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Abstract

We present a study of molecular gas in the inner disk r 20 au<( ) around RY Lupi, with spectra from HST-COS,
HST-STIS, and VLT-CRIRES. We model the radial distribution of flux from hot gas in a surface layer between
r=0.1–10 au, as traced by Lyα-pumped H2. The result shows H2 emission originating in a ring centered
at ∼3 au that declines within r<0.1 au, which is consistent with the behavior of disks with dust cavities. An
analysis of the H2 line shapes shows that a two-component Gaussian profile FWHM 105broad,H2 = (
15 km s ; FWHM 43 13 km s1

narrow,H
1

2 = - - ) is statistically preferred to a single-component Gaussian.
We interpret this as tentative evidence for gas emitting from radially separated disk regions

r r0.4 0.1 au; 3 2 aubroad,H narrow,H2 2á ñ ~  á ñ ~ ( ). The 4.7 μm 12CO emission lines are also well fit by two-
component profiles r r0.4 0.1 au; 15 2 aubroad,CO narrow,COá ñ =  á ñ = ( ). We combine these results with 10 μm
observations to form a picture of gapped structure within the mm-imaged dust cavity, providing the first such
overview of the inner regions of a young disk. The HST SED of RY Lupi is available online for use in modeling
efforts.
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1. Introduction

The building blocks for planet formation are found in
reservoirs of gas and dust around young stars. High resolution
images acquired with the Atacama Large Millimeter Array
(ALMA) have revealed the spatial extent of these protoplane-
tary disks (both radially and vertically) with high precision,
showing prominent gaps in the dust continuum emission that
potentially indicate clearing by young protoplanets (see, e.g.,
ALMA Partnership et al. 2015; Andrews et al. 2016; Isella
et al. 2016). Gas appears to disperse quickly as the host star
evolves (Williams & Cieza 2011), leaving less than 10Myr
(Haisch et al. 2001) for young objects to form planetary cores
and roughly establish the initial architecture of the system. It is
therefore critical to study the mechanisms that deplete gas and
dust from young disks in order to understand the resulting
distribution of planets in extra-solar systems.

Gas and small grains can be removed from protoplanetary
disks through photoevaporation by far-ultraviolet (FUV),
extreme ultraviolet (EUV), and X-ray radiation, stellar and
disk winds, accretion onto the central star, outflows, and, in
denser clusters, irradiation from external sources (Gorti &
Hollenbach 2009; Gorti et al. 2009; Armitage 2011; Alexander
et al. 2014; Hartmann et al. 2016; Ercolano & Pascucci 2017).
Despite the wealth of observational signatures from various
atomic and molecular constituents of the gas disk, it is essential

to study the physical properties of the most abundant
component, hydrogen, in order to understand the behavior of
the gas reservoir as a whole. Molecular hydrogen (H2) lacks a
permanent dipole moment, so pure rotational transitions are
dipole-forbidden. H2 can undergo quadrupole rotational
transitions, but the large spacing between even the lowest
energy levels makes it difficult to excite the molecules via
collisions in cold midplane gas.
As a heteronuclear molecule and the second most abundant

molecular gas component, CO is typically used as a proxy
(Ansdell et al. 2016b; Miotello et al. 2016), but estimates of the
H2 abundance from these measurements rely on a H2/CO ratio
(see, e.g., France et al. 2014a) that does not necessarily account
for all the gas present in the system nor accurately treat freeze-
out mechanisms in the disk midplane (Long et al. 2017). HD
emission at 112 μm has also been used to estimate the total
mass of the gas disk, since, as an isotopologue of H2, it is
expected to trace the distribution of hydrogen more closely than
CO (Bergin et al. 2013; McClure et al. 2016). Alternatively, the
population of H2 in a hot T 2000 K~( ), thin layer at the
surface of the disk can be observed directly through UV
electronic transitions (Herczeg et al. 2002, 2004; France et al.
2012; Hoadley et al. 2015). Herczeg et al. (2002) measured 146
UV-H2 emission lines from TW Hya with HST-STIS and found
that the features are coincident with the star in velocity space,
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rather than spatially extended beyond the 0 05 resolution of
the instrument, as would be expected for emission from an
outflow. These observations indicate that the emitting H2 is
located in the inner regions of the protoplanetary disk (within
r∼1.4 au at the distance of 56 pc to TW Hya), where gas
temperatures can reach the 1500 K threshold required for Lyα
fluorescence to take place (Ádámkovics et al. 2014, 2016).

In addition to probing the hot H2 in the inner disk, UV
observations can be used to measure the properties of cooler
molecular layers T 300 600 K~( – ) of the disk via CO emission
and absorption from the Fourth Positive band system
A X1 1P - S+( ) (France et al. 2011a; Schindhelm et al. 2012a).
The CO emission lines are produced by the same mechanism as
the UV-H2 features, with C IV and Lyα emission pumping the
gas to excited states (France et al. 2011a). Meanwhile, warm CO
gas T 300 1500 K~( – ) is more favorably observed through the
well-separated and strong rovibrational emission lines in the
fundamental band at 4.7–5 μm, which have been studied in a
large sample of 60>( ) protoplanetary disks and probe their inner
regions at 0.01–20 au (e.g., Salyk et al. 2009, 2011; Brown
et al. 2013; Banzatti & Pontoppidan 2015). IR absorption at the
same wavelengths provides additional constraints on the
properties of CO in the disk atmosphere. By considering these
UV and IR emission and absorption features together, we can
begin to understand the radial structure of several different
temperature regions within the inner molecular gas disk.

In order to provide a more complete census on warm and hot
molecular gas in planet-forming regions within protoplanetary
disks, we present UV and IR observations of H2 and CO in the
young T Tauri system RY Lupi. By combining these inner disk
gas tracers for the first time, we can map the radial structure in a
region of the system where protoplanets may already be
forming. We describe the target and observations in Section 2
and present our results from both wavelength regimes,
including our modeling approach, in Section 3. Our results
are evaluated in Section 4, where we consider the RY Lupi data
in the context of larger surveys of the inner and outer regions of
protoplanetary disks, including recent ALMA studies by
Ansdell et al. (2016b) and van der Marel et al. (2018). In a
future work, this panchromatic approach will be extended
to three other objects in the Lupus complex with different
morphologies of gas and dust, allowing us to place RY Lupi
on a spectrum of disk evolution that is derived from a
co-evolving sample of systems.

