] perform much better than the statisticthodepresented by Torres et al. The hybrid method by Louka
et al.[16] has an MAE of 2.04 misand an RMSE of 2.88 mas far ahead as 120 hours in advance, whilst the statistic
method has an MAE of 2.5 misind an RMSE of 3 misat just 10 hours ahead. MAPE is only given by Chen. ¢t 4]
hence this is not comparable. This indicates, as titaeture suggests, that hybrid methods can perform mvétle

short term and frequently outperform statistical methodbér in advance.

Five wind power prediction methods are compared in Thhlecluding 3 hybrid methods and 2 statistical methdtis.
first statistical method, presented by Cataldo gial, is difficult to compare to the other techniques due to thar®rr
shown. The only other statistical method is thatgmeerl by Ramirez-Rosado et al. [18] which reports refults

forecasts up to 72 hours in adeanHowever, RMSE averaged over 3 time periods is showr24122s ahead, 24-48 hrs



112
113
114
115
116
117
118
119

120
121
122
123
124
125

126

ahead and 48-72 hrs ahead), again making it difficult to contpatber methodd-or the remaining three hybrid
methods only NMAE and NRMSE are compared as MAPE is@riyn in one case. The hybrid methods presented by
Chen et al. [19] and Shu et al. [20] report very similaults. The model presented by Chen e8] reports results for
forecasts from 1 24 hours ahead, with an NMAE of between 7.5 and 11.1%mamNRMSE of between 11 and 16%
The model gien by Shu et al[20] gives results for forecasts from-#8 hours ahead, with an NMAE of between 7 and
15% and an NRMSE of between 11 and 21%. The model prddenteouka et al[16] shows results for forecasts
between 24 and 120 hours ahead. This model seems to outpethers with an NMABf between 11 and 15.5% and
an NRMSE of between 15 and 21%.

Whilst some comparisons are drawn between the methesksnped in literature, it is important to note thatréseilts
presented for these different methods use different dat8setsuse of this direct comparisons are difficult. Howeve
is still important to consider the range of errors repdoteduthors in other literature. This allows a considenatif the
range of errors which would be expected for a good forecd#teatent forecast horizons. In addition to this, in [Eab
the results presented by different authors are listedmparison to the persistence forecast where thssisble. This

allows the improvement over a common benchmark mode¢ considered.
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128  Table 1: Examples of the currently available forecasting techniques

Speed
or Method M ethod Forecast
Authors Year power type summary Data period Results
Nonlinear
autoregressive MAE: 0.86ms? (Persistence: 0.9
Cadenas et exogenous Wind speed data from La MSE: 1.38ms? (Persistence: 1.5m8s?)
al. [15] 2016 Speed Hybrid model (NARX). Mata, Mexico 1 hour ahead MAPE: 1.44% (Persistence: 11.96%)
MAE not given
RMSE: 392.3 MW (Persistence not given)
All wind farms in Portugal MAPE: 7% (Persistence 19%).
Cataléo, et ANN + wavelet that connect with the Total capacity forecasted not given so cannot comy
al. [17] 2011 Power Statistical transform national electric grid. 3hours ahead. NRMSE.
1-4 hours
ahead and B
Wavelet and Wind farm in southern days ahead MAE: 0.72-1.6ms? (Persistence: 0.741.83ms")
Chen, et al. Gaussian China. 15 turbines, installed daily mean RMSE: 0.96 -2.04ns? (Persistence: 1.02.23ms?)
[14] 2013 Speed Hybrid process capacity 2000kw wind speed MAPE: 11.24 44% (Persistence: 11:-142%)
Results given for 4 wind farms:
1-24 hours. NMAE: 7.5-11.1% (Persistence 9.8.8.6%)
Gaussian 3 wind farms in China. 3 Results not NRMSE: 11.69- 15.96% (Persistence 15:226.3%)
Chen, et al. process and years for 2 wind farms and shown MAPE: 7.6— 11.12% (Persistence 10:11.8.4%)
[19] 2014 Power Hybrid NWP 2.5 months for one. separately Best results for the largest wind farm.
Empirical Up to 2 hours
wavelet ahead for a
transform, half hourly
partial model and 4  Hourly model:
autocorrelation hours ahead MAE: 1.13- 1.43 mg (Persistence: 1.351.65 mg)
Hu et al. function and Wind speeds for 1 wind for an hourly RMSE: 1.22- 1.6 ms' (Persistence: 1.451.88 mg)
[13] 2015 Speed Hybrid GPR. farm in China. model. MAPE: 1.18-18.39% (Persistence: 12:821.76%)
Kavasseri
and Wind speed from 4 potentia MAE not given
Seetharam wind farm sites in North 24 and 48 RMSE: 5.35% (Persistence: 8.43%)
an [8] 2009 Speed Statistical f-ARIMA Dakota hours ahead MAPE (24hrs): 33.18% (Persistence 45.2%).
Speed:
MAE: 1.75 - 2.04ms?
Speed Kalman filtering 1 year wind speed and 24,48,72,96 RMSE: 2.38-2.88 m&
Louka, et and to post process power data at Rokas wind and 120 burs  Power:
al. [16] 2008 Power Hybrid NWP farm ahead NMAE: 11 - 15.5%;
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NRMSE: 15 - 20.5%
MAPE not given, comparison to persistence not giv

Average RMSE given 3 time periods: 12-24h, 24-4:
and 48-72h.

