
eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk

Universities of Leeds, Sheffield and York

Deposited via The University of Sheffield.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/128368/

Version: Accepted Version

Article:

Yang, T.Y., Dehghantanha, A., Choo, K.-K.R. et al. (2017) Forensic Investigation of P2P
Cloud Storage: BitTorrent Sync as a Case Study. Computers & Electrical Engineering, 58.
pp. 350-363. ISSN: 0045-7906

https://doi.org/10.1016/j.compeleceng.2016.08.020

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1016/j.compeleceng.2016.08.020
https://eprints.whiterose.ac.uk/id/eprint/128368/
https://eprints.whiterose.ac.uk/

Note: This is authors accepted copy – for final article please refer to : Teing, Y.-Y., Ali, D., Choo, K.-K. R., &
Yang, M. (2016). Forensic investigation of P2P cloud storage services and backbone for IoT networks: BitTorrent
Sync as a case study. Computers and Electrical Engineering, (2016).
http://doi.org/http://dx.doi.org/10.1016/j.compeleceng.2016.08.020

Forensic Investigation of P2P Cloud Storage: BitTorrent Sync as a Case Study

Teing Yee Yang
1

, Ali Dehghantanha
2

, Kim-Kwang Raymond Choo
3

, Zaiton Muda
1

1 Department of Computer Science, Faculty of Computer Science and Information Technology, Universiti Putra

Malaysia, UPM Serdang, Selangor, Malaysia

2 The School of Computing, Science & Engineering, Newton Building, University of Salford, Salford, Greater

Manchester, United Kingdom

3 Information Assurance Research Group, University of South Australia, Adelaide, South Australia, Australia.

Abstract

Cloud computing has been regarded as the technology enabler for the Internet of Things (IoT). To ensure the most

effective collection of IoT-based evidence, it is vital for forensic practitioners to possess a contemporary

understanding of the artefacts from different cloud services. In this paper, we seek to determine the data remnants

from the use of BitTorrent Sync version 2.0. Findings from our research using mobile and computer devices running

Windows 8.1, Mac OS X Mavericks 10.9.5, Ubuntu 14.04.1 LTS, iOS 7.1.2, and Android KitKat 4.4.4 suggested

that artefacts relating to the installation, uninstallation, log-in, log-off, and file synchronisation could be recovered,

which are potential sources of IoT forensics. We also present a forensically sound investigation methodology for

BitTorrent Sync.

Keywords: Internet of Things Forensics; Cloud Forensics; P2P Cloud Investigation; Computer Forensics; Mobile
Forensics; Bittorrent.

1. Introduction

The Internet of things (IoT) has been the focus of researchers and practitioners in recent years, due to the
increasing popularity of internet connected devices. Gartner (2014a) forecasted the number of IoT devices to reach
26 billion by 2019. Similarly, the International Data Corporation (IDC) (2014) predicted that the IoT devices to hit
30 billion by 2020, amounting to USD3.04 trillion. Since the IoT devices are equipped with low storage and
computational capability (Zawoad, 2015), the IDC (2014a) predicted that 90% of all IoT data will be hosted on
cloud service provider platforms by 2019 as cloud computing reduces the complexity of supporting IoT data
blending.

Although cloud computing is often being credited for enabling promising and cost-competitive storage
solutions for the IoT, it is subject to potential abuse by both traditional and cyber miscreants in the meantime (Choo,
2008). Potential crimes related to cloud computing include information theft (Choo, 2010; Symantec, 2011; Duke,
2014), malicious software distribution (Shado, 2014), denial of service attacks (DDoS) (Lemos, 2010; Peterson,
2013), industrial espionage, copyright infringement, and storage of illegal materials (e.g. child exploitation
materials, and terrorism materials).

 Since a public cloud storage infrastructure may constitute cloud servers located in one or more data centers
and jurisdictions, the forensic community is often subject to various legal challenges (Taylor et al., 2011; Chung et
al 2012; Grispos, Storer, and Glisson, 2013; Hooper, Martini, and Choo, 2013; NIST, 2014; Quick et al., 2014a;
Martini and Choo 2014a). Even in the event that the evidence could be identified, it would not be trivial to seize the
storage media (server) as it is likely to hold data belonging to other users (e.g. in a multi-tenancy cloud environment)
(ENISA, 2012).

Due to the rapid advancement of the IoT, it is imperative that forensic examiners are cognisant of the
different types of cloud products as well as an up-to-date understanding of the potential artefacts that could
potentially be recovered to inform the IoT investigations (Hale, 2013; Quick and Choo, 2013a, 2013b, 2014; Martini
and Choo, 2014c; Quick et al., 2014). Depending on the cloud storage solution in use, the client device can often
provide potential for alternative methods for recovery of the cloud artefacts (Farina et al., 2014; Scanlon et al.,
2014a; Scanlon et al., 2014b; Scanlon et al., 2015). Hence, in this paper, we seek to identify potential terrestrial
artefacts that may remain after the use of the newer BitTorrent Sync version 2.0. Similar to the approaches of Quick
and Choo (2013a, 2013b, 2014), we attempt to answer the following questions in this research:

1. Does the act of file download or file upload using BitTorrent Sync cloud storage alter the file contents and
timestamps of the original files?
2. What data can be found on a computer hard drive and memory after a user has used the BitTorrent Sync
client application and web application, and the location of data remnants on Windows 8.1, Ubuntu 14.04.1 LTS
(Ubuntu), and Mac OS X Mavericks 10.9.5 (Mac OS)?
3. What data remains on an Apple iPhone 4 running iOS version 7.1.2 (iOS) and HTC One X running
Android Kit Kat 4.4.4 (Android) mobile devices after a user has used the BitTorrent Sync client apps?
4. What data can be seen in network traffic?

We regard the contribution of this paper to be two-fold:
1. To provide the forensic community an in-depth understanding of the types of terrestrial artefacts that are

likely to remain after the use of the newer BitTorrent Sync cloud applications.
2. An operational methodology to guide forensic practitioners in examining the latest BitTorrent Sync

applications.

