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Abstract

This article describes a novel dataset aiming to provide insight on the relationship between stock market prices and news on social

media, such as Twitter. While several financial companies advertise that they use Twitter data in their decision process, it has been hard

to demonstrate whether online postings can genuinely affect market prices. By focussing on an extreme financial event that unfolded

over several days and had dramatic and lasting consequences we have aimed to provide data for a case study that could address this

question. The dataset contains the stock market price of Volkswagen, Ford and the S&P500 index for the period immediately preceding

and following the discovery that Volkswagen had found a way to manipulate in its favour the results of pollution tests for their diesel

engines. We also include a large number of relevant tweets from this period alongside key phrases extracted from each message with the

intention of providing material for subsequent sentiment analysis. All data is represented as a ontology in order to facilitate its handling,

and to allow the integration of other relevant information, such as the link between a subsidiary company and its holding or the names of

senior management and their links to other companies.
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1. Introduction

On 18 Sep 2015, Volkswagen, one of the world’s largest

and best known automakers, was named by the US Envi-

ronment Protection Agency (EPA) as being in breach of its

regulations concerning the amount of pollution from diesel

engines. Volkswagen had manipulated the outcomes of a

vehicle emission test by detecting the specific conditions

under which the test took place, and adjusting the perfor-

mance of its diesel engines in other to meet the required

pollution targets, while the same vehicle might fail those

targets by a vast margin in actual driving conditions.

Several recent models, including Golf, Polo and the Passat

equipped with certain diesel engines were confirmed to

contain cheating software that would reduce harmful emis-

sions. The revelation led to a fall of more than 30% of the

VW stock price in a single day, which continued to fall in

the following weeks, as news was gradually released about

the number and seniority levels of people who had knowl-

edge of the deception, until the company CEO himself de-

cided to resign and apologise. There was a prolongued pe-

riod of uncertainty regarding the spread of this deception

across the different continents, and the prices continued to

tumble as it became clear that it was not limited to the US

market. In addition, subsidiary brands, such as Audi, Seat

and Škoda soon revealed the existence of similar practices,

with a corresponding effect on their own sales figures and

share prices.

We observed these events and collected relevant tweets for

the period 15–30 Sep 2015, as well as the minute by minute

intra-day stock market prices for Volkwagen (stock sym-

bol $VW, as traded on the Frankfurt Stock Exchange), Ford

($F, NYSE) as an example of an automotive company with

no links to the scandal, and the same type of data for the

S&P500 stock market index (SPY), providing a baseline

for comparison with the US economy as a whole. The

Twitter data was then enhanced with the addition of ex-

tracted key phrases suitable for sentiment analysis, and the

entire dataset was stored as an ontology1.

2. Financial Forecasting

Since the advent of the stock markets, studying and pre-

dicting the future of companies and their share price have

been the main tasks facing all market participants. It is ex-

tremely difficult to achieve an accurate model that remains

reliable over time. There is a very famous yet controversial

Efficient Market Hypothesis (EMH) (Fama, 1965), which

comes in three forms: weak, semi-strong and strong. If the

weak form holds true, stock price cannot be predicted us-

ing history prices. The semi-strong form of EMH suggests

that stock price reveals all publicly available information.

The strong form implies that stock prices will always re-

flect all information including any hidden information, in-

cluding even insider’s information, if the hypothesis holds.

Numerous studies show that EMH does not always hold

true (Grossman and Stiglitz, 1980; Haugen, 1995; Shleifer,

2000; Shiller, 2003; Butler and Kazakov, 2012). In all

cases, attempts to model and forecast the market are based

on time series containing the prices of relevant stock along

with other relevant information, which often includes indi-

cators of the general state of the market to allow the evalu-

ation of the relative performance of a given company with

respect to the general market trends.