Two ANN FORECAS: 14-19.7%,
Ramirez- methods Wind farm with rated power 0.5- 72 lours, SGP: 14-18.8%,
Rosado, et (FORECAS and of 21,600kW, 12 turbines of time step 0.5 Persistence: 31.2- 37.5%.
al. [18] 2009 Power Statistical SGP) 1.8MW. hours. MAE and MAPE not given

Two stage

hybrid network Errors given for 1, 24 and 48hrs.

with Bayesian NMAE: 7-15% (Persistence 8-25%),
Shu et al. clusteringand 74 MW wind farm in 1-48 hours NRMSE: 11-21% (Persistence 11-34%)
[20] 2009 Power Hybrid SVR. Oklahoma, US. ahead MAPE not given

5 locations, 9 years. Wind
measured every 10 mins at MAE: 0.9 - 2.5 m3 (Persistence 0.9 - 2.9 i¥j)s

Torres, et 10m and averaged over 1  up to 10 lous RMSE: 1.2 -3 ms? (Persistence 1.25 - 3iis?).
al. [7] 2005 Speed Statistical ARMA hour. ahead MAPE not given

Hybrid wavelet

neural network

optimised by Hourly wind speed for MAE: 0.187-0.269 m$ (Persistence 0.74-1.38 #)s
Wang et al. genetic spring and autumn atone  1,2,4,6 hours RMSE: 0.235-0.34 m’s (Persistence 0.95-1.72 #)s
[11] 2017 Speed Hybrid algorithm site in China ahead MAPE: 8.44- 12.02% (Persistence 31.48.5%)

Hybrid auto MAE: 0.79- 0.87 mg (Persistence 0.851.1 msh)
Zhang et regressive and Mean hourly wind speed at RMSE: 1.05- 1.13 ms(Persistence 1.121.52 mg).
al. [12] 2016 Speed Hybrid GPR model wind farms in China 1 hour ahead MAPE: 10.03-21.1% (Persistence 10.4419.97%)




130 The results shown indicate that hybrid methods can duotpe statistical methods, particularly for longer termetmst

131  periods. The combination of NWP models and statigtiedhods results in better predictions. Hence this padgezlops
132  a hybrid NWP and Gaussian process regression (GPR) mqoteldiot near surface wind speeds up to 72 hours ahead. |
133  also considers whether including information on stabdiinditions can aid model performance. In summary, & thre
134  hourly wind speed forecast from an NWP is corrected usiBBR model. The simple GPR model results are compared
135 to a model where the data is divided using the atmosptabdity class calculated from observations atitne of

136  prediction. The key innovation in this paper is the use obspimeric stability class to partition data in the WP

137  and GPR modelAtmospheric stability is a measure of the atmosphere’s tendency to encourage or reduce vertical motion
138 [21]. Under stable conditions, vertical motion is suppreéssnd under unstable conditions, vertical motiomé®eraged.
139 Both stable and unstable conditions are usually asedoréth low mean wind speeds. In the absence of heaaflthe

140  surface, the atmosphere is said to be neutral, with neomditions usually associated with higher mean wind speeds
141 Atmospheric stability is an important component in modeNimngd characteristics as it can affect atmospheric

142  circulation and momentum transfer [22]. Because of this,jfiteresting to investigate the impact of atmosgheri

143  stability on NWP accuracy of wind speed forecasts andhgheartitioning data can improve forecast accuracy.

144 In this paper, the model is introduced, and the results evenstor a selection of 15 weather observation sitessadhe
145 UK. The model is also tested for the prediction of hugHievind speeds for one turbine in the UK. At thig si

146  predicted wind speeds are compared to measured wind $peallly, the impact of improved wind speed forecast on
147  power forecasting is considereé®ection 2.1 introduces the GPR model, giving an overuoietive mathematical

148  concepts. Section 2.3 gives the definition of atmosplstability used in the current work, its potential rolgvind

149  forecasting, and methods for calculation. Sectiona2d2.4 give details of the model formulation and data tostbt

150 the model, section 3 presents the results and sectimegl conclusions and outlines the potential for funtimnk.

151 2. METHODOLOGY

152 2.1 Gaussian process regression

153 GPRis a supervised learning method where an input-outpinggis learnt from empirical dafa3]. It is a regression
154  technique which does not initially restrict the relasibip between the target and input variables to a spéamific It is a
155 non-parametric Bayesian modelling technique, allowingxédlle model. Prior knowledge is combined with observed

156 data to determine posterior predictive distributions fahtr test inputs.

