
This is a repository copy of Systematicity of Search Index: A new measure for exploring 
information search patterns.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/128616/

Version: Accepted Version

Article:

Perkovic, S orcid.org/0000-0003-0488-3755, Bown, NJ orcid.org/0000-0001-5510-2053 
and Kaptan, G orcid.org/0000-0002-3219-9347 (2018) Systematicity of Search Index: A 
new measure for exploring information search patterns. Journal of Behavioral Decision 
Making, 31 (5). pp. 673-685. ISSN 0894-3257 

https://doi.org/10.1002/bdm.2082

© 2018 John Wiley & Sons, Ltd. This is the peer reviewed version of the following article: 
Perkovic S, Bown NJ, Kaptan G. Systematicity of Search Index: A new measure for 
exploring information search patterns. J Behav Dec Making. 2018; 1–13., which has been 
published in final form at https://doi.org/10.1002/bdm.2082. This article may be used for 
non-commercial purposes in accordance with Wiley Terms and Conditions for 
Self-Archiving. Uploaded in accordance with the publisher's self-archiving policy. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Running head: SYSTEMATICITY OF SEARCH INDEX  1 
 

 

 

 

 

Systematicity of Search Index: A New Measure for Exploring Information Search Patterns 

 

Sonja Perkovic  
Centre for Decision Research, University of Leeds 

Nicola J. Bown  
Centre for Decision Research, University of Leeds 

Gulbanu Kaptan  
Centre for Decision Research, University of Leeds 

 

Author Note 

Correspondence concerning this article is addressed to Sonja Perkovic, Centre for Decision 

Research, University of Leeds, Moorland Rd, Leeds, LS2 9JT,          

United Kingdom 

E-mail: bnsp@leeds.ac.uk 

 

Acknowledgments 

The authors thank Christopher Ball, Moshe Glickman, Thomas Hills, Jacob L. Orquin, Sajid 

Siraj, Michael Schulte-Mecklenbeck and Dirk Wulff for their helpful comments. The authors 

also thank Martin P. Bagger and Marko Perkovic for their assistance with the experimental 

setup in PsychoPy. 

 

Word count: 9904 

mailto:bnsp@leeds.ac.uk


Running head: SYSTEMATICITY OF SEARCH INDEX  2 
 

 

Abstract 

Many studies on information search in multi-attribute decision-making rely on the analysis of 

transitions from one piece of information to the next. One challenge is to categorize 

information search that includes an equal amount of alternative- and attribute-wise 

transitions. We propose a measure, the Systematicity of Search Index (SSI), for exploring 

information search based on sequences of either alternative- or attribute-wise transitions. The 

SSI explores information search in terms of systematicity or the proportion of non-random 

search, i.e. search that is alternative- or attribute-wise corrected for chance. Our experiment 

confirms the validity of the SSI and shows that the SSI can shed light on processes not 

captured by the measures analysing single transitions, such as Payne’s Search Index.  

Keywords: information search; systematicity; Search Index; multi-attribute decision-

making; eye tracking 
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Systematicity of Search Index:  

A New Measure for Describing Information Search Patterns 

Cognitive processes underlying individual decision-making have been the centre of 

researchers’ focus for several decades. Two methodologically distinct approaches have been 

used to study these processes: a structural approach and an information processing approach 

(Abelson & Levi, 1985; Ford, Schmitt, Schechtman, Hults, & Doherty, 1989; Newell & 

Simon, 1972; Payne, Braunstein, & Carroll, 1978; Westenberg & Koele, 1994). The 

structural approach is based on statistical models that describe the relation between 

information stimuli (input) and decision responses (outcomes) (Abelson & Levi, 1985). The 

information processing approach, on the other hand, stems from human problem solving 

research (Newell & Simon, 1972) and tries to understand which cognitive processes precede 

a response (Payne et al., 1978). Since this approach investigates cognitive processes more 

directly, it often produces more detailed explanatory models of decision-making behaviour 

(Harte, Westenberg, & van Someren, 1994; Payne, 1976; Payne et al., 1978). Overall, it has 

been argued that whenever possible, both approaches should be used in a complementary 

way because they contribute to explaining different aspects of the decision-making behaviour 

(Einhorn & Hogarth, 1981; Einhorn, Kleinmuntz, & Kleinmuntz, 1979; Riedl, Brandstätter, 

& Roithmayr, 2008; Wulff & van den Bos, 2017). 

The methodology derived from the information processing approach, often referred to 

as process tracing, has been used to uncover the cognitive processes preceding the decision-

maker’s response (Payne et al., 1978). Several process tracing methods have been applied in 

decision-making research. They can loosely be classified into three groups: a) methods for 

tracing information acquisition (e.g. information boards, eye tracking and active information 

search), b) methods for tracing information integration and evaluation (e.g. thinking aloud 

and structured response elicitation), and c) methods for tracing physiological, neurological, 
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and other accompanying cognitive processes (e.g. measurement of reaction time, galvanic 

skin conductance, pupil dilation and neuronal techniques of location) (for a review see 

Schulte-Mecklenbeck et al., in press).  

Here we focus on methods for tracing information acquisition. Several measures have 

been developed to explore information acquisition behaviour such as the depth of search, the 

pattern of information search, the variability of search, the compensation index, the latency of 

search and the content of search, to name just a few (for a review see Harte & Koele, 2001; 

Riedl, Brandstätter, & Roithmayr, 2008). Of all the measures on information acquisition, 

measures for exploring the pattern of information search have received most attention so far, 

mainly due to Payne’s seminal paper (1976) where he proposes a simple measure for 

detecting the pattern of information search.  

Pattern of information search 

Focusing on the pattern of information search when studying decision-making 

processes has also been labelled as “analysis of transitions” because it considers the change 

from one acquired piece of information to the next (Jacoby, Chestnut, Weigl, & Fisher, 

1976). These processes have usually been studied in the context of multiattribute decision 

making, which includes a choice between two or more alternatives, each described by several 

attributes. There are four types of transitions which can be distinguished with respect to 

whether the sequence of information searched consists of transitions belonging to a different 

or the same alternative and a different or the same attribute (see Table 1). Type 1 transitions 

occur when a decision maker re-examines the same attribute within the same alternative; type 

2 transitions occur when a decision maker examines different attributes within the same 

alternative; type 3 transitions occur when a decision maker examines the same attributes 

between different alternatives, and type 4 transitions occur when a decision maker examines 

different attributes between different alternatives. Out of these four types of transitions, type 
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2 and type 3 transitions are most often analysed in decision-making studies (Norman & 

Schulte-Mecklenbeck, 2009).  

