

Deposited via The University of Leeds.

White Rose Research Online URL for this paper:

<https://eprints.whiterose.ac.uk/id/eprint/128498/>

Version: Accepted Version

Article:

Borah, PK, Rappolt, M, Duary, RK et al. (2019) Effects of folic acid esterification on the hierarchical structure of amylopectin corn starch. *Food Hydrocolloids*, 86, pp. 162-171.

ISSN: 0268-005X

<https://doi.org/10.1016/j.foodhyd.2018.03.028>

© 2018 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license <http://creativecommons.org/licenses/by-nc-nd/4.0/>

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: <https://creativecommons.org/licenses/>

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1 **Effects of folic acid esterification on the hierarchical**
2 **structure of amylopectin corn starch**

3

4 Pallab Kumar Borah^{a, b}, Michael Rappolt^a, Raj Kumar Duary^b, Anwesha Sarkar^{a*}

5

6 *^aFood Colloids and Processing Group, School of Food Science and Nutrition,*
7 *University of Leeds, LS2 9JT, United Kingdom*

8 *^bDepartment of Food Engineering and Technology, School of Engineering, Tezpur*
9 *University, Napaam, Assam, 784 028, India*

10

11

12

13

14

15

16

17 ***Corresponding author:**

18 E-mail address: A.Sarkar@leeds.ac.uk

19 Food Colloids and Processing Group,

20 School of Food Science and Nutrition,

21 University of Leeds, Leeds, LS2 9JT, UK.

22

23

24

25 **Abstract**

26 There are burgeoning research interests in designing biocompatible colloidal delivery
27 systems for treating as well as delaying the recurrence of chronic diseases, including
28 various forms of cancers. In this respect, folic acid (FA) esters and starch are
29 particularly interesting owing to (i) the molecular recognition of FA by folate receptors
30 and (ii) the biocompatibility of starch based delivery systems. In this study, the effects
31 of esterification of amylopectin corn starch (ACS) with FA using an *n*, *n*'-
32 dicyclohexylcarbodiimide/4-dimethylaminopyridine (DCC/DMAP) mediated
33 esterification reaction were investigated at multiple length scales. Scattering (light, X-
34 ray), spectroscopy (FTIR), electrophoretic mobility (ζ -potential) and confocal laser
35 scanning microscopy (CLSM) confirmed that structural rearrangements (short- and
36 long-range) occurred in the starch-folic acid ester (SF) derivatives with increased FA
37 content (degree of substitution, 0.01-0.05). The SF ranged in size from 200 to 600 nm
38 and were negatively charged (ca. -24 mV, SF20). FTIR revealed a loss of double-helical
39 structure on FA substitution. Notably, CLSM and small angle X-ray scattering (SAXS)
40 both showing an FA-assisted self-assembly and crosslinking of SF, later confirming
41 columnar assemblies with unit cell parameter of 4.5 nm. The wide-angle X-ray
42 scattering (WAXS) and X-ray diffraction (XRD) pattern ($2\theta = 6.1^\circ, 7.7^\circ, 13^\circ, 17^\circ, 20^\circ$,
43 22° , and 25°) in SF further gave evidence for the formation of hybrid B and V-type
44 polymorphs, where SF may accommodate FA within a larger hybrid hexagonal lattice.
45 This study provides structural insights for developing tunable starch-folic acid
46 derivatives for potential applications as delivery vehicles for pharmaceuticals and
47 nutraceuticals targeting folate receptors.

48

49 **Keywords:** Starch, folic acid, multiscale structural analysis, self-assembly, SAXS.

50 **1. Introduction**

51 There is a continuing scientific and industrial interest in designing
52 biocompatible colloidal delivery systems for delaying the onset as well as treatment of
53 chronic diseases, including various forms of cancers. Starch, which is the second most
54 abundant hydrocolloid, has been recently explored for the preparation of relatively
55 inexpensive biocompatible delivery vehicles applying physical and chemical treatments
56 (Ahmad, Akhter, Anwar, & Ahmad, 2012; Kim, Seo, & Lim, 2013; Li, Shin, Lee, Chen,
57 & Park, 2016; Shalviri, et al., 2012). These nano- or sub-micron-sized modified starch-
58 based delivery systems are promising for nutraceutical and pharmaceutical applications
59 owing to their large surface area-to-volume ratio, but generally suffer from lack of
60 cellular specificity and molecular recognition. The molecular recognition of these
61 nanoparticles can be greatly improved by attachment of high-affinity targeting ligand
62 molecules. Folic acid (an oxidized form of folate), a naturally water-soluble vitamin, is
63 such a widely explored targeting ligand molecule. Due to its high binding affinity
64 ($K_d \sim 10^{-10}$ M) along with its specific binding properties to folate receptors in the
65 human cells, it improves the targeting properties to the cancer cells of breast, lung,
66 kidney, colon and brain, that are known to overexpress folate receptors by 100-300
67 times as compared to that of non-cancerous cells (Antony, 1996; Kamen & Capdevila,
68 1986). Thus, there has been significant research efforts to esterify folic acid to modify
69 starch via a wide variety of chemical synthesis routes.

70 Folate esterified to polyethylene glycol (PEG) using n, n'-
71 dicyclohexylcarbodiimide (DCC) and n-hydroxysuccinimide (NHS)-mediated
72 esterification was conjugated to the surface of modified starch nanoparticles, latter
73 designed via a water-in-oil microemulsion templating by Xiao, et al. (2006). An
74 increase in particle size of the starch nanoparticles was specifically observed upon folic

75 acid esterification (from 50 to ~130 nm) with a folic acid content of 0.8 μ g/mg of PEG-
76 Starch nanoparticle. In another instance, folic acid was esterified to hydrophobized
77 pullulan, an exopolysaccharide derived from starch, using DCC and 4-
78 dimethylaminopyridine (DMAP) mediated chemistry to produce nanoparticles (Zhang,
79 et al., 2010). Folic acid esterification resulted in increasing the hydrodynamic diameter
80 of the pullulan acetate nanoparticles from ca. 185 nm to 261 nm. Such increase was
81 attributed to the enhanced swelling of the folate-pullulan esters in aqueous dispersion,
82 which was driven by the hydrophilic nature of the folic acid. Folic acid conjugated to
83 hydroxyethyl starch nanocapsules via n-(3-dimethylaminopropyl)-n'-
84 ethylcarbodiimide hydrochloride (EDC)-mediated esterification (Baier, et al., 2012)
85 also showed a similar behaviour of increasing the particle size of starch from 275 nm
86 to 307 nm.

