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ABSTRACT A new transient Granger causality detection method is proposed based on a time-varying

parametric modelling framework, and is applied to real EEG signals to reveal the causal information flow

during motor imagery (MI) tasks. The time-varying parametric modelling approach employs a nonlinear

autoregressive with external input (NARX) model, whose parameters are approximated by a set of multi-

wavelet basis functions. A regularized orthogonal least squares (ROLS) algorithm is then used to produce

a parsimonious or sparse regression model and estimate the associated model parameters. The time-varying

Granger causality between nonstationary signals can be detected accurately by making use of both the good

approximation properties of multi-wavelets and the good generalization performance of the ROLS in the

presence of high-level noise. Two simulation examples are presented to demonstrate the effectiveness of

the proposed method for both linear and nonlinear causal detection respectively. The proposed method is

then applied to real EEG signals of MI tasks. It follows that transient causal information flow over the

time course between various sensorimotor related channels can be successfully revealed during the whole

reaction processes. Experiment results from these case studies confirm the applicability of the proposed

scheme and show its utility for the understanding of the associated neural mechanism and the potential

significance for developing MI tasks based brain-computer interface (BCI) systems.

INDEX TERMS Granger causality, nonlinear time-varying systems, parametric estimation, multi-wavelets,

regularized orthogonal least squares (ROLS), EEG.

I. INTRODUCTION

T
HE investigation of connectivities and dynamics of

neuronal assemblies during various brain states plays a

key role in understanding the underlying neurophysiological

mechanisms of human brain. Recently, there is increasing

interest in exploring the influence that one part of the nervous

system exerts over another. One of the classical methods for

extracting such influence is to determine undirected connec-

tivity, including correlation, synchrony [1], phase coherence

[2], and mutual information [3]. However, identifying the

directionality of the neural interaction is essential for under-

standing brain behaviors. A powerful approach to describe

directed causal relations of brain regions is Granger causality

(GC) [4, 5], which has been proved to be useful for detecting

the induced neurophysiological variations in the brain. GC

has been widely used to assess causal connectivity for various

brain data types such as spike trains [6], local field potentials

(LFPs) [7], functional magnetic resonance imaging (fMRI)

[8], electroencephalography (EEG) and event-related poten-

tials (ERPs) [9]. Among these various neuroscience data, the

high time resolution of EEG signals makes GC be applicable
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to provide informative causal relations, as the technique

is largely dependent on calculating the correspondence of

neural signals over time [9].

In conventional GC analysis, the observed time series are

fitted by using time-invariant autoregressive with external in-

put (TIVARX) models, where it is assumed that the underly-

ing stochastic process is stationary [10]. However, due to the

inherent nonstationarity of biomedical signals, the traditional

GC analysis approach may not be sufficiently efficient to

reveal the potential nonstationary properties in nature [11].

One popular approach to measure time-varying causality is

to introduce sliding windows, which makes nonstationary

signals be locally stationary. For example, Ding et al. [12]

applied short-time windows and autoregressive with external

input (ARX) model to study pairwise coherence and thereby

revealed task-relevant patterns of cortical interdependence

during the different cognitive task stages. The main limitation

of such approaches is that the performance heavily depends

on the choice of the window length in that the use of too

wide windows can lead to loss of the temporal resolution,

this is undesirable to real applications where the causal rela-

tionship changes rapidly over time, whereas using too narrow

windows reduces the statistical reliability. A more generally

applicable method may be the ARX based adaptive algorithm

for time-varying Granger causality (TVGC) analysis [13],

where the assumption that the signals are stationary can be

removed. Nevertheless, the slow convergence speed of the

recursive least-squares (RLS) may fail to track abrupt varia-

tions of the time-varying model parameters, and thus result

in delay or inaccurate estimation in the causality analysis.

These time-varying linear Granger causality (TVLGC)

analysis methods mentioned above can only approximate

the linear causal influence between signals. Additionally,

the fundamental parametric models and causal relationships

of signals may be studied by stochastic nonlinear multiple

time-delay systems [14–17]. Given that electrophysiological

signals are nonlinear [18], it is essential to interpret the causal

relations using nonlinear analysis methods. Recently, sever-

al nonlinear Granger causality (NGC) methods have been

proposed and applied to neurophysiological signal analysis.

For example, Gourevitch et al. [19] discussed the measures

of both linear and nonlinear Granger causality and their

neurophysiological applications. Their results showed that

LGC sometimes produces false causal relations, whereas the

performance of NGC extremely depends on the choice of

model parameters. Li et al [20] have presented a time-varying

nonlinear autoregressive with external inputs (TVNARX)

modelling framework for GC analysis in EEGs, and the

classical RLS algorithm was used to estimate time-varying

parameters. Their results indicated that the transient potential

causality interactions can be detected from the epileptic EEG

signals. However, the main deficiency of their method is

that it may not be able to effectively detect rapid changing

causalities due to the limitation of the slow convergence

of the conventional adaptive methods. In [21], a linear and

nonlinear causality detection method based on an orthogonal

least squares (OLS) and TVNARX models (OLS-TVNARX)

was proposed. The advantage of the OLS-TVNARX method

is that time-varying causalities between signals can be de-

tected without constructing a complete full model. Similar to

the limitation of the short sliding windowing ARX modelling

approach [12], the OLS-TVNARX method chose to use some

fixed window length (i.e. window length = 300) for the

GC analysis of both the simulation and real EEG data, and

did not suggest a good choice of window size. Clearly, the

analysis performance depends on the choice of the window

length. Furthermore, although the classical OLS algorithm

has been proved to be an efficient method for determining

parsimonious model structures [22–24], its performance may

be affected in cases where signals are highly interrupted by

noise [25].

In this paper, a new TVNARX-based parametric mod-

elling method is proposed to detecting time-varying non-

linear Granger causality (TVNGC), where the fundamental

TVNARX models are identified by employing multi-wavelet

basis functions together with a robust regularized orthogo-

nal forward regression algorithm. The proposed framework

mainly includes three steps. Firstly, time-varying parameters

in the TVNARX models are approximated by using a finite

number of B-spline basis functions, which have excellent ap-

proximation performance for tracking both the overall global

trend and transient local changes in nonstationary signals,

simutaneously [26, 27]. Secondly, a sparse model structure

and associated expansion model parameters are determined

by a powerful regularized orthogonal least squares (ROLS)

algorithm [28–30], which has been proven to be capable of

constructing an effective parsimonious model that outper-

forms the traditional OLS method with improved general-

ization properties. The ROLS algorithm used is more useful

than the conventional OLS algorithm even in the presence of

severe noise since it not only uses the parsimonious principle

of the OLS, but also combines the zero-order regularization

criterion which the redundant model terms confused by the

conventional OLS algorithm due to noise become less sig-

nificant under the regularized cost function and can therefore

be removed from the expansion model [28]. Time-varying

nonlinear autoregressive (TVNAR) models of both univariate

and bivariate systems can be exactly identified by the pro-

posed method. Finally, in order to accurately measure time-

varying transient causal interactions during the evolution of

time-varying processes, a recursive computation is used to

obtain the time-varying variances of the prediction errors in

the sparse TV nonlinear models, and the time-varying NGC

(TVNGC) can thus be calculated by the definition of the

Granger causality.

