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Highlights

e Marine derived sources dominate nutrient P and N inputs to the Mediterranean Sea
e Land derived P and N inputs increase by up to a factor of 3 between 1950 and 2030
e Variable circulation hinders detection of anthropogenic nutrient enrichment

e Changes in DON concentrations yield the most prominent anthropogenic signatures
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Abstract:

Human activities have significantly modified the inputs of land-derived phosp{f®rasd nitrogen (N) to

the Mediterranean Sea (MS). Here, we reconstruct the external inputs of rBaatideN to the Western

Mediterranean Sea (WMS) and Eastern Mediterranean Sea (EMS) over the period 1950 to 2030. We

estimate that during this period the land derived P and N loads increasedby da& and 2 to the WMS
and EMS, respectively, with reactive P inputs peaking in the 1980s but reactiveutd increasing
continuously from 1950 to 2030. The temporal variations in reactive P and Nan@itgoseth a coupled

P and N mass balance model of the MS to simulate the accompanying changes in water calemn nut
distributions and primary production with time. The key question we address tsawttetse changesear
large enough to be distinguishable from variations caused by confounding factdficadiyebe relatively
large inter-annual variability in thermohaline circulation (THC) of the M&. &halysis indicates that for
the intermediate and deep water masses of the MS the magnitudes of changesénReactcentrations
due to changes in anthropogenic inputs are relatively small and likely difficdiagnose because of the
noise created by the natural circulation variability. Anthropogenic N enrichment shouldréeaadily
detectable in time series concentration data for dissolved organic N (Dt@N)haf 1970s, and for nitrate
(NOs) after the 1990s. Th&ON concentrationsin the EMS are predicted to exhibit the largest
anthropogenic enrichment signature. Temporal variations in annual primary prodwetidghe 1950-2030
period are dominated by variations in deep-water formation rates, followed by charnigesne P inputs
for the WMS and atmospheric P deposition for the EMS. Overall, our amalgstates that the detection
of basin-wide anthropogenic nutrient concentration trends in the MS is renderedltdiffie to: 1) the
Atlantic Ocean contributing the largest reactive P and N inputs to thednge diluting the anthropogenic
nutrient signatures, 2) the anti-estuarine circulation removing at48és of the anthropogenic nutrients
inputs added to both basins of the MS between 1950 and 2030, and 3) vatatnb@sriediate and deep

water formation rates that add high natural ntoghe P and N concentration trajectories.
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ACRONYMS

ASW — Atlantic Surface Water

BiOS - Bimodal Oscillation System

DON - dissolved organic nitrogen

DOP- dissolved organic phosphorus

DW — deep water

EMDW - Eastern Mediterranean Deep Water
EMIW — Eastern Mediterranean Intermediate Water
EMS - Eastern Mediterranean Sea

EMSW - Eastern Mediterranean Surface Water
EMT — Eastern Mediterranean Transient

IW — intermediate water

LIW — Levantine Intermediate Water

MS — Mediterranean Sea

N - nitrogen

NH, — dissolved ammonium

NO; — dissolved nitrate plus nitrite

NWM — North West Mediterranean

P - phosphorus

PDF- probability distribution function

PQy - dissolved phosphate

PON- particulate organic nitrogen

POP- particulate organic phosphorus

SGD- submarine groundwater discharge

SW - surface water

THC — thermohaline circulation

WMDW - Western Mediterranean Deep Water
WMIW — Western Mediterranean Intermediate Water
WMS — Western Mediterranean Sea

WMSW - Western Mediterranean Surface Water
WMT — Western Mediterranean Transition



85 1 INTRODUCTION

86  Since the industrial revolution, anthropogenic emissions of phosphorus (P) andmit)chave rapidly
87 increased worldwide (Galloway, 2014; Cordell et al., 2011; Mackenzie @04ll), causing widespread
88 changes in the structure, functioning and health of aquatic ecosystems. Anthropyméniofireactive N
89 to the environment have risen roughly nine-fold since 1860, with a large exponargalse since 1950
90 (Galloway, 2014). The resulting N load to the oceans has approximately doubled (Gallowaywhié4)
91 P fluxes to the global ocean are 1.5 to three times greater than estimagbes-dnthropogenic times
92 (Ruttenberg, 2014; Paytan and McLaughlin, 2007; Follmi, 1996). Impacts are partiselshg in semi-
93 enclosed seas such as the Baltic and Black Seas where primary production haslibgréasors of four
94  tosix in recent decades (Mikaelyan et al., 2013; Gustafsson et al., 2012).

95 Givenits large, and growing, coastal population, and the ongoing agricultural and industriaiéatesrsif
96 (Micheli et al., 2013; UNEP/MAP, 2012), one may expect widespread evidence of nemtriehiment in
97 the semi-enclosed Mediterranean Sea (MS). For comparison, land-derived inputs of P and N to the Eastern
98 Mediterranean Sea (EMS) per unit surface area are similar to those entering the BaltenSeappellen
99 et al., 2014). However, despite the high anthropogenic inputs, the MS shows little evilanweased
100 eutrophication, with the exception of nearshore areas, such as the northern Adriatic GeHi,ahkions,
101 and the Nile delta region (Karydis and Kitsiou, 2012). The anti-estuaricidation of the MS and the
102 resulting lateral export of nutrient P and N, ultimately to thetiNAtlantic Ocean, are usually invoked to

103 explain why the MS remains in its oligotrophic state (Krom et al., 2010; Crispi et al., 2001).

104 The intermediate (IW) and deep (DW) waters of the Western MediterranedVBt3) and EMS have
105 relatively short residence times (7-150 years; Powley et al., 2016a; Roether D@ |Stratford et al.,
106  1998; Béthoux and Gentili, 1996; Roether and Schlitzer, 1991). Hence, the dissolved P arehNatars
107 of these reservoirs could potentially record anthropogenic nutrient enriclomentdecadal time scale
108 However, although DW temperature and salinity data for the WMS have been systgmaticeasing
109  since the early 20centuy (0.3-5x1C° °C yr! and 0.6-2.2 x1® PSU yr!; Marty and Chiaverini, 2010 and
110 references therein), the temporal trends of dissolved nutrient concemstiatibie IW and DW of the MS
111  are far more uncertain (Karafistan et al., 2002; Béthoux et al., 1998; Dardfitan et al., 1998). For
112 example, Pasqueron de Fommervault et al. (2015) recently reported evidencesfsing dissolved nitrate
113  (NOs) concentrations between 1986 2010 at the DYFAMED site, a permanent mooring station located
114 inthe Ligurian 83 but at the same time they found that the dissolved phosphadecf©entrations were

115 decreasing.
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One major difficulty in interpreting temporal trends in water column P and N coatiens is the natural
variability of the thermohaline circulation (THC). A well-known exam@ehe Eastern Mediterranean
Transient (EMT), when DW supply from the Aegean Sea rose markedly above backgutuexifor a
period of about ten years (Roether et al., 2007). The changes in propertdésmtieting the WMS from
the EMS through the Strait of Sicily subsequently led to changes in DW formation thie WMS, termed
the Western Mediterranean Transition, or WMT (Schroeder et al., 2006). Tlhage\aW formation rate
in the WMS during the WMT was several times higher than in pre-WMT times (Powley et al.,.2016a)

The EMT has recently been proposed to be a manifestation of a bimodal oscillaten giOS) in the
northern lonian Sea and the southern Adriatic Sea whereby the North loniansateches from
anticyclonic to cyclonic on a decadal time sq&ecic et al., 2010; Pinardi et al., 2015; Malanotte-Rizzoli
etal., 1999). BiOS profoundly changes the physical and chemical propertiesiomaases in the southern
Adriatic Sea, as well as those of surface water (SW) that jusedtite EMS through the Strait of Sicily
and IW entering the Levantine Sea from the lonian @#uaitarese et al., 2010; Gaci¢ et al., 2010). In
addition to these relatively long-term variations in circulation regimel itf@ of the MS also demonstrates
significant inter-annual variabilitgPinardi et al., 2015; Sevault et al., 2014; L’Hévéder et al., 2013; Vervatis

et al., 2013).