87 On the other hand, no significant changes in the hydrodynamic diameter of
88 aminated starch was observed by Saikia, Das, Ramteke, and Maji (2017), when folic
89 acid was esterified to aminated starch/ZnO coated iron oxide nanoparticles using an
90 NHS/EDC mediated esterification reaction. It appears from the aforementioned studies
91 that esterification of folic acid resulted in modification of starch nanoparticles at
92 colloidal scale; however, rare attention has been given in literature to understand
93 mechanistically, if such esterification has resulted in any structural rearrangements in
94 starches.

95 Starch consists of two polymeric units, namely linear amylose composed
96 entirely of D-glucose units joined by α -1,4-glycosidic linkages, and, extensively
97 branched amylopectin composed of glucose units linked primarily by α -1,4-glycosidic
98 bonds with occasional α -1,6-linkages forming the branching points (Zobel, 1988). The
99 amylopectin and amylose polymers (glucose extension ~0.1 nm) are arranged as

100 alternating lamellae (\sim 10 nm) of rigid mesogen units (liquid crystalline) and flexible
101 spacer units (amorphous). The crystalline regions consist of double helices of
102 amylopectin in ordered arrays. Additionally, single, left-handed helix are also observed.
103 These types may (Tan, Flanagan, Halley, Whittaker, & Gidley, 2007) or may not
104 (Borah, Deka, & Duary, 2017) include copolymers within the helical channel.

105 On the other hand, folic acid although hydrophilic in nature, has a tendency to
106 self-assemble into tetramer structures even at concentrations as low as 0.1% (w/w) via
107 hydrogen bonding and stacking interactions, which further arrange into ordered
108 mesophases (Bonazzi, DeMorais, Gottarelli, Mariani, & Spada, 1993; Ciuchi, et al.,
109 1994). Additionally, Kamikawa, Nishii, and Kato (2004) reported the formation of non-
110 symmetric supramolecular assemblies in folic acid derivatives, which were synthesized
111 using EDC/DMAP mediated esterification. The self-assembled columns of the folic
112 acid derivatives were thought to be formed via the secondary cooperative interactions,
113 involving hydrogen bonding, ion dipolar interactions, stacking interactions, and
114 segregation into nanophases of molecular block structures. Hence, it is plausible that
115 during esterification with folic acid, starch may undergo a folic acid assisted structural
116 reorientation.

117 Since such structural rearrangements might result in changes of the properties
118 of the delivery system and its release kinetics, it is vital to gain fundamental
119 understanding of the multiscale structure of starch on esterification with folic acid,
120 which has not been reported in literature until now. Such crucial insights will enable
121 the optimisation of future design and fabrication of folic-acid-functionalized, colloidal
122 starch delivery vehicles tailored for targeted drug and nutraceutical delivery
123 applications.

124 In this study, we have designed different starch-folic acid esters focusing mainly
125 on the structural rearrangements of the amylopectin corn starches mediated by
126 esterification with folic acid. Amylopectin corn starch was utilized as the starch model,
127 since it is devoid of amylose and thus was expected to provide distinct peaks for the
128 lamellar phases in X-ray scattering studies. We hypothesize that controlling the degree
129 of folic acid esterification will profoundly alter the hierarchical structure of starch
130 particles, including colloidal properties (size, charge) and its molecular properties
131 (lamellar structure and crystalline structure). A combination of complementary
132 techniques of dynamic light scattering (DLS), small-angle and wide-angle X-ray
133 scattering (SWAXS), X-ray diffraction (XRD), Fourier transform infrared (FT-IR)
134 spectroscopy, electrophoretic mobility and confocal laser scanning microscopy
135 (CLSM) were assessed to understand the effect of folic acid esterification on the
136 structure of starch. To the best of our knowledge, this is the first study that
137 systematically characterizes the structural rearrangements of starch on multiple length
138 scale. This is the first in a series of papers by the present authors on the structure-
139 function relationship of folic acid-starch esters and its overall implications towards
140 designing biocompatible colloidal vehicles for delivery of pharmaceuticals and
141 nutraceuticals targeted at cancer cells.

142

143 **2. Materials and methods**

144 **2.1. Materials**

145 Amylopectin corn starch (ACS) was obtained from Sigma-Aldrich Company
146 Ltd., Dorset, UK. The ACS contained no amylose as assessed using colorimetric
147 procedure (Morrison & Laignelet, 1983), which was in agreement with the supplier's
148 specification. Folic acid (FA), n, n'-dicyclohexylcarbodiimide (DCC), 4-

149 dimethylaminopyridine (DMAP), dimethyl sulphoxide (DMSO) were purchased from
150 Sigma-Aldrich Company Ltd., Dorset, UK. Milli-Q water purified using a Milli-Q
151 apparatus (Millipore Corp., Bedford, MA, USA) was used throughout the experiments.
152 All other chemicals were of analytical grade unless otherwise stated.

153

154 **2.2. Preparation of starch-folic acid esters**

155 Starch folic-acid (SF) ester derivatives were synthesized using an esterification
156 reaction between the carboxyl group of folic acid (FA) and the hydroxyl group of starch
157 (ACS) as described previously for synthesis of stearate-grafted dextran (Du, Weng,
158 Yuan, & Hu, 2010), with some modification. The “zero length” crosslinker, n, n'-
159 dicyclohexylcarbodiimide (DCC) served as the coupling reagent, and, 4-
160 dimethylaminopyridine (DMAP) was the reaction catalyzer. The SF esters with the
161 different degree of substitutions of FA were synthesized by controlling the feed ratios
162 of FA to starch.

163 Briefly, 1g FA was dissolved in 30 mL anhydrous DMSO, and, DCC, DMAP
164 were added in the FA:DCC:DMAP molar ratio of 1:1:0.3. Activation of the FA
165 carboxylic groups was achieved by stirring the solution for 30 min at 30 °C while
166 maintaining dark conditions. Following this, starch was added in various concentrations
167 to the FA solution (5-30 wt% of FA to starch dry weight) and was reacted in the dark
168 at 30 °C for the next 24 h. The DMAP was removed by washing the reaction products
169 first with 1N HCl and then with Milli-Q water using a Whatman No. 4 filter paper. The
170 exposure time to 1N HCl was < 5 min to avoid any degradation of the starch polymer.
171 The reaction product was then dialyzed (3.5 kDa MWCO) against 10 mM phosphate
172 buffer at pH 7.4 containing 0.10 M NaCl for 24 hours, and, then with water for another
173 24 h to remove any unbounded FA and DCC. The samples were then lyophilized for 48

174 h, ground to a fine powder using mortar and pestle, and the SF ester derivatives (SF5,
175 SF10, SF20, and SF30) were obtained. Control samples included the native
176 amylopectin corn starch, ACS; ACS treated with DMSO, S/DMSO; ACS reacted with
177 DCC and DMAP in DMSO but without FA substitution, S/DCC.