157 GPR has been used for prediction in a number of aplisatfor example spectroscopic calibrati4], robot control

158 [25] and image processinig6]. Through these applications, GPR has shown an abilfiyeidict well in situations where
159 complex nonlinear relationships exist between variaBesause of this, it could prove to be a good method ifoad w

160 speed prediction, given the typically complex patterns aladionships between wind and other weather variablesn Ch
161 et al.[19] describe a method in which an NWP model is combindd adEPR model to predict wind speeds up to 1 day
162 ahead. The corrected wind speeds are used to predict @adt psing another GPR model. In this example, three data
163  sets from different wind farms in China are used to valittegenethod, reporting reductions in mean absolute error
164  compared to an Artificial Neural Network (ANN) model. In &eafient study Chen et gll4] present the potential for a
165 composite wavelet analysis and GPR forecasting techniqudl. iByp@vements over a simple GPR model were noted

166  demonstrating that the concept merits further investigation
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GPRaimsto identify a relationship between input variables angdt variables, based on the observational data
available. The aim is to create a function that sasisf = f(x;) + ¢; where y is the target variable, x are the input
variables and is normally distributed additive noisRasmussen and Willianj83] provide an extensive mathematical
background of GPR, of which a summary is provided here Gehessian proceg¥x) is completely specified by its

mean and covariance functigix) ~GP (m(x), k(x,x")), where the mean and covariance functions are given by

equation) a).

m(x) = E[f(x)] 1

k(x,x") = E[(f(x) = mX)(f(x") — m(x"))] 2)

This is used to define a distribution over functions which can be updated using training data. The prior distribution is the
initial specification of the distribution which gives information on the mean and covariance functions used. Given a
training set D = (X,y) the target is to predict the function values f, given inputs X,. Being a linear combination of
Gaussian variables, y is also Gaussian, with distribution y ~ N(m(x), K(X,X) + o®I where K;; = k(x;,X;). The joint
distribution of the training data and the predicted output is given by equation (3) [27].

(X) [KXX) +0?1 KXX,
el Gyl el i

The principle of joint Gaussian distributions allows the prediction results for the target to be inferred from the mean

function f,and the covariance function cov(f,) given by equationsan
f. =mX.) + KX, X[KXX) + o1 (y — m(X) “

cov(f) = K(X,,X,) — K(X. X)[K(X, X) + ¢*I] TK(X,X,) + oI )

The covariance is a crucial part of the model specification, as it includes assumption about the functional relationship.
Despite this establishing the correct covariance function for a regression problem is a significant issue in the inference
process. The squared exponential (SE) covariance function is a commonly used covariance function due to its ease of
interpretation and flexibility [28] and hence is used in this work. The squared exponential covariance function is given by
equation|(6)

X— X')z) (6)
202

covsg (X, X') = o2exp (—
where o2, [ are the signal variance and length scale respectively. In order to maximise the flexibility of the model,
parametric covariance functions are used and the hyperparameters are inferred from observed data. The process of
learning the hyperparameters, 8 = (I, )7, from data is achieved by maximising the log likelihood function [19], given
by equation|(7)

1 1
InP(y10) = 5 tnlKl —EyTK‘ly—%ln(Zn) )

For a multidimensional input variable a separate length scale is calculated for each model variable, and the relative
importance of different inputs can be inferred from the observed data, a process which is known as automatic relevance

determination (ARD).



193 2.2 Data

194  The predicted wind speeds which are used to inform thiechyiodel are taken from an NWP model developed by the
195 Met Office. This NWP model provides three hourly foresagi to 5 days in advance, employing a global forecastimode
196 to predict longer range weather forecasts (48+ hours abeatjined with a mesoscale model to generate a more
197  accurate short range forecast. The forecast data uigd imork are a weighted combination of the Met offidéMand
198 Euro4 models. UKV is a variable resolution deterministarlel, with a resolution of 1.5 km over the UK and decikase
199 resolution at the model boundaries to aid integration ested model. Euro4 is a 4 km resolution deterministic model
200  covering Europe. UKV runs up to 36 hours in advance anddeup to 120 hours. The forecast data is available fihem
201 UK governmental public data webs[&9] for over 6000 sites. The meteorological observatidmstwhave been used
202  for reference have been taken from the Met Office IntedrBiata Archive System (MIDAS), available from thetiBh
203  Atmospheric Data Centre (BADC) [30]. The archive consistdofand surface observations, global marine

204  observations, and a selection of radiosonde obsergatiath in the UK and at international stations operatedeoiviet
205  Office. This data provides hourly observations of actiele of meteorological variables including wind speed and

206  direction, cloud cover, temperature, air pressure and hiymaiaiongst others. The MIDAS stations are set up gdahba
207  observation data can be the best quality possible wigisigtven by the BADJ30]. Cup anemometers are used to
208 measure wind speed, at a height of 10 m above ground IéxeekifE must be free from obstructions to avoid

209 measurements in the wake of obstructions and qualityatas performed to avoid inclusion of spurious data where
210 possible. For example, automatic algorithms are appliedguare consistency of wind measurements with othal loc
211  stations. Not all weather variables are availablevery MIDAS site and data coverage is variable, depeonddattors
212  such as equipment failure. Because of this, 15 sitesaliesen across the UK where sufficient data was dlaifar

