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Abstract

Bracing is commonly used to provide resistance to lateral forces in building structures. However, traditional bracing design

approaches appear not to be underpinned by clear fundamental principles. Here, theoretically optimal arrangements of

bracing members are sought for pre-existing building frames, already designed to carry gravity loads. For sake of simplicity

existing frame elements are assumed to be capable of carrying additional loads and three types of bracing are considered:

tension only bracing, bracing intersecting only at the corners of the existing frame, and unconstrained optimal bracing, where

bracing elements can intersect at any location. Layout optimization techniques are used to identify initial design solutions;

these are then related to Michell trusses to obtain exact reference volumes, against which the efficiency of other bracing

layouts can be judged. It is shown that from a theoretical standpoint tension only bracing is inefficient and that the optimal

angle of intersection between a pre-existing frame member and intersecting tension/compression bracing member pairs is

45◦, something that can potentially be adopted as a basic principle when designing bracing for a pre-existing frame.

Keywords Buildings · Bracing design · Layout optimization

1 Introduction

The lateral restraint system is an indispensable part of any

building. This is particularly true in a tall building structure,

where the requirements for lateral strength and stiffness

can govern the layout of the whole building. Consequently,

the design of efficient bracing layouts to resist lateral wind

loading is an area of active interest to structural engineers.

Optimization of bracing systems has often focussed on

geometry or size optimization. For example, Moon et al.

(2007) analysed diagrid bracing systems, using the angles

between bracing members as parameters which were varied

to optimize the lateral stiffness of the structure. Bobby et al.

(2013) and Lee and Tovar (2014) optimized an outrigger

bracing system by using binary variables to represent the
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existence of belt trusses; Sala and Candiani (2014) used

the size optimization technique proposed by Baker (1990)

to identify the optimal section sizes of a fixed topology

bracing system whilst Tangaramvong and Tin-Loi (2015)

used a discrete approach to optimize the bracing topology

using a sparsely populated ground structure (only members

connecting neighbouring nodes were considered). Others

have used continuum optimization techniques (e.g. Liang

et al. 2000; Allahdadian et al. 2012; Stromberg et al. 2012;

Kingman et al. 2015) or genetic algorithms (e.g. Baldock

2007; Yazdi and Sulong 2011; Richardson et al. 2013).

However, to date classical layout optimization methods

appear not to have been used to benchmark the efficiency of

commonly used bracing systems.

The mathematical basis for the problem of finding

the structural layout consuming the least volume of

material was developed by Michell (1904). Whilst Michell’s

analytical approach provides a strong foundation for the

field, it is seldom applied to practical structural design

applications, partly because of the difficulty of identifying

the optimal structure for specified loading and support

conditions. However, the approach readily lends itself to

numerical implementation, where the optimal layouts of

discrete members are found from a ‘ground structure’,

comprising all possible interconnections of discrete node

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-018-1921-7&domain=pdf
http://orcid.org/0000-0003-4633-2839
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points within a design space. Using linear programming

(LP) techniques numerical layout optimization results can

be found which closely approximate classical Michell forms

for any given problem (Dorn et al. 1964; Hemp 1973);

more recently the computational efficiency of this method

was improved by Gilbert and Tyas (2003). Here, numerical

layout optimization will be used as a tool to investigate

optimal bracing layouts for various different scenarios.

Stromberg et al. (2012) and Liang et al. (2000) have

considered the optimization of bracing systems within a

beam/column frame represented by discrete beam members.

Stromberg et al. (2012) optimized the bracing topology with

different type connections between continuum and discrete

beam elements and the effect of column stiffness on the

optimal bracing layout was also considered. Liang et al.

(2000) assumed that the beam/column members sized in

a gravity load analysis would also be adequate for lateral

load cases, and optimized the bracing topology for several

bay aspect ratios. This raises the question: if the beams and

columns designed for gravity loads have sufficient reserves

of strength, such that they do not need to be resized to

act as part of the lateral stability system, can general rules

governing the optimal layout of bracing members be found?