178

179

180 **2.3. Characterization of the Starch-Folic acid (SF) ester derivatives**

181 **2.3.1. Degree of substitution and folic acid content**

182 The amount of FA esterified to ACS was determined spectrophotometrically.
183 Briefly, SF (4–10 mg) were dissolved in 0.5 mL DMSO. 0.5 mL of acetic acid solution
184 (60 vol%) and 9.0 mL of water/sulfuric acid (1.3:1, vol%) was added to the solution.
185 The sample solution was stirred, heated at 70 °C for 30 min, and then cooled to room
186 temperature. The UV absorbance of the solution was measured at 380 nm against a
187 blank. Absorbance calibration curves were plotted against known FA concentrations.
188 The degree of substitution was defined as the number of FA per glucose residues of
189 starch and calculated as,

$$190 \text{Degree of substitution} = \left[\frac{c/M_{FA}}{(m-c)/M_{starch}} \right] \quad \text{Eq. (1)}$$

191 where c is the content of the FA determined from the corresponding calibration curve,
192 m is the amount of the starch used in the experiment; M_{FA} is the molecular weight of
193 the FA; M_{starch} is the molecular weight of anhydrous glucose unit of starch.

194

195 **2.3.2. Mean hydrodynamic diameter and ζ -potential**

196 The mean hydrodynamic diameter (D_h) and ζ -potential of the samples were
197 measured on a Zetasizer (Nano ZS series, Malvern Instruments, Worcestershire, UK)
198 equipped with a 4-mW helium/neon laser at a wavelength output of 633 nm. 0.1 mg

199 mL^{-1} of the sample in DMSO:water (1:10, vol %) was prepared, and all measurements
200 were made at 25 °C.

201

202 **2.3.3. Fourier transform infrared spectroscopy**

203 The FTIR spectra (4000 to 400 cm^{-1} ; 64 scans were averaged with a resolution
204 of 2 cm^{-1}) of samples were collected using a Bruker ATR-FTIR Spectrometer (Bruker
205 Optics GmbH, Ettlingen, Germany). Spectra (1200–800 cm^{-1}) were baseline corrected
206 using anchor points at 1200 and 800 cm^{-1} , and then interpolated. The peaks at 947, 995,
207 1022 and 1047 cm^{-1} were selected and Lorentz peak fitting was performed using
208 OriginPro 8.0 (OriginLab Corp, Northampton, USA).

209

210 **2.3.4. Confocal laser scanning microscopy**

211 Confocal images were obtained on a Zeiss inverted LSM880 confocal
212 microscope (Carl Zeiss MicroImaging GmbH, Jena, Germany) using an argon laser at
213 an excitation wavelength of 688 nm and 40 \times /1.25 oil objective. Approximately, 2 mg
214 of sample was dispersed in Milli-Q water before imaging. Anionic FA groups were
215 labeled using methylene blue dye (Zhang, et al., 2011).

216

217 **2.3.5. Small and wide-angle X-ray scattering, and, X-ray diffraction**

218 The small and wide-angle X-ray scattering (SWAXS) beamline (SAXSpace,
219 Anton Paar, Austria) setup used in this study has been described elsewhere (Adal, et
220 al., 2017; Patil-Sen, Sadeghpour, Rappolt, & Kulkarni, 2016). Samples were loaded
221 onto a 1.5 mm quartz capillary, hydrated with water, sealed using paraffin wax, and
222 then placed in a vacuum stage at 25 ± 0.1 °C for measurements. Silver behenate with a
223 known lattice spacing of 5.84 nm was used to calibrate the scattering vector q as,

224
$$q = \frac{4\pi}{\lambda} \sin\theta \quad \text{Eq. (2)}$$

225 where $\lambda = 0.154$ nm and 2θ is the scattering angle. The scattering background from the
 226 capillaries (with and without water) was subtracted after normalizing for sample
 227 transmission, and then deconvoluted (slit length de-smearing). The parameters of the
 228 lamellar structure from SAXS ($0.1 \text{ nm}^{-1} < q < 2.5 \text{ nm}^{-1}$) were obtained by least square
 229 fitting employing the Levenberg-Marquardt optimisation algorithm to a Cauchy-
 230 Lorentz-Power Law equation (Yuryev, et al., 2004) as,

231
$$I(q) = I_{max} \left[1 + \left(\frac{2(q - q_{max})}{\Delta q} \right)^2 \right]^{-1} + Aq^{-\delta} \quad \text{Eq. (3)}$$

232 where I_{max} , q_{max} , Δq (FWHM), A and δ are positive adjustable parameters.
 233 The half width at half maximum (HWHM), $\Delta q/2$, in reciprocal space, was converted to
 234 real space to calculate the average lamellar thickness variations as,

235
$$\text{HWHM (real space)} = \frac{\pi \Delta q}{q_{max}^2 - (\Delta q/2)^2} \quad \text{Eq. (4)}$$

236 The scattering in the wide-angle X-ray (WAXS) data ($2.5 \text{ nm}^{-1} < q < 14.5 \text{ nm}^{-1}$)
 237 was background subtracted and then smoothed applying a spline function which
 238 minimized,

239
$$p \sum_i w_i (y_i - s(x_i))^2 + (1 - p) \int \left(\frac{d^2 s}{dx^2} \right)^2 dx \quad \text{Eq. (5)}$$

240 where a smoothing parameter p was applied on all the scattering patterns. Note, for the
 241 WAXS regime no desmearing procedure was applied, since its effect is small at wide
 242 angles and only amplifies the signal's noise.

