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Why earthquakes threaten two major European cities: Istanbul and Bucharest

Gregory A. Houseman

School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.

Abstract

Istanbul and Bucharest are major European cities that face a continuing threat of large 

earthquakes.  The geological contexts for these two case studies enable us to understand the nature 

of the threat and to predict more precisely the consequences of future earthquakes, though we 

remain unable to predict the time of those events with any precision better than multi-decadal.  

These two cities face contrasting threats: Istanbul is located on a major geological boundary, the 

North Anatolian Fault, that separates a westward moving Anatolia from the stable European 

landmass.  Bucharest is located within the stable European continent, but large-scale mass 

movements in the upper mantle beneath the lithosphere cause relatively frequent large earthquakes 

that represent a serious threat to the city and surrounding regions.

Introduction

Large earthquakes are disastrous almost wherever they occur.  At best they give everybody a 

good scare and cause some adjustments to the landscape that may affect buildings and infrastructure 

like roads, rails and utility services.  At worst they create massive and indiscriminate death and 

destruction.  The level of public understanding of these events is indicated by the fact that the 

insurance industry refers to them as 'acts of God'.  In recent decades, however, detailed 

measurements of surface deformation associated with earthquakes have brought new understanding 

of why and where earthquakes occur.  An earthquake is a natural consequence of internal forces 

within the Earth and it is possible, based on measurements of surface deformation and the historical 

record, to make generic predictions about the type and consequences of future earthquakes in 

specific contexts.  Europe is no stranger to damaging earthquakes; Greece and Italy in particular 
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have a long history of earthquakes (Ambraseys, 2009, Woessner et al., 2015), but most of the 

Mediterranean countries, from Portugal to Turkey, have experienced severe earthquakes. In this 

article I focus on two large European cities (Istanbul and Bucharest) that are at particular risk to 

earthquakes, and the nature of the geological processes that make such events inevitable in these 

two cases.

Just as we understand the nature of lightning but cannot predict exactly when and where a 

lightning strike will occur, there is a degree of intrinsic unpredictability with earthquakes that we 

cannot avoid.  The fact that large earthquakes are experienced unpredictably and infrequently on the 

human time scale has also meant that progress in understanding and adapting to the threat of these 

events has been slow, and over-shadowed by short term economic priorities.  Every earthquake 

however is associated with movement on a fault, that is a roughly planar surface on which 

movement can occur.  Such movements release internal stress that has slowly accumulated under 

the action of long term geological movements that typically act on a much larger scale (e.g., 

Dieterich, 1974).  

Most active faults have a prior history; indeed an important concept in earthquake studies is the 

earthquake cycle, the idea that a fault moves repeatedly on a more or less regular cycle (e.g., 

Thatcher, 1993) as the stress field is continually renewed by some large-scale geological process.  

Unfortunately this movement is imperceptible for tens, hundreds, or even thousands of years and 

then metres of displacement may occur within a minute or two on a fault surface that may extend 

tens or hundreds of km, producing a sudden and colossal release of stored elastic energy.  For large 

earthquakes the next event is never an exact copy of a previous event, but there is a strong 

expectation that there will be future events that are comparable in their surface effects.  Therefore if 

we can identify the faults that are most at risk of producing earthquakes, and measure or map their 

properties and the prevailing stress field, there is some hope that we can anticipate what will happen 

in the next major earthquake, if not precisely when it will happen.  Anticipation in this case can 
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extend to construction of detailed models of the seismic waves and the accelerations that urban 

structures are subjected to as the seismic waves pass by (e.g., Graves et al., 2008).

Most faults, however, are mostly buried; we see only the surface trace of the fault where it 

intersects the Earth's surface.  In some cases we don't even see that, as the fault is entirely buried.  

We therefore mainly rely on indirect measurements to investigate what is happening on a fault.  

Seismology as a measurement tool has been around for about a century, but our ability to deploy 

large numbers of seismographs and to synthesise and interpret the seismic data more effectively has 

increased dramatically in recent decades (e.g., van der Vink, 2002, Molinari et al., 2016).  A 

network of seismographs measures the elastic waves that are released when an earthquake occurs.  

We can use these data in two ways: firstly we can map the locations and types of micro-earthquakes 

that are usually associated with an active fault.  Such activity occurs especially in the aftermath of a 

large earthquake, but in general can also occur at any time during the earthquake cycle.  Monitoring 

this activity can provide information about the potential for a large earthquake, though the 

relationship between large earthquakes and activity that might be considered precursory is uncertain 

(Evison, 1977; Kumazawa et al., 2010) and interpretation can be controversial (Hall, 2011).  

Secondly we can use the elastic waves emitted by distant large earthquakes to illuminate the 

structure of the Earth's crust and upper mantle in the actively deforming region and thereby 

construct images of that structure (e.g., Rawlinson et al., 2010), much as a physician may use 

imaging methods based on ultra-sound or X-rays to identify structures within a human body.  