This study focuses on optimizing the layout of bracing

elements within a pre-existing frame, where the members

have already been designed to carry gravity loading, and are

assumed to have the requisite additional reserves of strength

to support lateral loads; other scenarios will be the subject

of future research.

The paper is organized as follows: Section 2 outlines the

assumptions made with respect to loading and pre-existing

frame performance; Section 3 describes the problem types

considered and the numerical layout optimization method

employed to obtain initial solutions; Sections 4 and 5

consider respectively single bay and multibay / storey

building types, with exact analytical solutions derived for

key problem types; finally conclusions from the study are

drawn and the direction of future research is outlined in

Section 6.

2 Assumptions

For the design of steel framed buildings, British Standard

5950-1:2000 suggests the following load combinations:

p1 : 1.4Gk + 1.6Qk (1.a)

p2 : 1.0Gk + 1.2Qk + 1.2Wk (1.b)

p3 : 1.0Gk + 1.2Qk − 1.2Wk (1.c)

where Gk is the characteristic permanent load, Qk is the

characteristic imposed load and Wk is the characteristic

wind load.

Here, for simplicity the concept of Notional Horizontal

Load (NHL) (a small lateral load which is applied as part

of the main gravity load case (1.a)) is ignored, and it is

assumed that the bracing design is dominated by the wind

load cases, (1.b) and (1.c).

From (1.a) it is clear that the maximum partial factor

multipliers for gravity loads exist in load case (1.a), and

that the gravity load is decreased in load cases (1.b) and

(1.c). Therefore, for the purpose of the studies herein, the

following assumptions have been made:

– Assumption 1: The loads generated in the columns in

load case (1.b) and (1.c) are always less than those

resulting from load case (1.a).

– Assumption 2: Vertical gravity loads are only carried by

the columns in all load cases.

– Assumption 3: The sizes of pre-existing horizontal

members (i.e. floor beams and/or slabs) are dominated

by the gravity load case (1.a), and the axial loads

induced in them by lateral load cases (1.b) and (1.c) are

small in comparison.

Assumption 1 means that the sizes of the columns are

not determined by the lateral load cases, and thus that the

columns may be assumed to be rigid with infinite strength

when designing for lateral loads (i.e. accumulated reactions

from bracing elements can be carried). Assumption 2 is

widely adopted in design practice, where columns are

often first designed to resist gravity loads, with the design

of bracing members to resist lateral loads coming later.

Together these two assumptions mean that the vertical loads

in load combination (1.a) will not affect the optimal layout

of the bracing system, and the wind load (i.e. 1.5Wk) is

governing. Assumption 3 means that the structural members

forming the floors effectively possess infinite reserves of

strength, and can distribute applied lateral loads to either

side of the frame. With these three assumptions, the design

of a bracing system for a frame already designed to carry

gravity loads is considered, where the bracing need only

resist lateral loads. This effectively replicates one step in

the traditional design procedure for buildings (e.g. Brown

et al. 2009 suggest that the sizes of beams and columns are

first determined by considering gravity loads, with the sizes

of bracing members then determined by considering lateral

loads). A similar approach has also been used in previous

bracing topology optimization studies; for example Mijar

et al. (1998), Liang et al. (2000), and Stromberg et al. (2012)

take (or design) a column-beam frame capable of carrying

gravity loads and then, considering only lateral loads, carry

out bracing topology optimization.
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3 Problem specification

3.1 Cases considered

Based on the assumptions made in Section 2, the general

problem to be addressed here distils down to the simple

problem shown in Fig. 1. This is a single storey frame bay

subjected to a unit horizontal load P at the left top corner,

with fixed pin supports at the bottom corners. For sake of

simplicity the connections between members are treated as

pin joints. Edge column and beam members are assumed

to be pre-existing members which have infinite reserves of

strength when functioning as part of a braced frame. Note

that this can be viewed as removing the bending moment

effect Ph from the problem and reducing it to one of finding

the optimal bracing to resist the load in pure shear (e.g. see

Stromberg et al. 2012). It is also worth noting that Rozvany

et al. (2006) studied the effect of including fully and

partially stressed pre-existing members in an optimization

by fixing member cross-sectional areas. In this numerical

study, in order to account for the possibility that pre-existing

members can also disappear from the final structure (i.e.

have zero force), pre-existing members are treated as being

composed of material of infinite strength.