2. Target and Observations

2.1. RY Lupi: An Unusual Object in the Lupus Complex

RY Lupi is a particularly unusual member of the young
(1–3Myr), nearby (d∼151 pc; Lindegren et al. 2016) Lupus
cloud complex. Its near-UV 3300~( Å) continuum excess
was used to determine an accretion luminosity of

L Llog 0.9 0.25acc = -  and mass accretion rate of
M Mlog 8.2acc = - ˙ yr−1 (Alcalá et al. 2017), which makes

it similar to a class II source with a full primordial disk. It was
recently observed as part of a large ALMA survey that mapped
the 890 μm dust continuum emission and the (3–2) features
from 13CO and C18O for 89 objects in the Lupus star-forming
region (Ansdell et al. 2016b). Although an infrared SED was
previously used to classify RY Lupi as a primordial
protoplanetary disk host (Kessler-Silacci et al. 2006), the
ALMA data show a distinct dust cavity in the mm-continuum

emission with an outer radius of ∼50 au (Ansdell et al. 2016b;
van der Marel et al. 2018). van der Marel et al. (2018) attribute
the apparent discrepancy between the mid-IR and mm-wave
observations to a misalignment between the inner and outer
disk, requiring the inner disk to be close to face-on in order to
reproduce the observed IR excess. This contrasts with the
inclination of the outer disk, which has been constrained at a
higher value of 68◦ (van der Marel et al. 2018).
The picture of a disk with components that are offset in

inclination is supported by the system’s unusual behavior in
optical photometry, which shows variability over a period of
∼3.75 days that is accompanied by an increase in polarization
when the star is faint (Manset et al. 2009). The observations
have previously been explained as occultations by a warp in the
inner disk that is co-rotating with the star (Manset et al. 2009),
a model that was also invoked to describe the variability seen in
AA Tau. However, this geometry is possible because of the
nearly edge-on 85°.6 inclination of the inner disk in RY Lupi,
which was derived from Milgrom polarization models (Manset
et al. 2009) and is decidedly different from the value of 38° that
best fits the mid-IR SED (van der Marel et al. 2018). If the disk
really is separated into two misaligned components, RY Lupi
may be similar to the “dipper disks” (see, e.g., Ansdell et al.
2016a), which undergo photometric variability because of their
geometries. At the time of our observations, synthetic
photometry performed on our HST-STIS spectrum of RY Lupi
provided magnitudes of U= 14.4, B= 13.6, and V= 12.5.
These brightnesses place the system at an intermediate phase
between its faintest and brightest states, assuming its behavior
is still well-represented by the light curve in Manset et al.
(2009). In this work, we aim to provide important constraints
on the complex inner disk morphology of this peculiar system
by unifying multiple tracers of its warm and hot gas.

2.2. Observations

RY Lupi was observed on 2016 March 16, with the Cosmic
Origins Spectrograph (COS) and the Space Telescope Imaging
Spectrograph (STIS) onboard the Hubble Space Telescope
(HST) as part of a mid-cycle General Observer program (PID
14469; PIs: C.F. Manara, P.C. Schneider). Data were collected
with three different observing modes of HST-COS (G140L
λ1280, R∼1500, t= 40.8 m; G130M λ1291, R∼16000,
t= 10.9 m; G160M λ1577, R∼16000, t= 10.8 m; Green
et al. 2012) as well as two different observing modes of HST-
STIS (G430L λ4300, t= 1 m; G230L λ2375, t= 40 m;
R∼1000; Woodgate et al. 1997, 1998) over a total of five
orbits. For the HST-COS data, a final spectrum was produced
by co-adding the original data products from the calibration
pipeline (Danforth et al. 2010). Due to the uncertainty in the
continuum flux uncertainties generated by this pipeline for low
S/N sources, we treated the errors separately before including
them in our modeling efforts (see Appendix A for details).
A full ultraviolet/optical SED was produced by stitching

together the data from all five observing modes on HST-COS
and HST-STIS that were used to observe RY Lupi (see
Figure 1), which have flux measurements that agree very well
between modes with overlapping wavelengths. The data were
rebinned to 5Å per pixel at wavelengths �1100Å to increase
the signal-to-noise in the FUV, and the G130M and G160M
spectra were smoothed with a 7 pixel boxcar kernel to make it
easier to see the underlying continuum. For wavelength regions
that were observed with multiple modes, the data from the
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higher resolution setting were used in the SED. The FUV
continuum was then extracted by fitting a second-order
polynomial to line-free regions of the spectrum between
1100–1715Å (France et al. 2014a). A model Lyα profile was
inserted in place of the observed line (see Section 3.1) in order
to remove the effects of telluric emission and interstellar
absorption. The full FUV radiation field is critical in dictating
the overall disk chemistry, and our observed SED15 can be used
in place of the simplified theoretical constraints typically used
in modeling efforts.

3. Results

3.1. UV Observations of Lyα-pumped H2 Emission Lines

We detect fluorescent emission from H2 molecules in a hot
layer at the disk surface. Lyα photons pump this gas into
excited rovibrational states, denoted m, within the B u

1S+

electronic state (Herczeg et al. 2002). Each pumping
wavelength along the Lyα profile produces a progression of
emission lines, consisting of all transitions from m J,n¢ ¢([ ]) to
rovibrationally excited J,n [ ] levels of the ground electronic
state, X g

1S+. Our analysis here is focused on H2 features in the
HST-COS G160M data v 17 km s 1D ~ -( ), which extend to
wavelengths that are minimally impacted by self-absorption
(λ>1450Å; McJunkin et al. 2016).

Fluxes from the H2 profiles were first measured by fitting a
Gaussian profile superimposed onto a linear continuum to each
emission line.16 The Gaussian first had to be convolved with a
wavelength-dependent line-spread function (LSF) to account
for the effects of wave-front errors induced by the primary and

secondary mirrors on HST (France et al. 2012). This model was
applied to individual emission lines from 12 progressions with
pumping wavelengths along the Lyα profile. After de-red-
dening the spectrum using the optical extinction (AV=0.4;
Alcalá et al. 2017), the flux Fmn( ) from each emission line in a
given progression, scaled by its transition rate relative to all
other pathways to the ground state Bmn( ), can be summed as

F
N

F

B
H

1
1m

n

N

2
1

mn

mn
å=
=

⎛
⎝⎜

⎞
⎠⎟( ) ( )

to yield the total flux from molecules in the number of states
N( ) that were excited by a single Lyα pumping wavelength.
Most of the lines in the [3, 13], [4, 13], [3, 0], [2, 15], and [0, 3]
progressions are indistinguishable from the continuum (see
Table 1), so the corresponding estimates of Fmn are upper
limits.
In order to accurately model the physical properties of the

emitting gas, we must include the Lyα profile, as seen at the
disk surface, as the primary excitation source. However, the
observed Lyα line is attenuated by interstellar H I and telluric
emission, and cannot be used directly. The intrinsic profile can
be reconstructed from the measured H2 emission fluxes, as
carried out by Schindhelm et al. (2012b) and France et al.
(2014a) for a sample of classical T Tauri stars. Their catalog of
Lyα profiles was compared to our data, showing that the width
of the observed Lyα line in RY Lupi appears to be most similar
to the profiles from V4046 Sgr and RECX-11. A superposition
of these two sources was chosen as the “reconstructed” line and
scaled to the distance of RY Lupi (see Figure 2).
To verify that this is a reasonable estimate of the intrinsic

and outflow-absorbed Lyα flux from the system, the adopted
profile was used to generate a 1D model of the H2 fluorescence
spectrum (McJunkin et al. 2016). The model was able to
reasonably reproduce the observed H2 emission lines in the

Figure 1. SED of RY Lupi, produced by stitching together spectra from five different observing modes of HST-COS and HST-STIS. Emission lines from Lyα, C IV,
C II, and Mg II are labeled (Calvet et al. 2004), and the 1600 Å “bump” is also prominent (Bergin et al. 2004; Ingleby et al. 2009; France et al. 2011b, 2014a, 2017).