The performance of the proposed approach is illustrated

by using two simulation examples, and the simulation results

are compared with the state-of-the-art methods including the

classical RLS [13], short-windowing ARX [12] and OLS-

TVNARX methods. Different performance evaluation crite-

ria are used to measure the efficiency of the causality results,

and 1~10 fold cross validation method is also applied to
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further verify the performance of the proposed framework.

The experiment results indicate the proposed GC test scheme

is more accurate and robust for detecting connectivity pat-

terns in both linear and nonlinear cases even when the data

are highly contaminated by noise. Furthermore, the proposed

TVNGC scheme is applied to real EEG data during motor

imagery (MI) tasks, where significant nonlinear dynamics

and causal connectivities between signals relating to specific

MI tasks have been successfully detected. The precise reac-

tion time periods and accurate interaction strengths between

different brain regions can be clearly measured, which shows

the promising method for deciphering directed connectivity

in EEG signals and further exploring cognitive mechanism

and developing MI brain-computer interface (BCI) systems.

An obvious advantage of the proposed method is that the

combination of multi-wavelet-based basis function expan-

sion with the ROLS algorithm is applied to produce the es-

sential sparse time-varying models with good generalization

properties for the inherently nonstationary systems, even if

rapidly and even sharply time-varying processes can be still

tracked effectively, and transient causal information between

nonstationary signals can thus be detected accurately by

using the time-varying variances of the estimation errors

without the assumption of stationarity and linear dependen-

cy imposed on signals. Additionally, the proposed method

can capture the time-varying causalities well even when

the systems are contaminated with severe noise, which is

more suitable for directed interaction detection between real

EEG signals. One of the main contributions in this paper

is that, for the first time, the newly proposed time-varying

system identification scheme is introduced to the detection

of transient causal influences between time-varying systems.

It is promising that the novel combination may be capable

of inspiring the development of more powerful algorithms

for time-varying causality detection. Furthermore, with the

application to real MI EEG signals, the clearly causal flows

indicated can be applied for understanding MI of related

neurophysiological mechanism and further evaluating the

performance improvement of MI based BCI systems.

The remainder of this paper is organized as follows. In

Section II, the methodology is illustrated in three subsection-

s: the explanation of time-varying Granger causality in II-A,

the TVNARX model identification method based on multi-

wavelet expansion in II-B, and the ROLS algorithm in II-C,

respectively. Two simulation examples are given to show the

effectiveness of the proposed method in Section III. A case

study for the causality detection from real MI EEG signals

is introduced in Section IV. Finally, the work is summarized

in Section V. Table 1 gives a summary of description for the

abbreviations used in this paper.

II. METHODOLOGY

A. GRANGER CAUSALITY

Let X = {x(t)} and Y = {y(t)} be two signals, with t =
1, 2 · · · , N . According to the general definition of GC, if the

variance of the prediction error is decreased by the inclusion

TABLE 1. Description of the abbreviations used in this paper

Abbreviation Description

GC Granger causality

LFP local field potential

fMRI functional magnetic resonance imaging

EEG electroencephalography

ERP event-related potential

ARX autoregressive with external input

TIVARX time-invariant autoregressive with external input

TVAR time-varying autoregressive

TVARX time-varying autoregressive with external input

TVNAR time-varying nonlinear autoregressive

TVNARX time-varying nonlinear autoregressive
with external inputs

NARMAX nonlinear autoregressive moving average
with exogenous variable

TVGC time-varying Granger causality

TVLGC time-varying linear Granger causality

NGC nonlinear Granger causality

TVNGC time-varying nonlinear Granger causality

RLS recursive least-squares

OLS orthogonal least squares

ROLS regularized orthogonal least squares

OMP Orthogonal Matching Pursuit

AIC Akaike information criterion

MAE mean absolute error

RMSE root mean squared error

MI motor imagery

BCI brain-computer interface

of the past information of signal X for the prediction of Y ,

it is said that X causes Y in the Granger sense. The time-

invariant Granger causality from X to Y (TIV GCX→Y ) is

defined by the log ratio of the error variances from the time-

invariant AR and ARX models [20, 21]:

TIV GCX→Y = ln
var (y|y−)

var (y|y−, x−)

= ln

1
N−ny

N∑

t=1
e21 (t)

1
N−ny−nx

N∑

t=1
e22 (t)

(1)

where y−, x− denote the past information of Y , X re-

spectively, ny and nx are the model orders of Y and

X which denote the maximum number of the associat-

ed lagged observations. Besides, e1 (t) and e2 (t) are the

model residuals of the time-invariant univariate AR model

TIV AR(ny): y (t) =
ny∑

i=1

B1iy (t− i) + e1 (t) and bivariate

ARX model TIV ARX(ny, nx): y (t) =
nx∑

i=1

B2iy (t− i) +

ny∑

jy=1

D2jx (t− jy) + e2 (t), where the former depends only

on the past of Y and the latter depends on the past of

both Y and X . Eq. (1) implies that Granger causality can

never be negative if X causes Y , vice versa for the causality

from Y to X . To evaluate the transient directed interactions

between nonstationary systems, the definition of TVARX

(time-varying ARX) -based TVGC is necessary [20].