Seismology however is insensitive to to the slow background movements that occur in the 

periods between earthquakes.  Fortunately the development of Global Navigation Satellite Systems 

(GNSS) such as GPS and the new European system called Galileo, have provided an important new 

way to precisely measure surface earth movements.  GPS measurements show the slow relative 

movements of the Earth's surface across regions that are 1000's of km wide, to an accuracy of order 

1 or 2 mm/yr (Kreemer et al., 2014).  Where these measurements indicate that a region is 
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undeforming, the velocities are entirely consistent with the geological record of how the tectonic 

plates have moved on time scales of 1 to 100 Myr.  In some regions, however, the measurements 

enable us to see where the Earth's crust is being stretched, shortened, or sheared.  Other satellite 

systems like ESA's Sentinel (Elliott et al., 2016) have provided a radar interferometry capability 

which can map with similar precision the displacements of the Earth's surface associated with 

earthquakes and slow tectonic movements.  These measurements enable accurate quantitative 

interpretation of the distribution of displacement that occurs on a fault during an earthquake even 

though the fault movement may have occurred 10's of km beneath the Earth's surface.

The geological environments of Istanbul and Bucharest could hardly be more different, but both 

face a significant risk from damaging earthquakes.  Both of these cities have suffered in past events 

and the relevant authorities are keenly aware of the present and future risk.  In both Romania and 

Turkey, active monitoring programs are undertaken. These programs have the aim of getting better 

measurements of future events, and ultimately of getting a better understanding of what will happen 

there during the next major earthquake.  While there seems little prospect in the near future of being 

able to accurately predict when the next major earthquake will occur in either of these cities, there 

have been significant advances in our understanding of why they happen and how the seismic 

energy will impinge on the urban environment.

Istanbul – Deprem!

  Istanbul is located close to the North Anatolian Fault, a major transform fault system which 

separates westward-moving Anatolia from the Black Sea which is embedded in the relatively stable 

European landmass to the North (Figure 1).  The North Anatolian Fault is similar in many ways to 

the San Andreas Fault system of California, in that both are long (~1000 km) strike-slip (horizontal 

movement parallel to the fault) fault systems across which relative displacement rates of 25 to 30 

mm/yr are measured (Stein et al., 1997).  Whereas the record of large earthquakes on the San 
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Andreas Fault has only been revealed by geological investigation of trenches across the fault (Sieh 

et al., 1989), a long history documents the activity on the North Anatolian system which culminated 

most recently in the catastrophic 1999 Izmit and Duzce earthquakes just east of the Sea of Marmara 

(Barka et al., 2002).  The general progression of these earthquakes during the 20th century has been 

westward (Stein et al., 1997), leading to an expectation that the next major earthquake may occur 

beneath the Marmara Sea, close to Istanbul (Pondard et al., 2007).  Earthquakes have occurred 

offshore in the northern Sea of Marmara, most notably in 1509, 1754 and 1766, all estimated to 

have magnitude in the range M6.8 to M7.2 (Ambraseys and Jackson, 2000; Barka et al., 2002) and 

generally causing severe damage to Istanbul.  Other disastrous events located near the Marmara Sea 

occurred in 1719 (M7.4) and 1894 (M7.3).

The GPS velocity field in Figure 1 shows that all of Anatolia is moving westward relative to 

Europe at rates of 20 to 30 mm/yr, with velocities increasing in magnitude and turning southwest in 

the Aegean region (Nocquet, 2012).  The southward component of motion means that the Marmara 

Sea is not only being sheared in an east-west direction, but is literally being pulled apart by 

stretching of the crust in the NE-SW direction.  Indeed this stretching is responsible for the 

formation of the Marmara Sea basin and a broad region of crustal thinning and long-term 

subsidence that affects most of western Turkey and the Aegean Sea (Floyd et al., 2010).   The GPS 

velocity vectors shown in Figure 1 generally vary smoothly in direction and magnitude unless the 

measurement sites are close (in time and space) to recent large earthquakes.  This smooth variation 

of surface velocity, though measured over decades, is thought to be representative of the 

deformation of the lithosphere (that outer, more rigid, layer of crust and upper mantle, ~100 km 

thick) over periods of millions of years.  In fact the pattern of movement shown in Figure 1 reveals 

that the lithospheric layer is just flowing like a very viscous fluid away from the region of high 

topography and greatest gravitational potential energy in Eastern Anatolia to where topography is 

lowest in the Hellenic trench south of Crete.  This continental-scale movement is explained by the 

5



gravitational potential energy gradient that generally decreases smoothly from east to south-west in 

line with the variation of topographic elevation (England et al., 2016).  The conditions at western 

and eastern ends of the region are sustained by subduction of African plate lithosphere beneath 

Europe at the Hellenic trench and the northward movement of the Arabian plate toward the 

Caucasus (Reilinger et al., 2006).  The balance of force that sets the geological environment for 

Istanbul will not change on any human time scale, so we may expect earthquake activity there to 

continue at rates comparable to those of the historical record.