 

Table 1 

Types of transitions during information search 

Alternative 
Attribute 

Same Different 
Same Type 1 Type 2 
Different Type 3 Type 4 

 

Several measures have been proposed for analysing the pattern of information search 

based on type 2 and type 3 transitions. Since these types of transitions include the analysis of 

single-step transitions, they have been labelled as single-step transition measures (Ball, 

1997). The number of citations suggests1 that the most commonly used measure is the Search 

Index (SI) proposed by Payne (1976) which shows the proportion of alternative-wise (i.e. 

type 2) and attribute-wise (i.e. type 3) search. The measure is a ratio of the number of 

alternative-wise transitions minus the number of attribute-wise transitions over the sum of 

those two numbers: 

 SI = 
ே೟೤೛೐ మି ே೟೤೛೐ యே೟೤೛೐ మା ே೟೤೛೐ య       (1) 

It ranges from -1 to 1, -1 being a fully attribute-wise search and 1 being a fully 

alternative-wise search. In case there is an equal number of alternative-wise and attribute-

wise transitions, the SI equals to zero. It is often assumed that alternative-wise search reflects 

compensatory strategies, i.e. a high value on one attribute can compensate for a low value on 

another, and that attribute-wise search reflects non-compensatory strategies, i.e. no trade-offs 

                                                
1 The number of citations of Payne’s paper Task complexity and contingent processing in decision making: An 
information search and protocol analysis was 2190 on 24 October 2017. On the same date, Böckenholt and 
Hynan’s paper Caveats on a processͲtracing measure and a remedy and Van Raaij’s paper Consumer 
information processing for different information structures and formats had 77 and 99 citations, respectively 
(obtained using Google Scholar). 
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between the attributes (Reisen, Hoffrage, & Mast, 2008). However, one should exercise 

caution when making these assumptions because some compensatory strategies could also 

rely either partially or entirely on attribute-wise search (Rieskamp & Hoffrage, 1999).  

However, there has been much criticisms of the SI. For instance, Böckenholt and 

Hynan (1994) suggested that for an accurate categorization of information-acquisition 

strategies, one needs to consider characteristics of the task environment such as the number 

of presented alternatives and attributes. Specifically, the authors argue that the mean of the SI 

is zero only when the number of alternatives is equal to the number of attributes. 

Alternatively, when the number of attributes is higher than the number of alternatives, the SI 

points to an alternative-wise information search and when the number of alternatives is 

higher than the number of attributes, the SI points to an attribute-wise information search. 

The previous holds assuming a random selection strategy, i.e. every piece of information is 

equally likely to be selected with a probability ͳ ௔ܰ௟௧ כ ௔ܰ௧௧Τ , ܰ ௔௟௧ being the total number of 

alternatives and ܰ௔௧௧ being the total number of attributes. The SI may, therefore, lead to 

inaccurate classifications of information search because it ignores these characteristics of the 

task environment. Moreover, the measure’s mean varies not only as a function of the number 

of alternatives and attributes, but also the number of transitions, when this number is small 

(for an argument see Böckenholt & Hynan, 1994). Therefore, the values of the SI observed in 

different sized matrices as well as the values within the same matrix, when the number of 

transitions is small, could not be compared directly (Bettman & Jacoby, 1976; Böckenholt & 

Hynan, 1994). In addition, extreme SI values may have a higher probability of occurrence 

than intermediate values assuming a random selection strategy (Böckenholt & Hynan, 1994). 

Böckenholt and Hynan, therefore, proposed a strategy measure (SM) which describes 

information search strategies as standardized deviations from random search patterns: 

 SM = ξேሺሺ஺஽ ேሻሺ௥ೌ ି ௥೏ሻିሺ஽ି஺ሻሻΤඥ஺మሺ஽ିଵሻା஽మሺ஺ିଵሻ   (2) 
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where N represents the total number of transitions, A represents the number of alternatives 

and D the number of attributes (dimensions) in an information matrix, ݎ௔ represents the 

frequency of alternative-wise transitions and ݎௗ the frequency of attribute-wise transitions. 

However, Payne and Bettman (1994) argued that the limitation of the SM lies in its inability 

to provide consistent results when decision-makers make only one type of transitions (e.g. 

alternative- or attribute-wise). For instance, when a decision-maker repeatedly makes 

attribute-wise search patterns in different choice tasks which differ in length (i.e. different 

number of transitions), SM assigns different values to those patterns, even though they 

consist of only one type of transitions (i.e. attribute-wise). On the other hand, the SM delivers 

identical results when it should not, for instance, such as in a case of a search pattern 

consisting of only attribute-wise transitions versus a pattern consisting of a mixture of 

attribute- and alternative-wise transitions. Ball (1997) suggests that the distribution of SM 

values still varies with changes in the number of alternatives and attributes in a matrix as well 

as the total number of transitions performed. Furthermore, comparing the mean SM values 

for the same search strategy applied in different sized matrices yields mixed results, as the 

calculation of the mean is sensitive to extreme values.  

A different line of thought has led Van Raaij (1977) to propose a measure which is 

based on the same input as the SI but compares the number of times alternative- and 

attribute-wise transitions occur in the first versus the second part of the search process. More 

specifically, the information search patterns may change over time due to the application of 

different decision strategies during different stages of a decision process. The analysis is, 

therefore, sometimes divided into a few equal parts which are analysed separately (Svenson, 

1979). The Van Raaij index can be calculated using:   

 
ሾேሺ௧௬௣௘ ௝ሻభିேሺ௧௬௣௘ ௝ሻమሿெିଵ  (3) 

where N represents the number of observations for a particular type of transition, 
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j represents the type of transition (type 2 or type 3), the subscripts 1 and 2 represent the first 

and second half of the decision-making process respectively and M represents the total 

number of information items searched for. This measure has been shown to be more sensitive 

in detecting strategies used in the first versus the second phase of the decision-making 

process than the SI (Stokmans, 1992). Furthermore, the measure is independent of the 

number of alternative- and attribute-wise transitions and the expected value is zero.  