VOLUME x, 2017 3



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

1) Time-Varying Linear Granger Causality

The most commonly used models in time-varying causali-

ty test are the linear time-varying autoregressive (TVAR) and

TVARX models as follows [31]:

x (t) =

nx∑

i=1

a1i (t)x (t− i) + ε1 (t) (2)

y (t) =

ny∑

i=1

b1i (t) y (t− i) + ε2 (t) (3)

and

x (t) =

nx∑

i=1

a2i (t)x (t− i)+

ny∑

jy=1

c2jy (t) y (t− jy)+ε3 (t)

(4)

y (t) =

nx∑

i=1

b2i (t) y (t− i)+

ny∑

jy=1

d2jy (t)x (t− jy)+ε4 (t)

(5)

Generally, the recursive variance computational formula is

given by [20]:

σ2 (t+ 1) = (1− c)σ2 (t) + c∆2 (t) (6)

where ∆(t) is the time-varying model prediction error, and

0 < c < 1 is the recursive parameter. Set ∆(t) as the pre-

diction error ε1 (t), ε2 (t), ε3 (t), ε4 (t) in linear models (2)-

(5) respectively, then time-variant variances of the associated

errors can be yielded by: var
(
x|x−l

)
(t), var

(
y|y−l

)
(t),

var
(
x|x−l , y

−

l

)
(t), var

(
y|y−l , x

−

l

)
(t), where y−l , x−l indi-

cate the set of linear terms from y− and x−. Consequently,

the calculation of the time-varying linear Granger causalities

(TVLGC) are represented by:

LGCX→Y (t) = ln
var

(
y|y−l

)
(t)

var
(
y|y−l , x

−

l

)
(t)

(7)

LGCY→X (t) = ln
var

(
x|x−l

)
(t)

var
(
x|x−l , y

−

l

)
(t)

(8)

2) Time-Varying Nonlinear Granger Causality

The absence of nonlinear terms in the linear TVAR and T-

VARX models (2)-(5) makes the models insufficient to detect

nonlinear causal influences between nonstationary signals.

However, there is wide evidence that the evolution of neu-

rophysiological states is a nonlinear process [18]. Nonlinear

autoregressive moving average with exogenous variable (N-

ARMAX) models have been demonstrated to be an effective

approach that can well capture nonlinear effects for various

nonlinear, continuous-time and discrete-time systems [26].

The univariate time-varying nonlinear autoregressive (TV-

NAR) and multivariate TVNARX models are therefore ap-

propriate for detecting nonlinear TVGC. The TV NAR(ny)
and TV NARX(ny, nx) model are formulated by [32, 33]:

y (t) = f
(

y (t− 1) , · · · , y (t− ny)
)

+ ey (t) (9)

y (t) =f
(

y (t− 1) , · · · , y (t− ny) ,

x (t− 1) , · · · , x (t− nx)
)

+ exy (t)
(10)

where f is the unknown nonlinear function, the observation

noise ey (t) and exy (t) are assumed to be an independent

zero mean noise sequence. The generally used method to

approximate the unknown function f (·) is to employ a

polynomial expression [34], and (10) can thus be represented

as:

y (t) =

M∑

n=1

n∑

p=0

R∑

r1,··· ,rp+q=1

gp,q (r1, · · · , rp+q, t)

×

p
∏

i=1

y (t− ri)

p+q
∏

i=p+1

x (t− ri) + exy (t)

(11)

where M is the degree of the nonlinearity, with p + q = n,

ri = 1, 2, · · · , R, ΣR
r1,··· ,rp+q=1 ≡ ΣR

r1=1 · · ·Σ
R
rp+q=1. The

vector [g0,1 (1, t) , · · · , g0,1 (R, t) , g1,0 (1, t) , · · · , gp,q(R,
· · · , R, t)]T are time-varying parameters to be estimated,

where the upper index ’T’ indicates the transpose of a vector

or matrix. Then the time-varying nonlinear Granger causality

(TVNGC) from X to Y can be expressed by [31]:

NGCX→Y (t) = ln
var

(
y|y−l , y

−
n

)
(t)

var
(

y|y−l , y
−
n , x

−

l , x
−
n , (yx)

−

n

)

(t)

(12)

where y−n and x−n are the set of nonlinear terms from

past information of Y and X respectively, (yx)
−

n de-

notes the set of nonlinear terms coupled by past infor-

mation of Y and X . In addition, var
(
y|y−l , y

−
n

)
(t) and

var
(

y|y−l , y
−
n , x

−

l , x
−
n , (yx)

−

n

)

(t) are time-varying vari-

ances of the prediction errors in TVNAR and TVNARX

models by Eq. (6), where ∆(t) is the associated model

estimation error, such as ey (t) in (9) for the TVNAR and

exy (t) in (10) for the TVNARX model, and the Y to X case

is similar. Additionally, it is necessary to assess the statis-

tical significance of the obtained causal influences between

two signals. The thresholds for statistical significance are

constructed from surrogate data via a permutation procedure

under a null hypothesis of no interaction at the significance

level p < 10−6. This procedure contains generating 1000

permuted time series, where the permutation of the trial order

can disrupt task-related interdependencies.

B. MULTI-WAVELET-BASED TVNARX MODEL

IDENTIFICATION

According to wavelet theory, a square integrable scalar

signal f can be approximated by the multiresolution wavelet

decomposition as follows [35, 36]:

f (x) =

∞∑

k=−∞

αj0,kφj0,k (x) +

∞∑

j>j0−1

∞∑

k=−∞

βj,kψj,k (x)

(13)

where φj0,k (x) = 2j0/2φ
(
2j0x− k

)
and ψj,k =

2j/2ψ
(
2jx− k

)
with j0, j, k ∈ Z (Z denotes the w-

hole integers) are the translated and dilated version of the
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scaling function φ (x) and the mother wavelet ψ (x), αj0,k

and βj,k are the wavelet decomposition coefficients. Further-

more, when the resolution scale level of the scale functions

φj0,k (x) = 2j0/2φ
(
2j0x− k

)
is sufficiently large, namely,

there exists an integer J , Eq. (13) can be reduced to f (x) =
∞∑

k=−∞

αJ,kφJ,k (x).

Previous studies [37, 38] show that the time-varying pa-

rameters in (11) can be well approximated using a set

of multi-wavelet basis functions {πµ (t) : µ = 1, 2, · · · , L}.

Specifically, the time-varying model (11) can be re-written

by:

y (t) =

M∑

n=1

n∑

p=0

R∑

r1,rp+q=1

L∑

µ=1

λp,q,µ (r1, · · · , rp+q)

×
(

πµ (t)

p
∏

i=1

y (t− ri)

p+q
∏

i=p+1

x (t− ri)
)

+ exy (t)

=ϕT (t) θ + exy (t)
(14)

where

{ ϕ (t) = [πµ (t)
p∏

i=1

y (t− ri)
p+q∏

i=p+1

x (t− ri)]
T ,

θ =[λ0,1,µ (1) , · · · , λ0,1,µ (R) , λ1,0,µ (1) , · · · ,

λp,q,µ (R, · · · , R)]
T

(15)

λp,q,µ (r1, · · · , rp+q) are the multi-wavelet-based expansion

parameters, L is the maximum number of basis func-

tion sequences, ϕ (t) and θ are the regression vector and

parameter vector respectively. The TVNARX model (11)

can then be transformed into time invariant model, as

λp,q,µ (r1, · · · , rp+q) are now time-invariant.

Cardinal B-splines are an important class of basis function-

s that can form multiresolution wavelet decompositions [39].