While the lithosphere en masse is flowing like a very viscous fluid, the upper 15 km or so of this 

layer is basically an elastic solid cut by numerous faults.  Stress in the lower layer is dissipated by 

various creep mechanisms that approximate flow, but elastic energy is stored up in the faulted upper 

layer while the faults are locked during the inter-seismic period.  At some point this elastic energy 

may be released in the form of an earthquake when the stress acting on one of the faults locally 

exceeds some threshold (Freed, 2005).  Where strain is applied in a consistent sense for long 

periods of time, a system of near-surface faults will organise into coherent structures on which the 

strain is localised (Taylor et al., 2004; Şengör et al., 2005).  Major fault systems like the North 

Anatolian Fault thus develop to accommodate significant relative displacements.  Even so these 

fault systems contain much complexity.  The North Anatolian fault system in westernmost Turkey 

has two major strands (Şengör et al., 2005) which diverge west of a nexus in the Sakarya River 

flood plane at about 30.6°E.  The northern strand passes through Sakarya and Izmit and into the 

Marmara Sea, defining the locus of the many damaging earthquakes mentioned already.  The 

southern strand enters the Marmara Sea about 30 km south of Izmit and runs along its southern 

coast.  South of the Marmara Sea many large earthquakes have also occurred on other faults 

(Eyidogan, 1988).

To examine in more detail the structure of the North Anatolian fault system a team from 

University of Leeds, Kandilli Observatory and Earthquake Research Institute (KOERI), and 
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Sakarya University deployed during 2012-13 a network of temporary seismographs across the 

North Anatolian Fault system in the region of the 1999 earthquakes (Kahraman et al., 2015).  In this 

deployment we recorded ground velocity, sampled 50 times per second, continuously for a period of 

about 16 months, at about 70 locations organised around a grid with a nominal 7 km station 

separation.  Figure 2 shows the locations of DANA (Dense Array for North Anatolia) stations and 

many small earthquakes identified during the deployment period.  If an earthquake is recorded at 

multiple locations, we can triangulate using the relative arrival times of the seismic waves at the 

different sites, and a model of the sub-surface seismic velocity, to determine its location.  Having 

such a large number of stations in a relatively small area enabled us to detect and locate accurately 

many more micro-earthquakes, than is possible using only the stations of the permanent national 

network operated by KOERI.  Most of these micro-earthquakes are relatively uniformly distributed 

in depth between the surface and about 12 km, though some are as deep as 20 km (Altuncu Poyraz 

et al., 2015).  Although the uncertainty on location may be as great as 1 km, one obvious conclusion 

that can be drawn from Figure 2 is that, while some of these micro-earthquakes are associated with 

one or other of the major fault strands, the recent activity is only partly focussed on the fault 

segment that failed in 1999.  In particular the Sakarya River is associated with significant 

concentrations of micro-earthquakes which imply a major structure that cuts obliquely across the 

main North Anatolian fault zone.  The Sakarya River gorge and floodplain generally follow this 

alignment of seismicity.  An active fault in this orientation is secondary to the main fault zone, but a 

component of extensional displacement on such a fault may be partially responsible for the 

development of this valley and has likely constrained the location of the river system.  It is clear 

also that the main fault strand has caused a significant lateral offset of the river where they cross.

We (Kahraman et al., 2015) also analysed seismic records of distant earthquakes obtained from 

the same array to construct an image of the crust and upper mantle beneath the array using the 

receiver-function technique.  The principle that underlies this technique depends on the fact that the 
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compressional waves from a distant earthquake interact with a discontinuity in elastic rigidity 

beneath each receiver to produce secondary shear waves.  The secondary waves recorded on the 

array therefore image this surface, and the arrival time of these waves is directly related to the 

seismic velocities of the two wave types and the depth of the discontinuity.  A major seismic 

discontinuity occurs at the base of the crust (known as the Moho after discoverer A. Mohorovičić).  

On crossing the Moho the compressional wave velocity increases from about 6 km/s to about 8 

km/s but other discontinuities are present both in the crust and mantle.  The image developed from 

the DANA array data (Figure 3, Kahraman et al., 2015) shows two vertical slices perpendicular to 

the North Anatolian Fault, with the Moho prominent at depths of between 36 and 39 km.  Moreover 

it shows internal structure including a low-velocity zone in the overlying crust which is evidently 

truncated by both strands of the North Anatolian Fault.  Such truncations are interpreted to be due to 

fault displacement juxtaposing contrasting structures.  One interesting result here is that the 

displacement on the northern strand of the fault appears to penetrate the entire crust, and even the 

uppermost mantle, even though significant co-seismic displacements of the 1999 earthquake 

occurred only for depths shallower than about 20 km.  The inference is that a sub-vertical zone of 

localized shear that presumably moves steadily at slow rates is located underneath the seismically 

active fault in the upper crust, and reaches at least to Moho depths.