Overall, Ball (1997) nicely summarizes the three main limitations of measures that 

include the analysis of single-step transitions. First, since the analysis is restricted to single 

steps in the information search sequence, not all available information is used. Second, one 

does not actually learn about the search strategies used because the measures often restrict 

comparisons of search strategies to strict compensatory (e.g. weighted additive strategies) and 

non-compensatory strategies (e.g. lexicographic strategies). For instance, Ball argues that it is 

unclear how to classify strategies that include both types of transitions and, therefore, fall 

between these two extremes. This is a direct criticism of the SI and particularly noticeable in 

the example of strategies that include an equal amount of both types of transitions so the SI 

concentrates around zero. This issue has also been addressed by other scholars (e.g. Harte & 

Koele, 2001). Finally, the distributions of such measures seem to be dependent on the number 

of dimensions (i.e. alternatives and attributes) of a matrix. Ball, therefore, proposes the use of 

multiple-step transitions which overcomes these limitations by focusing on more complex 

and complete range of transitions. 

Here we focus more closely on Ball’s previously introduced remarks. Specifically, we 

are interested in shedding light on how to categorize information search when the SI is close 

to zero. Put differently, when it is close to zero, all that the SI conveys is that a decision-

maker made approximately the same number of alternative- and attribute-wise transitions. 

However, does this mean that a decision-maker’s information search should, thus, be, 
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described as random or is it possible that this similar number of both types of transitions did 

not happen by chance?  

To answer this question, we propose a new measure, the Systematicity of Search 

Index (SSI), which explains information search in terms of systematicity or the proportion of 

non-random search, i.e. search that is alternative- or attribute-wise, corrected for chance. In 

addition, the SSI is a measure based on multiple-step transitions. As we show later, the SSI 

can be used as an additional measure for exploring information search in terms of 

systematicity as well as a complementary measure to existing measures for exploring the 

pattern of information search, most specifically the SI. In the next section, we briefly outline 

how the SSI was developed (a detailed account is presented in the results section). We then 

discuss our expectations and report an experiment in which we test the validity of the SSI.  

Development of Systematicity of Search Index 

We develop the SSI in the following way. First, instead of focusing solely on single 

transitions such as in existing measures for exploring the pattern of information search, we 

propose focusing on alternative- and attribute-wise patterns, i.e. sequences of either 

alternative- or attribute-wise transitions of specific length. The reasoning behind this is an 

attempt to set the threshold higher in terms of what can be accepted as an indication of 

alternative- or attribute-wise processing. Second, we propose assessing whether the obtained 

patterns occur by chance by estimating the probability of a pattern occurring using Monte 

Carlo simulation. Third, to get the proportion of systematic search, we propose that the SSI 

should be a ratio of alternative- and attribute-wise patterns corrected for chance over all 

transitions made. The SSI ranges from 0 to 1, 0 representing a random or unsystematic search 

and 1 representing a non-random or systematic search. The SSI can, therefore, be calculated 

using the following equation: 

     SSI = σ li ே೔ ሺ1 - ௣೔ሻ೙೔సభ
ltotal

                (4) 
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where ݈௜ is the length of a pattern i, ܰ ௜ is the frequency of a pattern i, ݌௜ is the probability of a 

pattern i occurring by chance and ݈௧௢௧௔௟  is the length of a total sequence of all transitions (i.e. 

string length).  

Since the SSI aims to show the proportion of non-random search in overall search 

performed based on alternative- and attribute-wise patterns, we need to weight the 

systematicity of search by the length and the frequency of each identified pattern. The 

rationale behind this decision is to obtain the same number in the numerator and the 

denominator, in case the search performed is completely systematic (SSI = 1). In addition, we 

weight the systematicity of search by the probability of each pattern occurring by chance, i.e. 

assuming that each transition is uncorrelated to the previous transition and that it occurs with 

a probability of ͳ ௔ܰ௟௧ כ ௔ܰ௧௧Τ  , ௔ܰ௟௧ being the total number of alternatives and ௔ܰ௧௧ being the 

total number of attributes, because we expect that some patterns might occur due to chance. 

Since there is, to the best of our knowledge, no easy analytical solution, we compute the 

probability of the pattern occurring by chance using a Monte Carlo simulation.  

Although we suspect that the SSI could be useful for determining the systematicity of 

the entire SI scale, it should be particularly useful in situations where decision makers make 

approximately the same amount of alternative- and attribute-wise transitions (SI ≈ 0). That 

said, we expect that the SSI can show whether these alternative- and attribute-wise transitions 

did or did not occur by chance. We also expect that the SSI is higher in environments where 

information is visually organised compared to environments where it is disorganised, because 

the context should encourage the level of systematic search. These expectations were tested 

in the validation experiment below. 

Validation experiment 

We test the SSI in a discrete choice experiment using eye tracking technology. We use 

four within-subjects conditions in which we present information in an organised or 
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disorganised way to encourage either systematic or unsystematic search, respectively. As will 

be illustrated in the stimuli section below, in the conditions encouraging systematic search, 

the pieces of information are presented by either grouping alternatives (alternative array 

condition), grouping similar attributes (attribute array condition) or by presenting alternatives 

vertically in a matrix (matrix condition). In contrast, in the condition which encourages 

unsystematic search, all pieces of information belonging to each alternative are presented 

randomly in a matrix. The expected SI score for a random information search is zero only in 

the case of a symmetrical matrix, i.e. when the number of attributes is equal to the number of 

alternatives. Therefore, to answer our question whether the SSI is a useful complementary 

measure to the SI when SI is close to zero, we are most interested in the conditions with 

symmetrical matrix visual grouping.  

Method 

Participants. Thirty-five participants were recruited through a consumer panel 

provider. Three participants were excluded from the further analyses due to insufficient data 

quality resulting in a total sample of 32 participants. An a priori power analysis performed 

through a simulation in R indicated that to have 95.6% power for detecting a small-sized 

effect (d = .2; see Cohen, 1988), with an alpha level of .05 for a within-subjects design with 

four conditions and 100 trials per participant, a sample size of 28 participants is required. The 

participants ranged in age from 23 to 50 years (M = 29.59, SD = 6.36) with more female than 

male participants (18 women). Only participants with normal and full colour vision were 

included in the study. Each participant received approximately €10 for completing the study. 

All participants gave informed consent.  

Design. In the discrete choice experiment, participants were instructed to select the 

most healthful out of the four alternatives. The experiment had four within-subjects 

conditions (i.e. alternative array, attribute array, matrix and random matrix) in which 
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information was presented differently. Each condition had 25 trials resulting in a total of 100 

trials per participant. Each trial had four alternatives named A, B, C and D. Each alternative 

had four attributes: brand, percentage of fat, grams of protein and grams of sugar. The 

attributes had four levels (see Table 2) all of which were present in each trial. In every trial 

participants were, therefore, presented with 16 pieces of information. Each trial was 

generated by randomly combining attribute levels without replacement. The order of 

conditions was randomized across participants.  