15 Available at http://cos.colorado.edu/~kevinf/ctts_fuvfield.html.
16 Fluxes were measured using a GUI (SELFiE: STIS/COS Emission Line
Fitting and Extraction), which was developed for interactively fitting spectral
lines in Python with the nonlinear least squares algorithm scipy.optimize.
curve_fit. The code is available at https://github.com/narulanantham/SELFiE.
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progressions given by France et al. (2012), within the temperature
range expected for this hot gas T 1500 2500 K~( – ). We find
that the [0, 1] and [3, 16] progressions, which both have
reasonably well-defined emission lines, only contain about half
the total flux that is expected from the selected outflow-absorbed
profile at these wavelengths. Furthermore, the [4, 4] progression
flux is ∼3 times higher than expected, a result also seen by
McJunkin et al. (2016). It returns to the expected level when the
(4–9)P(5) 1526.55Å feature, which is barely distinguishable
from the continuum, is dropped from the total flux calculation.

The H2 profiles with the highest S/N show slightly more
emission in the line wings than what is expected from a
Gaussian profile produced by gas in Keplerian rotation (see
Figures 3 and 4). Similar line morphologies have been
observed in 4.7 μm CO rovibrational emission in the v=1–0
band (Bast et al. 2011; Brown et al. 2013), showing in some
cases a noticeable discontinuity in the line profile between the
broad wings and a narrow central peak (Banzatti &
Pontoppidan 2015). These shapes could in some cases be
produced by a line brightness profile that deviates from
a Gaussian (see, e.g., Bast et al. 2011), with a possible
contribution from a slow disk wind (Pontoppidan et al. 2011),
and in other cases potentially indicate a depletion of CO gas in
a gap at disk radii corresponding to the intermediate velocities
between the broad and narrow components (Banzatti &
Pontoppidan 2015). This latter scenario is consistent with the
strong discontinuity observed in the IR-CO line profiles of RY
Lupi (see Section 3.3 and Figure 6). Below, we assume that a
radial gap, although much narrower, could also explain the
UV-H2 line profiles.

A two-component model consisting of broad and narrow
LSF-convolved Gaussians was fit to the four strongest lines in
the [1, 4] progression (see Figure 3). The best-fit average
FWHM of the broad component was FWHMbroad,H2 =
105 15 km s−1, while the narrow component had a width
of FWHM 43 13narrow,H2 =  km s−1. Given the stellar mass
(1.4 Me; Manset et al. 2009; Alcalá et al. 2017) and inner disk
inclination (85°.6; Manset et al. 2009), the FWHMs from the

broad and narrow Gaussian components can be converted to
average H2 radii (France et al. 2012),

R GM
i2 sin

FWHM
, 2H

inner
2

2 *á ñ = ⎜ ⎟⎛
⎝

⎞
⎠ ( )

of r 0.4 0.1broad,H2á ñ =  au and r 3 2narrow,H2á ñ =  au. To
determine whether the one- or two-component profile provides
a better description of the data, the Bayesian Information
Criterion (BIC),

p nBIC log 2 , 3j j q= - ( ˆ ) ( )

was computed for both models, where pj is the number of
parameters in the model, n is the number of data points, and jq̂
is the set of parameter values that maximize the likelihood
function (Schwarz 1978). The second model yielded a
significantly lower BIC (ΔBIC>10; Riviere-Marichalar
et al. 2016; Manara et al. 2017), implying that the two-
component fit is statistically preferred (see Table 2). However,
we note that our estimate of the average emission radius for the
narrow component has a large uncertainty. We discuss the
difference between the two components in the context of other
observational metrics of the disk in Section 4.2, but caution the
reader against interpreting rbroad,H2á ñ and rnarrow,H2á ñ in an
absolute sense.

3.2. Radial Distribution of Lyα-pumped UV-H2 Emission

In order to map the spatial location of the hot, fluorescent
UV-H2, we applied the 2D radiative transfer modeling
approach from Hoadley et al. (2015) to emission lines in the
[1, 4], [1, 7], and [0, 2] progressions, which have the strongest
S/N. The gas is assumed to be a thin, inclined i 85 .6inner = ( )

Table 1
Progression Fluxes for Lyα Pumped H2 Emission

Pumping
Wavelength Progression F Hm 2( ) FWHMá ñ RH2á ña

Å J,n ¢ ¢[ ]
10−12 erg
s−1 cm−2 km s−1 au

1213.36 3, 13[ ] �0.6 L L
1213.68 4, 13[ ] �10 L L
1214.47 3, 16[ ] 1.4±0.2 50±20 3±2
1214.78 4, 4[ ] �4.7 L L
1215.73 1, 7[ ] 2.23±0.07 48±2 2.6±0.7
1216.07 1, 4[ ] 3.74±0.05 51±1 2.4±0.6
1217.04 3, 0[ ] �16 L L
1217.21 0, 1[ ] 0.93±0.07 46±9 3±1
1217.64 0, 2[ ] 0.80±0.05 53±7 2.2±0.8
1217.9 2, 12[ ] 0.53±0.08 50±17 2±1
1218.52 2, 15[ ] �1.3 L L
1219.09 0, 3[ ] �0.21 L L

Note.
a The average radius of H2 emission can be calculated as RH2á ñ=
GM i2 sin FWHMinner

2
* ( ) , given the average FWHM of the emission lines,

the stellar mass (M*=1.4 Me; Alcalá et al. 2017), and the inner disk inclination
(iinner=85°.6; Manset et al. 2009).

Figure 2. H2 fluxes (black circles) were used to estimate the outflow-absorbed
(red) Lyα profile in RY Lupi, which represents the radiation field seen by the
hot molecular layer at the surface of the disk, where the observed H2

fluorescence originates. This estimated profile has a width of ∼600 km s−1, an
integrated line flux of ∼10−11 erg s−1 cm−2, and an outflow velocity of
−225 km s−1. After removing the geocoronal emission between 1214.7 and
1216.7 Å, the ratio of observed to reconstructed Lyα flux is 0.05.
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surface layer in Keplerian rotation,

v r
GM

r
, 4*=f( ) ( )

where the bulk motion of the gas dominates the line widths. We
also assume local thermodynamic equilibrium (LTE) condi-
tions for the ground states. The temperature distribution is
described by a power law of index q, normalized to T1 au at a
distance of 1 au from the central star,

T r T
r

1 au
, 5

q

1au=
-

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

and is taken as azimuthally symmetric and isothermal with
height in the atmosphere. A power law of index γ is combined
with an exponential cutoff beyond some characteristic radius rc
to describe the surface density distribution,

r
r

r

r

r
exp , 6c

c c

2

S = S -
g g- -⎛

⎝⎜
⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ) ( )

which is integrated over radius to get a total mass of hot H2

MH ,hot2( ). The final emission line profiles are a collapsed view
of the entire disk, which are produced from the model by

summing the flux at each r z,( ) corresponding to a given
velocity. Each profile is convolved with the HST-COS LSF
corresponding to the central wavelength of the line before
comparison with the observed data. More detailed descriptions
of the modeling approach are provided in Appendix B of this
work and Hoadley et al. (2015).
A Markov chain Monte Carlo (MCMC) routine (emcee;

Foreman-Mackey et al. 2013) was used to determine the
posterior distributions of the model parameters (see Figure 4).
After conducting multiple trials to determine the number of
walkers that would allow for convergence while minimizing
computation time, we gave the MCMC algorithm a ball of 200
walkers, each at a different set of randomly selected initial
conditions, and ran it over 500 steps. The upper and lower
limits of the grid space sampled by Hoadley et al. (2015) were
used as priors for each parameter, although we restricted the
power law index for the temperature distribution, q, to values
�0 to ensure that the temperature either remains constant or
decreases with distance from the central star. Best-fit
parameters were selected as the median values of the posterior
distributions (see Table 3). Although the Gaussian fits to the
emission lines described in Section 3.1 support the presence of
an inner broader component in the line wings, followed by a
gap and a second narrower component from larger disk radii,