The interaction of the faulted elastic upper crust with the viscously creeping lower crust in the 

context of the earthquake cycle presents a difficult mechanical problem, but GPS observations in 

the immediate aftermath of the 1999 earthquake reveal an aspect of earthquake behaviour that tells 

us something interesting about the mid-crust in this region.  As shown in Figure 1, Anatolia 

generally moves westward at rates of up to about 24 mm/yr relative to stable Eurasia (McClusky et 

al., 2000).  For some months after the 1999 earthquake, however, GPS sites within 10 or 20 km of 

the ruptured fault showed relative velocities across the fault of up to about 150 mm/yr (Ergintav et 

al., 2009).  Apparently the displacement on the fault plane due to the earthquake caused an abrupt 
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redistribution of stress within the crust which subsequently relaxed by viscous creep in the mid-

crust.  Using computer models of how the stress field evolves during the earthquake cycle for a 

viscoelastic crust, Yamasaki et al. (2014) showed that these high post-seismic rates can be explained 

if there is a low viscosity layer in the mid-crust.  Viscosity and seismic velocity are very different 

physical properties, yet we expect a correlation between low viscosities and low velocities in crustal 

rocks, as both are influenced in that direction by increasing temperature or increasing pore fluid 

pressures.  Intriguingly the mid-crustal low-velocity zone indicated by the blue colours in Figure 3 

is in about the same location as the low viscosity zone deduced from the viscoelastic modelling of 

the post-seismic GPS data.  Although we cannot directly sample this mid-crustal layer, these 

constraints on its physical properties may help us provide better models of the crustal stress field as 

it builds towards the next major event on this fault system.

If the next big earthquake to affect Istanbul is similar to the 1509 event, displacement on an 80 to 

100 km long segment of the North Anatolian Fault in the Marmara Sea will cause an event of about 

magnitude 7, with large areas of Istanbul within ~30 km of the ruptured fault and affected by severe 

shaking.  The time interval between the onset of fault movement and the onset of strong shaking in 

Istanbul will be less than 10 seconds, affording little or no warning time, even with borehole sensors 

located offshore close to the fault.  A tsunami may follow.  Turkish authorities have responded to 

this threat by establishing an earthquake rapid response and early warning system  (Alcik et al., 

2011) with the aim of providing a rapid quantitative assessment of the magnitude of any seismic 

event in the Marmara Sea region.  Another government initiative is the Istanbul Seismic Risk 

Mitigation and Emergency Preparedness Project (ISMEP) which aims to enhance preparedness, 

strengthen critical infrastructure, and improve institutional and technical capacity for disaster risk 

management and emergency response (World Bank, 2016).  Following the experience of collapsed 

buildings in the 1999 Izmit earthquake, the retro-fitting or reconstruction of public buildings 

(schools, hospitals, dormitories, administrative and social service buildings) and the enforcement of 
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building codes to ensure compliance with seismic-resistant design standards have been designated 

as priorities under ISMEP.  A training program around the retrofitting code was provided to more 

than 3,600 engineers throughout Turkey.  A program of urban renewal has been instituted in some 

neighbourhoods in an attempt to address the problem identified by a 2002 government audit 

(Turkish Court of Accounts, 2002) which estimated that two thirds of Istanbul’s housing stock for a 

population of about 14 million, was then comprised of buildings that had no building permit or 

certificate of occupancy, and questionable structural integrity.  Recent newspaper reports however 

suggest that, while proceeding, this program is not always accepted readily by those people who are 

required to move.

Bucharest – Cutremer!

The geological environment of Bucharest makes a total contrast to that of Istanbul.  It is located 

on a relatively stable crustal platform, the Moesian Block, located west of the Black Sea between 

the South Carpathian and Balkan Mountain ranges, and crossed by the Danube River and its flood 

plain (Figure 4).  This stable platform has a Paleozoic-Mesozoic sedimentary succession that is 

locally as thick as 10 km and has experienced only minor deformation since the Jurassic (Tari et al., 

1997).  Near Bucharest the platform is covered by about 2 km of flat lying Neogene sediments that 

have a low seismic velocity (Hauser et al., 2001).  The GPS velocity field in this region shows 

negligible internal deformation or relative motion between the Moesian block and the rest of 

western Europe (Nocquet, 2012; Ischchenko, 2016).  The entire region is behaving to a good 

approximation as a rigid plate, although evidence from structural mapping shows that both 

Carpathians and Balkans have accommodated significant deformation during Miocene-era activity 

(Neubauer, 2002).  To the north the Pannonian Basin was affected by a strong phase of crustal 

extension that probably finished about 11 Myr ago (Horváth et al., 2006).  Minor crustal seismicity 

in the Moesian platform does occur, but post-Miocene sediments show little deformation.
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However, the threat to Bucharest from earthquakes is much greater than one would infer from 

the preceding description.  The historical record shows an exceptional level of seismic activity 

centred in Vrancea county about 200 km north of Bucharest (Radulian et al., 2000), with nine 

earthquakes of magnitude M > 7 since 1802 (Figure 4; and nearly 50 in the range 6 < M < 7).  