 

Table 2 

Attributes and attribute levels 

Attribute 
Brand Fat (%) Protein (g) Sugar (g) 

Alpro 0.2 3 4 
Cultura 1 6 8 
Thise 1.5 9 12 
Yoggi 3 12 16 

 

Stimuli. One of the conditions (i.e. random matrix condition) required disorganised 

information presentation format which would encourage unsystematic search. To achieve 

this, we needed to spatially dissociate alternatives and attributes which raised the need for a 

method for identifying what attribute levels belong to which alternatives. The Gabor patch 

solves the problem by associating each attribute level to a specific alternative allowing us to 

position the attribute levels anywhere on the screen. Therefore, the sixteen pieces of 

information in each trial were presented with 32 Gabor patches (i.e. sinusoidal gratings 

typically with a Gaussian envelope) paired in the following way: each Gabor patch pair had a 

target Gabor and a distractor Gabor. Distractor Gabors had a rectangular envelope (5 

cycles/deg, 3˚ x 3˚) and target Gabors had a circular envelope (5 cycles/deg, diameter 1˚). 

The distractor Gabors were oriented horizontally. The target Gabors were tilted either 20˚, 
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70˚, 110˚ or 160˚ clockwise from vertical. Each orientation of the target Gabor represented a 

different alternative. The Gabors tilted 20˚, 70˚, 110˚ and 160˚ belonged to alternatives A, B, 

C and D, respectively. A grey rectangle (2˚ x .7˚) was positioned in the centre of each target 

Gabor. An attribute level (text height = .5˚) was positioned within each rectangle.  

Each condition had its own unique visual presentation. In the alternative array 

condition, all attributes belonging to an alternative were presented together in a group (see 

Fig. 1a). The spacing between Gabor pairs within groups was 1˚ and between groups 3˚ of a 

visual angle. The centres of the Gabor pair groups were located at the following coordinates: 

{( -5,5), (5,5), (-5,-5), (5,-5)}. The locations of target Gabors were randomized within groups 

across all trials. The attributes were randomly assigned to the four group locations. 

Additionally, the locations of attribute levels within groups were randomized. In the attribute 

array condition, similar attributes were presented together in groups, i.e. brand with brand, fat 

percentage with fat percentage and so on (see Fig. 1b). The spacing and the location of Gabor 

pairs were the same as in the alternative array condition. The locations of target Gabors were 

randomized between groups across all trials. The attributes were randomly assigned to the 

four group locations. Additionally, the locations of attribute levels within groups were 

randomized. In the matrix condition, alternatives and attributes were presented in a matrix, 

i.e. alternatives were presented vertically and attributes horizontally (see Fig. 1c). The 

locations of target Gabors and attribute levels were randomized column-wise and row-wise, 

respectively, across all trials. In the random matrix condition, alternatives and attributes were 

presented in a matrix as in the matrix condition; however, all pieces of information were 

presented independently (see Fig. 1d). The locations of target Gabors and attribute levels 

were randomized across all trials. 
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Figure 1. Visual array of each condition. a) alternative array condition: alternatives presented 

together (note the orientation of the lines in the circular Gabor Patch). b) attribute array 

condition: attribute levels belonging to the same attribute presented together. c) matrix 

condition: alternatives presented vertically and attributes horizontally. d) random matrix 

condition: all pieces of information presented independently. 

 

Apparatus. The stimuli were created and presented using PsychoPy 1.84.2 (Peirce, 

2007, 2009). Eye movements were recorded using a desk-mounted EyeLink 1000 eye tracker 
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with a monocular sampling rate of 1000 Hz and a screen resolution of 1920x1200 pixels. The 

screen subtended a visual angle of 46.5˚ horizontally and 30.1˚ vertically. Average viewing 

distance was 60 cm from the screen. A chin rest was used to stabilize head position. Fixations 

were detected using a velocity, acceleration and motion-based algorithm with velocity, 

acceleration, and motion thresholds of 30˚/sec, 8,000 ˚/sec2, and 0.15˚, respectively 

(Holmqvist et al., 2011; SR Research, 2008). To consider the inaccuracy in recording of eye 

fixation locations, an area of interest (AOI) was drawn around every distractor Gabor 

(Orquin, Ashby, & Clarke, 2016). 

Procedure. The study was conducted in a light-controlled laboratory environment. 

Upon arrival to the laboratory, participants were greeted and asked to read the study 

information sheet and fill in the consent form. Immediately after, the experimenter explained 

the procedure, task and visual design of the experiment. Specifically, participants were 

presented with four possible target Gabors and were informed that each target Gabor 

represents a specific alternative throughout the experiment. Participants were then asked to 

memorize the four target Gabors. They were also shown a screenshot of each condition and 

asked to locate alternatives in each. After determining the dominant eye, participants were 

calibrated using a 9-point calibration procedure followed by a 9-point drift validation test. A 

calibration offset < 1.0° was considered acceptable. After the calibration, they were 

introduced to the experiment layout and instructions on the screen. To test whether 

participants had memorized the target Gabors, they practiced recognizing in up to 48 practice 

trials. Each target Gabor was presented randomly 12 times. Feedback was given after each 

practice trial. Participants proceeded to the next practice trial only by providing the correct 

answer. In case of 10 correct answers in a row, suggesting mastery of recognition, 

participants immediately proceeded to the experiment. Participants were instructed to select 

the healthiest among four alternatives by indicating their choice through a key press (i.e. A, 
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B, C or D). They used as much time as needed to make their choices. No feedback was given 

between trials. To control the location of the first fixation, a fixation cross lasting 1000 ms 

appeared in the centre of the screen preceding each trial. Participants completed 25 trials per 

condition, resulting in a total of 100 trials. The experiment lasted 45 minutes on average. 

Results 

Calculating the Systematicity of Search Index. The analysis of participants’ 

information search behaviour was divided into five steps. First, we determined which 

attributes participants fixated on and in which order. Eye fixations were, therefore, coded 

considering 16 possible combinations of four alternatives and four attribute levels (see Table 

3) which resulted in a string length of 154,355 elements for all participants. Since we were 

only interested in whether participants fixated on an attribute at least once, subsequent 

fixations, i.e. two or more fixations in a row to the same attribute within an alternative, were 

deleted from the string which resulted in a total string length of 96,222 elements.  