Figure 3. A two-component Gaussian fit to the strongest fluorescent UV-H2 emission features (right) gives a statistically better fit to the line profiles than a single-
component Gaussian (left). This tentatively implies that the H2 features may be a superposition of emission from radially separated regions of the disk, as observed in
the IR-CO lines (see, e.g., Figure 6 and Banzatti & Pontoppidan 2015). The dashed lines shown in each subplot are obtained from the best-fit Gaussian parameters,
which are convolved with the instrument line-spread function (solid, blue) before fitting to the data in order to mimic the redistribution of flux from the peak to the
wings. For the (1–7) R(3) line at 1489.57 Å shown here, the difference in the Bayesian Information Criterion (BIC) that was calculated for each model is
ΔBIC=289?10, where 10 is the expected threshold for a statistically significant difference between models (see, e.g., Riviere-Marichalar et al. 2016; Manara
et al. 2017).
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the resolution of our data is not high enough to model this
structure under the framework of Hoadley et al. (2015).
However, the detailed modeling approach described here still
provides reliable constraints on the radial extent of the hot,
fluorescent gas.

The model emission lines correspond to a radial distribution
of flux with 95% of the fluorescent UV-H2 emission from RY
Lupi originating between rin∼0.2 au and rout∼9 au (see
Figure 5). At the Δv∼17 km s−1 resolution of HST-COS, our
observations are sensitive to gas within an average radius of
∼17 au, as calculated from Equation (2) for a stellar mass of
1.4Me and an inner disk inclination of 85°.6. This limit implies

that the outer radius of ∼9 au from the modeling results is the
location of a genuine decline in flux from the hot, fluorescent
H2, rather than the detection threshold of the instrument. We
concede that the observed H2 emission line profiles do not
show the double-peaked shape that would be expected if the
outer radial boundary of the hot gas was resolved in the data.
As a result, the characteristic radius derived from the modeling
results, which describes the location in the disk where the
surface density profile changes from a power law distribution to
an exponential decline, is rather uncertain. This is reflected in
the large 1-σ uncertainties on the best-fit value r 9 auchar 7

5= -
+( ).

Since rchar controls the outer extent of the flux distribution, the

Figure 4.Model line profiles (green) of H2 fluorescent emission lines from the [1, 4], [1, 7], and [0, 2] progressions (black), produced with the median values from the
posterior distributions of the parameters. All nine lines were fit simultaneously, and the corresponding model parameters inform us about the radial structure of the
emitting gas. The dashed green lines show the model line profiles before they were convolved with the HST-COS line-spread function.
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derived value of rout∼9 au may not be robust. However, our
observations should be sensitive to gas within rin=0.2 au, so
the inner cutoff in the flux distribution likely represents a
physical absence of UV-H2.

We find that the estimated inner and outer radial bounds of
the flux distribution are consistent with the sample of disks
studied by Hoadley et al. (2015), with RY Lupi fitting into the
linear trends previously observed for rin versus mass accretion
rate ( Mlog 8.2;acc = -˙ Alcalá et al. 2017) and rin versus rout.
The latter relationship was attributed to an overall outward shift
in the distribution of hot H2, with more evolved systems
displaying larger values for both rin and rout. In the case of RY
Lupi, this implies that the clearing of material seen at radii out
to ∼50 au (Ansdell et al. 2016b; van der Marel et al. 2018) may
be taking place closer to the star as well. The radial width of the
flux distribution from RY Lupi is narrower than what was
observed by Hoadley et al. (2015) for most primordial disks,
making it similar to the systems from that work with previously
detected dust cavities. Our model results also show very little
emission inside r∼0.1 au, which is roughly consistent with

the flux distributions seen by Hoadley et al. (2015) in the
gapped disks around TW Hya and LkCa 15. Since other young
systems have shown inner gas disks extending inside the
corotation radius r 0.05 au for RY Lupicorot =( ), we note that
rin does not necessarily trace where the disk has been truncated
by a stellar magnetic field (Najita et al. 2007).

3.3. 4.7 μm CO Emission Lines

We compare the profiles of the UV-fluorescent H2 to
emission from the (1–0) rovibrational transitions of warm CO,
which also originate in the system’s Keplerian disk (see
Figure 6). These infrared lines were observed with VLT-
CRIRES (R=95,000, Δv=3.2 km s−1) in 2007 April and
2008 April (Brown et al. 2013), and the line shapes were
classified as emission with broad central absorptions. The blue
sides of the lines from the lower rotational states (which are
more optically thick) are masked because of telluric absorption,
so they were co-added with the features from higher rotational
levels to fill in the missing velocity space and increase the S/N
(see Table 4). We focus on the CO emission in this section.
The resulting co-added line profile appears to have two

velocity components, with a narrow component that is found
to be typical in transitional disks (Banzatti & Pontoppi-
dan 2015). The full profile was modeled as a combination of
broad and narrow Gaussian emission components and a
central Gaussian absorption. Figure 6 compares the co-added
CO emission profile to the strongest H2 line from the [1, 4]
progression. The broad feature has a best-fit FWHM of

Figure 5. Radial distribution of flux from a 2D radiative transfer model of
fluorescent UV-H2 emission lines (turquoise, solid), with 1-σ uncertainties
(turquoise, shaded). A total of 95% of the emission from the hot molecular
surface layer is enclosed between the black, dashed lines at rin∼0.2 au and
rout∼9 au, making RY Lupi more similar to the sample of systems with dust
cavities (e.g., UX Tau A) studied by Hoadley et al. (2015) than the set of full
primordial disks (e.g., HN Tau) from the same survey. CS Cha, which has a
dust cavity as opposed to a gap like UX Tau A (Espaillat et al. 2007b), is also
shown here for comparison. Note that the flux distributions of UX Tau A, HN
Tau, and CS Cha have been scaled down to match the level of the RY Lupi
distribution.

Figure 6. The narrow central component of the co-added ν=1–0 CO profile
(black) is narrower than the H2 emission lines (red), showing that the warm CO
is located at more distant radii than the hot, fluorescent H2. Note that the
parameters for the best-fit Gaussians describing the H2 were obtained after
convolving the profiles with the HST-COS LSFs.

Table 3
Median Parameters for UV-H2 Emission Line Fitsa

z/r γ T1au q rchar MH ,hot2
Hp( ) K( ) au( ) M( )

2.9±0.5 1.1+0.6
−0.5 1900 200

100
-
+ 0.40 0.03

0.05
-
+ 9 7

5
-
+ 6 3 10 10 ´ -( )

Note.
a 1-σ uncertainties are reported as the values at the 16th and 84th percentiles in
each posterior distribution.

Table 2
Bayesian Information Criterion (BIC) for H2 Emission Line Fits

Wavelength BIC1
a BIC2

b ΔBIC
Å

1431.01 −19567 −19584 18
1446.12 −17789 −17962 173
1489.57 −13479 −13768 289
1504.76 −13836 −14228 391

Notes.
a BIC calculated for the single-component line profile.
b BIC calculated for the line profile with a broad and a narrow component.
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FWHMbroad,CO=105±7 km s−1, which matches the width
of the broad H2 emission component measured in Section 3.2.
However, the narrow CO component has FWHMnarrow,CO=
18±1 km s−1, which is significantly smaller than the width
of the narrow profile from the two-component fit to the H2

line (FWHM 43 13narrow,H2 =  km s−1, after removing the
effect of the instrument resolution). Under the model of gas in
Keplerian rotation, we use Equation (2) to calculate an
average CO radius of r 15 2narrow,COá ñ =  au, which is
consistent with the value derived by Banzatti et al. (2017).
This estimate places the gas roughly 10 au further out in the
disk than the hot H2 that produces the narrow emission line
component. We will return to the interpretation of these
differences in Section 4.2.