243 Powder X-ray diffraction (XRD) data ($2\theta = 10\text{--}30^\circ$) of the samples ACS and
 244 SF20 were recorded at room temperature (ca. 25 °C) on a D8 Focus X-ray

245 diffractometer (Bruker AXS, Germany) using Cu K α ($\lambda = 0.154$ nm) as the incident X-
246 ray source. In one instance, SF20 was heated to 130 °C at the rate of 2 °C/ min, and
247 then cooled to room temperature at the same rate (sample was re-indexed as SF20_{heated})
248 before recording the XRD as described by Vermeylen, et al. (2006), with some
249 modification. Spectra are reported as $q = (4\pi/\lambda) \cdot \sin (2\theta/2)$ to complement SWAXS.
250 The spectra were baseline corrected for representation using OriginPro 8.0 (OriginLab
251 Corp, Northampton, USA).

252

253 **2.4. Statistical analysis**

254 The SWAXS fitting was performed in MATLAB R2016a (version 9.0, The
255 MathWorks, Inc., Natick, MA, USA). Analysis of variance (ANOVA) and Tukey's
256 HSD post hoc analyses were conducted using SPSS 8.0 (SPSS, Inc., Chicago, IL, USA).
257 Mean values were considered significantly different at $p < 0.05$.

258

259 **3. Results and discussion**

260 Fig. 1 shows the degree of substitution of ACS using FA. The ratio of FA to
261 ACS from 5 to 30 wt% markedly increased the degree of substitution of ACS from 0.01
262 to 0.05, with FA content ranging from 3.84 ± 1.65 % to 12.45 ± 3.42 % ($p < 0.05$),
263 respectively. It is noteworthy that the increase in the degree of substitution was
264 observed to slow down beyond SF20, where it seems that the steric zone formed by the
265 addition of excessive levels of FA deterred further conjugation. In the next section, we
266 have focused on the effects of different FA/starch ratios on the multiscale structure of
267 SF using a range of complementary techniques.

268

269

270 **3.1. Effect of FA esterification on mean hydrodynamic diameter and ζ -potential**

271 The mean hydrodynamic diameter (D_h) of the samples is shown in Fig. 2. The
272 D_h of the ACS granules (5488.16 ± 2198.47 nm) should be considered with precaution
273 as the polydispersity index was ≥ 0.4 . In comparison, the D_h of the control samples, i.e.
274 S/DMSO (600.44 ± 135.98 nm) and S/DCC (999.15 ± 160 nm) were significantly lower
275 ($p < 0.05$) (Fig. 2). It appears that the treatment of ACS with DMSO resulted in the
276 dissolution of the supramolecular ACS, thereby dramatically reducing the size by
277 almost an order of magnitude. It is quite tempting to state that blocklets were generated
278 after disruption of the lamellar arrangement in ACS granules, as D_h of S/DMSO was in
279 close agreement with the size ranges of the spheroid type blocklets (20-500 nm)
280 reported previously in literature (Pérez & Bertoft, 2010; Tang, Mitsunaga, &
281 Kawamura, 2006). However, an event of the disruption of ACS granules into the single
282 blocklets is highly unlikely during dissolution in DMSO. The DMSO is a hydrogen
283 bond acceptor and results in the complete disruption of intra- and inter-molecular
284 hydrogen bonding in starch, which might lead to lamellar melting. As such, the
285 remnants of granule disruption were possibly clusters of amylopectin.

286 The FA substitution was seen to systematically reduce the mean hydrodynamic
287 diameter (D_h) from 596.01 ± 112.17 nm (SF5) to 204.23 ± 3.16 nm (SF30) (Fig. 2).
288 This was also reflected in the corresponding ζ -potential values of the samples (Fig. 2).
289 The ζ -potential value of ACS (-3.95 ± 0.32 mV), significantly ($p < 0.05$) decreased upon
290 esterification with FA reaching -24.50 ± 6.41 mV for SF20. Hence, it appears that the
291 gradual binding of anionic FA molecules, to ACS, was responsible for the net negative
292 charge acquisition in the SF samples (SF5-SF30) at pH 7.4 (Fig. 2). It is worth noting
293 that despite such high degree of substitution, starch esters did not achieve the magnitude
294 of the negative charge of native FA molecules (ζ -potential value of FA molecule = -

295 34.36 ± 1.75 mV, data not shown). This suggests that, despite the binding of
296 considerable quantities of FA molecules to starch during formation of SF, the FA-
297 induced coverage of SF might not have been complete.

298

299 **3.2. Microstructural analysis**

300 Fig. 3 shows the CLSM images of SF samples with different degree of
301 substitution. The ACS and SF5 did not show any fluorescence (S/DMSO, S/DCC
302 provided in Fig. S1 in Supplementary Information). However, clear methylene blue-
303 induced fluorescence was observed in the SF samples (SF10-SF30), once the FA
304 content was increased. Methylene blue is a cationic dye and has a higher affinity
305 towards anionic molecules (Zhang, et al., 2011). In our case, the dye was thus well
306 adapted to interact with the anionic FA-bound domains of SF. In addition, FA groups
307 appeared to be distributed throughout the SF samples. Since DMSO allowed for the
308 dissolution of the supramolecular starch (as discussed in section 3.1), FA molecules
309 could react with the entire sub-structural moieties of starch. It was interesting to observe
310 certain small patches of fluorescence-dense regions in the SF samples (SF10-SF30,
311 indicated by arrow) (Fig. 3). These fluorescence-dense regions might be the typical
312 signature of columnar assemblies, latter formed *via* hydrogen bonding in intra-folic acid
313 derivatives (Bonazzi, et al., 1993). The appearance of these fluorescence-dense regions
314 are further discussed in section 3.4 dealing with X-scattering.

315

316 **3.3. FTIR and Short range molecular order**

317 Fig. 4 shows the FTIR spectra of FA, ACS, and SF20. The characteristic peaks
318 around 3322, 2927, and 2849 cm^{-1} can be attributed to the hydroxyl (O-H) stretching
319 vibrations of the glutamic acid moiety and NH-group of pterin ring, respectively. An

320 increase was observed in the peak at 860 cm^{-1} representing the C–H, CH_2 deformation,
321 the carbonyl group (C=O stretching) at 1695 cm^{-1} , and C–O stretching at 1149 cm^{-1} .
322 These indicate increased vibrations in the esters group, suggestive of esterification via
323 the glutamate moiety of FA. The glutamate moiety of FA houses two carboxylic acid
324 groups that in theory should be able to esterify, yielding the α - or γ - activated derivative
325 (α - and γ - carboxyl groups of FA are shown in Fig. S2 in Supplementary Information).
326 It has been reported that the γ -activated carboxyl group is more accessible in FA
327 (Eisele, et al., 2010; Singh, Gupta, Asthana, & Jain, 2008), therefore, the esterification
328 reaction might have occurred between the γ -carboxyl group of FA and the hydroxyl
329 group of starch.