213 analysis. The MIDAS datasets are taken from variougi@taacross the UK, with different weather coratis and site
214  characteristics across the selection. The sites eegegiorised into 4 types; rural, urban, mountain and co&stegories
215  were chosen for the sites based on visual inspectitiredite itself and the local area, considering tloiprity to

216  coastline, building density, elevation and terrain compjeXihe model performance was considered within therdifte

217  categories as well as overall. The locations andifitzgfon of these sites are shown in Figufe 1

218 To demonstrate the potential for wind power predictiba,mhodel was also tested for one location in the UKrevhab
219 height wind speed and power was available. The datars®edmpf measured wind speed data at approximately 65 m

220 above ground level and power output from a 1.5 MW turlbireesuburban location.
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Figure 1: Map of 15 MIDAS locations across the UK, including site classification
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2.3 Treatment of Atmospheric Stability

Atmospheric stability is a measure of #imosphere’s tendency to encourage or deter vertical motion [21]. Neutral
conditions occur during high winds and when cloud covergms strong heating oo@ling of the earth’s surface.
Unstable conditions occur when strong surface heatiddoav wind speed conditions occur, encouraging vertical
motion of air. Stable conditions usually occur as a tedw cool surface, either the earth at night or over coens.
The flow of air is affected by atmospheric stability andsequently a number of different aspects of wind power
forecasting can be affected. For example, Petersain [81] document the difference in vertical wind prcfilender
different stability conditions. The difference in the povesv under different stability conditions is also exphbby

Irwin [32]. This was further investigated empirically by Focken aetheimann [33], using data from a meteorological

observation mast at Cabouw in the Netherlands.

Numerous methods exist for classifying stability, each ragua range of meteorological parameters for calcudatio
Some examples include the Obukhov length, Richardson nutabeyerature gradient, wind speed ratio and Pasquill-
Gifford stability class. The main issue surroundinguakion of some stability parameters is that they reqestenates

of variables such as frictional velocity and heat fidhich are not commonly available from either forésas
meteorological observations. The Pasquill-Gifford rodtivas developed to categorise the stability class hassd
variables that are commonly measured at meteorologfiatibns. The method uses solar insolation as an irafioaiti
convective turbulence and wind speed as an indicatiomeohanical turbulend®1]. This method for calculating

stability was developed predominantly for the purpose ofifsit dispersion models, however has become a commonly
used classification scheme. It requires wind speed ateight, daytime solar insolation or night time cloud coVéiis

was further modified by Turner by using net radiation index (N&R8stimate solar insolation based on cloud cover and

10
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cloud ceiling height, resulting in the Pasquill-Gifford¢fier (PGT) method for stability condition classificatiorhe

PGT method classifies 7 different stability conditi@ssgiven in Table 2.

Table 2: Stability categories for PG and PGT stahifigthods

PGT class Stability condition
Highly unstable or convective
Moderately unstable
Slightly unstable
Neutral
slightly stable
Stable
Extremely stable

NN DN AW~

The first step in obtaining the stability classification is to calculate the insolation class number. This is obtained based on

solar altitude as outlined in Table 3. NRI is calculated using the algorithm given in Figure 2, where cloud cover is given

in tenths, with 1/10 indicating low cloud cover and 10/10 indicating opaque cloud. Finally, using NRI and wind speed,

the stability classification is obtained from Table 4.

Table 3: Insolation class number

Solar Altitude (o) Insolation Insolation class number
60 <o Strong 4
35<9p<60 Moderate 3
15<p<35 Slight 2
Q<15 Weak 1

Figure 2: Algorithm for calculating net radiation index [34]

S i e e T
Is it day | Is cloud cover > | Yes RI = Insolation
| Hima? } Yes 4/10? b class number
= = - T
T No
r___L___I F__'L__'I
Is cloud ceiling RI = Insolation
] Is cloud cover < - | height <7,000 ft? F——"es
No 4/10? Yes [ AR |
L ot~ | T
No
NRI = NRI = N
-1 -2

r n
Is cloud ceiling height
| <160,000 ft? e

No
S
[ Is cloud ce1hng i NRI = Insolanon l1s NRI1
L CEVEL|£/107 class number -1 < < 1?7 t
No Yes

5 &
class number
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Table 4: PGT stability classes
Net radiation index (NRI)

. -1
Wind speed (ms™) 4 3 2 1 0 -1 =2
0-0.7 1 1 2 3 4 6 7
0.8-1.8 1 2 2 3 4 6 7
1.9-2.8 1 2 3 4 4 5 6
2.9-3.3 2 2 3 4 4 5 6
3.4-3.8 2 2 3 4 4 4 5
3.9-4.8 2 3 3 4 4 4 5
4.9-54 3 3 4 4 4 4 5
5.5-5.9 3 3 4 4 4 4 4

>6 3 4 4 4 4 4 4

The PGT method allowed stability conditions to beneated based on MIDAS observations. However, the foretast
variables available from the Met office forecast didanot include sufficient details of cloud conditionsltovathe use
of the PGT method. Because of this stability conditissed in this work have been based on MIDAS observatibtise
time of the prediction. In future, if further foretad variables were available, the work could be extermlegplore the

impacts of using predicted stability conditions.