Variations in THC affect the spatial distributions of P and N and can, thassdece of variability in time
series concentrations measured at given locations in the MS. As an example, changearnd RQ
concentrations in Levantine Intermediate Water (LIW) collected off the coast of dgqaedhr to coincide

with changes in circulation due to BiOS (Ozer et al., 2016). Ozer et0db)2herefore propose that the
observed changes in the dissolved inorganic nutrient concentrations can be expjairsgthtions in
circulation driven by BDS. In contrast, Moon et al. (2016) argue that the temporal trends exhibited by the
concentrations dPQy and NQ in IW across the whole MS are driven by changes in anthropogenic inputs
of P and N, mainly from rivers for P and atmospheric deposition for N. These oppEsirgyraise the
question whether time series P and N concentration data of offshore (or pelagis)ifvtite MS can yield

records of anthropogenic nutrient enrichment, or not.

The purpose of this study is to evaluate to what extent the trends in diss@mdd\Pconcentrations due

to changes in the delivery of anthropogenic nutrients to the MS may be masked by thevaaalitity in

THC. To that end, we first estimate the external reactive P and N inputs WM& and EMS between

1950 and 2030. Next,eimpose these inputs to an existing coupled P and N mass balance model for the

MS (Powley et al., 2017), while at the same time considering a number of diffeatsrt circulation
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regimes. For the latter, we consider IW and DW formation rates that eithainreonstant, change
randomly from year to year, or follow historical trajectories recoatdufrom literature data. The results
are used to assess how sensitive temporal trends in aqueous P and N concentratiorss A eathual
primary production in the WMS and EMS are to human-driven changes in land-deriveshtninfputs.
Based on our analysis of the modeling resulesformulate recommendations that should help enhance the
efficiency of monitoring programs aimed at assessing the impacts of anthrappgessures on the

biogeochemical state of the MS.

2 METHODS

This paper builds on our previous modeling work on the coupled P and N cycling, fisEN& (Powley

et al., 2014; Van Cappellen et al., 2014), and subsequently extended to include the WMS (Palvyley et
2016a, 2017). The reader is referred to these earlier publications for in-dep¢imtptions of methods,
approaches and data sources.

2.1 Massbalance mod€

The model framework used in this study (Figure 1) is the same as in Povdky(2017). The water
columns of the WMS and EMS are divided into three horizontal layers: surfage(M&ESW, EMSW),
intermediate water (WMIW, EMIW) and deep water (WMDW, EMDW). The WMS and EMS models are
coupled by the bidirectional water exchanges through the Strait of Sibd&yWMS receive$SW inflow
from the Atlantic Ocean, while WMIW and WMDW flow back to the Atlantic OcearieNuat the areas
of DW formation in the WMS and EMS are not explicitly included in the model dontesiead the
corresponding DW formation fluxes are imposed as boundary fluxes within the modéle MeMS, DW
formation occurs in the area of open ocean convection located near to tled Galfs in the northwest
Mediterranean and, henceforth, referred to as NWM. For the EMS, DW formagiginates in the Adriatic
and Aegean Seas. The surface areas of the WMS and EMS model domains (i.e., eékelimiigormation
areas) are 815x3@nd 1336x10kny, respectively.

The model considers three reactive P and four reactive N pools in each horizoetdbyet dissolved
inorganic phosphate (R particulate organic phosphorus (POP), dissolved organic phosphorus (DOP),
dissolved nitrate plus nitrite (N particulde organic nitrogen (PON), dissolved organic nitrogen (DON),
and dissolved ammonium (NH The total reactive P input to the model domain equals the sumspf PO
POP and DOP inputs, plus the fraction of inorganic particulate phosphorus infagdbates soluble after
entering the MS (Van Cappellen et al., 20T4je total reactive N input is the sum of N®ON, DON and

NH4 inputs.
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Internal cycling of P and N within each water layer is modeled using simple first(ordmear) kinetics.
Linear expressions are also applied to the denitrification flux, and rikgiand burial POP and PON
fluxes. Each rate constant (K) is calculated from the initial source reseassrand output flux the 1950
steady state model. The exception is assimilatioi@fin the SW reservoirs. The average annual primary
production in both WMS and EMS is assumed to be P limited (Powley et al., 2017). Niirogatioh
may occur during parts of the year and in certain localities, especi#tiy WMS. However, on an annual
basis, P limitation drives basin-wide primary productivity across the MS (Liatzdr, 2016). In the model,
the P and N cycles are therefore assumed to be coupled via the Retifiglthah is, N assimilation is
computed from the P assimilation flux using all@olar ratio (Redfield et al., 1963). Similarly, carbon
fixation during primary production is calculated from the P assimilation fluxi@egua Redfield C:P ratio
of 106:1.

Fluxes of the various reactive P and N species between water reservoirs dagechlyumultiplying the
corresponding water flows with the species concentrations in the sourceirssérive turbulent mixing
fluxes are the exception: they are computed by multiplying the difference in c@ticentbetween
receiving and source reservoirs with an exchange coefficient, where the lattetad telthe turbulent
diffusion coefficient (Van Cappellen et al., 2014). During the simulations, thertoatoens of the various
P and N species in the water reservoirs change from year to year. The rlukeswithin the MS domain

may therefore change over time because of changes in concentrations, changes in water fltws, or bo

Overall, the model consists of 42 ordinary differential equations solWM@ATLAB using solver ODE 15s.
Factorial design sensitivity analyses performed by Powley et al. (2017) intiaafimary productivity

and the N@PQ, ratios within both the WMS and EMS are most sensitive to changes in thedfukesmd

N entering the MS from the North Atlantic Ocean, ahangedn the atmospheric deposition fluxes of PO
and DON. Furthermore, the EMDWO;:PQ, ratio was found to be more sensitive to processes taking place
in the WMS rather than the EMS.

2.2 Reactive phosphorusand nitrogen inputs: 1950 to 2030

The model considers the following sources of reactive P and N to theaWIEMS: inflows from adjacent
maine basins, atmospheric depositiong fikation, riverine inputs, submarine groundwater discharge
(SGD) and direct domestic wastewater discharges. Powley et al. (2017) estmeatehitudes of these
inputs in 1950, that is, before the large increases in anthropogenic P and N emissionsutinad in
subsequent decades. These estimates inditaethe inflow of Atlantic Surface Water (ASW) via the

Strait of Gibraltar represents the largest input of reactive P aondii¢ MS. Because our focus is on the
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detection of anthropogenic signatures in temporal trends of P and N concentrationsheitMf,tthe
supply fluxes of reactive P and N associated with ASW inflow are assumredhain constant over the
period 1950-2030. This validity of this assumption is difficult to ascegigen the scarcity of data available
to constrain the temporal variability of P and N fluxes through the Strait cdil@GibrThus, all the variations
in reactive P and N inputs to the MS since 1950 imposed in the model calculations aheapfogenic

origin.