3.4. Two Distinct Populations of Absorbing CO

We present detections of UV-CO absorptions in the Fourth
Positive A X1 1P - S+( ) band system and compare them to the
4.7 μm IR-CO absorptions observed by Brown et al. (2013).
The UV-CO absorption features have been observed in other
protoplanetary disks as well (France et al. 2011a; McJunkin
et al. 2013), although they are not typically present in
transitional systems. We have identified UV transitions from
ν=0 to the ν′=1, 2, 3, and 4 states in RY Lupi and used the
methodology of McJunkin et al. (2013) to generate LTE
models of the features. These models allow the Doppler
b-value, column densities of 12CO and 13CO, and gas
temperature to float as free parameters. Posterior distributions
were derived for each variable using an MCMC routine
(Foreman-Mackey et al. 2013) consisting of 100 walkers and
500 steps (see Figure 7). As with the H2 emission lines, the
numbers of walkers was chosen to minimize computation time
while still allowing the algorithm to converge.

The MCMC results showed two different solutions for the
model parameters describing the warm CO (see Table 5), as
expected because of the degeneracy between temperature and
column density on the flat part of the curve of growth.
However, the value of the 12CO/13CO ratio can be used to
constrain which of these solutions is more physically realistic.
Within the 1-σ uncertainties on the parameter estimates, the
model with T∼500 K, 12CO∼15.5 (Model 1) has
12CO/13CO=1–3. The second model, with T∼300 K and
12CO∼17.2, has 12CO/13CO=40–250. Constraints from the

literature set bounds of 15<12CO/13CO<170 in the ISM
(Liszt 2007), or 25<12CO/13CO<77 in protoplanetary
disks (Woods & Willacy 2009). Under these constraints,
model 2 represents a more physically realistic environment
than model 1. This is also consistent with the disk modeling
results of Miotello et al. (2014), who found that the 12CO/13CO
ratio did not deviate much from their chosen value of 77.
However, we note that the low S/N of the data prevents us
from placing strong constraints on the physical parameters
describing this population of gas.
The sample of targets studied by McJunkin et al. (2013) had

best-fit temperatures between 300 and 700 K, a range that
encompasses both models for RY Lupi. These estimates are
well below the ∼1500 K temperature required to produce Lyα-
pumped fluorescent H2 (Ádámkovics et al. 2016), implying that
the absorbing UV-CO and emitting UV-H2 are not co-spatial
(McJunkin et al. 2013; France et al. 2014b). Furthermore, the
cooler CO may be as distant as r∼20 au (Gorti &
Hollenbach 2008), depending on the strength of the accre-
tion-dominated stellar UV radiation field. The modeled radial
flux distribution from UV-H2 emission is truncated well inside
this outer limit (see Figure 5).
The models from McJunkin et al. (2013) were adapted to fit

nine absorptions from the ν=1–0 IR band of 12CO, which
were extracted from the centers of the CO emission lines
described in Section 3.3. We note that this procedure likely
introduced additional uncertainties in the normalized fluxes that
are difficult to quantify. To account for these errors in the
model fitting procedure, a constant scaling factor was applied
to each value. A MCMC run with 500 walkers over 500 steps
converged to a best-fit model with T=130±10K
and N COlog 16.6 0.110

12 = ( ) .
Brown et al. (2013) attributed the IR absorption features to

gas in the upper layers of the outer disk, likely at radii more
distant than the region probed by the UV data. The median
parameters from our IR models are significantly different
from both of the solutions we derived for the UV absorptions
(see Figure 8), implying that the two populations of
absorbing CO are indeed coming from different radii along
the line of sight. Figure 8 shows that the population of
T∼300 K UV-absorbing CO would have produced deeper
IR absorptions than what was observed, implying that the
UV-CO is inside the average radius of r 15 aunarrow,COá ñ ~
derived from the 4.7 μm emission line peaks. While it is
difficult to place any tighter constraints on the physical
location of the UV-CO because of the low S/N in the
observed absorption lines, the 15 au radius provides a rough
outer limit.

3.5. Summary of Results

Figure 9 provides a visual summary of the gas structure
within the transitional disk of RY Lupi, as traced by emission
from UV-H2 and IR-CO. Both populations of gas are better fit
with two-component, rather than single-component, Gaussian
profiles. Under the assumption that the two components
originate from radially separated regions in a Keplerian disk,
we find that the UV-H2 and IR-CO are co-located (although
vertically separated) at ∼0.4 au in the inner disk. The second
component of UV-H2 emission corresponds to an average gas
radius of r 3 aunarrow,H2á ñ ~ . However, unlike previous studies
of these inner disk gas tracers (see, e.g., France et al. 2012),
which have indicated that the UV-H2 and IR-CO probe similar

Table 4
Measured (1–0) CO Infrared Emission Lines

Line ID Wavelength Oscillator Strength
(nm) 10 6-( )

(1–0) P(2) 4682.642826 4.64
(1–0) P(3) 4691.242198 4.96
(1–0) P(4) 4699.949566 5.13
(1–0) P(5) 4708.765629 5.24
(1–0) P(6) 4717.691102 5.31
(1–0) P(7) 4726.726717 5.36
(1–0) P(8) 4735.873214 5.39
(1–0) P(11) 4763.985637 5.44
(1–0) P(13) 4783.295919 5.46
(1–0) P(14) 4793.124102 5.46
(1–0) P(17) 4823.311007 5.46
(1–0) P(18) 4833.610347 5.46
(1–0) P(21) 4865.232183 5.45
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radii, the narrow component of IR-CO emission has a more
distant average emitting radius of r 15 aunarrow,COá ñ ~ . We
consider the mechanisms responsible for this discrepancy in
Section 4.2, where we also incorporate observational metrics
from previous work (10 μm silicate emission, 890 μm dust
continuum emission, and 13CO emission) into our discussion of
the inner gas disk.

In addition to mapping the radial structure of the gas, we can
estimate the relative vertical locations of the emitting UV-H2

and IR-CO. Our assumption that the gas is in LTE requires the
kinetic temperature to equal the line temperature (see, e.g.,
Schindhelm et al. 2012a; Hoadley et al. 2015). This implies that
the H2, which must have a temperature of at least ∼1500 K for
Lyα fluorescence to proceed (Ádámkovics et al. 2014, 2016), is
higher in the disk than the cooler CO (100–1000 K; see, e.g.,
Najita et al. 2003). Although the IR-CO is still close to the
surface of the disk, it must sit below the thin layer containing
the population of hot UV-H2.