2.4 Model Set-up

An introduction to the method is given above, however, thaefrinputs and outputs require further definition. Due to
the variables required to estimate stability conditiaméy sites where information on wind, cloud depth and cgeera
was available were considered. From the MIDAS sitessadhe UK with sufficient data, 15 sites were ingagéd. The
location of these sites was showre 1. Futthtis, for one turbine in the UK hub height wind spaed power

output data was available. Results are shown for #aigtion of hub height wind speed at this site.

As detailed in section 2.1 the model develops a relatiprigtiveen target variabyeand input variables of the form
y; = f(x;) + ¢;. The model is a multivariate regression model with 4ligter variables, the Met Office forecast and 3
hours of observed data prior to the beginning of the fordéaecasts up to 72 hours in advance were consider@d, at

hour intervals. Hence the predictor variables arergly equatiort8).

X, =M,y n-1,Yt-n-2Ye-n-sl fort=4,..,n (®)
Where:
t= time of observation
m, = Met Office forecast at time (¥
y, = observed wind speed at time t (s
h= hour of forecast

Section 3.1 presents the results of the forecast madptddicting wind speed at 10 m above ground level for 15
MIDAS sites across the UK. In this case, the targebltesy, are the MIDAS observations at the site. Section 3.2
presents results of the forecast model for wind speeatigian at hub height for a suburban location in the BRally,
section 3.3 explores the potential impact of improvedhaight wind speed forecasting on wind power forecasling.
ensure an independent forecast, the data was split irameng dataset and a test dataset. The training dataseised
to train model hyperparameters and the test datasetdssathe model performance. The training data are definibet

concurrent observations and Met Office forecast datth®first 9 months of 2014 and the test data are sam@adrdm

12
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the final 3 months of 2014. The observation data wadadlaiat hourly intervals and the forecast data atulyio
intervals. This describes the formulation of the GPRIehwith no stability data. To test the impact of usatrgospheric
stability to improve the model, the data vegt into 7 stability classes and the model trained sepwrfatecach class.
From the variables available in the Met Office foistan indication of forecasted stability conditiondifcult to
obtain, therefore currently this study uses the staladibditions at the time of the observation, as caledl&om the
MIDAS data. Whilst in the case of an actual forecashado this information would not be available it giees

indication of the potential improvements possible usiadility information in a GPR model.

1. RESULTS
3.1 MIDAS site wind speed prediction

The GPR model was first used to show potential impreveran predicted 10 m wind speeds at 15 MIDAS locatifns.
months of data was used to train the model and leayflerparameters, and a further 3 months of data was usest to
the results.

Wind speeds predicted by the GPR model are compared MiE#S observations with several criteria used to assess
performance. Here three criteria are shown, mean absaidr (MAE), mean absolute percentage error (MAPE) and
root mean squared error (RMSE), calculated using equations (9and @} 1).

MAE = » , ly, — 7, ©
= ;Z Yt — ytl
i=1
n
1 _ 5 (10)
MAPE = —Zu x 100
n4& Ve
i=1
(11)

RMSE =

wherey, is the observed wind speed at tim¢; is the forecasted wind speed for the same time peribd &the

number of forecasts made. The comparison of differeat eretrics allows a full overview of the model performan

The model errors are shown for a GPR model in whiclighasets were split by stability class and a GPR miledy

the full dataset. The results are shown alongside modekdar the wind speeds predicted by the simple GPR model
and the NWP prediction made by the Met Office. In orddultg illustrate the model results, detailed resultsstr@vn

for 4 of the 15 MIDAS sites tested, and summary resuitslaown for the 15 sites. In Figures 3 and 4 MAE and MAPE
are shown for 4 of the 15 MIDAS sites. This shows hosverrors increase as the forecast period increamts)so how
the model error is reduced by using the GPR model with intiwman stability included. Overall, the simple GPR with
no information on stability reduces the error in predictedivspeed compared with predictions made by the NWP. The
improvement is site specific, with greatest error radocteen at a forecast period 3 hours ahead for stese @nd

further ahead for others. Figure 5 shows a summaeyrofs over the 15 sites. This shows an average redirction
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MAPE of approximately 2% for the simple GPR model in canspa to wind speeds predicted by the NWP. For the
GPR model with stability information, there is a reductin MAPE of 5% for a 3 hour forecast period, risin@% for a
72 hour forecast period. The simple GPR model also shoveserage of 2% improvement in MAE and RMSE for all
forecast periods, whilst the GPR model with stabilifgimation shows a 10% improvement in MAE and a 7%
improvement in RMSE.

In Figure 6 MAE and MAPE for the simple GPR model andGR&® with data subdivided by stability are shown in
comparison to the persistence model. In addition to thifable 5, improvement over persistence is showM#E,
RMSE and MAPE. It can be seen from this that thegesgnificant reduction in error in comparison to the penscs
method for MAE, RMSE and MAPE. For the GPR model sithbility, the reduction in MAPE over the persistence
model is 14.5% at 3 hours ahead, increasing to 57.6%laiufg ahead.