This paper is organised as follows. The background is provided in Section 2. In Section 3, we provide an overview
of the research methodology including the cloud investigative framework used and the experiment setup. In Section
4 and 5, we detail the findings from the technical experiments involving the personal computers and mobile devices.
Section 6 discusses the network artefacts. We outline our proposed operational methodology for BitTorrent Sync
forensics in Section 7. Finally, we conclude the paper and outline potential future research topics in Section 8.

2. Background

BitTorrent Sync is a product built by BitTorrent Inc., the creator of the BitTorrent P2P file sharing protocol
(BitTorrent Inc., 2015b). BitTorrent Sync allows file hosting and sharing across multiple platforms such as
Windows, Mac OS, Linux, Android, iOS, and Windows mobile OS (BitTorrent, 2014). Other than the free space on
a sync device, the fully p2p-based architecture does not limit the amount of data that can be synced. Hence, it is not
surprising that it becomes a popular choice for file replication and synchronisation. For example, in less than two
years after its release, the number of BitTorrent Sync users is reportedly over 10 million and the application had
transferred over 80 Petabytes of data as of August 2014 (Pounds, 2014). The users are required to install the client
application to use the service. For the Linux client application, the service is only accessible through
‘http://localhost:8888’ and the web interface is password protected.

2.1 Device and folder sharing

BitTorrent Sync users are required to create a private identity for the first device running BitTorrent Sync
2.0 or later. The identity holds the user name (provided by the user), device name, identity-specific certificate
fingerprint, and a 33-digit key created using a public key infrastructure. The key contains the folder permissions
used to establish connections with other devices and for licensing purposes (BitTorrent Inc., 2015f). Only a private
identity is required for all connected/linked devices.

When a user adds a new folder to BitTorrent Sync, the user automatically becomes the owner of that folder.
Other than devices sharing the same private identity, BitTorrent Sync permits the users to share folders with a device
that has a different identity. The folder sharing is facilitated by a sync link (introduced in BitTorrent Sync version
1.4), which can be shared as a HTTPS link or QR code and contains the following details:

 Shared folder name (prefixed with ‘f=’),
 an approximation of the folder size in exponential format (prefixed with ‘sz=’),
 a 20-byte folder ID in base32 encoding (prefixed with ‘s=’),
 a temporary key (formerly known as ‘one-time secret’) in base32 encoding (prefixed with ‘i=’),
 link expiration time (prefixed with ‘e=’),
 and a base32-encoded peer ID (prefixed with ‘p=’) used to identify which of 2 peers is going to take a role

of a server during key negotiation (BitTorrent Inc., 2015d).

BitTorrent Sync allows the users to configure the expiry time for the sync link (three days by default), a limit on the
number of uses of the sync link, as well as the authorisation settings during folder sharing (BitTorrent Inc., 2015e).

When a sync link is shared from host to guest, the guest responds the host with the temporary key
(contained within the sync link shared by the host) followed by a request containing the locally generated X.509
certificate (which contains the public key fingerprint, owner's name, and device name), allowing the host to validate
the identity of the requester (guest) before sending the actual master key.

A standard master key constitutes capital letters from A to Z and numbers from 2 to 7; the first letter of a
key represents its type (See Table 1) while the remaining is a 20-byte sequence (usually 32 symbols) in base32
format, with the exception of the ‘Read-Only’ (RO) key which is twice as long (65 symbols), holding an additional
data encryption/decryption key (BitTorrent Inc., 2015c). Folders shared with a ‘Read & Write’ (RW) permission
provide the peers the ability to add new files/folders or modify/remove the existing ones, and synchronise the
changes to all the peer devices. On the other hand, modifications made to the shared folders with a RO permission
will not be synchronised to other corresponding devices. All the BitTorrent Sync keys are generated using ED25519
and SHA3 cryptographic algorithms (BitTorrent Inc., 2015a).

Table 1: Key types (BitTorrent Inc., 2015c).

Key type Uses

A Standard key with read-write permission.

B Read-only key derived from the ‘A’-type key.

C Time-limited read-only one-time key derived from the ‘A’ or ‘B’-type key.

D Standard key with read-write permission capable to seed data to encrypted nodes.

E Read-only key derived from the ‘D’-type key which provides the ability to get and decrypt data from encrypted nodes (nodes

with ‘D’ and ‘F’ types of key).
F Encrypted key derived from the ‘E’ or ‘F’-type key which provides the ability to receive, store and seed data, but cannot decrypt

filenames or content.

R Obsolete Read-only key generated by pre-1.0 version. This key is still in use for compatibility purposes.

2.2 Data transfers

To initiate download of a shared folder, the guest must first download the metainfo (.TORRENT) file from
the host. The guest then interprets the metainfo file for the folder metadata as well as tracker URL (or IP address and
port combinations), and uses the details to locate peers actively participating in the particular swarm1 or sharing the
same share ID2 through one or more methods as outlined in Table 2 (BitTorrent Inc., 2008; BitTorrent Inc., 2015a).
Once peers have established a connection, they exchange peer lists to augment the peer list supplied by the tracker
through a process known as peer exchange (Hunt, 2014). The data transfers are facilitated by the BitTorrent
protocol, which uses a combination of TCP/IP and Micro Transport Protocol (µTP) as its transport protocol. All
traffic between devices is encrypted with AES-128 in counter mode, using a unique session key derived from the
RO key (BitTorrent Inc., 2015b).

Table 2: Peer discovery methods.

Peer discovery method Description

Use relay server when required This option allows BitTorrent Sync to use the BitTorrent's relay server as an intermediary for connection
with peers in the scenario when direct connection is not possible as a result of sophisticated NATs,
firewalls, proxy servers, etc.

Use tracker server A tracker server holds a list of share IDs as well as network information (e.g., IP addresses and port
numbers) needed for peers establish direct connections with other peers. Peers with internal subnet
matches will be directed to connect using LAN.

Search Local Area Network

(LAN)

When LAN discovery is enabled, BitTorrent Sync sends multicast packets (which contains the
requesting share IDs as well as IP address and port number combinations of the requesting nodes) across
the local network to locate nodes sharing the same share IDs.

Search Distributed Hash Table

(DHT) network

This option enables BitTorrent Sync to connect to a BitTorrent/uTorrent's DHT network and
subsequently uses the DHT table to locate peers that share the same share IDs, eliminating the need for a
tracker server.