Two load cases involving horizontal loads of equal mag-

nitude applied in opposite directions are used to replicate

real-world conditions, and to also ensure the resulting layout

Fig. 1 Bracing design case with pre-existing members around the edge

of the bay, pinned supports at the bottom corners and a horizontal load

at the top left corner. A ‘ground structure’ comprising interconnecting

members (2 × 4 nodal division discretization shown, not including all

connections for sake of clarity)

is symmetric. According to the superposition theory pro-

posed by Hemp (1973), a two load case solution can be

obtained by superposing the results from two design prob-

lems involving single load cases. Therefore, all design

problems considered herein can be treated as single load

case problems.

Three generic types of bracing systems are considered for

various different aspect ratios (h : b):

– Case 1: Tension only bracing. This is frequently

employed in practice as it obviates the need to

take action to ensure compression members do not

buckle. Numerically, this is implemented by making

the compression stress capacity of bracing members

infinitesimally small.

– Case 2: Bracing connected only at corners. Both tension

and compression members are allowed to be present in

the bracing system and the maximum tension stress is

equal to the maximum compression stress. Numerically,

bracing connected only at corners is implemented by

removing the nodes along the perimeter of the design

space, except at the corner points.

– Case 3: Optimal reference bracing. Both tension and

compression members can be present in the bracing

system and the maximum tension stress is equal to

the maximum compression stress. Connections between

bracing members and the beams or columns can exist

at any location. The resulting constraint-free bracing

layout can be expected to be the most efficient of the

three cases in terms of material consumption.

3.2 Single load case layout optimization formulation

The single load case layout optimization formulation for

a two-dimensional problem can be stated as follows (after

Dorn et al. 1964):

min V = qT c

subject to Bq = f

q+
i , q−

i ≥ 0, i = 1, ..., m

(2)

where there are m members and n nodes in the problem,

and where V represents the volume of the structure,

qT = {q+
1 , q−

1 , q+
2 , q−

2 , ..., q+
m , q−

m }, cT = {l1/σ
+
1 , l1/σ

−
1 ,

l1/σ
+
2 , l1/σ

−
2 , ..., l1/σ

+
m , l1/σ

−
m }, where and li, q

+
i , q−

i ,

σ+
i , σ−

i represent, respectively, the length, tensile member

force, compressive member force, tensile stress capacity and

compressive stress capacity of member i. B is a 2n × 2m

equilibrium matrix and f = {f x
1 , f

y

1 , f x
2 , f

y

2 , ..., f x
n , f

y
n },

where f x
j and f

y
j represent the component of load applied to

node j in the x and y directions respectively. This problem

is in a form suitable for solution using linear programming

(LP).
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The adaptive ‘member adding’ method proposed by

Gilbert and Tyas (2003) is used to reduce the computational

cost associated with solving problems; this involves solving

a small initial problem involving sparse connectivity, and

then iteratively adding further connections until a provably

optimal solution is found. Additionally, to improve the

quality of the optimized results, the geometry optimization

rationalization procedure proposed by He and Gilbert

(2015) is here used as a post-processing tool.

Finally, although formulation (2) is strictly speaking a

‘plastic’ formulation, the optimal layouts from plastic and

elastic (minimum compliance) design optimization pro-

cedures are identical when only a single load case is

involved.

Fig. 2 Optimized bracing

layouts for various h:b aspect

ratios (4:1, 3:1, 2:1, 1:1, 1:2, 1:3

& 1:4): a Case 1 - tension only

bracing; b Case 2 - bracing

connected only at corners;

c Case 3 - optimal reference

bracing. The corresponding

analytical volume is indicated

below each layout, where P is

the magnitude of the horizontal

load applied at the top left

corner of the design domain, of

breadth b and height h, and σ is

the limiting tensile strength.