In order to assess whether the errors seen for the GPR aneddmilar to other state of the art methods, sdtieeo
results seen in Table 1 are discussed. Figure 5 showsehege RMSE across the 15 sites for the GPR model with
stability is 1.1 m3 at 3 hours ahead. At 1 hour ahead Li and Shi [35nGi# al. [14] and Li et al.[36] give an RMSE
between 0.96 msand 1.5 m3. Hence a RMSE of 1.1 Mt 3 hours ahead is within the range of a good forecarst. F
the same three studies an MAE of between 0.72and 1.13 nmi&is reported for a forecast 1 hour ahead. Figure 5
shows an average MAE of 0.82 ¥t 3 hours aheddr the GPR model with stability, again falling withirethrange

shown by other studies.

At 72 hours the average RMSE for all 15 sites for tR&R@odel with stability is 1.54 msvhichis smaller than the
RMSE reported by Louka et §1.6] of 2.38— 2.88 mg and Chen et aJ14] of 2.04 mg. Similarly the average MAE
over 15 sites for the same model at 72 hours ahead isns1@ompared to 1.75 2.04 m¢ reported by Louka et al.

[16] and 1.6 m$ reported by Chen et al. Furthermore the MAPE showrngur€ 5 for the GPR model with stability at
72 hours is 42%, slightly lower than the 44% reported by Chah[é#]. As different datasets are used to those in the
literature discussed it is not possible to suggest tratthdel outperforms other model considered. However atiger
of errors seen for the hybrid NWP and GPR model presémetedare similar to those presented in literature, iridigat
some potential for this model for near surface wineesl prediction. In future, a comparison of other methocts &s
those summarised in Table 1 to the GPR model with atmidsstability where the same dataset is used would be

valuable.

14
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Figure 3: MAE (with 95% confidence interval) for 4 sample MI®8ites shown for GPR models both with anc

without stability, and the NWP.
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Figure 4: MAPE (with 95% confidence interval) for 4 samdI®AS sites shown for GPR models both with ans

without stability, and the NWP.
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Average RMSE, MAE and MAPE for all 15 MIDAS sites. Error bars are not shown here to allow clarity.
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Figure 6: Average MAE and MAPE for all 15 MIDAS siteo®im in comparison to the persistence method.

2.8

(3]

6

72

80

260

20

3

Hours ahead forecast

= NWP

3 GPR no
stability

. GPR with
stability

x Persistence

16



336

337

338
339
340
341
342
343
344
345
346
347
348
349
350

Table 5: Improvement over the persistence method for both hybrid NWP and GPR models

Hours ahead forecast

Model Error metric 3 6 12 24 48 72
MAE (ms?) 0.38 0.73 1.16 1.42 1.52 1.45
GPR RMSE (msh) 0.43 0.83 1.29 1.45 1.25 0.63
MAPE (%) 11.39 24.38 41.61 52.06 53.65 50.86
. MAE (ms?) 0.43 0.79 1.22 1.48 1.65 1.57
GPR with
- RMSE (msh) 0.58 0.98 1.45 1.65 1.54 1.07
stability

MAPE (%) 14.49 27.71 44.99 55.85 58.81 57.63

The model performance was also considered for theereiiff site categories observed; rural, urban, mountain and
coastal. Differing meteorological effects present difieferecasting issues dependent on site characteristics. F
example at coastal sites wind speed is affected by changadace roughness, and availability of heat and nraist
[22]. In mountainous areas, complex orography and changes jretatare drive wind speed, and within urban areas
high densities of buildings can interfere with expected wirittpes. Taking this into account one might expect the
model results to vary with different site charactersstithin the 15 MIDAS sites considered there was 1 mousttEn
3 coastal sites, 4 urban sites and 7 rural sites albeFigure 7 shows how the Met Office NWP error vawiisin
different classifications. Average NWP error is shownefach site, calculated as an average over the time periods
considered (3 hours ahead, 6 hours ahead, up to 72 head) afor the three coastal sites in the datasetyéhage
model error is higher than for the rural and urban claasidns. Only one mountain site is identified within e,
hence it is difficult to suggest whether the results seehis site are representative of all mountain kitegever the
NWP error observed for this site is also higher thanuted and urban sites. The difference between errotgah and

urban sites seems to be small, however, marginally highars are seen at the urban sites.
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Figure 7: Average mean absolute error of the NWP forecast across all time periods considered (3 hours ahead — 72
hours ahead). A single average is shown for each site, with the sites split by site classification.
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Having examined the NWP prediction error for differete slasses, the reduction in error achieved using both GPR

models is considered. This is calculated using equafion

72
Reduction in average MAE = Z(MAELNWP — MAE, gpr) (12)

t=3

where t is the time ahead forecasted. This reductienrar is shown in Figure 8 for both the simple GPRiehand the
GPR model with data subdivided by PGT stability class.nthmseen that for the simple GPR model lower errars a
seen at all but one site. The site which did not aehéa improvement over the NWP was a rural site attwtiie NWP
prediction error was the lowest of any sites considenedjng it difficult to make enhanced predictions. Despitg, an
improvement was seen when using GPR with stabilitigiatsite. Figure 8 shows that for the simple GPR tHaation