Predefined hosts This option allows peers to be contacted directly through a list of explicitly defined IP address and port
combinations.

During synchronisation, each data is broken down into small pieces prior to transmission. In order to
achieve minimal bandwidth usage, only pieces containing changes are transmitted. The folder contents are compared
between all peers from time to time to determine changes and the sync files are replaced by the newest version held
by any peer (BitTorrent Inc., 2015b). The overwritten or deleted files will be kept in the folder’s archive for 30 days
by default, but the duration can be modified by the user.

2.3 Related Work

Scholars have noted the legal challenges involving cross-jurisdictional cloud forensic investigations
(Mason and George, 2011; Taylor et al, 2012; Hooper et al., 2013), as well as the complexity and research
opportunities in relation to cloud forensic investigations (Dykstra and Sherman, 2011; Birk et al., 2011; Ruan et al.
2011, Dominik, 2011; Damshenas et al., 2012; Daryabar et al., 2013; Simou, 2014). Research with a technical focus
generally aims to address particular challenges associated with the on-device and remote collections of data artefacts
from a decentralised cloud infrastructure (Zafarullah et al., 2011; Marty, 2011; Martini and Choo, 2012; Martini and
Choo, 2013; Quick et al., 2014; Dykstra and Sherman, 2013; Zawoad et al., 2013; Gebhardt

and Reiser, 2013;

Martini and Choo 2014c). The studies of Chung et al. (2012), Quick and Choo (2013a, 2013b, 2014), Hale (2013),
Thethi and Keana (2014), Oestreicher (2014), Farina et al. (2014), Shariati, Dehghantanha, and Choo (2015),
Shariati, Dehghantanha, Martini, and Choo (2015), and Martini, Do, and Choo (2015) found that metadata and other
data artefacts could potentially be recovered from client devices used to access cloud services, even when the data
has been erased using eraser software, such as Eraser and CCleaner (Quick and Choo, 2013a, 2013b, 2014). Quick
and Choo (2013c) also determined that the act of downloading data from cloud counterparts using a web or client

1 A swarm a collection of peers sharing the same torrent file (BitTorrent Inc., 2014).

2 A share ID is the SHA1 of the master key used by a share folder (Scanlon et al., 2014a).

application does not modify the hash of the data of relevance despite changes in file creation/modification times.
The effectiveness of commercial forensic tools (e.g. Guidance EnCase, the Forensics Tool Kit (FTK), Memoryze,
and AWS Export) in acquiring evidence remotely from the Amazon EC2 servers has also been studied (Dykstra and
Sherman, 2012).

A number of cloud-focused forensic frameworks and investigative guidelines have also been proposed in
the literature. The first cloud forensic framework was proposed by Martini and Choo (2012), which was used to
investigate ownCloud (Martini and Choo, 2013), Amazon EC2 (Thethi and Keana, 2014), VMWare (Martini and
Choo 2014c), XtreemFS (Martini and Choo 2014b), Ubuntu One (Shariati, Dehghantanha, Martini and Choo 2015),
SugarSync (Shariati, Dehghantanha and Choo 2015), etc. The four-stage framework was subsequently extended and
validated using SkyDrive, Dropbox, Google Drive and ownCloud (Quick et al. 2014). Chung et al. (2012) proposed
a cloud investigation guideline, which was used to investigate Amazon S3, Google Docs, and Evernote on
Windows, Mac OS, iOS, and Android devices.

In to the context of our study, Farina et al. (2014) examined the potential of recovering forensic artefacts
from computers (running Windows XP, Windows 7, and Linux Debian) and network capture involving the use of
BitTorrent Sync (version 1.1.82), and Scanlon et al. (2014a, 2014b, 2015) presented an investigative framework for
the remote collection of evidence from a decentralised file synchronisation network. Since a redesigned folder
sharing workflow has been introduced in the newer version of BitTorrent Sync (from version 1.4 onwards;
BitTorrent, 2015d), there is a need to develop an up-to-date understanding of the artefacts from the newer BitTorrent
Sync applications.

3. Research Methodology

In this research, we adopt the cloud investigative framework proposed by Martini and Choo (2012) – see
Figure 1. As explained by Martini and Choo (2012), a key characteristic of their framework is the iteration
introduced in the Examination and Analysis phase. This allows one or more simultaneous iteration(s) of the
framework with evidence source identification and preservation via the associated parties (i.e., CSP, peer node users
when undertaking p2p storage cloud investigation, etc.) when evidence of cloud computing use is subsequently
discovered on a client device. We demonstrate the utility in the context of this research as follows:

1. Evidence source identification and preservation. In the first phase, the physical hardware of interest was
identified, which contained the virtual disk files (VMDK) and virtual memory files (VMEM) in each VM
folder. The mobile devices used in this research were a HTC One X running Android KitKat 4.4.4 and an
Apple iPhone 4 running on iOS version 7.1.2. A forensic copy was created for each VMDK and VMEM
file in E01 container and raw image file (.dd) formats respectively. For the mobile devices, we made a bit-
for-bit image of the internal storage and subsequently converted the images to the E01 container format. An
MD5 and SHA1 hash was calculated for each original file and subsequently verified for each copy.

2. Collection. In this phase, we collected data containing the details needed for analysis from the forensic
images (see Section 4). Similar to the earlier evidence source identification and preservation phase, an
MD5 and SHA1 hash was calculated for each original file and subsequently verified for each collected or
exported file.

3. Examination and Analysis. This phase is concerned with examination and analysis of data at rest, in motion,
or in execution collected in our research. The search terms were determined from the filenames observed,
text from within the Enron data files, as well the BitTorrent Sync instances created during the research.
These included:

 ‘bittorrent’, ‘BitTorrent Sync’, ‘torrent’, ‘btsync’
 ‘enron3111’, ‘3111’, ‘Enron’
 identity names such as ‘host’ and ‘guest’
 Sync links, share IDs, peer IDs, folder IDs, certificate fingerprints, temporary Keys, and other IDs

and keys relevant to BitTorrent Sync.
In this research, we started by analysing the guest VMs/devices. Afterwards, we iterated the framework
with evidence source identification, preservation, and analysis via the host/peer VMware Workstations
(VMs) using the BitTorrent Sync artefacts recovered from the guest VMs or devices.