3. Mining Twitter

Along with the development of Social Networking, Twitter

has became one of the most popular ways for people to pub-

lish, share and acquire information. The two characteristics

of this service, instantaneity and publicity, make it a good

resource for studying the behaviour of large groups of peo-

ple. Makinf predictions using tweets has proved a popular

research topic. Asur and Huberman (2010) used tweet rate

1See the data available at http://j.mp/

FinancialEventsOntology.



time series to forecast movie sales, with the result outper-

forming the baseline market-based predictor using HSX,2

the gold standard of this industry. O’Connor et al. (2010)

presented a way to use tweets to predict the US presiden-

tial polls. The authors concluded that evolution of tweet

sentiment is correlated with the results of presidental elec-

tions and also with presidential job approval. Tumasjan et

al. (2010) used a much smaller dataset of tweets to fore-

cast the result of the 2009 German elections. Eichstaedt et

al. (2015) studied the use of sentiment keywords to predict

country level heart disease mortality.

Information extraction from social media can be rather

challenging, due to the fact that the texts are very short (up

to 140 characters only), noisy and written in an informal

style, which often contains bad spelling and non-standard

abbreviations (Piskorski and Yangarber, 2013).

4. Ontologies For Financial Data

Ontologies are powerful Artificial Intelligence approach to

representing structured knowledge. Their use can also fa-

cilitate knowledge sharing between software agents or hu-

man users (Gruber, 1993). They are often used in text min-

ing to represent domain knowledge, but their use to de-

scribe dynamic processes like time series has been much

more limited. The use of ontologies has already been con-

sidered in the context of Twitter, as well as in the domain of

financial news. For instance, Kontopoulos et al. (2013) dis-

cuss the benefits of their use when calculating a sentiment

score for Twitter data. Mellouli et al. (2010) describe a pro-

posal for an ontology with 31 concepts and 201 attributes

for financial headline news. Lupiani-Ruiz et al. (2011)

present an ontology based search engine for financial news.

Cotfas et al. (2015) have used ontologies to model Twitter

sentiments, such as happiness, sadness or affection. Lee

and Wu (2015) developed a framework to extract key words

from online social messages and update related event on-

tologies for fast response to unfolding events.

5. The VW Pollution Scandal Dataset

Despite the substantial amout of research on Twitter data in

recent years (Bollen et al., 2011; Wolfram, 2010; Zhang et

al., 2011; Si et al., 2013), there are very few publicly avail-

able datasets for academic research, with some of the previ-

ously published datasets becoming unavailable for various

reasons. Yang and Leskovec (2011) provide a large Twitter

dataset which has 467 million tweets from 20 million users

from 1 June to 31 Dec 2009, or 7 months in total, represent-

ing an estimated 20–30% of all tweets published during this

period. Go et al. (2009) provide a Twitter dataset labelled

with sentiment polarity (positive, neutral or negative), and

also split into a training set of 1.6 million tweets (0.8 mil-

lion positive and 0.8 million negative), and a manually se-

lected test set with 182 positive tweets, and 177 negative

tweets.

So far, there has not been a publicly available Twitter

dataset, which is aligned with company stock prices. We

aim to address this gap, with a focus on an extreme finan-

cial event, which could prove helpful in revealing the in-

terplay between financial data and news on social media.

2Hollywood Stock Exchange

We collected tweets and retweets from 00:00h EDT on 15

Sep 2015 until 23:59h EDT on 30 Sep 2015.3 In order to

retrieve only relevant tweets, we queried the Twitter API

using the tags and keywords listed in Table 1.

Table 1: Tags and keywords for the selection of tweets

Tag/keywords

@vw #volkswagen

$vow #volkswagengate

$vlkay #volkswagencheat

#vw #volkswagendiesel

#vwgate #volkswagenscandal

#vwcheat #dieselgate

#vwdiesel emission fraud

#vwscandal emission crisis

One encouraging observation about this dataset is that it

contained tweets with relevant information that predated

the official EPA announcement that started the VW diesel

engine pollution scandal, as shown below.