 

Table 3 

Recoding of eye fixations depending on attribute-alternative combination 

 Alternative 

Attribute 

 (1) 20 (2) 70 (3) 110 (4) 160 
Brand (b) 1b 2b 3b 4b 
Fat (f) 1f 2f 3f 4f 
Protein (p) 1p 2p 3p 4p 
Sugar (s) 1s 2s 3s 4s 

 

Next, we determined alternative- and attribute-wise patterns in the string. The patterns 

were created for every participant on a trial level. We started by identifying the alternative- and 

attribute-wise substrings. A sequence was classified as an alternative-wise substring if at least 

two subsequent fixations belonged to different attributes within the same alternative. Then, we 

focused on the order and frequency of the elements within each such substring. Specifically, in 
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each alternative-wise substring we ordered the elements alphabetically and deleted every 

repeating instance of an element. In other words, if a participant inspected three attributes 

within an alternative and then focused on the same three attributes, but in a different order in 

the next alternative, the attributes were coded as if they had been inspected in the same order. 

For example, a sequence sugar-protein-fat which is equal to fat-protein-sugar and protein-

sugar-fat and so on, was then coded as fat-protein-sugar, i.e. ‘fps’. Additionally, if a participant 

fixated on an attribute within an alternative several times, the additional fixations were deleted. 

For example, if a participant made a sequence sugar-protein-sugar-protein-sugar within an 

alternative, we coded it as protein-sugar, i.e. ‘ps’.  

After identifying and recoding all substrings, we concatenated the identical subsequent 

substrings which belonged to different alternatives. For example, if a participant fixated on 

sugar and protein levels twice in a row across two different alternatives, a pattern named ‘psps’ 

was produced. To be classified as an alternative-wise pattern, the same substring of a minimal 

length of two had to appear at least twice in a row. For this reason, a pattern length of four was 

the shortest possible alternative-wise pattern length. An example of the 10 alternative-wise 

patterns obtained can be found in Table 4 (column three). The maximum pattern length in this 

example is 12 (trial three). 

A sequence was classified as an attribute-wise substring if at least four subsequent 

fixations belonged to the same attribute, but different alternatives within a trial. For example, 

if a participant fixated on a sugar level four times in a row across four different alternatives, an 

attribute-wise pattern named ‘ssss’ was produced. Since the shortest possible alternative-wise 

pattern was of length ‘four’, we considered only the attribute-wise patterns of length ‘four’ or 

greater. An example of the 10 attribute-wise patterns obtained can be found in Table 5 (column 

three). The maximum pattern length in this example is nine (trial 26). We then determined the 
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frequency for every alternative- and attribute-wise pattern (see column four in Table 4 and 

Table 5).  

After identifying patterns and their frequencies, we assessed whether the obtained 

patterns occurred by chance. We, therefore, used a Monte Carlo simulation and simulated 1,000 

random observations for each trial with the string length of each trial being equal to the one in 

the original data set. An observation consisted of an alternative number (1 to 4) and an attribute 

initial (b, f, p and s). We analysed the random data sets in the same way as we analysed the 

original data set in terms of identifying alternative-wise and attribute-wise patterns and 

calculating their frequencies on a trial level. We then compared all the patterns and their 

frequencies from the original data set with the patterns and the associated frequencies (see 

column five in Table 4 and Table 5) in 1,000 random data sets on a trial level. Specifically, we 

looked at how frequently a pattern from the original data set occurred in that amount or more 

in 1,000 random data sets in a specific trial. For instance, if we observed that a pattern ‘ssss’ 

occurred one time in a trial in the alternative array condition, we looked at how many times 

this pattern occurred at least one time or more in that trial in the alternative array condition in 

1,000 random data sets.  

We then calculated the probabilities by dividing these pattern frequencies by the total 

number of iterations (1,000) (see column six in Table 4 and Table 5). Instead of selecting a 

significance level (e.g. .05) which would serve as a cut of value for determining whether a 

pattern occurred by chance, we used the probability complements. Specifically, we multiplied 

each pattern (frequency and length) from the original data set with its probability complement 

(see column seven in Table 4 and Table 5). This suggests that only if a probability of a pattern 

occurring by chance was one, would a probability complement be zero, which would then result 

in an automatic exclusion of this specific pattern from the further calculation of the SSI (see 

the numerator of the equation (4) below).  
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Table 4 

First 10 alternative-wise patterns identified for one participant on a trial level  

Condition Trial Pattern 
Pattern 

Frequency 

Pattern 
Frequency 

(Simulation) 
Probability 

Probability 
Complement 

Alternative array 1 fpsfps 1        1 .001 .999 
Alternative array 2 bfsbfs 1 3 .003 .997 
Alternative array 3 bfpsbfpsbfps 1 0 0 1 
Alternative array 3 fpsfps 1 4 .004 .996 
Alternative array 4 fpsfps 2 0 0 1 
Alternative array 5 bfpsbfps 2 0 0 1 
Alternative array 6 bfpsbfps 1 2 .002 .998 
Alternative array 6 bsbsbs 1 6 .006 .994 
Alternative array 6 fpsfps 1 2 .002 .998 
Alternative array 6 psps 1 59 .059 .941 

 Note. Attributes: b: brand, f: fat, p: protein, s: sugar. 

 

Table 5 

First 10 attribute-wise patterns identified for one participant on a trial level 

Condition Trial Pattern 
Pattern 

Frequency 

Pattern 
Frequency 

(Simulation) 
Probability 

Probability 
Complement 

Alternative array 8 ssssss 1 1 .001 .999 
Alternative array 9 ssss 1 80 .080 .920 
Alternative array 11 ssss 1 33 .033 .967 
Alternative array 18 ssss 1 32 .032 .968 
Attribute array 26 bbbbbb 1 1 .001 .999 
Attribute array 26 ffffffff 1 1 0 1 
Attribute array 26 fffffffff 1 1 0 1 
Attribute array 26 ppppp 1 14 .014 .986 
Attribute array 26 ssss 1 75 .075 .925 
Attribute array 28 bbbb 1 53 .053 .947 

 Note. Attributes: b: brand, f: fat, p: protein, s: sugar. 