Anthropogenic forcing functions for the individual reactive P and N inputet@/MS and EMS from 1950
to 2030 are derived following Powley et al. (2014). The values of the reactive P apdtslin 1950 of
Powley et al. (2017) are used as baseline values. For each input, the forcing function tkles pyoany
given year during the 1950-2030 period the change in input flux relative to th@bs@ Thus, a forcing
function value of 1.2 in 1994 means the corresponding annual input in 1994 isrg@e¥dltan in 1950.
Powley et al. (2014) provide a detailed account of the forcing functions for anthrap&gand N inputs
to the EMS for the period 1950-2000. Table 1 summarizes how forcing functions for both WMS and EMS,
and for the entire 1950-2030 period, are obtained; full details are given in the SemplgnMaterial.
Because direct measurements that constrain the temporal evolution of reactive iRfutd t¢ the MS are
quite limited, relatively large uncertainties are associated with tivmaagst forcing functions. This is
particularly true for the 2000-2030 period, where the forcing functions depeptbgections of ongoing
trends of anthropogenic drivers into the future, for example, the growth ¢dlgoagulations and upgrades
to wastewater treatment plants in the various countries surrounding the MS. Théoe080 to 2030,
mean values of the forcing functions are given, as well as estimates of uppewandirhits of the
associated anthropogenic drivers. Figure S1 shows the anthropogenic forcing functionsattgiatbdel
as a function of time. The total anthropogenic forcing functions for the WMS and EM$satayed in

Figure 2.

In addition to the input fluxes described in Table 1, thegfhof P and N to the DW of the WMS and EMS
supplied by DW formation also vary over time, because of 1) the changes intinetsuiof P and N carried
by the IW and SW that enter the region of DW formation where they mix to form thBwWewand 2) the
changes in the nutrients added directly to W formation sites via rivers and atmospheric deposition.
Here, we derive the forcing functions for the anthropogenic P and N added to each forteat©masiges

in the reactive P and N delivered to the DW formation sites from the SWVaraservoirs are automatically
accounted for as the nutrient concentrations in these reservoirs are updated by the eactidirat step.
Riverine fluxes into the Adriatic Sea and Aegean Sea over the 1950-2030 peribdsaredtimated by
Ludwig et al. (2009, 2010). The DON flux entering the Aegean Sea through the Bosplassisnied to



241 change proportionally to the reactive N riverine input to the Black Sea (guhal., 2009, Ludwig et al.

242  2010). Inflow through the Bosphorus is assumed ensgligible source of inorganic N and P to the Aegean
243 Sea (Krom et al., 2004). Note that riverine fluxes of reactive P and mMbaiecluded for the NWM domain

244  because it corresponds am area of open ocean convection and thus lacks a coastline. Atmospheric
245  deposition fluxes of P and N to the Adriatic Sea, Aegean Sea and NWM are assdoiledvtthe same

246  historical trends of those of the entire EMS and WMS.

247 2.3 Thermohalinecirculation (THC)

248 This study focuses on the inter-annual variability in THC and, more specifitedlyearto-year changes
249 inthe rates of IW and DW formation originating from the four main source zones in the MS: thddWM
250 the WMS, and the Rhodes Gyre, Adriatic Sea and Aegean Sea for the EMS. Durgigeanyear, the
251 IW/DW formation rates remain constant. Four different scenarios are congioldhastrate the sensitivity
252 of the P and N distributions to circulation (Table 2): 1) time-invariaotiiation, 2) random fluctuating
253 IW/DW formation rates, 3) reconstructed (historical) IW/DW formation rated,4) attenuated historical
254  IW/DW formation rates. Each circulation scenario is run separately frontogather with, the 1950 to
255 2030 reactive P and N inputs (Table 2) to separate the contributionsGfrdi those associated with
256 anthropogenic nutrient enrichment. The observables targeted by our analysis are the lPeacil N
257 concentrations in the IW and DW reservoirs, the corresponding N:P ratios, and primary prgd@isét
258 the prescribed IW/DW formation flows are imposed, the other water fluxes argemtlfjo maintain the
259 annual water balance of each reservoir included in the model. The tatal arild outflow water fluxes
260 through the Strait of Gibraltar are kept constant in all model runs, althoughoghertions oMWMIW and
261  WMDW in the outflow to the Atlantic Ocean vary over time. Note thaenitixes between WMSW and
262  WMIW, and WMIW and WMDW, may change direction during some of the model simulations.

263 231 Random circulation 1950-2030 (Simulations 1 and 2)

264 A random normal or lognormal probability distribution function (PDF) is usegenerate yearly IW/DW
265 formation rates from each source region between 1950 and 2030 (Table 3). Treré’bdsed on modeled
266 IW/DW formation rates in the four regions: DW formation in the NWM has been reported to m&a%bi
267  of years over the period 1959-20@THévéder et al., 2013), 63% of years in the Aegean Sea over the period
268 1961-2000 (Vervatis et al., 2013), 80% of years in the Adriatic Sea over the periodQEB{Rinardi et
269 al., 2015), while EMIW formation (also termed LIW in the literature) occurs exeay (Vervatis et al.,
270 2013). Mean values and standard deviations of IW/DW formation flows ageessising long term model

271 estimates from the literature, normalized so that the long term ragan of any given IW/DW formation
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rate equals the value usixdthe 1950 steady state water cycle of Powley et al. (2016a). The corresponding
THC parameter values are given in Table 3. The variability in P andnbentrations due to random
fluctuations in THC are assessed by carrying out 500 model runs witbhnnselected values of the

IW/DW formation rates. Mean, ¥Gand 98 percentile concentrations are reported (see below).

2.3.2 Reconstructed (historical) circulation 1960-2000 (Simulations 4 and 5)

Estimates of historical IW/DW formation rates between 1960 and 2000 are obtaimethé yearly rates

of EMIW (or LIW) and Aegean DW formation reported by Vervatis et al. (2013)VeldW formation

in the NWM byL’Hévéder et al. (2013), normalized as in section 2.3.1 so that the long term mean value of
any given IW/DW formation rate equals the steady state value used in the 1950 wlatef Ppwley et al.
(2016a). The resulting DW and IW formation rates exhibit large tgegear variations (Figure S3). In
particular, intense WMDW formation rates during the first half of the 1@8@slowed by a period of
relatively little WMDW formation extending into the 1990s.

Because of the lack in the literature of long term predictions for DWafiitomin the Adriatic Sea before
1980, we assume that the corresponding DW formation flow follows the observed; salahé in the
Adriatic Sea due to BiOS (Civitarese et al., 2010). The changesiitysalithe Adriatic Sea caused by
BiOS alter the density of Adriatic water and therefore influenceateeof DW formation. To simulate the
BiOS driven changes in Adriatic DW formation the following sine wave is used:

y(t) = (Asin(wt + @) +1). 1950447, (1)

where Ais the amplitudey the frequency, and the phase shift of the DW flow out of the Adriatic Sea,
and 1950447 the 1950 flow (0.32 Sv); Ais assigned the value of @®Based on the reported range of
Adriatic DW flow into the EMS (0.006-0.63 Sv; Pinardi et al., 2015; Sevault et al., 201dgssigne@
value ofn/8 to represent a period of 16 years, matching that of salinity variations in thefsbiatic Sea
(Civitarese et al., 2010), apds equal to 0.7 so that the greatest (smallest) DW formation rate octhes at
highest (lowest) observed salinity. We further discretize the sine wave HetBdV formation rate remains
constant throughout a given year to be consistih the formulations used for the other IW/DW formation
sites. The sine wave produced by Equation 1 and the resulting Adriatic DW formsdé&erare shown in

Figures S2 and S3, respectively.
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2.3.3 Attenuated historical IW/DW formation rates (Simulations 6 and 7)