Published at 2015, September 18, 10:56:35 EDT

EPA4 set to make announcement on ma-

jor automaker $GM $F $TM $FCAU $HMC

$NSANY $TSLA $VLKAY $DDAIF $HYMLF

http://t.co/02hNHKq9cx

Published at 2015, September 18, 11:47:58 EDT

.@EPA to make announcement regarding a “ma-

jor automaker” at 12 noon today. Source says it

will involve @VW. No details yet. Stay tuned.

Published at 2015, September 18, 11:51:42 EDT

Inbox: EPA, California Notify Volkswagen of

Clean Air Act Violations

The first and second tweet did not clearly state that Volk-

swagen was exactly the automaker, the third tweet is the

first one with a clear statement which is ahead of EPA offi-

cial announcement.5

A total of 536,705 tweets were extracted. We have chosen

the third tweet as a point in time to split the data into the pe-

riod ‘before the news was out’, and the one that followed,

resulting in 51,921 tweets before11:51:42 on 18 Sep 2015,

and 484,784 after that time. Figure 2 shows a histogram of

the number of tweets over each 12h period. A brief time-

line of relevant events of the Volkswagen scandal according

to Kollewe (2015) is listed below:

18 Sep EPA announces that Volkswagen cheated on the ve-

hicle polluiton test. 482,000 VW diesel cars are re-

quired to be recalled in the US.

3Earlier tweets were also included if they were retweeted dur-

ing the indicated time interval.
4US Environmental Protection Agency
5The attentive reader will find it interesting to compare the

timing of the EPA announcement with the closing for the weekend

of the Frankfurt stock exchange on that Friday.



20 Sep VW orders an external investigation and CEO apol-

ogizes to public.

21 Sep Share price drops by 15 billion Euros in minutes

after the Frankfurt stock exchange opens.

22 Sep VW admits 11 million cars worldwide fitted with

cheating devices. The CEO says he is “endlessly

sorry” but will not resign. The US chief, Michael

Horn, says the company “totally screwed up”.

23 Sep The CEO quits but insists he is “not aware of any

wrongdoing on his part”. Class-action lawsuits are

filed in the US and Canada and criminal investigations

are launched by the US Justice Department.

24 Sep Officical confirms that VW vehicles with cheating

software were sold across Europe as well. The UK

Department for Transport says it will start its own in-

quiry into car emissions, as VW faces a barrage of le-

gal claims from British car owners.

26 Sep Switzerland bans sales of VW diesel cars.

28 Sep German prosecutors launch an investigation of VW

ex-CEO Winterkorn.

30 Sep Almost 1.2 million VW diesel vehicles in the UK

are affected by the scandal, more than one in ten diesel

cars on Britain’s roads.

We have extended the Twitter dataset with a set of key

phrases of length 2 that are potentially relevant to senti-

ment analysis. In this, we followed the approach discussed

by Turney (2002). The main idea is to identify syntactic

patterns that are considered suitable to matching subjec-

tive opinions (as opposed to objective facts). The result-

ing candidates for such polarity keywords are linked in the

database to the tweet from which they were extracted. This

approach can be compared to another related approach to

opinion extraction from financial news (Ruiz et al., 2012),

in which sentiment gazetteers were also used to indicate the

news polarity. Here the decision about polarity has not been

made, but is left to future users of the data.

To extract the keywords in question, we employed the Stan-

ford Part-Of-Speech (POS) tagger and Tgrep2 tool to ex-

tract the tag patterns proposed by Turney (2002), as listed

in Table 2. About a third of all messages were annotated

with pairs of key words as a result of the above mentioned

procedure. In Table 3 we list the 20 most common pairs:

on the whole, they appear quite specific and well correlated

with the corpus topic.

In addition to the Twitter data, our dataset includes price

information on the per-minute basis for Volkswagen (sym-

bol: VOW.DE) shares and those of Ford (symbol: F) as

an example of an automaker unaffected by the scandal. In

addition, we have included S&P500 data (American Stock

Market Index, symbol: SPY) as an indication of the state

of the markets as a whole during the period in question.