4. Discussion

4.1. An Inner Disk Warp? Comparison of RY Lupi to AA Tau

RY Lupi undergoes photometric variations of ∼1 mag in
the V band over a period of 3.75 days, with an increase in
polarization and B–V and U–B colors that become redder
when the star is faint (Manset et al. 2009). This behavior was
attributed to occultations by a co-rotating dusty warp in the

Figure 7. Rovibrational CO absorptions from the Fourth Positive band system were modeled using the methodology of McJunkin et al. (2013). The fitting routine
identified two different peaks in the posterior distributions (see Table 5), one with T∼500 K (blue) and one with T∼300 K (red). Constraints on the 12CO/13CO
ratio from the literature (Liszt 2007; Woods & Willacy 2009) indicate that the model with lower temperature is more physically realistic. We compare the two
solutions to the model profile that best represents the IR-CO absorptions (green) and find that it deviates from the UV-CO models for the most prominent lines.
However, we note that all of the UV-CO absorption features have low S/N and are therefore not as reliable as the UV-H2 emission lines as tracers of molecular gas in
the inner disk.

Table 5
Median Parameters for UV-CO and IR-CO Absorption Models

Model T log10 N(
12CO) log10 N(

13CO) B
(K) (km s−1)

UV-COa 505 20
33

-
+ 15.5±0.1 15.2±0.1 4.9±1.0

UV-COb 320±20 17.2±0.2 15.2±0.2 0.8 0.8
1.0

-
+

IR-CO 130±10 16.6±1 L 2.3±0.1

Notes.
a UV model favored by MCMC results.
b Degenerate UV model, with parameters estimated from second peak in
posterior distribution.
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inner disk, much like the geometry previously used to
describe AA Tau (Bouvier et al. 1999; Ménard et al. 2003;
O’Sullivan et al. 2005; Manset et al. 2009). Recent ALMA
observations of AA Tau showed an inclination of
59°. 1±0°. 3 for the outermost dust rings (Loomis
et al. 2017), compared to the 75° that was previously
determined from scattered light measurements (O’Sullivan
et al. 2005). The warp model is no longer able to explain the
dimming events in this system if the inner disk is also at this
lower inclination, so it is proposed instead that the inner disk

is misaligned and closer to edge-on. This effect may also be
traced observationally through shadow lanes seen at large
radii, which can be modeled to reproduce the opening angle
between the inner and outer disks (Marino et al. 2015;
Benisty et al. 2017; Min et al. 2017). A similar geometry may
be relevant for RY Lupi, since differing inclination
measurements of iouter=68°±7° (van der Marel
et al. 2018) and iinner=85°. 6±3° (Manset et al. 2009)
have been derived from ALMA imaging and scattered light
observations, respectively.

Figure 8. Model absorption lines (green) compared to 1 0n = -( ) IR-CO absorptions near 4.7 μm (black), along with the low T T N300 K, 17.2= =( ) and high T
T N500 K, 15.5= =( ) models from the best-fit parameters for the UV Fourth Positive band features. The significant deviations between the IR data and the best-fit
UV models further confirm that the two wavelength regimes are probing different populations of gas, although we note again that interpretations of the low S/N UV-
CO absorption lines should be taken with caution.
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At the time of our observations with HST-COS, synthetic
photometry from the HST-STIS spectrum of RY Lupi showed
V= 12.5. This magnitude corresponds to a phase where the
system was becoming brighter, perhaps as the warp moved out
of the line of sight. To examine whether our observations of
fluorescent UV-H2 in RY Lupi are sensitive to the inner disk
inclination, we adapted the 2D radiative transfer model
described in Section 3.2 and Appendix B to allow the
inclination to float as a free parameter. The same MCMC
routine described in Section 3.2 was again applied to the
UV-H2 data, resulting in a posterior distribution with a median
inclination of i=72°±7°. This value is more consistent with
the outer disk inclination, perhaps indicating that the H2

emission is coming from outside the edge-on material probed
by the scattered light (Manset et al. 2009). We applied the same
inclination-fitting procedure to HST-COS spectra of AA Tau as
well and found a median inclination of 75 3

4
- 
+ , which is

consistent with the values obtained from other observational
signatures of the inner disk (Loomis et al. 2017). This
agreement leads us to infer that the best-fit inclination from
the RY Lupi UV-H2 is also valid, perhaps providing additional
spatial constraints on the strange geometry of this transitional
disk. We save further discussion of the warp effect for
future work.

4.2. IR-CO and UV-H2 Radii Indicate Inner Gas Hole

The discrepancy between the average radii traced by the
narrow components of UV-H2 and IR-CO emission is
unexpected, since comparisons of these gas tracers in larger
samples of circumstellar disks (see, e.g., France et al. 2012)
indicate that they probe radially co-located material. To
understand why the IR-CO appears to be depleted relative to
the UV-H2 around 3 au, we first consider the mechanisms
responsible for producing the observed emission. UV-pumping
of CO, analogous to the Lyα-pumping of H2, would result in
roughly evenly populated states for the ν=1–0, ν=2–1 and

ν=3–2 IR-CO bands (Brittain et al. 2003). However, Banzatti
et al. (2017) report a ratio between the second and first
vibrational states of <0.04, indicating that the RY Lupi spectra
show no discernible features from the higher rovibrational
levels. A similarly low amount of vibrational excitation was
also seen in CO spectra of AB Aur (Brittain et al. 2003), a
primordial Herbig Ae/Be system that appears to extinguish its
UV radiation field at radii much closer to the star than seen in
other Herbig systems with similar spectral type. The ν=1–0
features in AB Aur were attributed to IR rather than UV
fluorescence, since the longer-wavelength radiation can
penetrate deeper into the disk than the UV continuum. IR
photons are much less efficient at exciting the ν=2–1 and
ν=3–2 bands than the UV continuum, making these
transitions fainter than in UV-pumped environments. The lack
of strong emission from higher vibrational states is also
consistent with collisional excitation in a molecular surface
layer (Najita et al. 2003).
In order for IR fluorescence and collisional excitation to

dominate over UV fluorescence, there must be some dust close
to the star to attenuate the UV radiation field. Evidence for a
residual component of inner shielding dust has recently been
identified in a sample of Herbig disks with dust-depleted
cavities at larger disk radii (including AB Aur) that still have
high NIR excess and very low CO vibrational ratios despite
their strong UV radiation (Banzatti et al. 2018). These disks
also show evidence for inner dust belts that may be misaligned
or warped compared to the outer disk (e.g., Benisty et al. 2017;
Min et al. 2017). Such inner warped disk structure may explain
the observed emission in RY Lupi, too, as discussed in
Section 4.1. This is further supported by the strength of the
10 μm silicate emission feature in RY Lupi, which indicates
that there is still dusty material present in the inner regions of
the disk despite the observed dust cavity radius of ∼50 au
(Ansdell et al. 2016b; van der Marel et al. 2018). Given the
luminosity of RY Lupi (L*=2.6 Le; Bouvier 1990), we use

Figure 9. Summary of radial structure in the molecular gas disk, showing average distances for UV-H2 r r0.4 0.1 au; 3 2 aubroad,H narrow,H2 2á ñ =  á ñ = ( ) and
IR-CO r r0.4 0.1 au; 15 1 aubroad,CO narrow,COá ñ =  á ñ = ( ) emission. The mm-13CO and 890 μm dust cavities r 50 aucavity ~( ) were first observed by Ansdell et al.
(2016b) and were modeled by van der Marel et al. (2018). We also consider the location of dust grains producing the 10 μm silicate emission feature, which we
interpret as evidence for an optically thick inner dust disk. Taken together, these metrics point to the presence of a gas hole in the inner disk, embedded within a larger
dust gap extending from ∼1 to 50 au.