4. Reporting and presentation. We reported our findings, as described in this paper.

Figure 1: Cloud forensics framework of Martini and Choo (2012).

3.1 Experimental Setup

Two VMs were created for each operating system (OS) investigated to represent the host and the guest
workstations. As explained by Quick and Choo (2013a, 2013b, 2014), using physical hardware to undertake setup,
erasing, copying, and re-installing would have been an onerous exercise. Moreover, a virtual machine allows room
for error by enabling the test environment to be reverted to a restore point if the results are unfavourable. The hard
drive and RAM were configured with minimal space in order to reduce the time required to analyse the considerable
amounts of snapshots. A total of 24 VM snapshots was made of each workstation representing 24 real life scenarios
of using BitTorrent Sync (e.g., install, access, upload, download, view, delete, and uninstall) on various operating
systems - see Table 3. For the purpose of computer forensic analysis, the data sharing was only limited to the default
peer discovery setting (by having the ‘Use relay server when required’, ‘Use tracker server’, and ‘Search LAN’
options checked) with a Read and Write permission.

Table 3: Configurations of virtual machines for BitTorrent Sync client application analysis on Windows 8.1.

OS Host VM/Guest VM VM details

Windows 8.1

(client

application)

Base-VM

1.0, 2.0, 3.0
A base VM snapshot was prepared for each OS as a control media to determine changes
during each experiment with the following configurations:
• Windows 8.1 Professional (ServicePack 1, 64-bit, build 9600) with 2GB RAM and 20GB
hard disk (1.0).
• Ubuntu 14.04.1 LTS with 1GB RAM and 20GB hard disk (2.0).
• Mac OS X Mavericks 10.9.5 with 1GB RAM and 60GB hard disk (3.0).

Install-VM
1.1, 2.1, 3.1

By duplicating a copy of the base snapshot (1.0, 2.0, and 3.0), we accessed the BitTorrent
Sync website (https://www.getsync.com/) to download and subsequently install BitTorrent
Sync version 2.0.93 (the latest version at the time of this research. A separate identity was
created for each device/VM.

Access-VM

1.1.1, 2.1.1, 3.1.1
A copy of install snapshot (1.1, 2.1, and 3.1) was made to examine the process of logging in
the BitTorrent Sync client application.

Upload/Download-

VM
1.1.2, 2.1.2, 3.1.2
(Synchronise)

A second copy of the install snapshot (1.1, 2.1, and 3.1) was made to examine the process of
syncing files using the default peer discovery settings. The Enron dataset files were copied
from the host machine to C:\Sync\, /home/[User Profile]/Sync/, and /Users/[User
Profile]/Sync/ of the Windows, Ubuntu, and Mac OS host workstations. A sync link was then
generated for the sync directory and subsequently used to link with the guest workstaion. The
creation, modified, and last accessed times of each file were noted to detect changes in
timestamps after transferring files.

Delete-VM
1.1.2.1, 2.1.2.1.
3.1.2.1 (Synchronise)

A copy of the upload/download snapshot (1.1.2, 2.1.2, 3.1.2) was created to assess the process
of deleting the uploaded files on the host workstations and determined changes to the guest
workstations and vice versa.

Disconnect-VM
1.1.2.2, 2.1.2.2,
3.1.2.2

A second copy of the upload/download snapshot (1.1.2, 2.1.2, 3.1.2) was made to examine the
process of disconnecting a shared folder. The option ‘Delete files from this device’ option was
selected to remove the synced files completely from the host workstations.

Uninstall-VM/

1.1.2.3, 2.1.2.3,
3.1.2.3

A final copy of the upload/download snapshot (3.1.1) was made to examine the process of
uninstalling the BitTorrent Sync client application. Since BitTorrent Sync does not come with
an uninstaller, the uninstallation was undertaken using the Windows ‘Programs and Features’
function in the Control Panel; the commands “find / -name ".sync" -type d -exec rm -rf {} \”
and “find / -name "BitTorrent Sync" -type f -exec rm -rf {} \” on the Ubuntu OS workstation.
manual dragging of the BitTorrent Sync folders of relevance to the Trash directory on the Mac
OS workstation.

https://www.getsync.com/

Unlink-VM

1.1.3, 2.1.3, 3.1.3

A final copy of the install snapshots (1.1, 2.1, and 3.1) was made to investigate the process of
unlinking an identity on the desktop clients investigated.

Similar to the approaches of Quick and Choo (2013a, 2013b, 2014) and Shariati et al. (2015a, 2015b), the
3111th email messages of the UC Berkeley Enron email dataset (downloaded from
http://bailando.sims.berkeley.edu/enron_email.html on 24th of September 2014) were used to create the sample files
and saved in .RTF, .TXT, .DOCX, .JPG (print screen), .ZIP, and .PDF formats. Each VM was shut down and a
snapshot was taken of the VM after each experiment occurred, allowing the VM to be reverted back to this state
when needed. The RAM captures were taken immediately after each experiment, just prior to shutdown in our
research. The physical memory dumps were instantiated by the Virtual Memory (.VMEM) files (created by
VMware) to represent captures of memory dumps which are not being adulterated with the use of memory
acquisition software (Quick and Choo, 2013a; 2013b). A similar consideration was made with respect to
running/hosting physical acquisition and network capture software on the VMs. Hence, we instantiated the physical
hard drive with the Virtual Machine Disk (.VMDK) files (created by VMware) and hosted the packet capture
software on the local host.

In order to undertake analysis into the mobile apps, we prepared a default factory restored iPhone 4 running
iOS 7.1.2 and a HTC One X running Android KitKat 4.4.4. We then jailbroke/rooted both the devices using Pangu8
v1.1 and Odin3 v.185 to enable root access, respectively. To examine the matter in which the file systems were
treated in relation to different BitTorrent Sync usage scenarios, we created a series of physical images of the mobile
devices using dd over SSH/ADB Shell. In particular, the first image was undertaken prior to the installation of the
BitTorrent Sync apps to create the control base images for this research. Then, the BitTorrent Sync iOS app version
2.0.27.1 and Android app version 2.0.85.0 were installed on the respective devices to make the second image
respectively. A third image was undertaken after downloading sync files from the ‘H1.1.1 Upload-VM’ (see Table
1). Additionally, an extra image was made of the Android device to examine the process of adding and uploading a
shared folder using the BitTorrent Sync app (unsupported by the iOS app). Next, we created an image of both the
devices to assess the process of deleting the shared folder. The final image was made following the uninstallation of
the apps.