The mass balance calculations assume that the water fluxes across the entirat$ewisly adjust to
changes in IW and DW formation rates, which is admittedly an oversimpliiicafi the true circulation
dynamics inherent to the box modeling approach followed in this study. To relaasgumption and
account for attenuation and delays in the propagation of changes in water fluxesng awenage of the
previous 5 year IW/DW formation rates is computed and applied to the model for eaatido site across
the MS. Note that while the 5-year averaging is arbitrary, it is selectaddf similar magnitude as the SW
and IW water residence times. Similar to the previous circulation scenariogngeshéinges in the water

fluxes throughout the rest of the model are continuously adjtstadintain the water balance.
3 RESULTS

3.1 Reactive phosphorus and nitrogen inputs. 1950-2030

For the WMS, our estimates indicate that the reactive P input from land derived sSoareases by a
maximum factor of three relative to the 1950 input, reaching a peak in the g0 (2). However,
because of the dominance of marine derived inputs in the nutrient budgetds$ thiee total reactive P
input to the WMS only increases by a maximum of 16% between 1950 and 203@3frbrn16 mol Pyr

1in 1950 to a maximum of 15.6 x 4ol Pyrtin 1985, largely driven by the increase in riverine supply
of PQy (Figure 3A). A subsequent decline in the reactive P input occurs humtjiear 2008 after whidh
slowly rises agairto 14.8 x 18 mol yr! by 2030, because of the increasing inputs from riverine and

wastewater sources as a result of rapid coastal population growth.

For the EMS, the reactive P input from land derived sources increases by a maxitoumwf 28 (Figure

2). The maximum increase of the total reactive P input is 39%, from 58mdl@r in 1950 to 7.8 x 10

mol yrtin 1984, mainly as a result of increased atmospheric deposition, riverine in@\aimflow from

the Adriatic Sea (Figure 3B). Similar to the WMS, the reactive P inphetBMS then decreases until 2000
before increasing by an additional 0.4 X hibl yr! between 2000 and 2030. From 1950 to 2030, most of
the reactive P entering the WMS and EM&ssociated with inflow through the Straits of Gibraltar and
Sicily. The marine derived sources account for 85-94% of the total reactive RdrthetWMS, and 62-
77% to the EMS. The larger fraction of reactive P from non-marine soexpésins why the relative

changes in total reactive P input to the EMS are larger than for the WMS.

In contrast to P, the reactive N inputs to the WMS and EMS are predicted to contimeralise between
1950 and 2030 (Figure 3 C and D). By 2030, the land derived reactive N inp@tsuad 2.5 times higher
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than in 1950 for the WMS and EMS, respectively (Figure 2). In the WMS, the totalveeblcinput
increases by 51%, from 398 x°Ifiol yrt in 1950 to 599 x 10mol yrt in 2030 (Figure 3C). As for P, the
relative increase in the total reactive N input is greater for the EM8ebr 1950 and 2030 it increases by
98%, from 208 x 10mol yrtto 412 x 1@ mol yr* (Figure 3D).

Over the 1950-2030 period, inflow through the Straits of Gibraltar and/ Picivides 79 to 87% of the
total reactive N input to the WMS; for the EMS, inflow through the StrfaBicily suppliesA8 to 63% of
the total reactive N input. Nitrogen fixation, whibbed been hypothesized to have a significant impact on
DW NGO:s:PO;4 ratios of the MS (Béthoux et al., 1992, Béthoux et al. 2002), only accounts foB¥4pdb
the total reactive N input to the WMS between 1950 and 2030. Submarine groundwategelis¢ha
dissolved reactive N, which is included here for the first tima dynamic nutrient budget of the MS
becomes increasingly important during the 1950-2030 period, contributing up to 5% of the ttitad iéa
inputs to the WMS and EMS in 2030 compared to only 1% in 1950. Our minimum estifoathe 2%
century indicate that the reactive N input may stabilize in the WMS245¢£), and even decrease after 2020
in the EMS. The maximum projections have the total reactive N inputs increasgiagaely linearly from
2000 to 2030.

3.2 Dissolved reactive phosphorus and nitrogen concentrations

3.2.1 Noisefrominter-annual THC variability (Smulations 1 and 2)

The areas shaded in red on Figures 4 and 5 encompass the ranges of dissdivedPreacd N
concentrations in the water column generated by random changes in inter-annual THCi¢Bitul&tote

that we present only results for the IW and DW reservoirs becauganhatincentrations across the photic
zone are spatially and temporally extremely variable, making a comparisoeebelwng-term model-
predicted SW concentrations and near-sea surface observations tenuous. In SimuR@ioant, NQ
concentrations in WMIW and EMIW exhibit the highest absolute sensitivity to inter-ana@tions in

THC. For thePQ, concentrations, the mean difference between tfieatd 9¢' percentiles in WMIW and
EMIW over the course of 1950 to 2030 is 34 nM (£6% of the mean 1950-2030 value) and 10 nM (z 5% of
mean 1950-2030 value), respectively. ForN@; concentrations, the difference0SuM (+ 5% of mean
1950-2030 value) in WMIW, an@l3 uM (= 6% of mean 1950-2030 value) in EMIW.

ThePO, and NQ concentrations of the DW reservoirs are more sensitive to THC chiarthesWMS than
EMS. The mean differences between 1@# and 9@ percentiles of th®Q, andNOs concentrations of
WMDW are27 nM (+ 4% of mean value) and 0.6 uM (+ 4% of mean 1950-2030 value), respectively, but
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only 3 nM (£1% of mean 1950930 value) and 0.1uM (£1% of mean 1950-2030 value) for the
corresponding concentratiomis EMDW. Similar to their inorganic counterparts, the highest absolute
sensitivities to THC of DOP and DON concentrations are found for the IW rese®oiM (+ 7% of mean
1950-2030 value) and 0.3 uM (£ 5% of mean 1950-2030 value) for DOP and DON, respantWeniw,

and 4 nM (£ 5% of mean 1950-2030 value) and 0.2 uM (+ 3% of mean 1950-2030 vdild)h As
expected, for Simulation 2, the variability in concentrations due to the inter-armmizddilty in THC (blue

shaded area; Figures 4 and 5) are of the same order of magnitude as in Simulation 1.

3.22 Anthropogenic nutrient enrichment (Smulations 2 and 3)

The temporal trends in theVi dissolved reactive P and N concentrations in Simulation 3 generally reflect
those of the P and N inputs to the WMS and EMS over the time period 1950 to 2030 (BiguresS4
andS5H. Relative to the 1950 baseline, IW dissolved reactive P concentrations inoreasaximum of

13% in the WMS and 21% in the EMS by the late 1980s to early 1990s (Figures 4, 5 and S5), compared to
increases in reactive P inputs of 16% and 39% in the WMS and EMS, respdétigale 3). Within the

DW reservoirs, dissolved reactive P concentrations in both WMS and EMS incretasearsty from 1950

to 2030, with the exception of the WMDW DOP concentration, which reaches its nmaximif93 with

an 11% higher value than in 1950. Dissolved reactive N concentrations in both WMS aridded4Se
throughout the simulation period reaching their maximum values in 2030 (FiguBeS4 andS5. In
particular IWDON concentrations are predicted to strongly increase by a maximum of 33% in the WMS
and 78% in the EMS by 2030 relative to the 1950 concentrations (FBgur&éhe NOs; concentrations in

the WMS and EMS increase strongly after the 1980s, with both IW and DY¢dh©entrations increasing
between 2000 and 2030 at almost linear rates of @@2:M yrtin the WMS and 0.00:03 uM yr? in the

EMS (Figures 4 and 5). By 2030, bl€boncentrations of WMIW are comparable to those of WMDW. The
mean dissolved reactive P and N concentrations of Simulation 3 closely hagelot Simulation 2 as both

simulations use the same anthropogenic forcings.