11

The Astrophysical Journal, 855:98 (16pp), 2018 March 10 Arulanantham et al.



the relationship

R L Llog 0.45 0.56 log , 7*= - + ( ) ( )

derived by Kessler-Silacci et al. (2007) to calculate a silicate
emission radius of 0.6 au, which potentially marks the rim of a
large dust hole between the inner and outer disks. The broad
CO component may be emitted from a UV-shielded region just
beyond the inner dust belt, as suggested for AB Aur by Brittain
et al. (2003).

We note that our estimate of a silicate emission radius at
0.6 au is rather uncertain. The data used by Kessler-Silacci
et al. (2007) to derive the relationship between stellar
luminosity and silicate emission radius show a large amount
of scatter, which those authors attribute to variations in disk
geometry that arise when considering systems that may be in
different stages of dust evolution. It is possible that the 10 μm
silicate emission instead originates in small, warm grains
(Espaillat et al. 2007a) distributed somewhere within the
observed mm-wave cavity (van der Marel et al. 2018). This
optically thin region could either extend all the way in to the
sublimation radius (e.g., CS Cha; Espaillat et al. 2007b) or
separate the outer disk from an optically thick inner disk (e.g.,
LkCa 15, UX Tau A, ROX 44; Espaillat et al. 2010). Although
detailed modeling of the near-to-mid-IR SED of RY Lupi may
be required to definitively distinguish between these two
scenarios, we can use the observations of UV-H2, UV-CO, and
IR-CO presented in this work to establish a preferred geometry.

A 10 μm silicate emission feature originating from an
optically thin distribution of dust with no optically thick wall
to shield it is the preferred model for the disk around CS Cha,
which Espaillat et al. (2007b) placed at a more evolved stage of
evolution than the systems with optically thick inner disks like
LkCa 15 and UX Tau A. All three of these objects were included
in the UV-H2 survey of Hoadley et al. (2015) and show very
different distributions of hot, Lyα-pumped gas. Those authors
find that CS Cha has UV-H2 emission coming from more distant
radii than any other disk in their sample, with 95% of its flux
distribution contained within an outer radius of ∼22 au. By
contrast, the flux distributions of LkCa 15 and UX Tau A only
extend out to 6 and 12 au, respectively, consistent with RY
Lupi’s outer radius of 9 7

5
-
+ au. This suggests that UV photons do

not penetrate as far into the circumstellar environment as they do
in CS Cha, perhaps because the radiation field is partially
truncated by an optically thick inner disk.

Thermal emission from an inner disk has been identified as
the cause of veiled near-IR photospheric features from LkCa 15
and UX Tau A (Espaillat et al. 2010). The excess continuum flux
fills in the stellar absorption lines, causing them to appear
weaker than expected based on the spectral type of the star. This
is commonly seen in systems with full, primordial disks
(Espaillat et al. 2010). Although we have not analyzed the full
near-IR spectrum of RY Lupi in this work, we note that the
excess flux observed in the system’s SED led to its classification
as a primordial disk (Kessler-Silacci et al. 2006). Since the shape
of the UV-H2 flux distribution in RY Lupi is also more similar to
the less evolved systems, like LkCa 15 and UX Tau A, we favor
the description of the 10 μm silicate feature as optically thin
emission arising in a region between optically thick inner and
outer disks. This is further supported by the detection of UV-CO
absorptions in RY Lupi (presented in Section 3.4), which have
not yet been detected in disks with dust cavities (McJunkin
et al. 2013). We note that the gap and cavity models are both

consistent with the ALMA data presented in van der Marel et al.
(2018), which do not have sufficient resolution to distinguish
between the two scenarios.
Under the assumption of a dusty inner disk truncated

somewhere outside of r r 0.4 aubroad,CO broad,H2á ñ = á ñ = , we
may expect to see a drop in the surface density of gas at this
distance as well. However, molecules are still expected to
survive within the dust cavity if the column density of gas is
large enough for self-shielding or if the rim of the dust disk is
high enough to block some of the radiation field (Bru-
derer 2013; Bruderer et al. 2014). Since we detect emission
from Lyα-pumped UV-H2 at r 3 aunarrow,H2á ñ ~ , the obscura-
tion must not entirely shield the hot gas from UV photons. The
H2 is able to self-shield and will continue to produce UV
emission lines until the gas layer is too cool for Lyα pumping
to proceed (Ádámkovics et al. 2014, 2016). This same H2

should shield the CO from photodissociation as well, so the
observed depletion of IR-CO cannot be attributed to the lack of
dust-shielding alone.
A build-up of gas is expected to occur at the inner edge of

the dust cavity (Bruderer 2013; van der Marel et al. 2013;
Bruderer et al. 2014), which would allow the CO molecules to
once again produce ν=1–0 emission. However, we observe
IR-CO emission at r 15 aunarrow,COá ñ ~ , which is well inside
the observed dust cavity radius of ∼50 au (Ansdell et al. 2016b;
van der Marel et al. 2018). It is possible that the narrow
component of IR-CO emission is produced from a build-up of
gas just inside an as-yet-unresolved dust ring. Alternatively, the
r 15 aunarrow,COá ñ ~ radius could trace the location where the
CO has accumulated to a large enough column density for self-
shielding (Bruderer et al. 2014).
We interpret rnarrow,COá ñ as a rough estimate of the inner

radius of a gas hole in the disk around RY Lupi. The outer edge
of the hole is located at the ∼50 au radius traced by the dust
continuum and mm observations of 13CO, in agreement with
the models of van der Marel et al. (2018) at the resolution of the
ALMA data. This type of gap is more consistent with clearing
by a protoplanet(s) located near r 15 aunarrow,COá ñ ~( ) than by
grain growth or photoevaporation alone (Bruderer et al. 2014).
Furthermore, photoevaporation, which dissipates the disk from
the inside out (see, e.g., van der Marel et al. 2013), is unlikely
to leave a residual optically thick inner disk (Espaillat et al.
2008), implying again that planet formation may be a more
plausible mechanism for dust clearing.

4.3. Symmetric H2 Line Profiles Show No Signs of a Disk Wind

Additional H2 emission from a protostellar outflow or a warm
disk wind could produce asymmetries between the red and blue
sides of the line profiles (Herczeg et al. 2006; France et al. 2012;
Hoadley et al. 2015). We investigated this effect in RY Lupi by
mirroring the red halves of the lines and overplotting them on the
blue sides, as shown in Figure 10 (Pascucci et al. 2011). A two-
sample Anderson–Darling (A–D)17 test statistic was computed
for each feature to examine whether the red and blue sides of the
line profile represent similar probability distributions. We found

17 The A–D test was chosen in place of a Kolmogorov–Smirnov (K–S) test,
because the K–S test statistic is not sensitive to deviations at the tails of the
distributions (see references in Feigelson & Babu 2012). Since the excess
emission could be present in the peak or wings of the line profile, a K–S test
may overlook these deviations. The A–D test was designed to maintain better
sensitivity across the entire probability distribution, making it a good
replacement for the standard K–S test in this case.
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that only the (1–7) P(8) 1524.65Å and (0–6) P(2) 1460.17Å H2

emission lines had A–D test statistics that were significant at the
p<0.05 level (see Table 6), and the (1–7) P(8) 1524.65Å
feature is contaminated by the (0–7) P(3) 1525.15Å H2 line.
Three other profiles had p<0.10, but otherwise no convincing
asymmetries were detected. However, we note the trend in the
residuals that indicates stronger blue emission near the peaks of
the line profiles. To check whether this difference was
significant, we calculated A–D test statistics from data at
v<15 km s−1 only, finding that the resulting test statistics were
insignificant at the resolution of our data. We conclude that there
are no detectable signatures of excess emission due to a
molecular outflow or hot disk wind in this spectrum.