Element color key: red = tensile,

blue = compressive, grey =

zero force, black = pre-existing

(assuming left to right loading)
(a)

(b)

(c)
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3.3 Practical considerations

Some of the solutions generated by layout optimization are

complex in form, leading to justifiable questions over their

practical usefulness. However, as Cox (1965) suggested, in

the field of structural design there is a need for reference

solutions, against which alternatives can be judged (Cox

pointed out that just as there is a limit on the theoretical

thermal efficiency of a heat engine, set by the Carnot cycle,

so there is a lower limit on the volume of material necessary

to form a structure). Thus even a complex solution provides

a useful reference against which alternative designs can be

judged, where the latter may include simplified variants of

the optimal reference form.

Also, many of the layouts presented in this paper con-

tain long compression members and it might reasonably be

suggested that buckling will limit the capacity of such ele-

ments in practice. However, for the purposes of this study

the effect of member buckling under compressive load will

be ignored. Whilst incorporating buckling may, in princi-

ple, lead to different optimal layouts, there are two reasons

for this omission. Firstly, as already stated, one goal of the

study is to establish definite benchmarks for optimal lay-

out and efficiency, against which real-world designs may be

judged. The significance or otherwise of buckling effects in

a given scenario depends to a great extent on specific design

decisions, and this emphasizes the need for benchmarks

to properly assess the effects of these decisions. Secondly,

previous work by two of the present authors (Tyas et al.

2005) has indicated that the reduction in the strength of real

steel members due to member buckling is rarely significant

when suitable member cross-sections are used. This latter

study considered standard circular hollow structural steel

sections, widely available in the UK, and showed that a near-

linear relationship held between member cross-sectional area

and the required compression capacity for a given unrestrained

length. Euler buckling was significant only for very long, and/or

very lightly loaded members, whereas, ‘...at most combi-

nations of load and length, there exists a member which

can effectively utilize the majority of its compressive crush-

ing strength and minimise the effect of Euler buckling’.

Also buckling can often be addressed by either select-

ing a suitable member cross-section in the detailed design

stage, and/or by providing lateral restraint at intermediate

locations (e.g. at floors), though this is likely to be more

difficult in the case of small buildings, with lightly loaded

members.

4 Optimized single bay bracing designs

Optimized bracing layouts and associated volumes for each

of the three cases described in Section 3.1 are shown for a

range of aspect ratios in Fig. 2a to c. The volumes of these

frames are also presented in Fig. 3. Note that although the

optimized layouts were initially obtained numerically, using

the approach described in Section 3, the volumes of the

simple layouts (e.g. those involving diagonal bracing) can

be obtained analytically via simple calculation. Also, it is

shown in Sections 4.2 & 4.3 that the more complex layouts

are closely related to Michell cantilevers for which known

analytical solutions exist. For this reason exact analytical

volumes are shown in Fig. 2.

4.1 Case 1: Tension only bracing

It is evident from Fig. 2a that tension only bracing leads to

very simple optimized layouts. It is also evident from Fig. 3

Fig. 3 Volume comparison for

the three bracing cases

considered (where P is the

magnitude of the horizontal load

applied at the top left corner of

the design domain, of breadth b

and height h, and σ is the

limiting tensile strength)
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Fig. 4 Ability of a pre-existing beam member with infinite reserves of

strength to make an external load ‘transmissible’ (i.e. each of the above

cases is equivalent)

that tension only bracing requires at least double the volume

of material required by any other kind of bracing. This is

because only one of the two inclined members carries a

force when a horizontal load is applied. Thus, since the

lateral load direction can be reversed, at least twice the

volume of material must be consumed as when standard

tension / compression bracing is used, assuming that the

allowable stresses are equal in tension and compression.