The packet capture software was started prior and stopped immediately after each experiment was carried
out. The experiments were predominantly undertaken in NATed (where NAT stands for Network Address
Translation) network environment and without firewall outbound restriction to represent a typical BitTorrent Sync
usage situation. Each experiment was repeated at least thrice (at different dates) for consistency of findings. Table 4
details the tools prepared for this research.

Table 4: Tools prepared.

Tool Usage

FTK Imager Version 3.2.0.0 To create forensic images for the .VMDK files.

dd version 1.3.4-1 To produce a bit-for-bit image of mobile devices’ internal storage as well as .VEM files.
Autopsy 3.1.1 To parse the file system, produce directory listings, as well as extracting or analysing

stored files, browsing history, ‘NTUSER.dat’ registry files (using the RegRipper plugin),
‘pagefile.sys’ Windows swap file, and unallocated spaces located within the forensics
images of VMDK files.

emf_decrypter.py To decrypt the iOS images acquired for analysis.

HxD Version 1.7.7.0 To conduct keyword searches in the unstructured datasets.

Volatility 2.4 To analyse the running processes (using the ‘pslist’ function), network statistics (using the
‘netscan’ function), and detecting the location of a string (using the ‘yarascan’ function)
recorded in the physical memory dumps.

SQLite Browser Version 3.4.0 To view the contents of SQLite database files.

Wireshark version 1.10.1 To analyse the network traffic.

Network Miner version 1.6.1 To analyse and data carve the network files.

Whois command To determine the registration information of the IP addresses.

Photorec 7.0 To data carve the unstructured datasets.

File juicer 4.45 To extract files from files.

Nirsoft Web Browser Passview 1.19.1 To recover the credential details stored within web browsers.

Nirsoft cache viewer, ChromeCacheView 1.56,

MozillaCacheView 1.62, IECacheView 1.53

To analyse the web browsing cache.

BrowsingHistoryView v.1.60 To analyse the web browsing history.

Thumbcacheviewer Version 1.0.2.7 To examine the Windows thumbnail cache.

Windows Event Viewer Version 1.0 To view the Windows event logs.

Console Version 10.10 (543) To view the Mac-OS-specific log files (e.g., Apple System Logs).

Windows File Analyser 2.6.0.0 To analyse the Windows prefetch and link files.

Plist Explorer v1.0 To examine the contents of the Apple PLIST files extracted from iPhone Analyser.

chainbreaker.py To extract the master keys stored in Mac’s Keychain dump.
NTFS Log Tracker To parse and analyse the $LogFile, $MFT, and $UsnJrnl New Technology File System

(NTFS) files.

BEncode Editor v0.7.1.0 To view the contents of bencode files.

4. BitTorrent Sync analysis on desktop clients

Before undertaking the evidential analysis, we collected test data that matched the search terms ‘Bittorent
sync’, ‘btsync’, and ‘Enron’ in the hard disk images, but held formats unsupported by the Autopsy forensic browser
for analysis using the tools of relevance in the latter phase. These included SQLite database files, PLIST files,
prefetch files, event logs, shortcuts, thumbnail cache, $MFT, $LogFile, $UsnJrnl, as well as web browsers’ data
folders/files (e.g., %AppData% \Local\Google, %AppData% \Local\Microsoft \Windows \WebCache, %AppData%
\Roaming\Mozilla, %AppData% \Local\Microsoft \Windows \Temporary Files \index.dat). The volatile data was
collected using the Volatility tools, Photorec file carver, and HxD Hex Editor for the physical memory dumps, and
Wireshark and Netminer network analysis software for the network captures.

Whilst undertaking keyword search for the data of relevance, we determined that there was no data related
to BitTorrent Sync and the Enron emails on the control base VM snapshots (1.0, 1.1 IE, 1.2 MF, 1.3 GC, 2.0, and
3.0). This suggested that the BitTorrent Sync/Enron related data located in the remaining snapshots were remnants
from BitTorent Sync use. An inspection of the metadata of the downloaded files on the Windows 8.1 client observed
that the last accessed and modified timestamps were the times when the files were downloaded, and the last written
timestamps retained its original value unchanged. On the Ubuntu client, the added timestamps were the times when
the files were downloaded, while all other timestamps (i.e., modification, creation, and last opened) remained
unchanged. As for the Mac OS client, only the accessed timestamps matched the file download times; the
modification timestamps preserved its original timestamps. In all cases, we determined that the MD5 and SHA1
hash values for the downloaded files were similar to the that of the original copies, suggesting that no alteration was
made during the file transfers.

4.1 Directory listings and files of forensic interest

The downloaded folders were saved at %Users%\[User Profile]\BitTorrent Sync, /home/[User
profile]/BitTorrent Sync, and /Users/[User Profile]/BitTorrent Sync on the Windows 8.1, Ubuntu OS, and Mac OS
clients by default, respectively; Within the shared folders (both locally added and downloaded) there is a hidden
‘.sync’ subfolder. The file of particular interest stored within the subfolder is the ‘ID’ file which holds the folder-
specific share ID in hex dump format. The share ID would be especially useful when seeking to identify peers
sharing the same folder during network analysis (Scanlon et al., 2014a, 2014b).

When a synced file was deleted, we were able to recover copies of the deleted file from the /.sync/Archive
folder of the corresponding peer devices. Depending on the duration configured by the users, it is important to note
that the deleted files will only be kept in the archive folder for 30 days by default (BitTorrent Sync, 2015). The
presence of the ‘.sync’ subfolder also means when a user synchronises or deletes a file in BitTorrent Sync Windows
application, there will be filename and timestamp references for the synced or deleted files in NTFS files such as
$LogFile, $MFT, $UsnJrnl to identify its use.