in model error is not significantly different betweete silasses. However, for the GPR model subdivided bylisgabi
class a larger improvement is seen at coastal sitbkatahe mountain site. Given that in Figure 7 it wagmesl that
coastal and mountain sites had the highest prediction éroongthe NWP model this shows that the method improves
upon sites where prediction accuracy is lower, which mayskéul for wind farms located in regions with highly
variable wind regimes. An improvement is also seeanaising the GPR model with stability for prediction ovahb
the simple GPR and the original NWP model in urban and aveals, howear, the achievement of the GPR model with
stability is slightly less pronounced than for the caleeshd mountain sites.
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Figure 8: Reduction in error achieved by applying the GPR model compared to Met Office NWP model (A larger

reduction indicates better model performance). (a) Shows results for simple GPR model, whilst (b) shows results for

GPR model with data subdivided by PGT stability class.
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3.2 Hub Height Wind Speed Prediction

Whilst looking at predictions of 10 m wind speeds shthvespotential of the GPR model and the importance bilgya

in reduction of model error, for wind power prediction hulyhewind speed prediction is more important. Hub height
wind speeds were obtained from the wind farm operatoreasita in the UK for a 1.5 MW turbine. Power output and
hub height wind speed data for wind turbines is genedéfigult to obtain due to commercial sensitivity,noe only

one dataset is used to show results for this work. Wirddswas measured at approximately 65 m above ground level.
MIDAS data from an observation site located approxima&edgn from the turbine is used to calculate the stghilass

at the time of forecast, and the met office forecast ataken from the same location as the MIDAS dat&igure 9

MAPE and MAE are shown for hub height wind speed for tiuehsimple GPR model and the GPR with data subdivided
using PGT stability class. It shows a reduction on MAPBetfveen 1 and 2% and between 3 and 5% reduction in MAE
using a GPR model with data subset by stability clagsigire 9 the persistence results are omitted in ordérole s

more clearly the difference between the two model§jdare 10, the MAE, MAPE and RMSE for both GPR models are
shown in comparison with a persistence model. It caseba from Figure 10 that the GPR model shows significan
improvements over the persistence model. In additidmigon Table 6 the improvement in MAE, RMSE and MAPE
over the persistence is displayed. This indicatesfthahe GPR model with stability there is a 7.5% redurcth MAPE

at 3 hours ahead, rising to 31% at 72 hours ahead.

Taking the results for the GPR model with stabilitydiscussion of other methods seen in Table 1 allowsdteatial of
this method to be considered. The GPR model with &abids an MAE of 0.95 msat 3 hours ahead, as shown in
Figures 9 and 10. This is lower than some of the reshitie/n in Table 1. For example, Chen et al. [14] report an MAE
of between 0.72 and 1.1 rhfor a forecast between 1 and 4 hours ahead, Li an@&rbetween 0.9 and 1.05 rhor a
forecast 1 hour ahead and Li et[86] 1.137 mg at 1 hour ahead. Similarly the GPR model with stgifilas an RMSE

of 1.2 ms! at 3 hours ahead, compared to Chen et al. [14] whotegboetween 0.96 and 1.95 for a forecast between 1
and 4 hours ahead, Li and Shi [35] who reported betweemd.2.4 m3 for a forecast 1 hour ahead, and Li e{26]

1.5 mst at 1 hour ahead. MAPE is only reported by Chen et al.gtildgtween 11 and 17% for a forecast between 1 and
4 hours ahead. Figures 9 and 10 show MAPE from the cumehtas 17.5% at 3 hours ahead, which is slightly higher
than Chen. However, the MAPE for the persistence moddésashigher in the data shown in Figure 10 than for the
results shown by Chen et al. At 72 hours ahead MAEh®GPR model with stability rises to 1.36-mklowever, this

is still lower than the results presented by Louka etrad. Chen et al. for this timescale in Table 1. Sinyijl&®MSE

rises to 1.7 m§ again lower than the results from Louka et al. and @hah Figure 10 shows MAPE at 72 hours ahead
for this model is 24%, which is 1% lower than for a GPR rhaithout using stability, and 31% lower than the
persistence method. MAPE is not given for predictionsai®s ahead for any other model shown in Table 1. ittis n
possible to suggest overall superiority of one model whitfgrdnt datasets are used for different models presamted
literature. However, considering the range of errors tigaioa forecast might achieve suggests that this model could

provide good results for the prediction of hub height wineks.
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Figure 9: MAPE and MAE (with 95% confidence interval) for height wind speeds predicted with a simple GPFR

model and a GPR model with stability
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Figure 10: RMSE, MAE and MAPE for hub height wind speed predicted using GPR model with and without stability
information. Persistence model is shown for comparison. Error bars are not shown here to allow clarity. Error bars for
the GPR models can be seen in Figure 9.
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402  Table 6: Improvement in hub height wind speed predictions over persistence model.