The issue of buckling must obviously be considered, but as

mentioned earlier often this can be addressed by modifying

the shape of the cross section and/or providing sufficient

lateral restraint. The use of tension only bracing is therefore

not a good choice when material savings are of paramount

importance.

4.2 Case 2: Bracing connected only at corners

The optimized bracing layouts for Case 2, shown on Fig. 2b,

are in most cases quite complex. It is also evident that their

forms resemble Michell cantilevers. This observation gives

rise to the following hypothesis:

Hypothesis 1: The optimized result for the case with con-

nections only at corners is a combination of two adjacent

Michell cantilevers, contained within a laterally restricted

design space (so-called Michell cantilevers in a half strip).

The exact volume of a Michell cantilever in a half

strip has been obtained using analytical methods by

Graczykowski and Lewiński (2010). To explain the relation-

ship between Case 2 and a Michell cantilever, first consider

the influence of the infinite strength (i.e. rigid) pre-existing

members. Fuchs and Moses (2000) demonstrated that a rigid

member transforms any external load applied along its line

of action into a ‘transmissible load’. Therefore, a horizontal

load applied at the end of a pre-existing beam with infi-

nite reserves of strength can be transmitted to any other

point along the beam, as illustrated in Fig. 4. Given this, a

relationship between Case 2 and a Michell cantilever prob-

lem can be established, as indicated in Fig. 5. This gives rise

to the following relation:

Relation 1: The volume of the optimal Case 2 layout for a

problem with an aspect ratio h : b, where h : b ≥ 1, is

twice the volume of a Michell cantilever of aspect ratio
h
2

: b (though the latter is subjected to a loading at the

centreline).

A similar logic can also be applied for low aspect ratio

cases, leading to the following relation:

Relation 2: The volume of the optimal Case 2 layout for

a problem with an aspect ratio h : b, where h : b ≤ 1,

is 2h
b

times the volume of a Michell cantilever of aspect

ratio h : b
2

(though the latter is subjected to a loading at

the centreline).

Therefore, using Relation 1 and 2, exact analytical

solutions can be obtained for bracing problems, with

numerical values for these solutions taken e.g. from

Graczykowski and Lewiński (2010).

(a) (b) (c) (d) (e)

Fig. 5 Demonstrating the equivalence between Case 2 (bracing only

connected at corners) and a Hemp-Michell cantilever: a starting prob-

lem, in this case with a frame with a 2:1 aspect ratio; b base supports

replaced by reaction forces; c corner forces replaced by equivalent

loads (since forces can be distributed arbitrarily along rigid mem-

bers); d design domain divided along line of antisymmetry; e corner

loads replaced by supports and appropriate forces added along line of

division
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Fig. 6 Optimized layout for Case 2 (connections only at corners) when

the bracing elements are allowed to extend beyond the lines of the

columns

Whilst it has been demonstrated that the layouts shown in

Fig. 2b are the combination of two constrained Michell can-

tilevers, an unconstrained Michell-Hemp cantilever (Hemp

1973) could alternatively be used. Figure 6 shows the out-

come when an expanded design domain is used, in this

case using a pre-existing frame with an aspect ratio of 10:1.

Although unlikely to be useful in practice, it is of interest

that the bracing volume is in this case reduced by 20.6%.

4.3 Case 3: Optimal reference bracing

In Case 3 bracing members are free to intersect pre-existing

members at any location around the perimeter of the design

space, as shown in Fig. 2c.

Fig. 7 Use of a Mohr’s circle analysis to demonstrate that 45◦ is the

optimal intersection angle between a pre-existing beam/column and

an optimal tension/compression bracing member pairs. (An optimal

bracing member follows the direction of principal strain (Hemp 1973),

whilst the strain in a pre-existing member is zero due to its infinite

strength. Thus the subtended angle between such members will be 90◦

on the circle, or 45◦ in reality)

An important feature of the layouts obtained is stated in

Property 1:

Property 1: If a pre-existing member with infinite reserves

of strength actively carries load, then the optimal

intersection angle between this and intersecting ten-

sion/compression member pairs will be 45◦.