In addition, we could recover copies of the deleted files alongside the pertinent file deletion information (e.g.,
the original paths, file sizes, and deletion times) from the %$Recycle.Bin%\SID folder on Windows 8.1, but the
filenames were renamed to a set of random characters prefixed with $R and $I. On Ubuntu OS, we were able to
recover copies of the deleted files from the /home/[User Profile]/.local/share/Trash/files trash folder. To identify the
original file paths as well as deletion times, we analysed the .TRASHINFO files located in /home/[User
Profile]/.local/share/Trash/info/. In contrast to Windows and Ubuntu OS, examination of the Mac OS trash folder
(located at /Users/[User profile]/.Trash) was only able to recover copies of the deleted files. However, it is

noteworthy that the findings are only applicable to the system that initiated the file deletion and in the circumstance
when recycle bin or trash folder is not emptied.

Other than inspecting the directory listing, we identified that the practitioner could potentially recover the
BitTorrent Sync usage information from various metadata files resided in the application folder located at
%AppData%\Roaming\BitTorrent Sync on Windows 8.1 (was previously stored at %Documents and
Settings%\[User Profile]\Application Data\BitTorrent Sync) and /Users/[User Profile/Library/Application
Support/BitTorrent Sync on Mac OS. Similar to the installation folder, the application folder of the Linux client
application is the directory where the application package is unpacked. The application folder maintains a similar
directory structure across multiple operating systems, and the /%BitTorrent Sync%/.SyncUser<Random number>
subfolder is an identity-specific application folder that will be synchronised across multiple devices sharing the same
identity.

The first file of particular interest with the application folder is the settings.dat file. This file maintains a list
of metadata associated with the device under investigation such as the installation path (which could be
distinguished from the ‘exe_path’ entry), installation time in Unix epoch format (‘install_time’), non-encoded peer
ID (‘peer_id’), log size (‘log_size’), registered URLs for peer search (‘search_list’, ‘tracker_last’ etc.), and other
information of relevance.

The second file of forensic interest with the application folder is the sync.dat file, which contains a wealth of
information relating to the shared folders added by or downloaded to the device under investigation. In particular,
the device name could be discerned from the ‘device’ entry. The ‘identity’ entry records the identity name (‘name’)
of the device under investigation as well as the private (‘private_keys’) and public keys (‘public_keys’) used to
establish connections with other devices. A similar finding was observed for the peer identities in the ‘identities’
entry. We also located a replication of the ‘identity’ and ‘identities’ entries in the local-identity-specific
/%BitTorrent Sync%/.SyncUser<Random number>/identity.dat file and the peer-identity-specific /%BitTorrent
Sync%/.SyncUser<Random number>/identities/[Certificate fingerprint] file (with the exception of the private key)
respectively. The device or identity name could prove useful in correlating events initiated by a specific identity or
device in the log/metadata files or any external data obtained from the peer devices. Meanwhile, the ‘access-
requests’ entry holds a list of metadata pertaining to the identities which sent folder access requests to the device
under investigation such as the last used IP addresses in network byte order (‘addr’), identity names (‘name’), public
keys ‘public_keys’) of the requesting identities, as well as the base32-encoded temporary keys (‘invite’), requested
folder IDs, requested times (‘req_time’), requested permissions (‘requested_permissions’ where we hypothesised
that 2 indicates read only, 3 indicates read and write, and 4 indicates owner), and granted permission
(‘granted_permissions’).

Located within the ‘folders’ entry of the sync.dat file was metadata relating to the synced folders. It should
be noted that this entry will never be empty as it will always contain at least an entry for the identity-specific
/%BitTorrent Sync%/SyncUser<Random number> application folder. Amongst the information of forensic interest
recoverable from the ‘folders’ entry included the folder IDs (‘folder_id’), storage paths (‘path’), the addition and last
modified dates in Unix epoch format, the peer discovery method(s) used to share the synced folders, the access and
root certificates keys, whether the folders have been moved to trash, and other information of relevance. We then
correlated the folder IDs with the folder IDs located in /%BitTorrent Sync%/SyncUser<Random
number>/devices/[Base32-encoded Peer ID]\folders\ to determine the shared folders associated with a peer device.
To identify the actual (non-encoded) peer ID and corresponding device name, we mapped the encoded peer ID to the
pertinent entries in sync.log (see Table 5). Analysis of the access control list (‘acl’) subentry (of the ‘folders’ entry)
was able to identify the permission information relating to the identities associated with each shared folder, such as
the identity names (‘name’), public keys (‘public_keys’), signature issuers, the times when the identities were linked
to a specific shared folder, as well as other information of relevance. We also located the similar details in the
folder-specific /%BitTorrent Sync%/.SyncUser<Random number>/folders/[Folder ID]/info.dat file. The ‘peers’
subentry (of the ‘folders’ entry), if available, would provide a practitioner information about the peers associated
with the shared folders added by the device under investigation such as the last completed sync time
(‘last_sync_completed’), last used IP address (‘last_addr’) in network byte order, device name (’name’), last seen
time (‘last_seen’), last data sent time (‘last_data_sent’), and other relevant information.

Figure 2: sync.dat.

Another file of interest which can potentially allow a practitioner to recover the sync metadata is the
/%BitTorrent Sync%/[share-ID].db SQLite3 database. This share-ID-specific database describes the content of a
share folder (including the /%BitTorrent Sync%/SyncUser<Random number> application folder) such as the shared
filenames or folder names (stored in the ‘path’ table field of the ‘files’ table), hashes, and transfer piece registers for
the shared files or folders. Once the shared filenames or folder names have been identified, the practitioner could
then map the details to the /%BitTorrent Sync%/history.dat file (which maintains a list of file syncing events
appeared in the History windows of the BitTorrent Sync client application) to obtain the sync times in Unix epoch
format as well as the associated device names - see Figure 3.

Figure 3: history.dat.

Within the /%BitTorrent Sync%/sync.pid file there holds the last used process identifier (PID) in plain text.
The PID could assist the practitioner in correlating data associated with the BitTorrent Sync client application during
RAM analysis (e.g., mapping a string of relevance to the data resided in the memory space of the PID using the
‘yarascan’ function of Volatility). It is important to note that all the metadata files aforementioned are bencoded
(with the exception of the sync.pid file) and the old metadata files will be given an .OLD extension. Moreover, the
sync.dat, settings.dat, and history.dat files are protected with a salted file guard key to ensure that only the
BitTorrent Sync application can edit the files (Farina et al., 2014).