The data, as available from a number of public websites, in-

cludes time stamps, the ‘open’ and ‘close’ price, as well as

the ‘high’ and ‘low’ price for the given one minute interval.

Figure 1 shows a comparison of Buy-and-hold6 cumulative

returns of those three securities during 15-30 Sep. 2015.

6. Ontology Representation and Sample

Queries

The hierarchy of classes representing the dataset is shown

in Figures 3. The Event class has three properties: date-

time, epoch and duration. The epoch property is the num-

ber of seconds elapsed from 1st January 1970 00:00 UTC,

which provides a common timeline between individuals.

The duration property describes how long an event lasts and

in our dataset, we use second as the timing unit. The Event

class has two subclasses: Tweet and OHLC7. Tweet con-

tains all the individuals storing tweets with their properties:

id, username, url, sourceUrl, numberOfRetweet and polar-

ityKeyword. OHLC contains all the individuals of stock

price of specific company or market index. Each of them

has the following properties: high, low, open, close, sym-

bol and isin8 (See Listing 1).

Listing 1: Individuals of OHLC and Tweet, shown in turtle

format.

@prefix nsp: <http://example.org/vwevent2015/property/> .

@prefix nss: <http://example.org/vwevent2015/ontology/OHLC/> .

@prefix nst: <http://example.org/vwevent2015/ontology/Tweet/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

# An individual of OHLC

nss:f-1442323800 nsp:close "13.84"ˆˆxsd:float ;

nsp:datetime "2015-09-15T09:30:00-04:00" ;

nsp:duration "60"ˆˆxsd:xsd:unsignedLong ;

nsp:epoch "1442323800"ˆˆxsd:unsignedLong ;

nsp:high "13.86"ˆˆxsd:float ;

nsp:low "13.79"ˆˆxsd:float ;

nsp:symbol "F" ;

nsp:isin "US3453708600" ;

nsp:open "13.8"ˆˆxsd:float ;

nsp:return "0.00289855072464"ˆˆxsd:float .

# An individual of Tweet

<http://example.org/vwevent2015/ontology/Tweet/646575192907644928> nsp:

datetime "2015-09-23T02:41:53-04:00" ;

nsp:epoch "1442990513"ˆˆxsd:unsignedLong ;

nsp:id 646575192907644928 ;

nsp:numberOfRetweet "0"ˆˆxsd:unsignedLong ;

nsp:polarityKeyword "criminal charges" ;

nsp:sourceUrl <http://twitter.com/brian_poncelet/status

/646575192907644928> ;

nsp:url <http://twitter.com/Brian_Poncelet/status/646575192907644928> ;

nsp:username "brian_poncelet" .

Representing our data as an ontology makes it possible to

be queried in a flexible and powerful fashion, allowing its

users to link the textual and time series data in a seamless

way. Here are some examples of SPARQL queries seeking

to extract useful features through the use of both polarity

keywords and stock price movements.

Query 1 This SPARQL query will extract the tweets whose

time stamp coincides with a drop in the Volkswagen stock

price by more than 1%, ranked by numberOfRetweets.

The results of this query 1 are shown in listing 3. In order

to improve readability, returns only show three decimal

places, and datetimes are reformatted not to show the year.

6Buy-and-hold is a trading strategy, typically for benchmark-

ing purposes, that considers the performance of buying the secu-

rity and holding it for the whole period of analysis. Cumulative

return on day i: ri = (pricei − pricebuy)/pricebuy .
7OHLC stands for open, high, low and close price of stock

price during a period of time.
8ISIN refers to International Securities Identification Num-

bers, which provides a unique identification for each security.



Figure 1: Buy-and-hold cumulative returns of Volkswagen stock, Ford stock and S&P500 during 15-30 September 2015.

Figure 2: Histogram of tweets distributed over time with each bar representing 12 hours.