They are compactly supported and can be analytically for-

mulated in an explicit form, this unique property makes the

operation of the multiresolution decomposition (13) much

more convenient. From the recursive definition of cardinal

B-spline functions [40]:

Bm (x) =
x

m− 1
Bm−1 (x)+

m− x

m− 1
Bm−1 (x− 1) ,m ≥ 2

(16)

where B1 (x) = 1 with x ∈ [0, 1), the mth order B-

spline Bm (x) is defined on [0,m]. Taking the cardinal B-

splines as the basis function, the φj,k (x) can be expressed

as φj,k (x) = 2j/2Bm

(
2jx− k

)
, where the dilation and

translation indices j and k should satisfy 0 ≤ 2jx− k ≤ m.

Assume that the function f (x) to be estimated with decom-

positions (13) is defined within [0, 1], for any given dilation

index j, the translation index k are restricted to the collection

Γm =
{
k : −m ≤ k ≤ 2j − 1

}
. Generally a practical se-

lection of the order m are 2, 3, 4, 5, and the detail discussion

of B-splines properties can be found in [41, 42]. Additionally,

j ≥ 3 is an appropriate choice for most applications using

cardinal B-splines. The higher the value of j, the more basis

functions are used and thus the resolution improves, but

this will also introduce more parameters and increase the

computational cost. Some determination criteria of the proper

j are discussed in detail in [25].

Hence time-varying coefficients gp,q (r1, · · · , rp+q, t) in

Eq. (11) can be estimated by using a combination of

B-splines basis functions from the families φmk (x) =
2j/2Bm

(
2jx− k

)
with k ∈ Γm, m = 2 ∼ 5, which can

be expressed as follows:

gp,q (r1, r2 · · · , rp+q, t) =
∑

m

∑

k∈Γm

λmp,q,k (r1, r2 · · · , rp+q)φ
m
k

(
t

N

)

(17)

where N is the number of sample observations for t =
1, 2, · · · , N . The decomposition (17) can easily be trans-

formed into the form of (14), where the union of the

families

{
∑

m
φmk (t) : k ∈ Γm,m = 2 ∼ 5

}

replace the set

{πµ (t) : µ = 1, 2, · · · , L}.

Although the regression terms are usually sparsely dis-

tributed in the associated space, the number of candidate

regression terms in the initial full regression Eq. (14) may

be very large, which makes the problem be ill-posed. In addi-

tion, with the parsimonious principle, the ill-posed problem

can be avoided and the model constructed can be achieved

the generalization performance. Recently, the OLS algorithm

has been proved to be an efficient method for constructing

parsimonious model structures. However, the parsimonious

structures alone may not be sufficient to eliminate overfitting

and guarantee good generalization performance if modeling

data are highly interrupted by noise [30]. Therefore, it is

a crucial procedure to construct a parsimonious or sparse

model structure with good generalization performance and

approximate the associated parameters in basis function ex-

pansion based time-varying system identification. The ROLS

algorithm used in this study to solve these problems will be

introduced in the following section.

C. REGULARIZED ORTHOGONAL FORWARD

REGRESSION

The orthogonal least squares (OLS) type of algorithm-

s have proven very efficient to deal with model term s-

election problems [22–24, 43]. However, the error crite-

rion used in the OLS algorithm is the total squared er-

ror, which may lead to overfitting especially when observ-

able data are highly noisy [23, 44]. To solve this issue,

the ROLS algorithm [28–30] based on the zero-order reg-

ularization with the OLS algorithm is employed to con-

struct a more generalized procedure for constructing sparse

model structure. Collecting (14) for t = 1, 2, · · · , N to-

gether can get the associated compact matrix form Y =
ΦΘ + E, where Y = [y (1) , y (2) , . . . , y (N)]

T
, Φ =

[ϕ (1) , ϕ (2) , . . . , ϕ (N)]
T

is a N × H dimensional regres-

sion matrix, H is the number of all the candidate terms,

Θ = [χ1, χ2, . . . , χH ]
T

is the parameter vector to be estimat-

ed, and E = [exy (1) , exy (2) , . . . , exy (N)]
T

, respectively.
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Assume the regression matrix Φ is of a full column rank and

the procedure of the associated orthogonal transformation

can be expressed by:

Φ = [w1 · · ·wH ]
︸ ︷︷ ︸

W









1 δ1,2 · · · δ1,H

0 1
. . .

...
...

. . .
. . . δH−1,H

0 · · · 0 1









︸ ︷︷ ︸

A

(18)

where W is an N × H matrix with orthogonal columns

satisfying wii
Twjj = 0 when ii 6= jj, A is an H × H unit

upper triangular matrix, so that the regressor matrix form can

be denoted as Y =
(
ΦA−1

)
(AΘ) + E = WP + E, where

P = [ρ1, ρ2, . . . , ρH ]
T

is an auxiliary parameter vector.

The key procedure to obtain high computational efficiency

and the accuracy of the ROLS scheme is the zero-order

regularized cost function defined as F = ETE + τPTP
[28], where τ ≥ 0 is the regularization parameter, then

the unknown parameters ρii can be estimated by ρii =
〈Y,wii〉 / (〈wii, wii〉+ τ) , ii = 1, 2, . . . , H , where the sym-

bol 〈·, ·〉 denotes the inner product of two vectors. The pa-

rameter vector Θ can thus be determined by using AΘ = P
with solvedA and P , and the regularized error reduction ratio

(rerrii) introduced by wii can be derived as:

rerrii=
(〈wii, wii〉+ τ) ρ2i

〈Y, Y 〉
=

〈Y,wii〉
2

〈Y, Y 〉 (〈wii, wii〉+ τ)
(19)

Each selected procedure is chosen to decrease maximally the

regularized squared error F , namely the term gives the largest

rerrii at each iteration ii is chosen, and significant regressors

can be selected in a forward regression process. Choose an

error tolerance ζ : 0 < ζ < 1, and the selection will be

terminated at NT th step when 1−
NT∑

i=1

rerri < ζ is satisfied.

The determination of the optimal value of τ depends on

the intrinsic property of the underlying system and the selec-

tion of proper basis functions. Previous studies have proven

that the estimation performance of the multi-wavelets-based

model may be not sensitive to the precise value of τ [28].