When BitTorrent Sync was accessed on a Mac OS device, we were able to locate additional references to the
client application usage in the preference files located in /Users/[User profile]/Library/Preferences/. For instance,
the com.apple.spotlight.plist file holds the app path and the last used time in plain text (see Figure 4). In the
com.bittorrent.Sync.plist file, we recovered supporting information for timeline analysis such as the app version
installed, last software update check time, and last started time in Unix epoch format.

Figure 4: com.apple.spotlight.plist

Disconnecting a shared folder, it was observed that no changes were made to the peer devices, even when
the option ‘delete files from this device’ was selected to permanently delete the sync files/folders from the local
device. When we unlinked an identity from the devices investigated, it was identified that the identity-specific
/%BitTorrent Sync%/.SyncUser<Random number> application folder will be deleted from the local device. On the
other hand, only the identity-specific metadata will be removed from the ‘identity’ and ‘identities’ entries of the
local and peer device’s settings.dat file respectively.

Undertaking uninstallation of the Windows client application observed discern the synced folders from
folders containing the ‘.sync’ subfolder in the directory listing. Our manual uninstallation of the Linux and Mac
client applications left no trace of the client application usage/installation in the directory listing, but the deleted
files/folders were recoverable from the non-emptied /Users/[User profile]/.Trash folder of the Mac OSX VM
investigated.

Similar to the memory analysis, undertaking data carving of the unallocated space (of the file
synchronisation VMs) managed to recover copies of synced files as well as the log and metadata files of forensic
interest (e.g., sync.log, sync.dat, history.dat, and settings.dat used by the client applications) intact. A search for the
terms ‘bittorrent’, ‘enron’, bencode keys specific to the metadata files of relevance, as well as the pertinent log
entries was able to locate copies of the recovered files aforementioned in plain text. The remnants remained even
after uninstallation of client applications, which suggested that unallocated space is an important source for
recovering deleted BitTorrent Sync or synced files.

4.2 Log files

Logs play a vital role in reconstructing a criminal scene (Ab Rahman and Choo 2015). BitTorrent Sync stores
the logs in the application folder and the filename of which is displayed as ‘sync.log’. The default log size is 100MB
and can be modified by the user. When the maximum size is reached, the log file is renamed to sync.log.old, and a
new sync.log file will be created. As BitTorrent Sync does not implement an encryption algorithm to secure its logs,
the logs could be easily accessible using a text editor. The log file is important as it would aid in identifying
BitTorrent Sync events around a specific time of incident. Table 5 and Table 6 summarise a list of notable log
entries forensic interest from sync.log.

Table 5: Log entries of forensic interest from sync.log.

Relevance Examples of log entries obtained in our research

Enables a practitioner to identify the
BitTorrent Sync version installed on the
device under investigation.

 platform: Windows workstation 6.3.0 x86
version: 2.0.93

Assist the practitioner in determining the non-
encoded peer ID of the device under
investigation.

 [2015-04-03 16:18:32] My PeerID:
103B760A3674FE44C4A512B4EF802D452F633F99

A master folder will only be created during
identity creation. This potentially allows the
practitioner to determine when BitTorrent
Sync was first used on a device.

 [2015-04-03 16:19:50] MD[init]: Master Folder: create

May assist the practitioner in determining the
IP addresses used by the device under
investigation.

 [2015-04-03 16:18:30] Using IP address 192.168.220.176

 [2015-04-03 16:31:03] Changing IP address from 192.168.220.176 to 192.168.220.143

Informs the practitioner the IP addresses used
by the peer devices.

 [2015-04-04 09:05:32] Incoming connection from 192.168.220.176:49734

 [2015-04-03 16:51:58] SD[BBAD]: Peer 1: local IP 192.168.220.176:20566

 [2015-04-03 16:51:47] SD[BBAD]: Got ping (broadcast: 1) from peer
192.168.220.176:20566 (10DEC8109E524439D9454ABE2BB1475BF7D5A2B5)

 Peer 1: 60.50.83.170:49449 10DEC8109E524439D9454ABE2BB1475BF7D5A2B5

 [2015-04-05 08:23:56] SF[1F7E] [A2B5]: Found peer
10DEC8109E524439D9454ABE2BB1475BF7D5A2B5 192.168.220.176:49759 direct:1
transport:1 version: 2.0.93

Allows a practitioner to identify the device
names of the peer devices.

 [2015-04-05 09:05:32] SF[B5E2] [A2B5]: Got id message from peer WIN-

KMM6MUN4701 (10DEC8109E524439D9454ABE2BB1475BF7D5A2B5) 2.0.93

 [2015-04-17 12:51:19] MD[A965]: new device found WIN-KMM6MUN4701
(CDPMQEE6KJCDTWKFJK7CXMKHLP35LIVV)

Since most peer IDs are stored in base32
format in the metadata and configuration
files, these log entries would provide a
potential method for identification of the
actual (non-encoded) peer IDs from the
device names.

 [2015-04-05 09:05:32] SF[B5E2] [A2B5]: Got id message from peer WIN-
KMM6MUN4701 (10DEC8109E524439D9454ABE2BB1475BF7D5A2B5) 2.0.93

 [2015-04-15 12:30:31] SD[4F11]: Got ping (broadcast: 1) from peer
192.168.220.146:50523 (107C1CFB546B565559FE2929E7B7C8804E7302F0)

 [2015-04-17 12:51:19] MD[A965]: new device found WIN-KMM6MUN4701
(CDPMQEE6KJCDTWKFJK7CXMKHLP35LIVV)

 [2015-04-17 12:51:19] API: callback id=19, value="{ "value":
{"peerid":"CDPMQEE6KJCDTWKFJK7CXMKHLP35LIVV"}}", can_deferred=0,
_delegate=0x1c57d48…

May assist the practitioner in determining the
share IDs for the shared folders added.