Listing 2: Query 1

PREFIX nsp: <http://example.org/vwevent2015/property/>

PREFIX nst: <http://example.org/vwevent2015/ontology/Tweet>

PREFIX nss: <http://example.org/vwevent2015/ontology/OHLC>

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT

?username

(?id AS ?tweet_id)

?return

(?numberOfRetweet AS ?nbRt)

?datetime

(group_concat(distinct ?pk;separator=", ") as ?polarityKeywords)

WHERE{

?ohlc nsp:epoch ?ohlc_epoch .

?ohlc nsp:return ?return .

?ohlc nsp:symbol "VOW.DE" .

FILTER(?return < -0.01)

?tweet nsp:epoch ?tweet_epoch .

?tweet nsp:datetime ?datetime .

?tweet nsp:numberOfRetweet ?numberOfRetweet.

?tweet nsp:url ?url .

?tweet nsp:sourceUrl ?sourceUrl .

?tweet nsp:username ?username .

?tweet nsp:id ?id .

?tweet nsp:polarityKeyword ?pk .

FILTER EXISTS{?tweet nsp:polarityKeyword ?pk}

FILTER(

?url = ?sourceUrl

&& xsd:integer(?numberOfRetweet) >= 5

&& xsd:integer(?tweet_epoch) <= xsd:integer(?ohlc_epoch) + 60

&& xsd:integer(?tweet_epoch) >= xsd:integer(?ohlc_epoch)

)

}

GROUP BY ?username ?id ?return ?numberOfRetweet ?datetime

ORDER BY DESC(xsd:integer(?numberOfRetweet)) ?return

LIMIT 10

Listing 3: Result of Query 1

username tweet_id return nbRt datetime polarityKeywords

------------------------------------------------------------------------------------

1 business 646586797636644864 -0.023 113 09-23 03:28:00 as much

2 newswaala 646580334616645633 -0.011 30 09-23 03:02:19 high emissions

first detected

3 twistools_en 646586860173688832 -0.023 8 09-23 03:28:15 national embarrassment

4 nytimesbusiness 646260916129005568 -0.022 6 09-22 05:53:04 diesel cars

little effect

5 speedmonkeycouk 648435351476957184 -0.011 6 09-28 05:53:29 now being

Listing 4: Query 2

PREFIX nsp: <http://example.org/vwevent2015/property/>

PREFIX nst: <http://example.org/vwevent2015/ontology/Tweet>

PREFIX nss: <http://example.org/vwevent2015/ontology/OHLC>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT

?pk

(COUNT(?pk) AS ?count)

WHERE{

{

SELECT

(xsd:unsignedLong(xsd:float(?ohlc_epoch)/60.0) AS ?ohlc_minute)

(xsd:unsignedLong(xsd:float(?tweet_epoch)/60.0+1.0) AS ?tweet_minute)

?pk

?return

WHERE{

?ohlc nsp:epoch ?ohlc_epoch ;

nsp:return ?return ;

nsp:symbol "VOW.DE" .

FILTER(?return <= -0.02)

?tweet nsp:epoch ?tweet_epoch ;

nsp:polarityKeyword ?pk ;

}

HAVING(?ohlc_minute=?tweet_minute)

}

}

GROUP BY ?pk

ORDER BY DESC(?count)