An elegant method to determine the regularization parameter

is to apply a Bayesian interpretation to the ROLS algorithm

which results in the following iterative procedure for calcu-

lating τ [28]:

{

η =
NT∑

ii=1

wii
Twii

wii
Twii+τ

τ = η
N−η

ETE
PTP

(20)

Let τ0 be an initial value of τ , for example τ0 = 1, a satisfied

τ can be found after a few iterations. This new forward

selection algorithm is capable of constructing an accurate

parsimonious model structure with improved generalization

property and efficient operation performance as the similar

computational requirement of the OLS algorithm. Applying

the ROLS algorithm to Eq. (14), an optimal subset of signifi-

cant regressors can be selected and the model parameters can

be estimated effectively. The original time-varying parame-

ters gp,q (r1, r2 · · · , rp+q, t) in the TVNARX model (11) can

then be recovered by using those resultant estimates. Take the

Gram-Schmidt algorithm as the orthogonalization method,

the procedure for the detection of sparse model structure

through the ROLS scheme can be implemented in a stepwise

manner given below.

Input:

Output signal Y = [y (1) , y (2) , . . . , y (N)]
T

;

Candidate terms Φ = {ϕh : h = 1, 2, . . . , H};

Predesigned threshold Ξ < 10−10.

Step 1. Set ℑ1 = {1, 2, . . . , H};

for h = 1 to H
wh = ϕh; ρh = 〈Y,wh〉 / (〈wh, wh〉+ τ);
rerrh = (〈wh, wh〉+ τ) ρ2h/ 〈Y, Y 〉;

end for

~1 = arg max
h∈ℑ1

{rerrh};

w1
1 = w~1

; ρ11 =
〈
Y,w1

1

〉
/
(〈
w1

1, w
1
1

〉
+ τ

)
;

Step υ. υ ≥ 2:

for υ = 2 to H
ℑυ = ℑυ−1\ {~υ−1};

for all h ∈ ℑυ

wh = ϕh −
υ−1∑

ℓ=1

(

ϕT
hw

1
ℓ/w

1
ℓ
T
w1

ℓ

)

w1
ℓ ;

rerrh = 〈Y,wh〉
2
/ (〈Y, Y 〉 (〈wh, wh〉+ τ));

end for

ℑυ = ℑυ\

{

arg
h∈ℑυ

(
wT

hwh < Ξ
)
}

;

~υ = arg max
h∈ℑυ

{rerrh};

w1
υ = w~υ

; ρ1υ =
〈
Y,w1

υ

〉
/
(〈
w1

υ, w
1
υ

〉
+ τ

)
;

end for

Output:

Selected model terms Φ1 =
[

ϕ~1
, ϕ~2

, . . . , ϕ~NT

]

.

As to the issue of the model order determination, a possible

solution is to minimize a criterion that balances the variance

accounted for by the model against the number of coefficients

to be estimated. In this work, the correct model order size is

determined by the Akaike information criterion (AIC) [45]:

AIC (ny) = ln
(
det

(
Σny

))
+

2nynvar
2

N
(21)

where Σny
is the variance of the model residuals calculated

from the associated nyth order model, and nvar is the num-

ber of the variables.

In conclusion, the new proposed framework for time-

varying Granger causality detection can be summarized as

follows:

(1) Set up the linear or nonlinear univariate TVAR (such

as Eqs. (2)-(3) for linear case and (9) for nonlinear case) and

multivariate TVARX (such as Eqs. (4)-(5) for linear and (10)

for nonlinear case) models for the nonstationary procedures

in the observed input-output systems.
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(2) For each model to be identified, expand all the time-

varying coefficients in the linear or nonlinear models by

multiple B-spline basis functions, and construct the Eq. (14).

(3) Select significant regressors from the expanded candi-

date terms by using ROLS algorithm described above.

(4) Determine the number of proper model orders for time-

varying models by AIC criterion (21).

(5) Approximate associated coefficients of the selected

model terms, and recovery the original time-varying param-

eters by Eq. (17), thus time-variant prediction errors for

each univariate and multivariate time-varying autoregressive

models can be obtained.

(6) Calculate time-varying variances of the prediction er-

rors by Eq. (6), and achieve the measure of time-varying

Granger causalities based on the GC definition in Eq. (7) and

Eq. (12).

III. SIMULATION EXAMPLES

This section presents two simulation examples to illustrate

and verify the performance of the proposed TVGC detection

method. The proposed method and three other methods (i.e.

RLS [13], short-windowing ARX [12] and OLS-TVNARX

[21]) are applied to the same simulation data, and the results

are compared.

A. TIME-VARYING LINEAR GRANGER CAUSALITY

For the TVLGC test, consider two TVARX (2, 2) models:

x (t) = a2,1 (t)x (t− 1) + a2,2 (t)x (t− 2)

+ c2,1 (t) y (t− 1) + c2,2 (t) y (t− 2) + ξ1 (t)

y (t) = b2,1 (t) y (t− 1) + b2,2 (t) y (t− 2)

+ d2,1 (t)x (t− 1) + d2,2 (t)x (t− 2) + ξ2 (t)
(22)

where

a2,1 (t) =

{
−0.6, 1 ≤ t < 400,
0.3, 400 ≤ t ≤ 1000,

a2,2 (t) = 0.1, 1 ≤ t ≤ 1000,

b2,1 (t) =

{
0.3, 1 ≤ t < 400,

−0.6, 400 ≤ t ≤ 1000,

b2,2 (t) = 0.1, 1 ≤ t ≤ 1000,

c2,1 (t) =







0, 1 ≤ t < 200,
0.6, 200 ≤ t ≤ 380,
0, 380 < t ≤ 1000,

c2,2 (t) =







0, 1 ≤ t < 200,
0.5, 200 ≤ t ≤ 380,
0, 380 < t ≤ 1000,

(23)

d2,1 (t) =

{
0, 1 ≤ t < 700,

0.6, 700 ≤ t ≤ 1000,

d2,2 (t) =

{
0, 1 ≤ t < 700,

0.5, 700 ≤ t ≤ 1000.
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FIGURE 1. TVLGC detection results from simulation example A in (22) using

different methods under three noise cases. (a) SNR = 20dB, (b) SNR = 10dB,

(c) SNR = 5dB, where TVLGCs LGCY →X (t) and LGCX→Y (t) are black

and blue solid lines, and the dashed lines is the associated time-invariant

Granger causalities TIV GCY →X and TIV GCX→Y , respectively.
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and ξ1, ξ2 are Gaussian white noise processes with zero

means and variances:

var (ξ1) =

{
0.9, 1 ≤ t < 600,
2.0, 600 ≤ t ≤ 1000,

var (ξ2) =

{
2.0, 1 ≤ t < 600,
0.9, 600 ≤ t ≤ 1000.