These earthquakes threaten numerous towns and cities in Romania and neighbouring Moldova.  The 

impact on Bucharest, a city of about 2.5 million, can be severe even though the epicentres of these 

earthquakes are ~200 km distant and the focal depth is typically between 100 and 150 km (Radulian 

et al., 2000).  A magnitude 7.4 event in March 1977 left a toll of 1,578 dead and 11,221 injured in 

Romania, and damage estimated at ~ US$ 2 billion (Böse et al., 2007). The seismic activity is 

marked at the surface by a distinct geographical feature; this is where the East Carpathian mountain 

range meets the South Carpathians, enclosing the Transylvanian Basin to the northwest in a sharp 

bend (Figure 4). 

Earthquakes at depths >50 km are usually associated only with oceanic subduction zones (Astiz 

et al, 1988), but unlike oceanic subduction zones there is negligible surface convergence here, and 

the geological evidence for past subduction beneath the SE Carpathians is equivocal at best (Knapp 

et al., 2005).  Several prior seismological investigations have been undertaken to probe the cause of 

this deep seismicity (Martin et al., 2006; Koulakov et al, 2010).  However in general the scope of 

those studies was too limited to provide a clear picture of what was going on in the mantle beneath 

the South-east Carpathians.  During 2006-2011 teams from the University of Leeds, the Romanian 

National Institute of Earth Physics (NIEP), the Eötvös Loránd Geophysical Institute (ELGI) of 

Hungary, the Technical University of Vienna, and the Seismological Survey of Serbia collaborated 

in a regional seismic study that aimed to produce high resolution seismic images of the upper 

mantle (to depths of ~ 700 km) across the entire Pannonian – Carpathian system (Figure 4).

We used the technique of seismic tomography to map in three dimensions the variation of 

seismic wave velocity in the upper mantle for this region (Dando et al., 2011; Ren et al, 2012).  The 
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technique is comparable to X-ray tomography as used in the medical context, with some significant 

differences: X-rays travel in straight lines, whereas seismic waves are strongly refracted by internal 

velocity variations.  Seismic waves have a much greater wavelength (~ 8 km is representative for 

signals of ~ 1 sec period) and their ability to resolve detail on shorter length scales is therefore quite 

limited in this type of tomographic application. The source of seismic waves used in the imaging is 

provided by distant earthquakes that we have no control over; we simply record everything and 

hope to record the signals from enough earthquakes in enough different locations that the region 

under investigation is well illuminated.  Fermat's principle allows us to think about the wave energy 

travelling along a raypath that is the fastest possible route between earthquake and receiver.  Ren et 

al. (2012) used 1180 earthquakes and 185 seismic stations to obtain a dataset of 85,886 relative 

arrival times for the same number of raypaths.  A mathematical inversion process is then used to 

infer the variation of seismic velocity within the upper mantle beneath the seismic array that can 

best explain the arrival times of the seismic waves.  The resulting tomographic model of seismic 

velocity variation is shown (in part) in Figure 5.

In the Earth, seismic velocity generally increases with depth, but we focus on the variations of 

velocity at any given depth by subtracting the average velocity profile; velocities may depend on 

composition but the strongest effects depend on temperature (Priestley and McKenzie, 2006); lower 

temperatures are associated with faster seismic velocities.  In this case we are considering 

temperature variations of probably ~200°C relative to background temperatures that increase 

gradually with depth from about 1350°C at the base of the lithosphere.  The velocity model 

obtained by Ren et al. (2012) effectively covers the upper mantle of the Pannonian-Carpathian 

region together with some neighbouring regions that include the Eastern Alps and the Bohemian 

Massif.  One of the clearest features in the model is a mass of fast (cold) material between depths of 

about 400 and 660 km beneath the Pannonian Basin, surrounded by slower (warm) material.  

Between depths of about 100 and 400 km, the most prominent feature on the map is a relatively 
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localized, high amplitude, fast anomaly beneath the Vrancea region.  Figure 5 shows an oblique 

view of horizontal sections through the velocity model that show the structure of the Vrancea 

anomaly relative to the measured locations of past earthquakes. The image shows a huge pendulous 

structure that extends to about 400 km depth.  It is asymmetric at shallow depths but increasingly 

circular in cross section at greater depths, with its centre of mass directly beneath the location of the 

large earthquakes.