330 The FTIR peaks in the range of 1200–800 cm^{-1} are considered as the fingerprint
331 region for polymer conformations and hydration of starches (van Soest, Tournois, de
332 Wit, & Vliegenthart, 1995). The peaks at 1022 cm^{-1} and 1047 cm^{-1} represent the
333 amorphous and the ordered structures (crystallinity) of starch, whereas, the peak at
334 995 cm^{-1} is related to the hydrated crystalline samples (Bello-Pérez, Ottenhof, Agama-
335 Acevedo, & Farhat, 2005; Htoon, et al., 2009; van Soest, et al., 1995). Therefore, the
336 ratios of absorbance of 1047/1022 cm^{-1} and 1022/995 cm^{-1} were calculated (peak fitting
337 is shown in Fig. S3 in Supplementary Information) and the former seemed to decrease
338 and the latter seemed to increase (Fig. 5), as the degree of substitution increased. This
339 was suggestive of a loss in crystallinity and double helical molecular order. S/DMSO,
340 S/DCC provided in Fig. S4 in Supplementary Information. Additionally, the peak at
341 947 cm^{-1} was more pronounced in S/DMSO, S/DCC and SF esters as compared to that
342 in ACS (Fig. S5 in Supplementary Information). This peak represents V-type helices.
343 As it might be expected, the introduction of FA made the peak more distinct. Such V-
344 type polymorphism relates to the left-handed single helix formation in the presence of

345 low molecular weight molecules and even solvents (DMSO in our case). The V-type
346 helices were seen to increase with an increase in the degree of substitution of FA.

347

348 **3.4. SAXS analysis on the mesoscopic structure of starch**

349 To gain further insights into the starch structure on the nanometre scale, SAXS
350 analyses were carried out to investigate the lamellar structure and the corresponding
351 quasi-long-range order within the samples. We concentrated on ACS, S/DMSO, S/DCC
352 and SF20 esters as representatives. Fig. 6 shows the solution scattering behaviour of
353 the samples, and evidence the presence of a characteristic peak positioned at ca. 0.7 nm^{-1}
354 in ACS (Fig. 6a), widely accepted to originate from the stacking order in the semi-
355 crystalline regions of starch granules, which is given by a regular lamellar repetition of
356 crystalline and amorphous regions in the radial direction of the granules. All data have
357 been fitted by applying Eq. 3 with q_{max} determining this lamellar repeat distance $d =$
358 9.10 nm , for ACS. For S/DMSO (Fig. 6b), the stacking distance increased slightly ($d =$
359 9.66 nm ; Table 1), and, the exponentially decaying diffuse scattering contribution
360 (second term in Eq. 3) was strongly increased (note, identical exposure times were
361 applied). On the other hand, the scattering peak arising from the semi-crystalline
362 regions was drastically reduced in its intensity (about four-fold). This means we can
363 estimate that roughly $\frac{3}{4}$ of the semi-crystalline volume has been impaired by DMSO. It
364 is noteworthy to mention that the remaining intact semi-crystalline regions displayed a
365 6% looser stacking density (cp. d -spacings; Table 1), but no significant loss in local
366 stacking disorder was observed (cp. HWHM; Table 1).

367 It is worth noting though, that the crystalline region was not eliminated by
368 DMSO, but only after esterification with DCC. Transformation of the hydroxyl groups
369 of amylopectin by DCC could have resulted in the depreciation of the hydrogen bonds

370 amidst starch resulting in total structural disassembly. This was observed in the total
371 absence of the characteristic ca. 9 nm peak in S/DCC and SF20 ester (Fig. 6c,d),
372 indicating that the lamellar stacking was destroyed during the esterification process
373 with the corresponding decrease in the long-range order of amylopectin.

374 For SF20 (Fig. 6d), a new peak at ca. 1.60 nm^{-1} was observed, which
375 corresponds to a characteristic repeat distance of 3.92 nm. While one diffraction peak
376 alone is not sufficient to identify any lattice type, in any case, its appearance indicates
377 a novel process of reassembly. Based on previous literature, it is tempting to assume
378 that this new molecular organization is mainly caused by the self-assembly of FA
379 tetramers via hydrogen bonds stacking into rod-like piles, which in turn fill the space
380 in a closed packed hexagonal fashion (Bonazzi, et al., 1993). These self-organisations
381 have been reported to be concentration dependent and the distance between such
382 tetramer helices ranged from 3.6 to 4.9 nm, which corresponds to the d_{10} -spacing
383 ranging from 3.1 to 4.2 nm (note, this is the strongest reflection of this columnar phase
384 with the Miller indices $h = 1$ and $k = 0$). The apparent peak at $q = 1.60 \text{ nm}^{-1}$ in our data
385 (Fig. 6d) agrees with such an interpretation.

386 Analysis of the Porod's law deviations (Fig. S6 in Supplementary Information)
387 represented by $\ln(I \cdot q^4) \sim q^2$ revealed almost no deviations of scattering at higher q
388 regimes for ACS, indicating a two-phase system with a relatively smooth electron
389 density interface. Positive deviations at higher q regimes indicating a quasi-two-phase
390 system with electron density fluctuations were observed in S/DMSO and S/DCC. This
391 observation was interesting and could be an indication of mixing up of the repeated
392 lamellar structures (crystalline and amorphous) leading to the loss of lamellar structure
393 with smooth boundaries. The SF20 ester demonstrated a slight negative deviation,
394 indicating a reduction of scattering at higher q regimes. Such reduced scattering is

395 usually thought to occur due to a transition zone. Least square fitting using Levenberg-
396 Marquardt optimisation algorithm was employed, and $\ln(I(q) \cdot q^4) = \ln(K) - \sigma^2 q^2$ (Li,
397 2013) was fitted to the negative scattering deviations ($1.2 < q < 4.0 \text{ nm}^{-2}$) from the
398 Porod's plot (Fig. S7 in Supplementary Information). Here, K is the Porod's constant
399 and σ is related to the thickness of the transition zone. The average thickness, σ , of the
400 transition zone (E) was found to be 1.3 nm, calculated as, $E = (2\pi)^{\frac{1}{2}} \sigma$. Such negative
401 deviations could be resultant from microstructural reorientation and reassembly caused
402 by FA esterification, as observed above in section 3.3.