(24)

It is known that causality relation between x and y is given

as follows: 1) from sample point 200 to sample point 380,

the signal y causes the signal x; 2) starting with the sample

point 700, the signal x causes the signal y; 3) for the first

199 sample points and the sample points between 381 and

699, there is no causal relation between x and y. A second

order TVAR model and a TVARX (2, 2) model for the signal

y are estimated to calculate the TVLGC from x to y, and the

same procedure is implemented for the case from y to x. The

two models defined by (22) are simulated and total of 1000

data points are recorded. In order to verify the effectiveness

and robustness of the proposed method, three different levels

of white Gaussian noise (WGN), with signal-to-noise ratio

(SNR) being 20 dB, 10 dB, and 5 dB, respectively , are added

to the original simulation data.

The B-spline basis functions selected from {φmk : m =
3, 4, 5} with the scale index j = 3 are employed to approx-

imate the time-varying parameters. The ROLS algorithm is

then applied to select significant regressors from a large num-

ber of candidate terms and estimate the associated parameter-

s. Furthermore, the TVGCs are calculated by using both (6)

and (7). The TVGC results from the proposed method are

shown in Fig. 1 under three different noise levels, where the

bold font indicates the proposed method. For comparison, the

classical RLS algorithm with a forgetting factor ρ = 0.98,

the ARX-based short sliding windowing algorithm and the

conventional OLS-TVARX method, are also used to measure

the TVGCs, and the associated results are given in Fig. 1.

For Fig.1, the classical RLS algorithm based approach

fails to faithfully track piece-wise changes in the directed

dependencies due to the slow convergence of the algorithm

even under less severe noise level (SNR = 20dB). For the

results of the TVGCs using the sliding window method, this

method may be insufficient to guarantee high time resolution

and track accuracy simultaneously because its efficiency is

heavily dependent on the choice of the sliding window size.

The OLS-TVARX method can detect abrupt time-varying

causalities while it is susceptible to background noises, and

fluctuations and estimation error can obviously be observed

in the detection plot especially when the data are severely

contaminated by noise, such as the case of SNR = 5 dB. Par-

ticluarly, the TVLGCs measured using the proposed method,

where the expected influence of y on x from sample point

200 to sample point 380 is confirmed by the positive values

ofLGCy→x (t) (black solid lines), and the opposite influence

of x on y starting at the sample point 700 is identified by the

positive values of LGCx→y (t) (blue solid lines). The values

of the GC test for both LGCy→x (t) and LGCx→y (t) are

nearly zero within the sample index intervals 1 ≤ t < 200
and 380 < t < 700, which indicates that there is no causal

interaction between two signals during these sample index

period. Furthermore, time-varying causalities change slight-

ly around the estimations of the associated time-invariant

Granger causality (TIVGC) (black and blue dashed lines)

within the stationary period 200 ≤ t ≤ 380 and 700 ≤
t ≤ 1000. In comparison with three conventional methods,

the proposed ROLS with B-splines approach can better track

the variations of the causalities and more accurately capture

different patterns of changes in the time-varying causality:

the constant value, smooth changes and abrupt changes, even

in the presence of different levels of noise.

In order to quantitatively evaluate the effectiveness of the

proposed method, the mean absolute error (MAE) and root

mean squared error (RMSE) of the TVGC estimates with

respect to the associated time-invariant values are calculated

for three SNR cases: 20 dB, 10 dB and 5 dB, respectively,

and the comparison results are shown in Table 2. It is obvious

that the values of MAE and RMSE by the proposed approach

are the smallest ones among four methods for three noise

cases mentioned above. These results statistically confirm

the superiority of the proposed multi-wavelets-based ROLS

method for detecting time-varying causality in the presence

of noise. The MAE and RMSE in this study are defined as:

TABLE 2. A performance comparison of the causality test using four different methods with three SNR cases for example1 A.

Method Direction of TVLGC
20dB 10dB 5dB

MAE RMSE MAE RMSE MAE RMSE

RLS
LGCy→x (t) (200 ≤ t ≤ 380) 0.1098 0.2202 0.0924 0.1853 0.0846 0.1688

LGCx→y (t) (700 ≤ t ≤ 1000) 0.1024 0.2098 0.108 0.2183 0.0971 0.2115

Short-windowing ARX
LGCy→x (t) (200 ≤ t ≤ 380) 0.0932 0.2182 0.0863 0.1984 0.0774 0.1626

LGCx→y (t) (700 ≤ t ≤ 1000) 0.0814 0.1873 0.0719 0.1557 0.0530 0.1114

OLS-TVARX
LGCy→x (t) (200 ≤ t ≤ 380) 0.0883 0.1903 0.0837 0.1797 0.0780 0.1502

LGCx→y (t) (700 ≤ t ≤ 1000) 0.0504 0.1417 0.0466 0.1188 0.0430 0.0965

ROLS with B-splines
LGCy→x (t) (200 ≤ t ≤ 380) 0.0790 0.1871 0.0738 0.1782 0.0617 0.1489

LGCx→y (t) (700 ≤ t ≤ 1000) 0.0465 0.1382 0.0407 0.1159 0.0320 0.0914

Note: bold values indicate the best results.
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MAE =
1

N

N∑

k=1

|Ĝ (k)−G (k) | (25)

RMSE =

√
√
√
√ 1

N

N∑

k=1

∥
∥
∥
∥
∥

Ĝ (k)−G (k)

G (k)

∥
∥
∥
∥
∥

2

(26)

where Ĝ (k) represents the estimates of TVGC G (k), and N
is the length of data.

Additionally, the performance of the proposed scheme can

be further evaluated by the cross validation with different

folds. Specifically, the testing and training data subset are

randomly selected from the generated 1000 data points.

TVAR and TVARX models can be identified by four com-

pared algorithms on the training data, and the causality

measurement results from different approaches can be tested

by the testing data subset. The MAE of test results for

1~10 fold are given in Fig.2. Estimation errors in Fig. 2

by the proposed ROLS with multiple B-splines method are

smaller than other three causality prediction algorithms for

all testing folds, indicating excellent causal detection power

of the proposed framework. Particularly, it is worth noting

that the superiority of the proposed method is clearer when

the noise level increases. These results demonstrate that the

proposed approach takes the advantages of the good local

approximation performance of B-splines and the excellent

generalization property of the ROLS algorithm, and thus

enables to track rapid variations in time-varying causalities

effectively, especially when data are contaminated by severe

noise.