Cooler temperatures of a mantle rock are associated not only with faster propagation of seismic 

waves, but also with increased density, simply due to the phenomenon of thermal contraction that 

we are all familiar with. Decreasing the temperature of mantle rock by 200°C can produce an 

increase in density by about 0.7% (Bouhifd et al., 1996).  For mantle rocks that density increase 

amounts to about 25 kg/m3.  When you consider the volume of the Vrancea anomaly, the net effect 

is a huge downward force on the material that comprises the anomaly.  Although the upper mantle 

appears rigid when seismic waves pass through it, it slowly deforms by the accumulation of 

microscopic creep processes when subjected to sustained stresses.  In fact the upper mantle behaves 

like a very viscous fluid on time scales of ~1 Myr or greater (as we have see with the model of 

Anatolian lithosphere), so this huge mass anomaly beneath Vrancea behaves like a stone placed in 

honey; it sinks at a rate controlled by the viscosity (Morgan, 1965).  But the stone in this case is 

really also a very viscous fluid that previously was part of the mantle lithosphere beneath either the 

Transylvanian Basin or the Moesian block, and it remains connected to its source at the base of the 

lithosphere beneath the Vrancea region.  That connection between Vrancea anomaly and mantle 

lithosphere supports to some extent the stresses need to resist the downward motion of the Vrancea 

anomaly, but the stresses are evidently great enough to cause large earthquakes in a very focussed 

volume of the upper mantle.

The nature of the earthquakes in this region supports this interpretation.  When any earthquake 

occurs, the radiated energy pattern is distinctively related to the orientation of the fault plane and 
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the direction of the motion on the fault plane (Pondrelli et al., 2011).  This quadrupolar radiation 

pattern manifests in two opposing quadrants within which the ray paths transmit a compressional 

first motion as recorded at a seismic station, and two alternate quadrants where the first motion is 

dilatational.  Thus any earthquake for which this information is available reveals the approximate 

direction of the stress field that drives motion by defining the directions of principal compressive 

(P) and tensile (T) axes (Michael, 1987).  The fault plane contains the third axis and is typically 

inclined at about 20° either side of the P axis.  Compression and tension in this case are relative to a 

background stress field that is overwhelmingly compressive due to the weight of overlying material. 

The Vrancea earthquakes are all characterised by a vertical T axis, the consequence of the mass 

anomaly pulling downward (Lorinczi and Houseman, 2009).  The orientation of the P axis is 

variable but often either NW-SE or NE-SW, which suggests that this volume of material is 

contracting in both horizontal directions as it is stretched in the vertical direction. The magnitude of 

an earthquake is related to its seismic moment. This is a measure of the mechanical work that is 

released when an earthquake occurs and it enables a direct estimate of the average rate of strain of 

the volume that contains the active fault.  Summing up the seismic moments of those events that 

have occurred since reliable instrumental records were available, Lorinczi and Houseman (2009) 

estimated that the seismically active part of the Vrancea anomaly is stretching at an average rate of 

~22 mm/yr.  That's to say that the mass of the anomaly is moving down into the mantle at that 

velocity (or faster because some of the deformation is aseismic).  This estimate may only be 

accurate to within a factor of two, but it is one of the few hard measurements we have anywhere of 

rates of vertical motion in the mantle beneath stable lithosphere.  

Other structures comparable to the Vrancea seismic anomaly have been recognised in places 

where the data exist for seismic tomography on this regional scale (e.g., in the western USA, Jones 

et al., 2014), but the Vrancea anomaly is unique in terms of its clearly defined structure and high 

rates of seismic activity.  The rarity of this type of seismic activity may be related to the limited 
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period of its activity.  Theoretical models imply that, as the drip transits the upper mantle, the thin 

structure which connects it to the lithosphere of the Moesian block will attenuate at an increasing 

rate.  As its cross-sectional area diminishes, it will warm up, and in time the mass of the drip 

beneath will sink below 400 km depth and begin to impinge on the base of the upper mantle.  All of 

these factors will act to eventually diminish the rate of seismic activity.  We are not sure enough of 

the time scale to predict whether this evolution will play out over 1 Myr or 10 Myr, but on the 

human time scale of the next century or two, the total displacement is too small to much change the 

situation. We can therefore expect that the seismic activity in the Vrancea zone will continue at a 

rate similar to the historical record, and with similarly unpredictable timing of individual 

earthquakes.

Why the shallow part of the Vrancea anomaly is so lopsided is not known, but is probably 

related to the geodynamic conditions that promoted the onset of this gravitational instability 

(Lorinczi and Houseman, 2009).  The asymmetry also offers a clue as to why Bucharest may be so 

vulnerable to these earthquakes. The fast (cold) material that extends to the south under the Moesian 

block, almost as far as Bucharest, is directly connected to the earthquake source region and provides 

a low attenuation path for earthquake wave energy that propagates in that direction.  In contrast, 

waves that propagate to the northwest are more attenuated by slower (warmer) rocks under the 

Transylvanian Basin (Russo et al., 2005).  Unfortunately the combination of high-velocity low-

attenuation lithosphere that connects the platform to the source region, and relatively thick low 

velocity sediments on top of the platform is a bad combination for the amplification of the seismic 

surface waves that reach Bucharest.