This property can easily be verified with the aid of a

Mohr’s circle analysis, as shown in Fig. 7. (It can also be

observed that the angle between bracing members in ten-

sion and compression in the Mohr’s circle is 180◦, or 90◦ in

practice, a characteristic of an optimal Michell structure.) This

presupposes that tension and compression members are simul-

taneously intersecting a given point on the pre-existing

member, or, from an optimization theory point of view that

Fig. 8 A standard knee bracing layout
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Table 1 Comparison between

optimal reference bracing

(Case 3) and standard knee

bracing volumes (where P is

the magnitude of the horizontal

load applied at the top left

corner of the design domain, of

breadth b and height h, and σ

is the limiting tensile strength)

Aspect ratio (h:b) 1:2 1:3 1:4

(Angle between knee bracing members) (45◦) (33.7◦) (26.6◦)

Volume of Case 3 optimal bracing (×Pb/ σ ) 1.00 0.71790 0.60691

Volume of standard knee bracing (×Pb/ σ ) 1.00 0.72222 0.62500

Difference (%) 0 0.60175 2.9806

a T -region exists within the building envelope (see e.g. Roz-

vany et al. 1995). (Alternatively if a situation arises where

there is only an intersecting tension or compression member

(i.e. an R+ or R−-region) then the Mohr’s circle analysis

indicates that the maximum angle of intersection is 45◦.)

For low aspect ratio cases it is evident that the optimal

bracing layout resembles standard knee bracing, as shown

in Fig. 8. However, some of the layouts shown in Fig. 2c

are rather more complex; see the 1:3 and 1:4 aspect ratio

layouts. In Table 1 the bracing volumes are compared with

the volumes of standard knee bracing; this suggests that

standard knee bracing is very efficient, becoming only

slightly less so as the intersection angle between the bracing

members and the pre-existing frame members deviates

markedly from 45◦.

It can also be observed that the more complex layouts

found for low aspect ratios have similarities with the layouts

of Michell cantilevers. Thus, following a similar process

to that outlined in Fig. 5, a relationship between these

layouts and the corresponding Michell cantilever truss can

be established, as shown on Fig. 9. This leads to the

following relation:

Relation 3: The volume of the optimal Case 3 layout for a

problem with an aspect ratio h : b, where h : b ≤ 1, is 2h
b

times the volume of a Michell cantilever of aspect ratio
b
2

: 2h (though the latter is subjected to a loading at the

centreline).

Using Relation 3, analytical solutions can be obtained for

the Case 3 low aspect ratio cases, with numerical values for

these solutions taken e.g. from Graczykowski and Lewiński

(2010).

5Multi-storey / multi-bay buildings

Bracing members may cross several stories in multi-storey

buildings (Moon et al. 2007). In such a building each floor-

slab can be considered as a pre-existing member. Therefore,

in this section the focus is on considering the contribution

of additional intermediate beams and columns. (Also, a

pin support is added to the bottom of each intermediate

column.)

Firstly, it is observed that for Cases 1, 2 and 3 all

layouts revert to cross bracing once intermediate beams

and columns are added. Therefore, for sake of clarity, only

results for a 4:1 aspect ratio structure is considered further,

as shown in Fig. 10a.

(b) (c) (d) (e)(a)

Fig. 9 Demonstrating the equivalence between Case 3 (optimal ref-

erence bracing) and Hemp-Michell cantilever solutions: a starting

problem, in this case using frame with 1:3 aspect ratio; b rotate the

problem by 90◦ clockwise; c design domain divided into Structure I &

II along the line of antisymmetry; d point loads are replaced by dis-

tributed loads (since forces can be distributed arbitrarily along rigid

members); e Structure I & II are combined into a Michell cantilever
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(a) (b) (c) (d)