B. TIME-VARYING NONLINEAR GRANGER CAUSALITY

To further test the performance of the proposed approach

for nonlinear causality detection, the following TVNARX

model is used to generate simulation data:

y (t) =h1,1 (t) y (t− 1) + h1,2 (t)x (t− 1)

+ h2,1 (t) y
2 (t− 1) + h2,2 (t)x

2 (t− 1) + e (t)
(27)

where x (t) is a random sequence uniformly distributed in

[−1, 1], e (t) is a Gaussian white noise sequence with zero

mean and variance 0.04. The time-varying parameters are

given below:

h1,1 (t) =

{
0, 1 ≤ t ≤ 400,

−0.5, 400 < t ≤ 1000,

h1,2 (t) =







0, 1 ≤ t ≤ 300,
−0.8, 300 < t ≤ 700,
−0.5, 700 < t ≤ 1000,

(28)

h2,2 (t) =







0, 1 ≤ t ≤ 300,
−0.5, 300 < t ≤ 700,
0, 700 < t ≤ 1000.

h2,1 (t) =

{
0, 1 ≤ t ≤ 400,

0.2, 400 < t ≤ 1000,
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FIGURE 2. MAE of fold index of cross validation using four compared methods under three noise cases for example A. (a) LGCY →X (t), (b) LGCX→Y (t).
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This means that the coefficient h1,2 (t) determines the

linear causal influence from x to y during the period of [301,

700], and the coefficient h2,2 (t) decides the nonlinear causal

influence from x to y during the same period. During the

period of [701, 1000], there is no nonlinear causal influence

from x to y. As in Example 1, three different levels of WGN,

with SNR of 30 dB, 20 dB, and 10 dB, respectively, are added

to the original simulation data.

The TVNAR and TVNARX models, with a nonlinear

degree κ = 2, are constructed using the following four time-

varying parametric methods: 1) RLS with a forgetting factor

ρ = 0.97, 2) ARX with highly overlapped short sliding

windows, 3) OLS-TVNARX, and 4) the proposed ROLS

with multi-wavelets. The B-spline basis functions selected

from {φmk : m = 3, 4, 5, 6}, with the scale index j = 4,

are employed to approximate the time-varying parameters.

The associated TVNGC results using the above four methods

under three noise cases are shown in Fig. 3.

In Fig. 3, it is obvious that the TVNGC detection results

by the proposed method outperform the other three methods

including the RLS, short-window ARX, OLS-TVNARX,

where the bold font indicates the proposed method. Specif-

ically, the RLS method from the first subgraph of panels (a)-

(c) is unable to rapidly detect the abrupt changes in nonlinear

GC at the sample indices 300 and 700 under these three

noise conditions due to the deficiency of the slow conver-

gence. The second subgraph of panels (a)-(c) show the results

measured by short-windowing method, which give lagged

and inaccurate detection results for the nonlinear causality

in comparison with the proposed approach particularly under

severely noise case (SNR = 10 dB). From the third subgraph

of panels (a)-(c) calculated by OLS-TVNARX, quite similar

result as the proposed scheme is obtained for the case of

SNR = 30 dB, while with the level of WGN increasing, the

proposed approach performs better than the OLS-TVNARX

method especially when SNR = 10dB.

The MAE and RMSE of the estimated TVNGC by the four

methods are calculated using the associated time-invariant

causal index values as a reference, and the results are shown

in Table 3, where the statistic values confirm better tracking

ability of the proposed method for both linear and nonlinear

causal detection under all three noise conditions. Similar

to the previous linear example, the cross validation results

with 1~10 fold by the proposed multi-wavelets-based ROLS

method and other three compared approaches are presented

in Fig. 4. The smaller testing errors obtained have been

proved that the proposed scheme can achieve better causality

prediction efficiency than other three methods especially with

a high level of noise, i.e., SNR = 10 dB. These results in Figs.

3-4 and the statistical comparisons (Table 3) demonstrate that

the proposed method can be an effective tool for analyzing

GC of nonstationary signals even severely contaminated by

noise such as real electrophysiological signals.
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FIGURE 3. TVNGC detection results for model (27) using different methods

under three noise cases. (a) SNR = 30dB, (b) SNR = 20dB, (c) SNR = 10dB,

where TVNGCs are shown as blue solid lines, and the black lines indicate the

associated time-invariant Granger causalities (TIVGCs), respectively.
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FIGURE 4. MAE of fold index of cross validation for example B using four different methods under three noise cases.

TABLE 3. A performance comparison of the GC test for example B

Method
30 dB 20 dB 10 dB

MAE RMSE MAE RMSE MAE RMSE

RLS 0.228 0.4313 0.2524 0.4316 0.1310 0.1915

Short-windowing ARX 0.2073 0.3816 0.1875 0.2973 0.1266 0.1608

OLS-TVNARX 0.1846 0.3425 0.1773 0.2995 0.1164 0.1614

ROLS with B-splines 0.1550 0.3316 0.1283 0.2785 0.0646 0.1283

Note: bold values indicate the best results.

IV. APPLICATION TO MOTOR IMAGERY EEG SIGNALS

A. DATASET OVERVIEW

In this section, the proposed GC detection scheme is ap-

plied to analyze time-varying directed interactions between

motor imagery (MI) EEG signals. Here MI indicates the

imagination of a particular motor action without any actual

execution of limbs, which is showed promising effective-

ness in various research fields including neuroscience and

rehabilitation [46, 47]. Specifically, MI is the most common-

ly used experimental paradigm in brain-computer interface

(BCI) system, which has a significant practical importance

and provides a potential communication between the human

brain and the computer [48–50]. Recent investigations based

on EEG report the existence of the directional connectivity

of motor-related areas during MI tasks [51–53]. The EEG

dataset used in this study is available publicly from Phys-

ioNet [54], created by the BCI2000 instrumentation system

[55]. The EEG signals were recorded from 109 healthy sub-

jects during different MI tasks, consisting of 64-channel data

measured by the international 10-10 system [56], sampled at

160 Hz. Specifically, three runs where the subjects imagined

movement of left hand and right hand are selected in this

study, and totally 21 trials with each duration of 4s are

included.

It has been proven that the neural activity related to the

hand movement imagery is almost exclusively contained

within channels C3, C4, and Cz [57]. Hence C3 and C4 chan-

nels are selected as an example for time-varying causality

study. Consider that the MI task is performed within the time

period 0~4s, EEG epochs of 6s duration, 1s before and 5s

after the stimulus are prepared for the GC analysis. In order

to mitigate the effect of the nonstationarity embodied in the

mean, inter-trial variations, and the ensemble average, the

point-by-point is removed from each trial along with dividing

by the ensemble standard deviation [12]. The pre-processed

average event-related potentials (AERPs) of channels C3 and

C4 recorded from one subject during left and right hand MI

tasks are displayed in Fig. 5 (a) and (b).