3.2.3 Recondgructed historical circulation changes (Simulations 4 to 7)
The results of the historical THC changes (1950 to 2000) are shown in Figures 6, &®] S8/ The

maximum variations in PQOconcentrations in Simulation 4 are 75 nM and 29 nM in WMIW and EMIW,
respectively, and 33 nM and 4 nM in WMDW and EMDW. ForsNfOncentrations, the maximum
varigions are 1.6 uM and 0.6 uM in WMIW and EMIW, respectively, and 0M and 0.1 uM in the
WMDW and EMDW. Imposing the 5-year running average of IW/DW historical formataies
(Simulation 6) yields maximum variationsR®, and NQ concentrations that are 39%3ower in IW and

16-25% lower in DW than in Simulation 4ote that the P and N concentration trajectories of Simulations
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5 and 7 are shifted upwards from those of Simulation 4 and 6 respectively, becdasaehénclude the

post-1950 anthropogenic nutrient inputs (Figures 6 and S6).

3.3 N:Pratios

The dissolved organic P and N pools record the greatest change in N:P ratios oversthefciie 1950-
2030 period, with the largest changes in the EMS (Figure 7; Table S2). In EMIWhetdve molar
DON:DOP ratio increases from 67 in 1950 to a maximum of 100 by 2030 as taofeanthropogenic
nutrient enrichment. This increase by 49% far exceeds the variability of onlgab%ed by random
fluctuations in inter-annual THC. Similarly, increases in the meanPratios of WMIW and EMIW of
up to 38% exceed changes due to random variations in THC by more than a faetoféfd DWNOs: POy
ratios of the WMS and EMS show the smallest increases with time, although these are thegonerstiyr
reported N:P ratios for the MS. In the WMS, the modél€as:PQw DW ratio remains approximately
constant at a value 21 until the early 19%&fore increasing approximétdineaty to a value of 22.6 by
2030 (see also Figu9). In EMDW the NQ:PO ratio slightly decreases from 28.3 in 1950 to a minimum
of 28.0in 1989, as a result of the reduced input from the Nile River after elotine Aswan Dam, before
increasing to 29.5 by 2030. In the historical circulation scenarios, the drop in IW afdRRO, ratios
of the WMS and EMS during the 1980s and their subsequent recovery during the 1990s peftecily

the variations in the reconstructed THC (Figure S10).

3.4 Primary productivity

According to Simulation 3, the variable inputs of anthropogenic reactive P aindréhse primary
productivity in the WMS from 148 g Cfryrtin 1950 to 166 g C rhyrtin 1987 (12% increase), followed
by a decrease to 159 g C?iyr! by 2011 with little change afterwards (Figure 8). A larger relativease
is seen for the EMS in Simulation 3, with primary productivity rising from &6rg? yrtin 1950 to 69 g
C n12yrtin 1989 (22% increase) and settling to a final value of 67 ¢¢@rthin 2030. The random THC
fluctuations in Simulation 1 yield a range in primary productivity in the WM8&rotind 35 g C rayr?
(£12% of mean value), which is nearly twice the maximum change of 18 g @ hfrom the variable
inputs of reactive P in Simulation 3. By contrast, for the EMS, the variapitityuced by random THGQ (
g C m? yrtor +6% of the mean value) is smaller than the maximum difference of 18r§ye¢?* due to
increased anthropogenic reactive P inputs after 1950. The historical THC as€Bariulations 4 and 5)
yield the largest relative changes in primary productivity in the WMS and EMIS vaiiations of up to
60% relative to the 1950 values (Figure $11



421 4 DISCUSSION

422 4.1 Phosphorusand nitrogen budgets

423 The MS is landlocked and experiences high population growth and seasonal tourism atoagtlitse

424  (Plan-Bleu, 2005). As a result, the MS has seen significant increases in land denivgd myuts since

425 1950 (Powley et al., 208b, Powley et al., 2014; Ludwig et al., 2009; Guerzoni et al., 1999; this study)
426  Furthermore, the water residence times of the IW and DW reservoirs areetglatiort (Figure 1), thus
427  suggesting that anthropogenic nutrient enrichment could potentially be recgrigeddoral changes in the
428 reactive P and N concentrations within the IW and DW of the MS. So far, hquawgterm trends d®

429 and N concentrations in the deeper water layers of the MS have been inconclusive (Padgueron
430 Fommervault et al., 2015; Karafistan et al., 2002; Béthoux et al., 1998; Demifiskam et al., 1998Dne

431  key contributing factor is the anti-estuarine circulation of the MS, which lsuffeimpact of anthropogenic
432 nutrient enrichment on the N and P budgets, and helps explain why offshore waters of the M&hmned

433  oligotrophic, in contrast to, for example, the Baltic Sea.

434  The anti-estuarine circulation causes large, bidirectional water exchanges acrosstthef &ibraltar and
435  Sicily. Based on our estimates, the nutrient fluxes carried by theseaxahanges dominate the reactive P
436 and N inputs to the WMS and EMS (Figure 3; Powley et al., 2017). In other wledsutrients fluxes
437 Dbetween the North Atlantic and the WMS, and between the WMS and EMS, dilute the chakgexliP
438 concentrations induced by the inputs from the surrounding land masses. The lattautedess than 38%
439 of total reactive P inputs and less than 52% of total reactive N inpotheWWMS and EMS between 1950
440 and 2030, despite increases in anthropogenic inputs of P and N by factors of 3 (WMS) and 2.5 (EMS) over
441 the same time period (Figure 2). Additionally, the anti-estuarine cironlafficiently removes a large
442  proportion of the excess anthropogenic nutrients. On the order ob#hi excess reactive P and N added
443  to the EMS between 1950 and 2030 are removed from the EMS via outflow through ithef Sieily
444  (Figure 9). Similarly, outflow to the North Atlantic and EMS exports approximately 60% of aotjewic
445 P and N supplied to the WMS over the same time period.

446 4.2 Detecting offshore anthropogenic nutrient enrichment

447  The rates of intermediate and deep-water formation in the WMS and EMS varicaighjffrom year to
448 year(Pinardi et al., 2015; Sevault et al., 2014; L’Hévéder et al., 2013; Vervatis et al., 2013). This creates
449 noise in the spatial and temporal distributions of biogeochemical properties therdds, including the
450 concentrations of various forms of P and N, N:P ratios and primary productivithe @dr analysis focuses

451  onthe impact of inter-annual THC variations on the ability to detect badatemporal trends over decadal
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time scales, we fully recognize that mesoscale and seasonal variabilityulat@gdn may cause additional
noise in nutrient enrichment signals. These cannot be accounted for in our simpbaliarass calculations

and require higher resolution modeling approaches (see, for example, Macias et al., 2014).

According to our results, the detection of changes in the dissolved reactive P atimcenaf WMIW and
WMDW directly caused by anthropogenic inputs are expected to be hampered by the randoreateise

by inter-annual variability of THC (Figure 4). The changes in &@ DOP should be more pronounced in
EMIW and EMDW (compare Figures 4 and 5). Nonetheless, the predicted maximunsesdrethe PO

and DOP concentrations for the EMS since 1950 are at most of the oddenbf, which is close to the
analytical precision of 3-5 nM on frozen samples (Pujo-Pay et al., 2044 &tral., 2005). Given the sparse
measurements of reactive P in the MS, in particular for DOP, togethetheitinalytical limitations, it is
unlikely that existing time series R@nd DOP data sets can yield unambiguous records of basin-wide
anthropogenic nutrient enrichment. Additional practical problems of detectingmwhanges in the IW

is the variable depth of the nutricline, and temporal and spatial vagatmised, for example, by mesoscale

features.