Hours ahead forecast

Model Error metric 3 6 12 24 48 72

_ MAE (ms?) 0.3 06 0.9 11 13 11

i':a%‘i’l‘:'t;h RMSE (ms)) 0.3 16 12 15 17 14

MAPE (%) 75 14.7 21.9 27.6 32.2 311

MAE (ms?) 0.3 0.6 1.0 1.2 13 13

GPR RMSE (ms)) 0.4 1.7 13 16 18 16

MAPE (%) 5.9 126 19.8 25.7 30.4 30.0
403
404

405 3.3 Significance of Results in Power Output Forecasting

406 In section 3.2, it can be seen that using a GPR to ptagidheight wind speed leads to a reduction in prediction ierro
407  comparison to using the persistence method. Additiorefiyrther reduction is seen when the data is split ussig P
408  stability class at the time of observation. In ordeggtablish whether the reduction in error seen in hub heigdt

409  speed prediction is sufficient to suggest a reduction in powtpubprediction error, predicted power output is calculated
410 from the predicted wind speed using a wind turbine powerecésypower curve is a relationship between wind speed
411  and power output, which is specific to a turbine. Theyumually provided by wind turbine manufacturers based on
412  experimental data. Whilst they are not completely acedoa real data, they can give a crude estimate oligisel

413  power output. In this case, the power curve is used to sethevithe improved wind speed prediction offers any

414  improvement in power output prediction. The turbine inatdhe location in question is an old model, for whih t
415  manufacturer’s power curve is not available. Hence the power curve used has been chosen from a database of available
416  power curves and has been chosen such that the curvésréfiecelationship between wind speed and power output

417  data at the site as closely as possible.

418 In this section the model errors are shown as a percenftagibine capacity, giving normalised MAE (NMAE) and
419 normalised RMSE (NRMSE). This allows model results frogdaor smaller turbines to be compared in a meaningful

420  way. Hence the error metrics shown are given by equat®asd 14.

100 (13)
NMAE = Zlyt Vil X —

(14)

NRMSE =

12": 12, 100
ni_l(Yt ) I

421  Wherey, is the observed wind speed at tim¢g; is the forecasted wind speed for the same time peritthe number

422  of forecasts made and C is the installed capacity otithee.

423  Figure 11 shows the difference in NMAE and NRMSE betwsmwer output predicted from wind speeds using a
424 persistence model, a simple GPR model and a GPR madtiestability classification. It shows a reduction irmalised
425  MAE of between 2 and 12% for the power output predicted wgingd speeds from the simple GPR model over a
426  persistence model, and a further 0.5% for the GPR nspiieby stability class. Additionally, a reductionttween 4
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and 16% in normalised RMSE for the simple GPR model compartbe persistence model with a further 0.5%
improvement using the GPR model with stability classes

Due to the power curve for this turbine not being awdd the method for predicting power output could be improved
upon significantly however it shows that there maydaespotential for improvement in power output forecastguthe

GPR model with stability classes.

Figure 11: MAE and RMSE normalised by turbine capacity, shown for simple GPR and GPR with stability information
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4. CONCLUSIONS AND FURTHER WORK

The motivation for this study has been to assess thierpance of a hybrid numerical weather prediction moNgVP)
and Gaussian process regression (GPR) model in predicangumdace wind speeds up to 72 hours ahead, and show
how subdividing data using the PGT atmospheric stabiitysctan improve model performance. The results shaw tha
when the simple GPR model is uged10 m wind predictions there is a reduction in MAPE fbfaaecast periods of

2% over the NWP wind speed predictions. When the GPRInwdsed with data partitioned by atmospheric stability
there is a reduction in MAPE of 5% for forecasts madeu8shahead and 9% for forecasts made 72 hours ahead. This
indicates that the GPR model with data partitioned Hyil#taclass leads to improved wind speed predictiores the
NWP model. Particular improvements are seen at mounusiand coastal sites. Furthermore, using the GPR model
using data partitioned by stability class for the prtésticof hub height wind speeds lead to a reduction in MAPE o
between 1 and 2% over the simple GPR model. It anka seen that the improvements achieved using thisl thave

a positive impact on wind power output predictions. Implemegritie GPR model with data partitioned by stability class
leads to a reduction in NMAE of 0.5% over the simple GPReh@nd a reduction of between 2% and 12% in
comparison to the persistence methods. In geribealesults seen for wind speed prediction are of comparable

magnitude to those observed in other methods listed ile Tals discussed in section 3.
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The work so far demonstrates the potential of the nletith additional data improvements could be made to the
method shown. For example, due to the availability ofciseed weather variables, this work has so far relied tigon
use of stability class as calculated from observedheeafriable rather than predicted stability class.heanvork is
required to show a full predictive model with stabilitgsses. To calculate the predicted stability conditiestimates of
other meteorological variables such as heat flux andoimigk velocity are required, which are not routinafgitable. In
addition, the PGT stability class method is knownwver eestimate the existence of neutral stability coonlét Other
methods could be used to calculate stability, potenfiatlyiding a more accurate representation of conditibhis may

increase the accuracy of this model further and gesv/an avenue for additional investigation in the future.

Whilst many methods for wind speed and power prediction X has not been used widely for wind speed
prediction Furthermore, despite the numerous methods that existnffeei of atmospheric stability on predictions is

rarely considered. Because of this, the method providesed approach to forecasting and indicates promisisigtse
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