LIMIT 20

Listing 5: Result of Query 2

pk count

-----------------------------

1 worldwide fitted 41

2 as much 23

3 entire auto 14

4 sure people 11

5 first detected 10

6 high emissions 10

7 multiple probes 7

8 totally screwed 7

9 chief executive 5

10 diesel cars 5

11 early trading 5

12 here come 5

13 national embarrassment 5

14 little effect 4

15 not sure 4

16 also installed 3

17 false emission 3

18 internal investigations 3

19 just lost 3

20 absolutely foolish 2



Expression Word1 Word2 followed by

(JJ.(NN|NNS)) JJ NN or NS no restrictions

(RB.(JJ!.(NN|NNS))) RB JJ not NN nor NNS

(RBR.(JJ!.(NN|NNS))) RBR JJ not NN nor NNS

(RBS.(JJ!.(NN|NNS))) RBS JJ not NN nor NNS

(JJ.(JJ!.(NN|NNS))) JJ JJ not NN nor NNS

(NN.(JJ!.(NN|NNS))) NN JJ not NN nor NNS

(NS.(JJ!.(NN|NNS))) NS JJ not NN nor NNS

(RB.(VB|VBD|VBN|VBG)) RB VB, VBD, VBN or VBG no restrictions

(RBR.(VB|VBD|VBN|VBG)) RBR VB, VBD, VBN or VBG no restrictions

(RBS.(VB|VBD|VBN|VBG)) RBS VB, VBD, VBN or VBG no restrictions

Table 2: Extracted Word1+Word2 keyphrases using Tgrep2 expressions

keywords count

diesel scandal 3993 diesel deception 1294

chief executive 3835 multiple probes 1189

diesel emissions 3280 electric car 1166

diesel cars 2980 new tech 1110

sure people 2801 clean diesel 1059

new boss 2407 criminal probe 1037

totally screwed 2208 finally be 953

clean air 1919 fresh start 908

as many 1449 refit cars 898

criminal charges 1323 diesel vehicles 890

Table 3: 20 most common pairs of keywords extracted from the Twitter data.
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Figure 3: VW Event Ontology Classes



The first tweet was published by Bloomberg (@business):

CEO Martin Winterkorn faces a showdown with

#Volkswagen’s board later http://bloom.

bg/1FdA4sA

Tweet No. 4 came from Business news of NY Times

(@nytimesbusiness):

Volkswagen’s recall troubles may have little ef-

fect on China: It sells almost no diesel cars in the

country. http://nyti.ms/1Jmipd8

Apart from main public media accounts, we found that

among the authors of those tweets are also an indian me-

dia (No. 2), a marketing account (No. 3), a motor ama-

teur (No. 5). This indicates our dataset contains informa-

tion from a range of sources that provide potentially useful

information on this event.

Query 2 We have also been able to check whether some of

the keywords are associated with specific stock price move-

ments by using the following SPARQL query, which aims

to retrieve the keywords associated on drops in Volkswagen

price greater than 2% within any one-minute-period.

The result of Query 2 shows that in most cases, the worst

drops in VW price coincide with keywords expressing neg-

ative sentiment or referring to some of the specific facts of

the scandal (e.g. “worldwide fitted”, “diesel cars”).

Query 3 For users with access to twitter contents (mapped

to nsp:content), listing 6 shows the potential usage of con-

necting with other existing ontologies to combine domain

knowledge with stock price time series: get the average one

minute return of stock the surname of a key person (CEO for

example) appears in the tweets.

Listing 6: Query 3

PREFIX nsp: <http://example.org/vwevent2015/property/>

PREFIX nst: <http://example.org/vwevent2015/ontology/Tweet>

PREFIX nss: <http://example.org/vwevent2015/ontology/OHLC>

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX db: <http://dbpedia.org/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT

?sn (AVG(?return) AS ?avgReturn)

WHERE{

SERVICE <http://dbpedia.org/sparql/>{

?company dbo:keyPerson ?person .

?person foaf:surname ?surname .

BIND(LCASE(STR(?surname)) AS ?sn)

FILTER(?company=<http://dbpedia.org/resource/Volkswagen>)

}

?ohlc nsp:epoch ?ohlc_epoch .

?ohlc nsp:return ?return .

?ohlc nsp:symbol "VOW.DE" .

?tweet nsp:epoch ?tweet_epoch .

?tweet nsp:content ?content .

?tweet nsp:url ?url .

?tweet nsp:sourceUrl ?sourceUrl .

?tweet nsp:id ?id .