403 Upon substitution with FA, a hydroxyl group in starch forms one ester bond
404 with FA, thus leaving possibilities for a glucose sub-unit in starch to form other ester
405 bonds with FA as well. This leaves the pterin tails free to form tetramer complexes,
406 presenting a scenario where starch polymers can be crosslinked. Such crosslinking
407 alongside helix formation (as observed in section 3.3) can also induce curling in the SF
408 chains, thereby shrinking them. On one hand, it explains the gradual reduction in D_h of
409 SF with increasing degree of substitution (Fig. 2). On the other hand, FA has been
410 reported to self-assemble into a nematic, columnar phase at lower concentrations ($c <$
411 ca. 45 wt%) (Bonazzi, et al., 1993). Kamikawa, et al. (2004) has also reported the
412 formation of non-symmetric supramolecular structures in FA derivatives (hexagonal
413 columnar phase; lattice parameter = ca. 4.7 nm). We explicate the fluorescence dense
414 regions observed in the CLSM micrographs (Fig. 3) to be columnar assemblies, latter
415 formed *via* hydrogen bonding between intra-SF derivatives with a first order lattice
416 spacing of 3.92 nm (note, the according unit cell parameter $a = 2/\sqrt{3} \cdot d_{10} = 4.5 \text{ nm}$).

417

418

419 **3.5. WAXS and XRD investigation on the molecular packing**

420 Fig. 7 shows the WAXS patterns of the samples under study. Major peaks with
421 scattering vector q were recorded for the ACS sample at 10.6, 12.0, and 12.6 nm⁻¹,
422 corresponding to 2 θ angles of ($\lambda = 0.154$ nm⁻¹) 15°, 17°, and 18° (specific for the A-type
423 monoclinic crystals), respectively. Such Bragg peaks are known to be characteristic of
424 A-type starch (Tawil, Viksø-Nielsen, Rolland-Sabaté, Colonna, & Buléon, 2011). Thus,
425 ACS sample was identified (Fig. 7a) as an A-type starch, which agrees well with
426 literature (Haaj, Thielemans, Magnin, & Boufi, 2016).

427 When ACS was treated with DMSO (S/DMSO) and DCC (S/DCC), only very
428 weak and broad reflections were observed with WAXS (Fig. 7b, c), which demonstrates
429 that also on a molecular scale, the crystalline order was destroyed, i.e. both, stacking
430 (SAXS, Fig. 6) and packing order (WAXS, Fig. 7) were broadly impaired under the
431 influence of DMSO and DCC. It is well evidenced that 1, 6- α linkages in A-type
432 starches are highly scattered and are present in both amorphous and crystalline domains.
433 These branching regions contained in the crystalline regions result in the generation of
434 weakened points that make A-type structures more prone to dissolution (Zhang, et al.,
435 2014).

436 Esterification with FA resulted in a new structural arrangement in the starch
437 (Fig. 7d). This observation is also consistent with our SAXS findings. The SF20 can be
438 characterized by major peaks with q at 4.4, 5.5, and 12.3 nm⁻¹ corresponding to 2 θ
439 angles of 6.1°, 7.7°, and 17.4°, respectively. It is noteworthy that the 6.1° peak is
440 classified as the characteristic (100)_H reflection of the B-type hexagonal crystals
441 (Huang, et al., 2014). Furthermore, the 17.4° is a characteristic B-type starch peak
442 (Tawil, et al., 2011). Additionally, the strong Bragg peaks at 7.7° is characteristic of V-
443 type starch polymorph (Zabar, Lesmes, Katz, Shimon, & Bianco-Peled, 2010). Thus,

444 a gradual transformation is observed from an A-type to a hybrid B and V-type
445 polymorph. This interpretation is supported by our FTIR observations (section 3.3) that
446 show an increase of V-type polymorphs in SF.

447 Since it was noted that the WAXS regime was noisy, XRD was used to
448 complement the information on the lattice arrangements of ACS and SF20. Use of XRD
449 complemented the WAXS data. The ACS was a typical A-type pattern with peaks at 2θ
450 = 15° , 17° , 18° and 23° (Tawil, et al., 2011). The SF20 was a hybrid B-type with peaks
451 at $2\theta = 17^\circ$, 22° , and 25° (Tawil, et al., 2011; Zhang, et al., 2014), and, V-type with
452 peaks at $2\theta = 13^\circ$ and 20° (Zabar, et al., 2010) (Fig. S8 in Supplementary information).

453 In summary, we have observed that that semi-crystalline lamellar structure of
454 the A-type starches was largely disintegrated during the DMSO treatment. This might
455 have led to a change from the smectic state of the A-type starch to a more nematic state,
456 illustrated more conveniently by the arrangement of double helices along the ac-plane
457 in Fig. 7e (left). When FA was introduced into the system, FA was esterified to the
458 starch backbone. This led to an isotropic gel-like arrangement. When the SF ester
459 derivative was lyophilized, FA molecules might have acted as nuclei for crystallization,
460 and the structure reoriented into a B-type polymorph, illustrated more conveniently by
461 the arrangement of the double helices along the ab-plane in Fig. 7e (right). Note, that
462 the lattice spacing of this B-type arrangement was much larger than the ones in A-type
463 starches and common pure B-type starches. The FA attached to the starch backbone has
464 a bulky, overhanging pterin tail. Thus, during crystallization, it seems plausible for SF
465 esters to exert a space filling effect. Existence of 36 molecules of water in the crystal
466 structure of B-type starches has been suggested in literature (Imberty & Perez, 1988).
467 The water molecules are positioned between the wide channels of the double helices
468 and occupy greater than a quarter of the central cavity of the unit cell. The B-type

469 polymorphs having such positioning of water in the channels does cast doubt on our
470 hypothesis. Other arguments outlined by Vermeylen, et al. (2006) suggested that the B-
471 type crystals get irreversibly converted into A-type after heating for longer periods of
472 time. Accordingly, Fig S8b, c in the Supplementary information presents the XRD
473 diffractograms of the samples SF20 and SF20_{heated}. Our experiments did not appear to
474 corroborate the noticeable B- to A-type polymorphic phase transitions as observed by
475 Vermeylen, et al. (2006), suggesting that the B-polymorph cell (SF20) were possibly
476 constructed by FA occupying the central cavity of the unit cell unlike the case of
477 common B-type starches. However, further study is required to fully understand the
478 role of water in these hybrid B- and V-type polymorphs of SF.