Fig. 10 Comparison of optimal bracing layouts in multi-storey frames

and sample braced tube structures constructed in practice: a the opti-

mal layout for a 4:1 aspect ratio case with intermediate pre-existing

beams and columns; b John Hancock Center in Chicago, a braced tube

structure similar to (a); c an alternative optimal layout with the same

volume as (a); d One Maritime Plaza in San Francisco, a braced tube

structure qualitatively similar to (c). Element color key: red = tensile,

blue = compressive, black = pre-existing (assuming Case 2 or 3 brac-

ing and left to right loading). Note however that the angles in (b) and

(d) differ from the 45◦ found to be optimal when bracing a pre-existing

frame

Since there are intermediate connections available across

the height of the multiple storey building, Case 2 & 3

become identical, with the volume of the bracing structure

shown in Fig. 10a being equal to 8.00Pb/ σ in both

cases. However, the volume of the Case 1 (tension only

bracing) structure will still be double the volume of the

corresponding Case 2 & 3 (tension / compression bracing)

structures, for the reason given in Section 4.1.

It is worth noting that the cross bracing layout shown

in Fig. 10a is not the only optimal solution since there are

many variants of this layout that satisfy Property 1 (see

Section 4.3); thus Fig. 10c shows an equivalent optimal

solution. Additionally, it should be noted that although the

results shown in Fig. 10 relate to the case when horizontal

loads are applied only to the top of the building, due to

the existence of Property 1, structures similar to Fig. 10c

are found when loading is applied uniformly throughout

the building height, with the density of the bracing net

depending on the ground structure resolution (though with

the relative sizes of the bracing members changing due

to the different loading pattern involved). It can also be

observed that these solutions resemble the braced tube

structures that have been used in practice (e.g. see Fig. 10b

& d). However, although 45◦ diagonal bracing is optimal if

the assumptions stated in this paper are adopted, if bracing

members are allowed to also take vertical gravity loads the

optimal angle is likely to change somewhat (as is evident on

Fig. 10b & d, where angles of less than 45◦ to the vertical

have been adopted in practice). This suggests that there is an

opportunity to develop an alternative holistic optimization

approach involving multiple load cases (i.e. encompassing

both gravity and lateral scenarios) for the design of new

buildings, though in this case it must be borne in mind that

a side effect will be a lack of clarity on what constitutes

‘bracing’, since diagonal members may be designed to be

active in both gravity only and lateral load cases.

6 Conclusions

In this paper theoretically optimal layouts for bracing

systems have been identified for pre-existing building

frames, already designed to carry gravity loads. For sake of

simplicity it has been assumed that members in such frames

will have sufficient reserves of strength to accommodate

the additional forces that result from lateral loads. Three

different cases have been considered:

– Case 1: Bracing systems comprising tension only

members have been demonstrated to be inefficient

from a theoretical standpoint. Replacing tension only

bracing with tension/compression bracing will save at

least 50% of the material needed if the limiting tensile

and compressive material strengths are equal (i.e.
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assuming that buckling does not reduce the maximum

compressive stress that can be sustained).

– Case 2: When bracing is only allowed to connect at the

corners of the pre-existing frame it is shown that the

optimal layout takes the form of two adjacent Michell

cantilevers. This allows exact reference volumes to be

obtained, against which the efficiency of other bracing

layouts can be judged.

– Case 3: When bracing is allowed to connect pre-existing

frame members at any location it is shown that intersect-

ing tension/compression bracing member pairs meet

each pre-existing member at 45◦ in the optimal layouts.

It is also shown that traditional cross bracing and knee

bracing are very efficient from a theoretical standpoint.

In the case of multi-storey frames, layouts involving

diagonal cross-bracing, with braces meeting pre-existing

members at 45◦, are shown to be most efficient. Also it

is evident that the theoretically optimal layouts identified

herein quite closely resemble those which have been

employed in braced tube building frames in practice.

However, the exact reference solutions derived herein are

only strictly applicable when bracing a pre-existing frame;

the more general holistic frame design case, where all

framing elements are optimized simultaneously, under the

action of multiple load cases, is the subject of future work.
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