B. TVNGC ANALYSIS OF MI EEG SIGNALS

Both TVNAR and TVNARX models with a nonlinear

degree κ = 2 are used to represent the potential causal

relations between channel C3 and C4 during left and right

hand imagery tasks. The initial TV NARX (ny, nx) model

for EEG signals is given below:

y (t) =̟0 +

ny∑

i=1

̟1 (i) y (t− i) +

nx∑

j=1

̟2 (j)x (t− j)

+

ny∑

i1=1

ny∑

i2=1

̟3 (i1, i2) y (t− i1) y (t− i2)

+

nx∑

j1=1

nx∑

j2=1

̟4 (j1, j2)x (t− j1)x (t− j2)

+

ny∑

i=1

nx∑

j=1

̟5 (i, j) y (t− i)x (t− j)

(29)

The third, fourth, fifth and sixth order B-splines with the scale

index j = 4 are employed to construct the TVNAR and

TVNARX models. For each trial, the optimal model order

can be determined by minimizing the AIC criterion in Eq.

(21) with the range of 1 ≤ ny ≤ 15 [13]. Fig. 6 shows a

typical example of the order selection process for one trial

using (21), and the optimal model order is equal to 5. Simi-

larly, the optimal model order of all trials can be calculated.

For example, the results of 21 trials sampled from channel C3

while one subject performing left and right hand MI activities

are shown in Fig. 7. Based on the constructed TVNAR

and TVNARX models by the proposed multi-wavelets-based

ROLS method, the TVNGCs between channels C3 and C4 in

both directions can be further evaluated by Eqs. (6) and (11).

Fig. 8(a) is the time-varying nonlinear causality results

between left hand MI EEG signals shown in Fig. 5(a), where
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FIGURE 5. The AERPs of C3 and C4 during MI: (a) left hand; (b) right hand.
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FIGURE 6. A typical example of the proper mode size determined by Eq. (21)

for one trial.

blue curve represents causality from C3 to C4 and black

curve describes that from C4 to C3, and the dotted line

denotes the corresponding significance threshold. For the

right hand MI signals shown in Fig. 5(b), the causal relations

between them are given in Fig. 9(a), where the permutation

threshold is also represented as the black dotted line. In

addition, following the causal flow defined in [58], the time-

varying causal flows between channels C3 and C4 under dif-

ferent MI tasks are also calculated for a better understanding

of causal connectivity from the aspect of graph theoretical

analysis. The associated topographical maps of the causal

flows within MI period 0-4s are presented in Fig. 8(b) and

Fig. 9(b), which give a spatiotemporal representation of the

time-varying GC, and thus make the changing process of the

quantified causalities to be visual and intuitive.

From Fig. 8, the strength of nonlinear interaction from C4

to C3 (NGCC4→C3 (t)) is larger than that from C3 to C4
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FIGURE 7. The results of the optimal model order for 21 trials sampled from

channel C3 during MI: (a) left hand; (b) right hand.

(NGCC3→C4 (t)) during left hand imagery within the period

of 1.5~2.9s. Just as the topographical maps shown in Fig.

8(b), when performing left hand imagery, Channel C4 exerts

strong influence on C3 over the time interval [1.5s, 2.9s], and

the associated causal flow is positive, hence channel C4 can

be treated as a causal source with respect to C3. In contrast,

the information flow from C3 to C4 is negative and thus C3 is

regarded as a causal sink [58]. On the contrary of the case in

Fig. 8, the values of NGCC3→C4 (t) in Fig. 9 is significantly

larger than NGCC4→C3 (t) for right hand imagery over the

time interval [1.0s, 3.2s], and the associated topographical

maps in Fig. 9(b) indicate that channel C3 is the causal source

and channel C4 is the causal sink in this time period under

right hand MI task.

Figs. 8-9 present that the transient changes of the nonlinear

GC between C3 and C4 under MI tasks can be clearly mea-

sured by employing the newly introduced TVNGC testing

method. Specifically, an obvious nonlinear causality from C4

to C3 for the imagination of left hand and a strong nonlinear

directional connectivity from C3 to C4 during right hand

imagery are detected. These nonlinear results are consistent

with the recent studies reported in [51, 52], and can better

reflect the neural connectivity variations between inherent

nonlinear EEG signals induced during MI tasks because of
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FIGURE 8. (a) Time-varying nonlinear causalities between C3 and C4 during

left hand MI (blue curve: GC from C4 to C3, black curve: GC from C3 to C4),

and the significance threshold is represented by black dotted line. (b) The

associated topographical maps of causal flows.
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FIGURE 9. (a) Time-varying nonlinear causalities between C3 and C4 during

right hand MI (blue curve: GC from C4 to C3, black curve: GC from C3 to C4),

and the significance threshold is represented by black dotted line. (b) The

associated topographical maps of causal flows.

the nonlinearity of the fundamental models used in the pro-

posed approach. Additionally, the precise time periods of the

interaction for MI can be well determined, such as [1.5s, 2.9s]

and [1.0s, 3.2s] for left and right hand MI, respectively, and

the instantaneous dynamical processes of causalities between

different brain regions over the whole MI tasks with 4s can

be clearly revealed, which demonstrates the applicability of

the high time resolution causal relations obtained by the

proposed framework.

V. CONCLUSION

A new TVNGC detection method has been proposed based

on a parametric modelling framework, where the associated

time-dependent parameters are approximated by a set of

multi-wavelet basis functions so that the initial time-varying

model can be re-formulated to a time-invariant linear-in-the-

parameters form. The ROLS algorithm is further applied to

reduce the linear-in-the-parameters model and the resultant

coefficients are then used to recover the original time-varying

parameters. Three case studies have been carried out to

illustrate the performance of the proposed method, these

include two simulation examples with known causal relations

and an application to real EEG signals during MI tasks. The

simulation examples show that the proposed approach can

effectively detect time-varying linear and nonlinear causal

interactions, and its overall performance outperforms the

other three methods in the presence of high-level noise.

For real MI EEG signals, strong directional connectivities

during left and right hand imagery tasks have been observed,

which demonstrates that the proposed procedure is more

powerful in detecting fast-changing causalities between two

nonstationary biomedical signals.

Note that the proposed causal detection framework is

suitable for causality analysis between time-varying bivariate

systems, while the direct causal interaction among three or

more simultaneous time series and spectral causal represen-

tation are not discussed in this early stage, which may fail

to reveal essential potential connectivities of the whole brain

EEG signals. In order to further improve the applicability of

the proposed method, the causal detection framework will be

further extended to multivariate cases and spectrum repre-

sentation evaluated by using multi-channel EEG recordings.

Another main limitation of the proposed approach is its

heavy computation load, which may be much higher than

existing adaptive detection methods, this is mainly caused

by the calculation and selection procedure of a number of

expansion terms considered for each basic model. We intend

to improve the efficiency of the time-varying GC analysis

to reduce the computation time by applying other sparse

representation algorithms like least absolute shrinkage and

selection operator (Lasso) or Orthogonal Matching Pursuit

(OMP). These results will be published in our future work.
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