479

480 **4. Conclusion**

481 Using an optimal combination of complementary scattering (light, X-ray),
482 spectroscopic (FTIR), electrophoretic (ζ -potential), and imaging (CLSM) techniques,
483 we observed that FA esterification greatly influences the colloidal properties as well as
484 the short and long range molecular structure of SF ester derivatives. SF acquired a net
485 negative charge when crosslinked with FA. Such crosslinking also led to the systematic
486 reduction in the mean hydrodynamic diameter with the increase in the degree of
487 substitution. Further, the starch structure was strongly compromised, i.e., the common
488 lamellar stacking arrangement was lost, in which FA assisted in the altered self-
489 assembly of SF. Observations of the packing order revealed a reorientation of ACS
490 from the typical A-type arrangement to hybrid B and V-type polymorphs. This study
491 has demonstrated for the first time, the multiscale structural alterations that occurred in
492 amylopectin corn starch mediated by esterification with folic acid. Although
493 preliminary, the present results may provide new design strategies for developing

494 functional starch-folic acid esters with tunable size and charge, capable of
495 supramolecular association and molecular recognition. Further work is in progress
496 where the structural aspects are further evaluated using electron microscopy and nuclear
497 magnetic resonance (NMR) techniques and functional properties of these starch-folate
498 esters are assessed in various *in vitro* physiological conditions, in order to design smart,
499 targeted delivery systems for carrying pharmaceuticals and nutraceuticals.

500

501 **Acknowledgements**

502 PKB is a Commonwealth Scholar, funded by the UK government. Dr. Sally
503 Boxal (Faculty of Biological Sciences, University of Leeds), Dr. Stephen Gorman
504 (School of Chemistry, University of Leeds) and Mr. Prakash Kurmi (Sophisticated
505 Analytical Instrumentation Centre, Tezpur University) are kindly acknowledged for
506 their technical support in CLSM, FTIR and XRD, respectively.

507

508

509 **References**

- 510 Adal, E., Sadeghpour, A., Connell, S., Rappolt, M., Ibanoglu, E., & Sarkar, A. (2017).
511 Heteroprotein complex formation of bovine lactoferrin and pea protein isolate:
512 A multiscale structural analysis. *Biomacromolecules*, 18(2), 625-635.
- 513 Ahmad, M. Z., Akhter, S., Anwar, M., & Ahmad, F. J. (2012). Assam Bora rice starch
514 based biocompatible mucoadhesive microsphere for targeted delivery of 5-
515 fluorouracil in colorectal cancer. *Molecular pharmaceutics*, 9(11), 2986-2994.
- 516 Antony, A. C. (1996). Folate receptors. *Annual Review of Nutrition*, 16(1), 501-521.
- 517 Baier, G., Baumann, D., Siebert, J. r. M., Musyanovych, A., Mailänder, V., &
518 Landfester, K. (2012). Suppressing unspecific cell uptake for targeted delivery
519 using hydroxyethyl starch nanocapsules. *Biomacromolecules*, 13(9), 2704-
520 2715.
- 521 Bello-Pérez, L. A., Ottenhof, M. A., Agama-Acevedo, E., & Farhat, I. A. (2005). Effect
522 of storage time on the retrogradation of banana starch extrudate. *Journal of
523 Agricultural and Food Chemistry*, 53(4), 1081-1086.
- 524 Bonazzi, S., DeMoraes, M. M., Gottarelli, G., Mariani, P., & Spada, G. P. (1993). Self-
525 assembly and liquid crystal formation of folic acid salts. *Angewandte Chemie
526 International Edition in English*, 32(2), 248-250.
- 527 Borah, P. K., Deka, S. C., & Duary, R. K. (2017). Effect of repeated cycled
528 crystallization on digestibility and molecular structure of glutinous Bora rice
529 starch. *Food Chemistry*, 223(Supplement C), 31-39.
- 530 Ciuchi, F., Di Nicola, G., Franz, H., Gottarelli, G., Mariani, P., Ponzi Bossi, M. G., &
531 Spada, G. P. (1994). Self-recognition and self-assembly of folic acid salts:
532 Columnar liquid crystalline polymorphism and the column growth process.
533 *Journal of the American Chemical Society*, 116(16), 7064-7071.

- 534 Du, Y.-Z., Weng, Q., Yuan, H., & Hu, F.-Q. (2010). Synthesis and antitumor activity
535 of stearate-g-dextran micelles for intracellular Doxorubicin delivery. *ACS*
536 *Nano*, 4(11), 6894-6902.
- 537 Eisele, K., Gropeanu, R., Musante, A., Glasser, G., Li, C., Muellen, K., & Weil, T.
538 (2010). Tailored albumin-based copolymers for receptor-mediated delivery of
539 Perylenediimide guest molecules. *Macromolecular Rapid Communications*,
540 31(17), 1501-1508.
- 541 Haaj, S. B., Thielemans, W., Magnin, A., & Boufi, S. (2016). Starch nanocrystals and
542 starch nanoparticles from waxy maize as nanoreinforcement: A comparative
543 study. *Carbohydrate Polymers*, 143, 310-317.
- 544 Htoon, A., Shrestha, A. K., Flanagan, B. M., Lopez-Rubio, A., Bird, A. R., Gilbert, E.
545 P., & Gidley, M. J. (2009). Effects of processing high amylose maize starches
546 under controlled conditions on structural organisation and amylase digestibility.
547 *Carbohydrate Polymers*, 75(2), 236-245.
- 548 Huang, H.-K., Sheu, H.-S., Chuang, W.-T., Jeng, U. S., Su, A.-C., Wu, W.-R., Liao,
549 K.-F., Chen, C.-Y., Chang, S.-Y., & Lai, H.-M. (2014). Correlated changes in
550 structure and viscosity during gelatinization and gelation of tapioca starch
551 granules. *International Union of Crystallography Journal*, 1(Pt 6), 418-428.
- 552 Imberty, A., & Perez, S. (1988). A revisit to the three-dimensional structure of B-type
553 starch. *Biopolymers*, 27(8), 1205-1221.
- 554 Kamen, B. A., & Capdevila, A. (1986). Receptor-mediated folate accumulation is
555 regulated by the cellular folate content. *Proceedings of the National Academy*
556 *of Sciences of the United States of America*, 83(16), 5983-5987.