We then applied the following, previously introduced, equation to calculate the 

systematicity of participants’ information search within each condition on a trial level:  

     SSI = σ li ே೔ ሺ1 - ௣೔ሻ೙೔సభ
ltotal

                 (4) 

where ݈௜ is the length of a pattern i, ܰ ௜ is the frequency of a pattern i, ݌௜ is the probability of a 

pattern i occurring by chance and ݈௧௢௧௔௟  is the length of a total sequence of all transitions (i.e. 
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string length). We also calculated the direction of participants’ information search within 

each condition and for each trial by calculating the SI using: 

 SI = 
ே೟೤೛೐ మି ே೟೤೛೐ యே೟೤೛೐ మା ே೟೤೛೐ య    (1) 

where type 2 are transitions occurring within the same alternative but different attributes, and 

type 3 are transitions occurring within the same attribute but different alternatives. We 

present these results in the following section. The R script with all the previously described 

steps applied to our data set can be found at the following link: 

https://github.com/sonjaPerkovic/SSIcode. 

Eye movement analysis. To test whether participants are being more systematic in the 

three visually organised conditions compared to a disorganised one, i.e. alternative array, 

attribute array, matrix and random matrix condition, respectively, we analysed the data by 

means of linear mixed-effects model. The model was fitted using the ‘lme’ function from 

‘nlme’ package in R (Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2017). We used the 

SSI as a dependent variable, condition as an independent variable and participant variable as 

a random effect. The analysis revealed that adding the fixed effect of condition to the model 

significantly improved the fit compared to the baseline model, Ȥ2(3) = 107.51, p < .001. A 

Tukey post hoc test revealed that the SSI was significantly different between all conditions. 

There was a significant difference between the random matrix compared to the alternative 

array condition (b = - .13, p < .001, d = -.86), the random matrix compared to the attribute 

array condition (b = - .28, p < .001, d = -1.52), the random matrix compared to the matrix 

condition (b = - .21, p < .001, d = -1.11), the attribute array compared to the alternative array 

condition (b = .15, p < .001, d = .68), the matrix compared to the alternative array condition 

(b = .08, p < .001, d = .35) and the matrix compared to the attribute array condition (b = - .07, 

p < .01, d = -.29). 

To test the direction of participants’ information search across four conditions, again 

https://github.com/sonjaPerkovic/SSIcode
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we applied linear mixed-effects model using the ‘lme’ function from ‘nlme’ package in R. 

We used the SI as a dependent variable, condition as an independent variable and participant 

variable as a random effect. Again, the analysis revealed that adding the fixed effect of 

condition to the model significantly improved the fit compared to the baseline model, Ȥ2(3) = 

193.89, p < .001. A Tukey post hoc test revealed that the direction of information search was 

significantly different between all conditions. There was a significant difference between the 

attribute array compared to the alternative array condition (b = - 1.09, p < .001, d = -3.10), 

the matrix compared to the alternative array condition (b = - .62, p < .001, d = -1.51), the 

random matrix compared to the alternative array condition (b = - .39, p < .001, d = -.98), the 

matrix compared to the attribute array condition (b =  .47, p < .001, d = 1.18), the random 

matrix compared to the attribute array condition (b = .70, p < .001, d = 1.75) and the random 

matrix compared to the matrix condition (b = .22, p < .001, d = .50).  

To better understand the relationship between the two indices, we plotted the SSI 

against SI across conditions (see Fig. 2.). Figure 2 shows that participants scored higher on 

the SSI in the alternative array condition, the attribute array condition, and the matrix 

condition compared to the random matrix condition. The SI, on the other hand, shows that 

participants on average made more alternative-wise transitions in the alternative array 

condition and more attribute-wise transitions in the attribute array condition. In the matrix 

condition, participants on average made approximately an equal amount of alternative- and 

attribute-wise transitions, while in the random matrix condition they on average made slightly 

more alternative- than attribute-wise transitions. This suggests that the information 

presentation format influenced the performance of both measures. Systematic information 

search appears when the information presentation format is in some way organised compared 

to when it is disorganised. On the other hand, the information presentation format can make 

the direction of information search more alternative- or attribute-wise. However, it is not 
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straightforward to interpret the direction of information search when the matrix format is 

used. Therefore, combined, these two measures provide more information about information 

search processes in different information presentation formats, and particularly in the matrix 

format. Table 6 shows an overview of means, standard deviations and 95% confidence 

intervals for the SSI and SI across conditions. 

 

Figure 2. Systematicity of Search and Search Index across conditions on a trial level. 

 

Table 6 

An overview of means, standard deviations and 95% confidence intervals for the 

Systematicity of Search Index (SSI) and Search Index (SI) across conditions 

 SSI SI 
Condition M SD 95%CI M SD 95%CI 
Alternative array .18 .20 [.16, .19] .55 .36 [.52, .57] 
Attribute array .33 .25 [.31, .35] -.54 .35 [-.57, -.52] 
Matrix .26 .26 [.24, .27] -.07 .45 [-.10, -.04] 
Random matrix .05 .08 [.04, .05] .15 .44 [.12, .18] 

 



Running head: SYSTEMATICITY OF SEARCH INDEX  23 
 

 

Importance of data pre-processing for the SSI. As noted in the first and the second 

step of the SSI calculation (see Calculating the Systematicity of Search Index section), we did 

certain data pre-processing before identifying alternative- and attribute-wise patterns. In the 

first step we removed subsequent fixations from the string, i.e. two or more fixations in a row 

to the same attribute within an alternative. In the second step, we used the ‘relaxed frequency 

and order’ rule to identify alternative-wise patterns, i.e. in each substring we ordered the 

elements alphabetically and deleted every repeating instance of an element. To see how the 

SSI performs when we do not do any data pre-processing, we repeated the analyses without 

applying any data pre-processing first. We also calculated the SI for such data set. Table 7 

shows an overview of means, standard deviations and 95% confidence intervals for the SSI 

and SI across conditions. 

 

Table 7 

An overview of means, standard deviations and 95% confidence intervals for the 

Systematicity of Search Index (SSI) and Search Index (SI) across conditions when no data 

pre-processing is used 

 SSI SI 
Condition M SD 95%CI M SD 95%CI 
Alternative array .01 .03 [.00, .01] .75 .20 [.74, .76] 
Attribute array .04 .08 [.03, .04] .20 .28 [.20, .22] 
Matrix .02 .06 [.02, .03]  .37 .30 [.35, .39] 
Random matrix .00 .02 [.00, .01] .65 .24 [.63, .66] 

 

From the previous table, we can see that both indices are affected by the lack of data 

pre-processing. The SSI does not capture almost any systematicity, whereas the SI is biased 

in the alternative-wise direction. This suggests that data pre-processing is a prerequisite to 

obtain meaningful SSI and SI values.  
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Performance of the SSI when search is random. To calculate the probability of 

observing any SSI value different from zero when search is random, we generated a random 

data set with 5000 trials of length 50 which corresponds to the average length of a trial in our 

data set. To generate fixations to alternatives and attributes, we used a combination of four 

alternatives and four attributes sampled randomly from a uniform distribution with each 

combination of alternatives and attributes having an equal probability of being fixated on 

(.0625). We then calculated the SSI as previously explained. Figure 3 shows the frequencies 

of observing the SSI values. 