Temporal changes iINOz and DON concentrations should be more readily detectable within time series
data. The model generathiD; concentrations rise above the background noise of random THC variability
in the IW and DW reservoirs of both the WMS and EMS after 1990 (Figures 4)afdhes largest
anthropogenic enrichment signatures are predicteD@, however. In EMIW, the anthropogenic DON
signal is already observed after the 19%@sh an increase in the mean DON concentrations of 2.1 uM
between 1950 and 2030. The latter is much greater than the!d ¥riation in DON concentrations
associated with random THC fluctuations (Figure 5). Likewise, anthropogenic eantbfrDON should

be detectable in EMDW and WMIW after 1980 and in WMDW after 1990 (Figures 4 and 5).

The different temporal trends in reactive P and N inputs imply that Nd2 sitould be sensitive indicators
of anthropogenic nutrient enrichment, with the largest increases predicted fobD®Matios (Figure 7)
Reported DON:DOP ratios in the MS tend to be extremely variable, however. artggy from 50 to 84,
and from 60 to 220, in the photic zone of the WMS and EMS, respectively, and from 67 é&md®dm
25 to 260 in WMDW and EMDW, respectively (Santinelli, 2015). The heterogeneity in rep@edOP
ratios may largely be due to the difficulty in accurately measuring DOP coaibems, which tend to be
very low and require careful blank correction. Our modeling results thereforaatadinly for a more
systematic monitoring of DON and DOP concentrations in the MS, but also for tilecddetaording of
QA/QC procedures.
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Higher than RedfieldialOsz;:PQy ratios are a defining feature of the Migep wateNOs:PQy ratios are
probably the most extensively documented feature of nutrient distributions across the WMS afith&MS.
existing observational data further show that DN@s;:PQy ratios tend to be morecherent than the
DON:DOP ratios; they cluster around 20-23:1 in WMDW and 28:EMDW (Pujo-Pay et al., 2011,
Schroeder et al., 2010; Ribera d’Alcala et al., 2003; Moutin and Raimbault, 2002; Kress and Herut, 2001;
Béthoux et al., 1998; Krom et al., 1991). The greater spatial consistency oiidCR PO, ratios are
likely due to the higher concentrations of #ODW (170-400 nM folPQ; in DW, compared t@5-60 nM

for DOPin IW and DW leading to lower relative errors on the NP0, ratios compared to the DON:DOP
ratios. Our mass balance calculations predict that anthropogenic netrieziment should be detectable
in theNOsz:PQy ratios of WMDW and EMDW after 2000 and 2010, respectively (Figures $9nd

Variations in THC are predicted to cause significant noise in the aprigary production rates of the
WMS (Figure 8). A key role of circulation in controlling primary productiontle north-west
Mediterranean is highlighted by two open ocean convection events that took @piagr2011: these two
events supplied the same amount of RGhe SW as annual riverine discharge and atmospheric deposition
together (Severin et al., 2014). In the WMS, DW formation is linked to upgef WMIW into WMSW.

A similar coupling is absent in the EMS where little upwelling intoSk¢occurs (Figure 1). This explains
why the range of primary productivity associated with random variations in $H@ich broader in the
WMS than EMS (Figure 8). Overall, our results imply that the relativeasera primary productivity due

to anthropogenic nutrient enrichment should be more easily detectable in the EMS than WMS.

The largest driver of the predicted changes in the mean primary progucfithe WMS over the period
1950-2030 is the riverine supply of reactive P input (Figure S12). For the EMS, variatatnsoispheric
deposition are the main cause of changes in primary productivity until the begiftieg2 ' century. By
2030, however, direct wastewater discharges and riverine discharge may catch upnagharic
deposition as non-marine sources of reactive P to the EMS. Interestingly, the model thradictsrine
inputsto the WMS are as important in controlling primary productivity in tMSEas riverine inputs directly
to the EMS, because of the large contribution of inflow of WMSW via the Strait ¢y 8idhe reactive P
budgets of the EMS (Figure 3, see also Powley et al., 2017).

4.3 Historical trajectories

The reconstructed historical changes in THC between 1960 and 2000 significadtyttadfdistributions
of P and N, as well as primary productivity (Figure 6, S6, S7, S8, S10 dnd T3kt combination of

anthropogenic P and N inputs plus historical THC (Simulation 5) yieldsapyiproduction rates ranging
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from 125to0 234 g C nf yrt in the WMS, and from 55 to 86 g Cagrtin the EMS. These values fall
within the observed ranges compiled by Berman-Frank and Rahav (2012) for ¢itely9810-2009: 37-475

g C m?yrifor the WMS and 10-143 g Chyr for the EMS. Equally important, Berman-Frank and Rahav
(2012) did not observe clear temporal treimdime series data on primary productivitythe WMS and
EMS between 1970 and 2009, which is consistent with the model predictions (Figurd8is, the noise

in primary productivity data due to the relatively large variations irCTiHasks the effect of excess

anthropogenic nutrient inputs on primary production during the last decades of thenfdry.

A comparison of the results of Simulations 3 and 5 implies that time series d#issalved inorgani®
and N concentratianin the WMIW primarily record the impact of variations in THC, wialéong-term
increasing trend between 1960 and 2000 linked to anthropogenic nutrient enrichagdrg inferred for
the EMIW (Figure 6). Nevertheless, even for EMIW, the variations in &@ NQ resulting from the
reconstructed circulation are much greater than those resulting from nutriehtresmiasalso proposed
by Ozer et al. (2016). Note that all P and N concentrations in the histomcg&gon scenarios, and indeed
all model simulations in this study, are within the range of dissolved reactwel N concentrations
reported across both the WMS and EMS (T&83e

For WMIW, Moon et al. (2016) recently reported that, between 1990 andRO&nd NQ concentrations

rose on average by #M and 1.98 uM per decade, respectively. For EMIW, the same authors report
increases of 50 nM P@nd 0.78 uM N@per decade, over the period 1985-2000. They further propose that
increasing anthropogenic inputs of Pé@nd NQ, via riverine discharge and atmospheric deposition,
respectively, are responsible for the observed concentration trends. Thibesigaontrasts with our
analysis, which suggest that circulation changes mostly modulaiChand NQ trajectories in the IW
reservoirs, rather than changing anthropogenic inputs. For example, according tati®ma) the
maximum increases in R@oncentrations of WMIW and EMIW during the 1950-2030 period that can be
attributed to nutrient enrichment alone &&nM and 17 nM, respectively, that is, much less than the

observed decadal increases.

When historical changes in THC are accounted for, however, the model-derjgetbtias are consistent

with the observe®Q, and NQ concentration changes reported by Moon et al. (2016). In Simulation 5, the
POy concentration of WMIW increases by 49 nM between 1990 and 2000, and that of EMIW by 27 nM
between 1985 and 2000. Over the same time periods, the increasesdarigéntrations are4 uM and

1.0 uM in WMIW and EMIW, respectively (Figure 6). These predicted increases in concentration are of

comparable magnitudes as those observed by Moon et al. (2016). Even with attenuated weater flux
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(Simulation 7) the variationsn IW PQ, and NQ concentrations during the last decade of tHechtury
markedly exceed those due to anthropogenic nutrient inputs alone (SimulatétBerefore propose that
variations in THC are a major contributor to the observed increases iand@O; concentrations in the
IW reservoirs from 1985 to 2000. This is in line with Ozer et al. (2016)snpggest that temporal trends in

observed EMIWNO; and PQ concentrations are primarily driven by circulation changes.