Bucharest has one potential advantage over Istanbul due to the ~200 km distance between 

Bucharest and Vrancea county where the Romanian seismic activity is focussed.  The National 

Institute of Earth Physics operate a seismic observatory in Vrâncioaia, ~100 km directly above the 

these earthquakes (Mărmureanu et al., 2011).  When a significant earthquake happens there, this 
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observatory will register the first seismic signals about 15 sec before the first compressional waves 

reach Bucharest and perhaps 30 sec before the strongest shaking from the surface waves occurs in 

Bucharest.  This short lead time is the basis for an early warning system in which automated 

notification is sent to users, including emergency response units from 12 counties, a big bridge 

located in Bucharest, a nuclear sterilization facility in Măgurele city and to the nuclear power plant 

at Cernavoda (Marmureanu et al., 2014).  Twenty or thirty seconds warning is not long, but it may 

be enough to shut down heavy machinery, trains and power plants.  Bucharest has a great 

architectural heritage, but numerous of its older buildings have been classified as Class I risk since 

the 1977 earthquake.  Although these buildings are clearly labelled by a large red disk, the 

commercial and political motivation to undertake the necessary engineering upgrades has too often 

been lacking.  There are fears that the next major earthquake could cause significant numbers of 

these buildings to collapse (Gillet, 2014).

Concluding Remarks

The earth movements that cause the large earthquakes that threaten Istanbul and Bucharest are 

inexorable, though quite explicable in terms of the large-scale geological context.  There is, 

however, no real prospect at this time that we will one day be in a position to accurately predict 

when the next “big one” will occur on a specific fault system.  Why some faults move abruptly, 

producing large earthquakes at irregular intervals of 100s or even 1000s of years, and others appear 

capable of sliding smoothly, or in some cases intermittently producing movements that are called 

“slow-slip events” or “slow earthquakes”, is not clear.  These latter movements are imperceptible to 

humans and have only been documented using GPS measurements on specific fault segments since 

about 1999 (Schwartz and Rokosky, 2007).  If the contrast between these behaviours prompts the 

thought that we could somehow engineer threatening faults to slide smoothly rather than by large 

earthquakes, bear in mind that the seismic activity on the North Anatolian Fault extends at least to 
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20 km depth and the faults that cause large earthquakes beneath Vrancea in Romania are typically 

100+ km deep.  Fluids pumped into fault systems have been known to activate shallow fault 

systems and cause earthquakes (Keranen et al., 2013) but, even if the injection of fluids to depths 

greater than a few km were feasible, who would risk triggering a large earthquake in this way ?  In 

general cities must adapt to the behaviour of faults, not vice-versa. 

Better understanding of the specific earthquake threat to both Istanbul and Bucharest is an 

important research objective, and there have certainly been major advances in our understanding of 

the threat that they each face.  In particular our understanding of why these earthquakes occur and 

our ability to calculate the radiation of seismic energy caused by an anticipated earthquake is greatly 

improved in recent decades.  It is certainly feasible to model in detail the shaking that different parts 

of these cities will experience in their next big earthquake and, in principle, the impact that the 

shaking will have on their buildings and infrastructure.  

In general of course, most earthquake casualties are caused by buildings that collapse or undergo 

significant damage, so the clear priority in earthquake preparedness is to ensure the structural 

integrity of buildings and infrastructure. The example of Tokyo shows, however, that large cities 

can be defended against damaging earthquakes if the risk is accurately assessed and building 

standards are well designed and adhered to.  In general, major structures that have been built in 

recent decades in both Bucharest and Istanbul have been built to withstand large earthquakes, but 

both cities of course also have significant numbers of buildings that pre-date the adoption of 

regulations designed to ensure their structural integrity.  The accurate identification of such 

buildings is of course only part of the problem.  Even if specific neighbourhoods or buildings are 

assessed as 'at risk' it can be difficult to allocate the funds needed to fix the problem, and both 

Istanbul and Bucharest face significant challenges in doing so.
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Figure Captions

Figure 1.  Topographic Map of Anatolia and the Aegean Sea.  Superimposed are the mapped surface 
faults associated with the North Anatolian fault system (red) and the long-term geodetic 
displacement rate vectors (black) measured using GPS at a set of observing points across the region 
(England et al., 2016).  GPS velocities are shown in a reference frame in which northern Europe is 
stationary.    The yellow rectangle shows the location of Figure 2.  The centre of Istanbul is shown 
by a black square and MS is the Marmara Sea.

Figure 2.  Map of the study area for the FaultLab project.  Red squares denote seismographs of the 
DANA (Dense Array for North Anatolia) array operated by Leeds University, Kandilli Observatory 
and Earthquake Research Institute and Sakarya University.  Purple crosses denote micro-earthquake 
epicentres (Altuncu Poyraz et al., 2014).  Lake Sapanca is located at 40.65°N, 30.25°E; the Sakarya 
River flows northward to the Black Sea past the eastern end of Lake Sapanca.  The brown lines 
show the locations of the N-S sections in Figure 3; mapped faults are shown in black.