?tweet nsp:numberOfRetweet ?numberOfRetweet

FILTER(?url=?sourceUrl && ?numberOfRetweet > 100)

FILTER(CONTAINS(LCASE(?content), ?sn))

FILTER(

xsd:integer(?ohlc_epoch) >= xsd:integer(?tweet_epoch) &&

xsd:integer(?ohlc_epoch) <= xsd:integer(?tweet_epoch) + 60

)

}

GROUP BY ?sn

7. Conclusion and Future Works

With the advantages of ontology representation, discover-

ing useful information in time-labelled text data (tweets)

and numerical time series (stock prices) becomes an easier

task. Both queries and dataset can be easily modified or

extended. On the other hand, copyright issues with Twitter

data put limits to displaying and sharing information in a

more straightforward way, and restrict us to only display-

ing tweet IDs in our dataset.

The polarity keywords are a useful feature, despite the un-

supervised way in which they were extracted. Our future

work will focus on adding to the range of features available

in the dataset.

We also want to assess our work in connection with other

related ontologies for stock markets9 (Alonso et al., 2005)

and companies10 as described in DBpedia. Such integra-

tion for example should allow one to recognise Volkswa-

gen Group as an entity of Public Company in DBpedia11,

where we can find information about their assets, revenue,

owner, holding company, products and many more. This

type of information would potentially allow one to auto-

matically link one company affected by adverse events to,

say, its subsidiary companies, which one may expect also

to feel the repercussions of such events. Indeed, Audi, Seat

and Škoda, all subsidiary companies of VW Group, were

all eventually linked to the diesel engine cheating software

scandal. More recent news from France has shown that any

results from our data could also find use to handle other

related news from the automotive industry. We hope that

our work will encourage more interesting research in the

financial domain as a whole.

8. References

Alonso, L., Bas, L., Bellido, S., Contreras, J., Benjamins,

R., and Gomez, M. (2005). WP10: Case Study eBank-

ing D10. 7 Financial Ontology. Data, Information and

Process Integration with Semantic Web Services, FP6-

507483.

Asur, S. and Huberman, B. A. (2010). Predicting the Fu-

ture with Social Media. In Web Intelligence and Intelli-

gent Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM

International Conference, volume 1, pages 492–499.

IEEE.

Bollen, J., Mao, H., and Zeng, X. (2011). Twitter Mood

Predicts the Stock Market. Journal of Computational

Science, 2(1):1 – 8.

Butler, M. and Kazakov, D. (2012). Testing Implications of

the Adaptive Market Hypothesis via Computational In-

telligence. In Computational Intelligence for Financial

Engineering & Economics (CIFEr), 2012 IEEE Confer-

ence on, pages 1–8. IEEE.

Cotfas, L.-A., Delcea, C., Roxin, I., and Paun, R., (2015).

New Trends in Intelligent Information and Database Sys-

tems, chapter Twitter Ontology-Driven Sentiment Anal-

ysis, pages 131–139. Springer International Publishing,

Cham.

9http://dbpedia.org/page/Stock_market
10http://dbpedia.org/ontology/company
11http://dbpedia.org/resource/Volkswagen



Eichstaedt, J. C., Schwartz, H. A., Kern, M. L., Park, G.,

Labarthe, D. R., Merchant, R. M., Jha, S., Agrawal, M.,

Dziurzynski, L. A., Sap, M., et al. (2015). Psychological

Language on Twitter Predicts County-level Heart Dis-

ease Mortality. Psychological Science, 26(2):159–169.

Fama, E. F. (1965). The Behavior of Stock-market Prices.

Journal of Business, 38(1):34–105.

Go, A., Bhayani, R., and Huang, L. (2009). Twitter Senti-

ment Classification using Distant Supervision. CS224N

Project Report, Stanford, 1:12.

Grossman, S. J. and Stiglitz, J. E. (1980). On the Impos-

sibility of Informationally Efficient Markets. The Amer-

ican Economic Review, pages 393–408.

Gruber, T. R. (1993). A Translation Approach to

Portable Ontology Specifications. Knowledge Acquisi-

tion, 5(2):199–220.

Haugen, R. A. (1995). The New Finance: the Case Against

efficient markets. Prentice Hall Englewood Cliffs, NJ.