The lack of substantial change in the predicted B¢:PQy ratio of the WMS prior to 1990 (Figure S10)
is in agreement with the observations of Béthoux et al. (120@2). Pasqueron de Fommervault et al.
(2015) further report an increase by 4.2 units between 1990 and 2010 in $#fRONDW ratio at the
DYFAMED station located in the WMS. Although this increase is significatdhger than the
corresponding WMS-wide DW increase of the )\ ratio predicted by our model in both the ensemble
and historical simulations, it could reflect DYFAMED’s location close to the land-derived nutrient inputs

along the northern coast of the WMS.
5 CONCLUSIONS

At first the MS would seem the ideal setting to observe whole-basin isnpaeinthropogenic nutrient
enrichment: it is almost entirely surrounded by land with a large and rapayngy coastal population.
However, as shown here, several factors complicate the unequivocal detection of anthropogemessignatu
in time series P and N concentrations in the offshore waters of the MSifarme sources play a dominant
role in the P and N budgets of the MS. For the WMS, reactive P and N are overwhetupylied by
inflow of ASW through the Strait of Gibraltar and EMIW through the Swuaibicily. For the EMS, the
major reactive source of reactive P and N is WMSW flowing in through the 8fr&iicily, although
atmospheric deposition represents a reactive N input of comparable magnitude as the WM&W inf
Second, the anti-estuarine circulation of the MS efficiently removes a larg®rradt newly added
nutrients, thus further diluting potential anthropogenic signatures irmigoral and spatial distributions
of P and N concentrations. Third, significant variability in IW and DW formaties introduces noise in
time series reactive P and N concentrations. Ignoring the effects of variatidhtCi therefore greatly
increases the possibility of false detection of anthropogenic nutrient enricimtie@twater column of the
MS.

Over the 1950-2030 period, we estimate that the total reactive P and N inputs to $26EW®) increase
by up to 16 (39) and 51 (986 relative to their 1950 values, respectively. According to our simulation

results, however, the accompanying changes in water columarldOP concentrations between 1950
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and 2030 should hardly be discernible over the background noise created by random interaeahilidy
in THC. By contrast, the temporal trajectories of DON concentrationsdski@ldl more reliable records of
the changes in anthropogenic inputs, especially in the EMS. Within the IW and DW, anthropagréric
enrichment should be detectable in DON time series after around 1970 and 1980 in the BVI8Snd
respectively, assuming that the DON concentration data are acquired usang faeif sampling and storage

techniques, and high accuracy analytical methods.

Following from the above, the model calculations predict relatively large changes molar DON:DOP
ratio with time. Nevertheless, the existing time series data on DON:B@@R may not yield reliable
records of anthropogenic nutrient inputs because of measurement artifactstdfareinae predict that
between 1950 and 2030 the mean molar DON:DOP ratio in EMIW should inth@&asg7 to 100, a change
exceeding the DON:DOP variability produced by inter-annual THC fluctuations. Howthe existing
observational data shoavvery high spatial heterogeneity of DON:DOP ratios across the MS, wich
attribute in large part to the difficulties associated with accurately niegshe low concentrations of DOP
in the waters of the MS, and, to a lesser extent, those of DON. In comparison, the Qe ratios
in the DW of the WMS and EMS are much more consistent, likely becauseratitiehigher quality of
dissolved inorganic P and N concentration data compared to their organic counterpartiné¢odic
model calculations, the increasedN®s::PQ, DW ratios driven by anthropogenic P and N inputs supplied
by land-based sources should be discernable after 2000 in the WMS and after 2010 in the EMS.

The model simulations imply that variations in the annually averaged primary povdatthe WMS are
dominated by the yedo-year variations in DW formation rates rather than by changing anthropogenic
nutrient inputs. In the EMS, however, annual primary production should be more setusttie changes

in nutrient inputs from the surrounding land. These differences between the WMS andr&fi&her
reflected in the broader ranges of dissolved reactive P and N concentrations produced by int@iH&hnual
variability in the WMS compared to the EMS. Thus, basin-wide anthropogenic nutiggratls and
responses to nutrient enrichment are more likely to be detected inetilee data from the EMS than the
WMS, provided the data have sufficient spatial and temporal coverage, appropriaiegsamplaccurate

analytical procedures are used, and variations in THC are taken into account.

By unraveling the relative roles of anthropogenic nutrient enrichment anchdahaline circulation in
driving inter-annual changes in nutrient distributions of the MS, our mass balads provides a
quantitative framework to (1) hind- and fore-cast nutrient trajectories whdeging P and N inputs and

THC regimes, (2) interpret existing time series data on reactive R aaticentrations and ratios in the
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WMS and EMS, and (3) explain why the trophic state of the MS responds differeattyhtmpogenic
nutrient inputs than other landlocked marine basins, such as the Baltic Sea. Adgitammdllequally
important, the model results yield practical recommendations famore effective monitoring of the
biogeochemical state of the MS. In particular, we strongly recommend the sustajoestian of water
column P and N data over decadal time periods using appropriate methods that are ahletelyac
determine the low concentrations of P and N encountered in the offshore madses of the MS.
Furthermore, the monitoring programs should include measurements of DOP and DON, because the
concentrations of DON and the DON:DOP ratios are predicted to be angnmst sensitive indicators of
changing nutrient inputs to the MS (if properly measured!). Especially useful would be tieserggrient
data obtained at fixed locations (similar to the DYFAMED site) spread acmssntine WMS and EMS.
Given the importance of the bidirectional exchanges through the Straitdmadit&i and Sicily for the
reactive P and N budgets, the Straits should be priority locations for system@agiotrarialyses and flow

determinations.
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FIGURE CAPTIONS:

Figure 1. Conceptual model framework. A) Circulation structure and water reservoirs: &temks
represent water fluxes, grey dashed arrows turbulent mixing fluxes. Rasitiiee represents the water
residence time in the 1950 steady state model. B) Nutrient model: assimilai@ndfN only occur in the
surface water (SW) reservoirs and denitrification in the deep water (E&&fvoirs (grey dashed arrows).
Abbreviations: NWM = Northwest Mediterranean; assim = assimilation; sdlibifsation; min:
mineralization; nit: nitrification; denit: denitrification. Modified from P@ylet al. (2017).
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834  Figure 2: Total anthropogenic forcing functions for phosphorus (black continuoysalivtenitrogen (red
835 dashed line) inputs into the WMS and EMS. See text for detailed discussion.
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Figure 3: Sources and speciation of reactive phosphorus (A+B) and reactive nitrogen (C+Dinitgptins
WMS (A+C) and EMS (B+C) between 1950 and 2030. The changes with time are calcuatetthdr
forcing functions described in Table 1, Table S1 and Figure S1, with the exception of thé &ahdnges
through the Strait of Sicily. The later are based on the model results @waSim 3 (constant circulation).
Colours refer to the sources of external P and N inputs, hatchings to the ctegaation of P and N.
Pink dashed lines are maximum and minimum estimates of predicted totalbepuen 2000 and 2030
(see text for details).
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849 Figure4: Comparison of 1950-2030 trajectories of intermediate (IW) and deep water (DW) P and N concefaratiend/MS generated
850 by the different scenarios: inter-annual variability of thermohaline circulation (BlGE (Simulation 1; red shading and red lines),

851 anthropogenic nutrient enrichment plus inter-annual THC variability (Simulation 2; blue shadingetiddsly anthropogenic nutrient

852 enrichment alone (Simulation 3; black line). Meari?d0d 90' percentiles of 500 model runs are shown. Dashed lines between 2000 and
853 2030 represent the ranges obtained by considering maximum and minimum estimates of reactive puasdoNtirs time period. Note y-
854  axis changes in scale for different species. See text and Table 2 for details on the modehtudiscBpancies between the mean

855 concentration trajectories in Simulation 2 and Simulation 3 arise from a change in direction dbéuwesn WMIW and WMDW when the
856 flow through the Strait of Sicily drops below 0.53 Sv.
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Figure5: Same as Figure 4 but for the EMS.