Figure 3.  Two vertical sections through the crust and upper mantle to depths of 100 km, 
perpendicular to the North Anatolian Fault zone at 30.2°E and 30.5°E (Kahraman et al., 2015; refer 
Figure 2 for location of sections).  The colours represent the wavefield arising from seismic waves 
originated at distant earthquakes and converted by sub-horizontal discontinuities in structure 
beneath the seismic array. Red denotes an increase in velocity with depth (as occurs at the Moho), 
blue a decrease.  Annotations I-Z, S-Z and A-A refer to geological terrains: Istanbul Zone, Sakarya 
Zone and Armutlu-Almacik block; SNAF and NNAF refer to the southern and northern strands of 
the North Anatolian Fault (indicated by black lines in Figure 2). Micro-earthquakes shown in Figure 
2 are indicated by black dots projected onto the sections.

Figure 4.  Topographic map of south-central Europe showing locations of Pannonian Basin (PB) 
and Transylvanian Basin (TB) separated from Moesian Block (MB) by South Carpathian 
Mountains.  Red circles near Vrăncioaia show epicentres of 9 earthquakes of magnitude > 7 
occurred since 1802.  Bucharest is indicated by the black square.  Red triangles show locations of 
temporary seismograph stations installed by Carpathian Basins Project and South Carpathian 
Project teams (Ren et al., 2012) in the period 2006 to 2011.  Brown triangles show stations 
belonging to national networks. Major rivers (blue) and national borders (dashed black lines) are 
also shown.

Figure 5.  Tomographic model of the upper mantle beneath the South-east Carpathian Mountains 
and surrounding regions (after Ren et al., 2012).  Horizontal sections are shown in oblique 
perspective for depths between 525 km and 112 km, as labelled.  The colour represents the local 
deviation (up to about + or – 2%) from the average seismic velocity at that depth, as shown by the 
colour bar on the right.  Blue implies mantle that is locally slower, colder and denser than average.  
Hypocenters of earthquakes are shown for depths shallower than 200 km and a green ellipse shows 
the location directly beneath these earthquakes.  The approximate outline of the Carpathians is also 
shown by the 1000 m topographic contour projected onto all sections.
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Figure 2.  Map of the study area for the FaultLab project.  Red squares denote seismographs of the 
DANA (Dense Array for North Anatolia) array operated by Leeds University, Kandilli Observatory 
and Earthquake Research Institute and Sakarya University.  Purple crosses denote micro-earthquake 
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Figure 3.  Two vertical sections through the crust and upper mantle to depths of 100 km, 
perpendicular to the North Anatolian Fault zone at 30.2°E and 30.5°E (Kahraman et al., 2015; refer 
Figure 2 for location of sections).  The colours represent the wavefield arising from seismic waves 
originated at distant earthquakes and converted by sub-horizontal discontinuities in structure 
beneath the seismic array. Red denotes an increase in velocity with depth (as occurs at the Moho), 
blue a decrease.  Annotations I-Z, S-Z and A-A refer to geological terrains: Istanbul Zone, Sakarya 
Zone and Armutlu-Almacik block; SNAF and NNAF refer to the southern and northern strands of 
the North Anatolian Fault (indicated by black lines in Figure 2). Micro-earthquake shown in Figure 
2 are indicated by black dots projected onto the sections.
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Figure 4.  Topographic map of south-central Europe showing locations of Pannonian Basin (PB) 
and Transylvanian Basin (TB) separated from Moesian Block (MB) by South Carpathian 
Mountains.  Red circles near Vrăncioaia show epicentres of 9 earthquakes of magnitude > 7 
occurred since 1802.  Bucharest is indicated by the black square.  Red triangles show locations of 
temporary seismograph stations installed by Carpathian Basins Project and South Carpathian 
Project teams (Ren et al., 2012) in the period 2006 to 2011.  Brown triangles show stations 
belonging to national networks. Major rivers (blue) and national borders (dashed black lines) are 
also shown.
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Figure 5.  Tomographic model of the upper mantle beneath the South-east Carpathian Mountains 
and surrounding regions (after Ren et al., 2012).  Horizontal sections are shown in oblique 
perspective for depths between 525 km and 112 km, as labelled.  The colour represents the local 
deviation (up to about + or – 2%) from the average seismic velocity at that depth, as shown by the 
colour bar on the right.  Blue implies mantle that is locally slower, colder and denser than average.  
Hypocenters of earthquakes are shown for depths shallower than 200 km and a green ellipse shows 
the location directly beneath these earthquakes.  The approximate outline of the Carpathians is also 
shown by the 1000 m topographic contour projected onto all sections.
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