 

Figure 3. Frequencies of SSI values when search is random. 

 

Figure 3 shows that the SSI values of zero were obtained most frequently. 

Furthermore, we have not observed values greater than .313. For instance, the SSI value of 

.313 occurred only twice (p = 2/5000 = .0004). Finally, the observed SSI value when search 

is random was on average .04. 

The influence of threshold for pattern classification on the SSI. One challenge to 

the SSI is under-classifying patterns due to the relatively strict rule of minimum four 
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transitions. This is particularly noticeable in the bottom of Figure 2 where one can see that a 

substantial amount of cases across all conditions are classified as having the SSI = 0 

(42.82%). The proportion of zeros per condition was 43.18%, 24.38%, 37.92% and 65.83% 

for the alternative, attribute, matrix and random matrix condition respectively. It is clear that 

the largest proportion of such cases is found in the random matrix condition (65.83%) which 

is 38.42% of all cases where the SSI = 0. This is the condition where we expected 

unsystematic search and thus the SSI not to identify any systematicity. However, the findings 

are somewhat unsettling for other conditions where we expected relatively systematic search. 

This is particularly noticeable in the alternative condition where the proportion of the SSI = 0 

is 43.18% (25.20% of all cases where the SSI = 0). This happens because of the relatively 

strict criterion of minimum four transitions. We therefore reduced the threshold for 

classifying substrings as patterns to the length of two for both alternative- and attribute-wise 

patterns and repeated the analyses. Table 8 shows an overview of means, standard deviations 

and 95% confidence intervals for the SSI across conditions. 

 

Table 8 

An overview of means, standard deviations and 95% confidence intervals for the 

Systematicity of Search Index (SSI) across conditions when threshold is reduced to the length 

of two 

 SSI 
Condition M SD 95%CI 
Alternative array .62 .16 [.61, .64] 
Attribute array .68 .16 [.66, .69] 
Matrix .72 .16 [.71, .73] 
Random matrix .37 .16 [.36, .38] 

 

In Table 8 we can see the SSI values when the threshold for classifying patterns is 

minimum of two transitions. The table shows that the SSI is much higher in all conditions, 
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i.e. conditions with organised as well as disorganised information presentation format 

(compare Table 6). Only .02% of cases were classified as having the SSI = 0. The proportion 

of zeros per condition was .02% for the alternative, attribute and matrix and .04% for the 

random matrix condition. We also repeated the analysis regarding the performance of the SSI 

when search is random. Figure 4 shows the frequencies of the SSI values. 

 

Figure 4. Frequencies of SSI values when search is random and threshold reduced to the 

length of two. 

 

Figure 4 shows that the SSI values between .50 and .60 were the most frequent. The 

observed SSI value when search is random was on average .55. 

 

Discussion 

We proposed a new measure, the Systematicity of Search Index (SSI), as an 

additional measure for exploring information search behaviour. We developed a measure for 

exploring how systematic decision makers are when searching for information by 

determining the proportion of non-random search, i.e. search that is alternative- or attribute-
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wise corrected for chance. We tested the validity of this measure in a discrete choice 

experiment with four within-subjects conditions (alternative array, attribute array, matrix and 

random matrix) using eye tracking. In each condition, we used different visual presentations 

to create either organised or disorganised information presentation format. We expected that 

the SSI would be higher in environments where information is visually organised compared 

to environments where it is disorganised. We also expected that the SSI could serve as a 

useful complementary measure to the SI, especially in situations where decision makers make 

approximately the same amount of alternative- and attribute-wise transitions (SI ≈ 0).  

Our findings support both of our expectations regarding the performance of the SSI. 

The findings show that there is a difference between the SSI in conditions with organised 

(alternative array, attribute array and matrix) versus disorganised (random matrix) 

information presentation format with the largest difference being between the random matrix 

compared to the attribute array condition, d = -1.52. We also observed a large difference 

between the random matrix and the matrix condition as well as the random matrix and the 

alternative array condition, d = -1.11 and d = -.86 respectively. Furthermore, the SSI was on 

average higher in the alternative array, the attribute array, and the matrix condition compared 

to the random matrix condition (see Table 6) which confirms the validity of the measure. 

When comparing the SI in the conditions with organised and disorganised information 

presentation format, we observed the largest difference between the random matrix and the 

attribute array condition, d = 1.75. We also observed a large difference between the random 

matrix compared to the alternative array condition, d = -.98, and a medium difference 

between the random matrix compared to the matrix condition, d = .50. As expected, 

participants on average produced more alternative-wise transitions in the alternative array 

condition and more attribute-wise transitions in the attribute array condition. In the matrix 

condition, participants on average made approximately an equal amount of alternative- and 
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attribute-wise transitions, while in the random matrix condition they on average made slightly 

more alternative- than attribute-wise transitions (see Table 6).  

The findings also show that the SSI appears to be useful in situations where the SI is 

close to zero. This is noticeable in the matrix condition where the SI suggests that 

participants are, on average, being equally alternative- and attribute-wise (SI = -.07), whereas 

the SSI suggests that although this may be the case, it did not happen by chance (SSI = .26). 

In addition, the SI in the random matrix condition suggests that participants on average 

produced slightly more alternative-wise transitions (SI = .15), whereas the SSI suggests that 

this most likely happened by chance (SSI = .05). In addition, we believe that the SSI may be 

useful in other situations as well and not just SI ≈ 0. This is clear from the findings reported 

in Table 6 which suggest that the SI may be strongly influenced by the visual presentation of 

information. In such situations, the SSI can show whether the relatively high SI occurs due to 

characteristics of the stimulus or actual systematic behaviour. 