Concentration (nM)

Concentration (nM)

EMIW PO A
B Sim.1
180 uSim. 2
10"- 90™ percentile Sim. 1
160 10"- go™ percentile Sim. 2
Sim. 3
= = = Max/min Sim. 3
140
120 =
100
1950 1970 1990 2010 2030
EMDW PO A
= 4
160
140
120
100
1950 1970 1990 2010 2030

EMIW DOP

(6] [$)] (0]
o [&)] o

Concentration (nM)
oS
(6]

40

60

35
1950

1970

EMDW DOP

55

50

45

Concentration (nM)

40

1

3
1950

1970

1990 2010 2030

1990 2010 2030

Concentration (pM)

Concentration (pM)

55
5
45
4
35
3
25

55
5
45
4
3.5
3
25

L

1950

EMIW NO3

=

1970

EMDW NO,

e

2
19

50 1970

1990 2010 2030

1990 2010 2030

Concentration (pM)

Concentration (pM)

55

EMIW DON

5

45

4

35

3

|

2.5
1950 1970 1990 2010

55

2030

EMDW DON

45

35

e

2.5
1950

1970 1990 2010 2030



861
862
863
864
865
866
867

Figure 6: Trajectories of intermediate water (IWD:and NQ concentrations in WMS and EMS based on
reconstructed deep water (DW) formation rates between 1960 and 2000 withioaasttive P and reactive
N inputs (Simulation 4); variable (1950-2000) reactive P and reactive ki(fitnulation 5); and imposing
5-year running average DW formation rates with variable reactive P and edddtiyputs (Simulation 7).
Also shown are the trajectories for variable (1950-2000) reactive P and N inffut®mstant thermohaline

circulation (Simulation 3; red line). See text and Figure S3 for detailseohistorical DW formation rate
reconstructions.
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Figure7: Same as Figure 4, but for the N:P ratios in the intermediate (IW) and deep water (DW) meséttieilWMS and EMS.
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870 Figure8: Same as Figure 4 except for annual primary productivity in WMS and EMS.
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Figure9: Fate of anthropogenic P and N supplied between 1950 and 2030 to the WMS (A and Csand EM
(B and D), expressed as percentages. Burial, denitrification (Denit) and outfldlanticdd(Atl), EMS and
WMS refer to the percentages of the total reactive P and N supplied, while aatbominlthe water column

reservoirs differentiates between the different chemical species of P and N
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TABLE CAPTIONS:

Table 1. Summary of the methods used to calculate the 1950 to 2030 anthropogenic forcing fapgtieas

in the mass balance model calculations.

Table 2: Model simulations combining the various circulation scenarios with constant orlea@abreactive

P and reactive N inputs.

Table 3: Parameters of deep and intermediate water formation used to initiate the random circulati@sscenar
See text for detailsFrom Powley et al. (2016a)



885 TABLEL

Forcing
function

Species Method and data sources

Atmospheric POy

deposition

Rivers

Direct
wastewater
discharges

SGD

N2 fixation

DOP
and
DON

NO3
and
NHg4

P and N

P

Deposition of leachable R@ the WMS and EMS is assumed proportional to changes in acid availabtlie atmosphere above tt
Mediterranean basin (Nenes et al., 2011), estimated through emissions ahtSQ to the atmosphere in Europe, Africa and
Middle East. For 1950-2000 the forcing function is justified in Powelegl. 014 and references therein. For 2000-2030 data
taken from Lamarque et aR{13)

Deposition of organic matter in both WMS and EMS is assumed proportiahal telative change in 1) organic carbon emissions
biomass burning in the northern hemisphere over 1950 to(Ba@@dey et al., 2014 and references thereinj,2) anthropogenic glob.
organic carbon emissions 80002030 (IPCC, 2013)

Deposition estimates in both the WMS and EMS are calculated from the relative chahig®{rand NH deposition rates in Fren
alpine ice core records from 1950 to 2000 (Powley et al., 20d 4ederences therein) and 2) model predicted dry and wet depc
rates for NQ and NH, from Africa, Europe, and former USSR and Middle Ea80D(-2030)

Ludwig et al. (2009) report riverine inputs of P and N to the WMS avi8 Eor every 5 years between 1963 and 1998. We ass
minimal changes in riverine P and N inputs from 1950 to 1968.ré&lative changes in riverine inputs from 2000 to 2030 are tho
Ludwig et al. (2010) based on the Millennium Ecosystem Assessment Scefaga®lative speciation of P and N are assume
stay constant with time.

Wastewater discharges are assumed proportional to the coastal population of esainavedn country (FAOSTAT, 2016), weigh
towards each country’s individual wastewater total N input into the MS (Powley et al., 2016b). A 5% error is assigned t@H3®
population estimates to represent upper and lower limits.

The N:P ratio of direct wastewater discharges is assumed to followntieetisgectory as the N:P ratio of riverine discharge.

NOsz and The change in inorganic N in SGD is assumed to follow that of inorganic N feriiizets on land with a 30 year time lag (Powle

NH4

DON

al., 2017) The forcing function is created using the relative change in total N fartiimesumption rate in the EU for the WMS anc
rest of the world for the EMS between 1920 to 1960 (Erisman e0All) 2while nitrogenous fertilizer consumption rates per cot
(FAOSTAT, 2015a), weighted to regional GW discharges (Zekster et ar.),20@ used for the period 1960 to 2000.

The change in DON in SGD is assumed to follow the application of manure ebavima 30 year time lag (Powley et al., 201
Manure application rates in the EU are used for the WMS, and in the rest of tdefawdhe EMS, over the 1920 to 1960 et
(Erisman et al., 2011) and for each individual country (FAOSTAT5BPWeighted to regional GW discharges (Zekster et al., 2
for 1960 to 2000.

Assumed constant with time as the 2000 P concentration in SGD ismvelyssaggesting that P from fertilizer input is retained wit
the aquifes.

Assumed constant with time due to lack of correlation between nitrodgeiof and nutrient availability (Berman-Frank and Rat
2012; Sandroni et al., 2007).
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887 TABLE 2

888

Simulation 1 2 3 4 5 6 7

Randomized perturbations in circulation (constant mean): 1950-2C v~ v
Constant circulation: 1950-2030 4
Reconstructed historical circulation (year by year): 1960-2000 v v

Reconstructed historical circulation (5-year moving average):1960- v v

Constant 1950 P and N inputs v v v

Variable 1950-2030 P and N inputs v v v v
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891 TABLES3:
Area Mean Standard Probability Range (Sv) % of Mean Reference
IW/DW  deviation distribution years formation rate
rate of (o) of  function IW/DW (Sv)
formation formation formation (all years}
events  events occurs
(Sv) (Sv)
Years when IW/DW formation occurs All years
NWM 1.20 0.68 Lognormal 0<x<3.3 53 0.61 L’Hévéder et
al. (2013)
Levantine 1.10 0.83 Normal  x-o<x<o+X 100 1.10 Vervatis et al
(2013)
Adriatic 0.455 0.25 Lognormal 0<x<0.8 80 0.32 Pinardi et al
(2015)
Aegean 0.069 0.08 Lognormal 0<x<0.38 62.5 0.04 Vervatis et al

(2013)
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