5. Summary and Conclusions

We have presented HST-COS and HST-STIS observations of
the gas disk around the young star RY Lupi, which show
UV-H2 fluorescent emission and UV-CO A–X band absorp-
tions. A radial distribution of flux from the UV-H2 was
estimated by modeling the Lyα-pumped emission lines, and the

results show a hot gas distribution with 95% of its flux coming
from between rin=0.2 au and rout=9 au. A closer examina-
tion of the shapes of these emission features shows that they are
better fit by a two-component line profile, produced by two
radially separated rings as opposed to a smooth distribution of
gas. We note that our current framework for modeling the
radial distribution of flux from the UV-H2 emission lines is
unable to reproduce the two-component distribution at the
resolution of our data. However, the bounds of the flux
distribution r r,in out( ) from our model of a smooth inner disk
still provide useful constraints on the spatial extent of the
emitting gas.
For the first time, the UV-H2 data were interpreted in

conjunction with 4.7 μm IR-CO emission lines, which are also
well-represented by a two-component model. The two popula-
tions of gas traced by the broad line component are co-located
in the innermost regions of the disk, but the warm CO appears
to be depleted relative to the hot H2 beyond ∼0.4 au. When we
consider this result in the context of the 890 μm dust
continuum, 10 μm silicate emission, and 13CO mm emission,
we find evidence of a gas hole in the inner disk, embedded

Figure 10. Mirrored profiles of H2 emission lines from the [1, 4] progression. An Anderson–Darling test was conducted for each feature to determine whether
differences between the red and blue sides of the line profiles are statistically significant p 0.05<( ). At the resolution of our data, there are no meaningful
asymmetries.
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within a larger dust gap that extends from ∼1–50 au. This
makes RY Lupi similar to the systems LkCa 15, UX Tau A,
and GM Aur, which have optically thick inner and outer disks
that are separated by large gaps. However, the IR-CO (Najita
et al. 2003; Salyk et al. 2011; Brown et al. 2013) and UV-H2

emission from these three objects appear to trace radially co-
located material in their gas disks, in keeping with the general
trend observed by France et al. (2012). RY Lupi’s deviation
from this behavior implies that it may be in a slightly more or
less evolved phase than these other systems, making it an
important environment for testing models of inner disk
evolution.

As an additional probe of the complex structure within the
disk around RY Lupi, we used the UV-H2 fluorescence models
to determine the inclination of the emitting region. The result is
more consistent with observations of the outer disk than with
the value obtained from polarization measurements of scattered
light in the inner disk, implying that the bulk of the UV-H2

emission originates outside the highly inclined inner disk. We
also place an upper limit on the radius of UV-CO observed in
absorption, which must come from inside r 15 aunarrow,COá ñ ~ .
Taken together, the UV and IR data sets have allowed us to
piece together the radial and vertical structure within the dust
cavity around RY Lupi, as traced by different gas parcels. The
panchromatic approach used to study RY Lupi in this work will
be extended to three other systems in the Lupus complex with
different disk morphologies (MY Lup, Sz 68, and TYC 7851),
two of which appear to have full primordial disks and one that
has a more evacuated 890 μm dust cavity. After characterizing
the warm and hot molecular gas in the inner regions of these
disks, we will be left with a sample of co-evolving objects that
will help us construct a more empirically motivated picture of
disk evolution.
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Appendix A
Error Handling in Low S/N Data

The HST-COS data reduction pipeline is optimized for
spectra from sources with high S/N ratios, where it is assumed
that the number of counts detected follows a Poisson
distribution. However, the Poisson uncertainties are incorrectly
treated as symmetric Gaussian errors, which results in
anomalously low continuum errors for sources like RY Lupi
with low S/N (fluxes roughly <10−15 erg s−1 cm−2 Å−1).
These values are not necessarily reflective of the true
uncertainty in the data and will give points in the continuum
a misleadingly large weight when fitting models.
We use a Markov chain Monte Carlo (MCMC) method to

determine the posterior distributions of the model parameters
(Foreman-Mackey et al. 2013), which easily allows us to adopt
a weighting scheme that approximates the Poisson behavior of
the data. We assume that each data point xi( ) is drawn from a
normal distribution with mean μi and uncertainty σi. The log-
likelihood function for the low S/N data is then
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where an additional model parameter f( ) is incorporated to
account for the fractional underestimate in our uncertainties
from the HST-COS pipeline. A second extra model parameter
was used to determine a flux threshold, which sets the level
below which the uncertainties in the data are underestimated.
All fluxes above this threshold were added to the log-likelihood
function without correction, since the error bars associated with
high-signal data points are more representative of the
measurement uncertainty.

Appendix B
2D Radiative Transfer Models of Lyα-pumped

Fluorescent H2

The 2D radiative transfer models from Hoadley et al. (2015)
assume that the fluorescent UV-H2 emission originates in a thin
surface layer of gas in Keplerian rotation, with ground state
populations in local thermodynamic equilibrium (LTE). The
physical structure of the emitting gas is described by a radial

Table 6
Anderson–Darling Test Statistics for Asymmetries in H2 Emission Line

Profiles

Progression Wavelength (Å) Statistica

[1, 4] 1446.12 −0.127
1489.57 −0.240
1504.76 −0.201

[1, 7] 1467.08 1.79
1500.45 2.01
1524.65 4.62
1580.67 −0.122

[0, 1] 1338.56 −0.0184
1398.95 1.36
1460.17 9.92

[0, 2] 1342.26 0.402
1402.65 1.31

Note.
a Critical values of the test statistic are 1.226, 1.961, and 3.752, corresponding
to p = 0.1, p = 0.05, and p = 0.01. Very few of our measured statistics are
larger than the critical values, implying that there is no statistically significant
difference between the red and blue halves of the line profiles.
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temperature distribution (Section 3.2, Equation (5)),

T r T
r

1 au
,

q

1 au=
-

⎜ ⎟⎛
⎝

⎞
⎠( )

pressure scale height,

H r
kT r

m

r

GM
, 10p

H

3

*m
=( ) ( ) ( )

and surface density distribution (Section 3.2, Equation (6)),
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which are assumed to be independent of height in the thin gas
layer. The surface density normalization constant
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is dependent on the power law index γ, the mass of the H2 in
the disk MH2( ), the fraction of MH2 that contributes to the
emission XH2( ), and a characteristic radius rc( ) beyond which
the gas distribution is dominated by exponential decay. The
first five model parameters that we estimate from the fitting
routine T q r M, , , , andc1 au H2g( ) are all used to constrain this
radial structure of the hot, fluorescent layer.

The sixth model parameter z r( ) is used to calculate the
mass density
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which then allows us to determine the number density of H2 in
ground state v J,[ ] from the Boltzmann equation:
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This number density sets the optical depth r z,tl ( ) of the gas,
which controls the amount of flux
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from each H2 emission line, with branching ratio Bmn. The
source function S r z,l( ( )) in Equation (14) is represented by the
Lyα flux, while η describes what fraction of the Lyα is
intercepted by molecular gas. We assume that each H2 line is
isotropically emitted from each individual parcel in the hot
layer, such that the flux reaching the observer is given as
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We sum these fluxes over the entire disk to produce final
emission line profiles that can be fit to the data.
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