- 557 Kamikawa, Y., Nishii, M., & Kato, T. (2004). Self-assembly of folic acid derivatives:
558 Induction of supramolecular chirality by hierarchical chiral structures.
559 *Chemistry – A European Journal*, 10(23), 5942-5951.
- 560 Kim, J.-Y., Seo, T.-R., & Lim, S.-T. (2013). Preparation of aqueous dispersion of β -
561 carotene nano-composites through complex formation with starch dextrin. *Food*
562 *Hydrocolloids*, 33(2), 256-263.
- 563 Li, J., Shin, G. H., Lee, I. W., Chen, X., & Park, H. J. (2016). Soluble starch formulated
564 nanocomposite increases water solubility and stability of curcumin. *Food*
565 *Hydrocolloids*, 56, 41-49.
- 566 Li, Z.-H. (2013). A program for SAXS data processing and analysis. *Chinese Physics*
567 C, 37(10), 108002.
- 568 Morrison, W. R., & Laignelet, B. (1983). An improved colorimetric procedure for
569 determining apparent and total amylose in cereal and other starches. *Journal of*
570 *Cereal Science*, 1(1), 9-20.
- 571 Patil-Sen, Y., Sadeghpour, A., Rappolt, M., & Kulkarni, C. V. (2016). Facile
572 preparation of internally self-assembled lipid particles stabilized by carbon
573 nanotubes. (108), e53489.
- 574 Pérez, S., & Bertoft, E. (2010). The molecular structures of starch components and their
575 contribution to the architecture of starch granules: A comprehensive review.
576 *Starch - Stärke*, 62(8), 389-420.
- 577 Saikia, C., Das, M. K., Ramteke, A., & Maji, T. K. (2017). Evaluation of folic acid
578 tagged aminated starch/ZnO coated iron oxide nanoparticles as targeted
579 curcumin delivery system. *Carbohydrate Polymers*, 157(Supplement C), 391-
580 399.

- 581 Shalviri, A., Raval, G., Prasad, P., Chan, C., Liu, Q., Heerklotz, H., Rauth, A. M., &
582 Wu, X. Y. (2012). pH-Dependent doxorubicin release from terpolymer of
583 starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming
584 multi-drug resistance in human breast cancer cells. *European Journal of*
585 *Pharmaceutics and Biopharmaceutics*, 82(3), 587-597.
- 586 Singh, P., Gupta, U., Asthana, A., & Jain, N. K. (2008). Folate and
587 folate-PEG-PAMAM dendrimers: Synthesis, characterization, and targeted
588 anticancer drug delivery potential in tumor bearing mice. *Bioconjugate*
589 *Chemistry*, 19(11), 2239-2252.
- 590 Tan, I., Flanagan, B. M., Halley, P. J., Whittaker, A. K., & Gidley, M. J. (2007). A
591 method for estimating the nature and relative proportions of amorphous, single,
592 and double-helical components in starch granules by ^{13}C CP/MAS NMR.
593 *Biomacromolecules*, 8(3), 885-891.
- 594 Tang, H., Mitsunaga, T., & Kawamura, Y. (2006). Molecular arrangement in blocklets
595 and starch granule architecture. *Carbohydrate Polymers*, 63(4), 555-560.
- 596 Tawil, G., Viksø-Nielsen, A., Rolland-Sabaté, A., Colonna, P., & Buléon, A. (2011).
597 In depth study of a new highly efficient raw starch hydrolyzing α -amylase from
598 Rhizomucor sp. *Biomacromolecules*, 12(1), 34-42.
- 599 van Soest, J. J. G., Tournois, H., de Wit, D., & Vliegenthart, J. F. G. (1995). Short-
600 range structure in (partially) crystalline potato starch determined with
601 attenuated total reflectance Fourier-transform IR spectroscopy. *Carbohydrate*
602 *Research*, 279(Supplement C), 201-214.
- 603 Vermeylen, R., Derycke, V., Delcour, J. A., Goderis, B., Reynaers, H., & Koch, M. H.
604 J. (2006). Structural transformations during gelatinization of starches in limited

- 605 water: Combined wide- and small-angle X-ray scattering study.
- 606 *Biomacromolecules*, 7(4), 1231-1238.
- 607 Xiao, S., Tong, C., Liu, X., Yu, D., Liu, Q., Xue, C., Tang, D., & Zhao, L. (2006).
- 608 Preparation of folate-conjugated starch nanoparticles and its application to
- 609 tumor-targeted drug delivery vector. *Chinese Science Bulletin*, 51(14), 1693-
- 610 1697.
- 611 Yuryev, V. P., Krivandin, A. V., Kiseleva, V. I., Wasserman, L. A., Genkina, N. K.,
- 612 Fornal, J., Blaszcak, W., & Schiraldi, A. (2004). Structural parameters of
- 613 amylopectin clusters and semi-crystalline growth rings in wheat starches with
- 614 different amylose content. *Carbohydrate Research*, 339(16), 2683-2691.
- 615 Zabar, S., Lesmes, U., Katz, I., Shimoni, E., & Bianco-Peled, H. (2010). Structural
- 616 characterization of amylose-long chain fatty acid complexes produced via the
- 617 acidification method. *Food Hydrocolloids*, 24(4), 347-357.
- 618 Zhang, B., Huang, Q., Luo, F.-x., Fu, X., Jiang, H., & Jane, J.-l. (2011). Effects of
- 619 octenylsuccinylation on the structure and properties of high-amylose maize
- 620 starch. *Carbohydrate Polymers*, 84(4), 1276-1281.
- 621 Zhang, B., Zhao, Y., Li, X., Li, L., Xie, F., & Chen, L. (2014). Supramolecular
- 622 structural changes of waxy and high-amylose cornstarches heated in abundant
- 623 water. *Food Hydrocolloids*, 35, 700-709.
- 624 Zhang, H.-z., Li, X.-m., Gao, F.-p., Liu, L.-r., Zhou, Z.-m., & Zhang, Q.-q. (2010).
- 625 Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted
- 626 drug delivery. *Drug Delivery*, 17(1), 48-57.
- 627 Zobel, H. (1988). Molecules to granules: a comprehensive starch review. *Starch-Stärke*,
- 628 40(2), 44-50.
- 629