Kollewe, J. (2015). Volkswagen Emissions Scandal Time-

line.

http://www.theguardian.com/business/2015/dec/10/

volkswagen-emissions-scandal-timeline-events

Accessed: Jan. 08, 2016.

Kontopoulos, E., Berberidis, C., Dergiades, T., and Bassil-

iades, N. (2013). Ontology-based Sentiment Analy-

sis of Twitter Posts. Expert Systems with Applications,

40(10):4065–4074.

Lee, C.-H. and Wu, C.-H. (2015). Extracting Entities of

Emergent Events from Social Streams Based on a Data-

Cluster Slicing Approach for Ontology Engineering. In-

ternational Journal of Information Retrieval Research,

5(3):1–18, July.

Lupiani-Ruiz, E., Garcı́a-Manotas, I., Valencia-Garcı́a, R.,

Garcı́a-Sánchez, F., Castellanos-Nieves, D., Fernández-

Breis, J. T., and Camón-Herrero, J. B. (2011). Financial

News Semantic Search Engine. Expert Systems with Ap-

plications, 38(12):15565–15572.

Mellouli, S., Bouslama, F., and Akande, A. (2010). An

Ontology for Representing Financial Headline News.

Web Semantics: Science, Services and Agents on the

World Wide Web, 8(2–3):203–208.

O’Connor, B., Balasubramanyan, R., Routledge, B. R., and

Smith, N. A. (2010). From Tweets to Polls: Linking

Text Sentiment to Public Opinion Time Series. ICWSM,

11(122-129):1–2.

Piskorski, J. and Yangarber, R. (2013). Information Ex-

traction: Past, Present and Future. In Multi-source,

Multilingual Information Extraction and Summarization,

pages 23–49. Springer.

Ruiz, E. J., Hristidis, V., Castillo, C., Gionis, A., and

Jaimes, A. (2012). Correlating Financial Time Series

with Micro-blogging Activity. Proceedings of the Fifth

ACM International Conference on Web Search and Data

Mining - WSDM ’12, page 513.

Shiller, R. J. (2003). From Efficient Markets Theory to

Behavioral Finance. Journal of Economic Perspectives,

pages 83–104.

Shleifer, A. (2000). Inefficient Markets: An Introduction to

Behavioral Finance. Oxford University Press.

Si, J., Mukherjee, A., Liu, B., Li, Q., Li, H., and Deng,

X. (2013). Exploiting Topic based Twitter Sentiment for

Stock Prediction. In ACL (2), pages 24–29.

Tumasjan, A., Sprenger, T. O., Sandner, P. G., and

Welpe, I. M. (2010). Predicting Elections with Twitter:

What 140 Characters Reveal About Political Sentiment.

ICWSM, 10:178–185.

Turney, P. D. (2002). Thumbs Up or Thumbs Down?:

Semantic Orientation Applied to Unsupervised Classifi-

cation of Reviews. In Proceedings of the 40th Annual

Meeting on Association for Computational Linguistics,

ACL ’02, pages 417–424, Stroudsburg, PA, USA. Asso-

ciation for Computational Linguistics.

Wolfram, M. S. A. (2010). Modelling the Stock Market us-

ing Twitter. Master thesis, The University of Edinburgh.

Yang, J. and Leskovec, J. (2011). Patterns of Temporal

Variation in Online Media. In Proceedings of the Fourth

ACM International Conference on Web Search and Data

Mining, pages 177–186. ACM.

Zhang, X., Fuehres, H., and Gloor, P. A. (2011). Predicting

Stock Market Indicators Through Twitter “I hope it is

not as bad as I fear”. Procedia-Social and Behavioral

Sciences, 26:55–62.


	Introduction
	Financial Forecasting
	Mining Twitter
	Ontologies For Financial Data
	The VW Pollution Scandal Dataset
	Ontology Representation and Sample Queries
	Conclusion and Future Works
	References