Since we identified data pre-processing as the first step in the procedure for 

calculating the SSI, we tested its importance for the SSI. We found that the SSI is strongly 

affected by the lack of data pre-processing (see Table 6 and Table 7). This finding is not 

surprising because when there is no data pre-processing it is very unlikely to observe two 

identical subsequent alternative-wise substrings. Therefore, alternative-wise patterns are very 

scarce. Attribute-wise patterns are also scarce because there are few patterns where 

participants are fixating on the same attribute across different alternatives without making 

any refixations. Data pre-processing also affected the SI which in all conditions produced 

values indicating completely alternative-wise search. This happens because without any pre-

processing there are many refixations within each alternative. This suggests that data pre-

processing is a prerequisite to obtain meaningful SSI and SI values.  
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To inspect how the SSI performs when search is random, we calculated the 

probability of observing any SSI value different from zero when the string is truly random 

(see Fig 3). To obtain this, we generated a random data set of a similar structure to our 

original data set. The findings show that the most frequent SSI value is zero and that the 

values greater than .3 are rarely observed. Furthermore, the observed SSI value when the 

string is truly random is on average .04 which we consider a rather negligible bias. Therefore, 

the SSI appears to be a reliable measure of the systematicity of information search when 

search is truly random. 

Finally, we explored the SSI when the minimum pattern length is two. When the 

minimum length is four, many of the substrings remained unclassified (≈ 43% of the SSI = 

0). On the other hand, when the minimum length is two, the SSI = 0 in only .02% of cases. 

Additionally, the average SSI per condition became much higher (compare Table 6 and Table 

8). Also, when we analysed random data, we obtained high SSI values (see Figure 4). 

Clearly, both approaches have some advantages and disadvantages. When the minimum 

length is four, all shorter substrings are classified as the SSI = 0. This does not necessarily 

mean that the search is unsystematic, but that the criterion is not met. When the minimum 

length is two, we obtain high SSI values for random data (.55 on average). Also, setting the 

minimum length to two is computationally more expensive. However, when analysing non-

random data, we can still distinguish the search in organised from disorganised information 

presentation layout. We leave it to the reader to decide on which approach to take. 

Limitations and future directions. One possible limitation of the proposed measure 

could be that here the SSI is used to explore information search by testing it for the strict 

compensatory and non-compensatory strategies only. Therefore, we neglected the entire 

repertoire of strategies that a decision-maker could use dependent on the decision-maker’s 

characteristics, decision task and the decision environment (Payne, Bettman, & Johnson, 
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1993). However, we deem this was an appropriate approach to start out with when 

developing a new measure for exploring information search which could also serve as a 

complementary measure to the SI. Another limitation is that in comparison to the SI measure, 

the SSI could be perceived as a slightly more complex measure which may deter decision 

researchers from using it. We also discussed issues when calculating the SSI with different 

minimum pattern lengths. 

Finally, one may argue that different, possibly more reliable, ways of assessing the 

systematicity of search exist. One such example would be sample entropy (Richman & 

Moorman, 2000) which determines the disorderedness of the time series. For instance, using 

sample entropy one could assume that a string containing only one type of patterns (e.g. 

‘pppp’, ܰ ௣௣௣௣ = 4) is more systematic than a string containing two types of patterns (e.g. 

‘sfsf’, ܰ ௦௙௦௙ = 2 and ‘pbpb’, ܰ ௣௕௣௕ = 2). However, seen from the point of a psychological 

process, it is not clear that the latter is more disordered, i.e. less systematic – both could, for 

instance, be part of a heuristic or decision strategy. Put differently, since the aim of the SSI is 

assisting in a psychological interpretation of search data, with the SSI we do not wish to 

suggest that attribute-wise patterns are more systematic than alternative-wise patterns. 

Instead, both types of patterns contribute to the systematicity. Therefore, sample entropy 

would not assist us with obtaining systematicity in such a way.  

To tackle some of the previously mentioned limitations, our future plan is to test the 

SSI by adjusting it so that it captures the systematicity of various search strategies, preferably 

in different decision environments with different decision tasks. For instance, the SSI could 

capture type V to type VII transitions proposed by Ball (1997). In this way, the SSI would 

gain more power to discriminate between specific decision strategies such as weighted 

additive, equal weight or majority of confirming dimensions. In addition, to simplify the use 

of the SSI, we developed an R package which should make the use of the SSI almost as 
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simple as the use of the SI. The package can be accessed at the following link: 

https://github.com/sonjaPerkovic/SSI.git. When it comes to setting the threshold for the 

minimum pattern length, we discussed the pros and cons of two accounts (minimum length 

four vs. minimum length two). Since each approach has disadvantages, future studies should 

address solutions. 

Finally, the SSI could be adapted and applied in any domain which includes a choice 

between different alternatives consisting of different attributes such as, e.g. risky choice, 

preferential choice, strategic choice and intertemporal choice. For instance, in decisions from 

experience (Hertwig, Barron, Weber, & Erev, 2004; Hills & Hertwig, 2010; Noguchi & Hills, 

2016; Wulff, Mergenthaler Canseco, & Hertwig, in press), as part of a risky choice domain, 

randomness has, to the best of our knowledge, not been assessed. Therefore, a metric such as 

the SSI, which shows how different from random a search process is, would be useful. 

 

Conclusion 

Our findings contribute to the existing knowledge on information search by providing 

a new measure for exploring the pattern of search. The SSI has the merit of calculating the 

systematicity of information search by taking into consideration the probability of a search 

sequence being due to chance. Furthermore, the SSI is a measure based on multiple-step 

transitions and, therefore, addresses some of the limitations of single-step transition measures 

summarized by Ball (1997). It can, therefore, shed light on processes not captured by the SI. 

Generally speaking, the SSI is useful as an additional measure for exploring information 

search; however, it is also useful as a complementary measure to the SI. That said, the SSI is 

useful for classifying the entire range of the SI in terms of systematicity, but even more so in 

situations when the SI is close to zero. More specifically, when the SI is close to zero, all we 

know is that information search consists of approximately equal amounts of alternative- and 

https://github.com/sonjaPerkovic/SSI.git
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attribute-wise transitions. Therefore, extra information on whether information search did or 

did not occur by chance in this situation, which is provided by the SSI, is beneficial. It is 

important to note that the two measures are related, since they both rely on alternative- and 

attribute-wise transitions/patterns, but are different in terms of what they measure, i.e. the SSI 

measures systematicity and the SI measures direction of information search. Our experiment 

confirms the validity of the new measure by showing that decision-makers’ systematicity of 

information search depends to a great extent on the visual format of an environment. Hence, 

the SSI can be used for calculating the systematicity of information search in process-tracing 

studies and, therefore, serve as a complementary measure to existing measures for exploring 

the pattern of information search. 
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