 [2015-04-05 11:37:54] SSLEH[0x15fa28b0]: hello packet
{ share:6C25389E651AC160F91ECAF3D9A249C58F6BED15 } has been sent

 [2015-04-05 11:37:54] SSLEH[0x08e849e8]: received hello packet,
{ share:6C25389E651AC160F91ECAF3D9A249C58F6BED15 }

 [2015-04-05 11:47:58] Requesting peers from tracker 52.1.1.135:3000 for share
6C25389E651AC160F91ECAF3D9A249C58F6BED15

Enables identification of the shared folder
names/IDs created on the device under
investigation.

 [2015-04-04 20:36:45] FC[B5E2]: started periodic scan for "\\?\C:\Sync"

 [2015-04-05 11:37:57] MD[A965]: [apply] Processing folder "Sync" (-

2775350472753142605)

Assists the practitioner in determining the
synced filenames or folder names as well as
the addition/creation times.

 [2015-04-05 08:24:17] JOURNAL[22F5]: new torrent created for file Enron3111.txt
mt:1418488391 9603FC44BB0F59A822FA3331A1802F880ABA583B
[2015-04-05 08:24:17] JOURNAL[22F5]: setting time for file
"\\?\C:\Sync\Enron3111.txt" to 1428193457
[2015-04-05 08:24:17] JOURNAL[22F5]: insert file "\\?\C:\Sync\Enron3111.txt" =
131072:22982
…

Informs the practitioner folder names for the
deleted folders as well as the deletion times.

 [2015-06-28 23:41:17] Folder being removed from this device and the files at
'\\?\C:\Sync' are being removed.

Allows the practitioner to determine the local
identity’s disconnection time.

 [2015-04-05 09:12:01] Master Folder Controller: disconnect master folder

Table 6: Records of BitTorrent Sync’s Application Programming Interface (API) response bodies (in JSON format)
of forensic interest from sync.log.

Relevance Examples of log entries obtained in our research

Provides the practitioner details about the
device under investigation such as the peer
ID, device name, last online time, last sync
completed time, and folder IDs for the shared
folders created/added.

 [2015-04-05 09:11:53] API: <-- getmfdevices({ "status": 200, "value": [{ "aod": false,
"devicename": "WIN-KMM6MUN4701", "folders": [{ "added": true, "id": -
7338009380596345790, "mode": 1 }, { "added": true, "id": 3964779361527927184,
"mode": 1 }, { "added": true, "id": 4780923171276619705, "mode": 1 }, { "added": true,
"id": 5471258729987051831, "mode": 1 }], "id":
"CDPMQEE6KJCDTWKFJK7CXMKHLP35LIVV", "lastseen": 1428196287,
"lastsynccompleted": 1428196287, "name": "WIN-KMM6MUN4701", "online": true,
"self": false, "syncerr": 0, "syncerrmsg": "", "userid": "" }] })…

Assists the practitioner in determining the
pending user requests sent to the device under
investigation including the folder IDs (if
any), the times when the requests were sent,
access permissions, as well as the requester’s
IP addresses and certificate fingerprints.

 [2015-04-03 16:51:48] API: <-- getpendingrequests({ "status": 200, "value":
[{ "access_level": 3, "id": "5471258729987051831", "ip": "192.168.220.176", "license":
false, "readwrite": true, "time": 1428051108, "user_identity": { "devicename": "device",
"fingerprint":
"2UMI566O3XAE7BB2V3N3YWWECJ3TCGJHMRGZTVLN2SZY276QI4AQ",
"username": "Guest" } }] })…

May assist a practitioner in determining the
folder names, folder IDs, storage paths,
folder sizes, timestamp information, as well
as peer device names, peer IDs, and
fingerprints associated with the shared folders
added by or downloaded to the device under
investigation.

 [2015-04-05 09:05:37] API: <-- getsyncfolders({ "folders": [{ "access": 4, "archive":
"C:\\Sync\\.sync\\Archive", "archive_files": 3, "archive_size": 153187, "date_added":
1428049323, "down_eta": 0, "down_speed": 0, "down_status": 100, "error": 0, "files": 3,
"folderid": "5471258729987051831", "has_key": true, "indexing": false, "ismanaged":
true, "iswritable": true, "last_modified": 1428053450, "name": "Sync", "path":
"C:\\Sync", "paused": false, "peers": [{ "direct": true, "downdiff": 0, "id":
"10DEC8109E524439D9454ABE2BB1475BF7D5A2B5", "isonline": true,
"lastreceivedtime": 0, "lastsenttime": 1428051120, "lastsynctime": 1428051129, "name":
"WIN-KMM6MUN4701", "updiff": 0, "userid":
"UQO52P4G5O2QU6OOGX3AS7R6RUAU22JBBWJ4H2CYNXHRO3KIRVBQ" }],
"size": 321638, "status": "314.0 kB in 3 files", "stopped": false, "synclevel": 2, "up_eta":
0, "up_speed": 0, "up_status": 100, "users": [{ "access": 3, "id":
"2UMI566O3XAE7BB2V3N3YWWECJ3TCGJHMRGZTVLN2SZY276QI4AQ",
"name": "Guest" }] },
…

Informs the practitioner the storage path for
the device under investigation.

 [2015-04-03 16:43:13] API: <-- getfoldersstoragepath({ "status": 200, "value":
"C:\\Users\\anonymous\\BitTorrent Sync" })

 [2015-04-05 09:05:33] API: <-- setfoldersstoragepath({ "path":
"C:\\Users\\anonymous\\BitTorrent Sync", "status": 200 })

Allows the practitioner to identify the folder
name, path, and timestamp references for the
shared folders added by the device under
investigation.

 [2015-04-04 20:27:22] API: -->
addsyncfolder(path=C%3A%5CSync&selectivesync=false&t=1428150442927)

Contains copy of history.dat file (see section
4.1) at the time of request.

 [2015-04-05 08:33:06] API: <-- history({ "status": 200, "value": [{ "id": 39, "msg":
"WIN-KMM6MUN4701 updated file Enron3111.zip", "time": 1428193777 }, { "id": 38,
"msg": "WIN-KMM6MUN4701 updated file Enron3111.txt", "time": 1428193777 },
{ "id": 37, "msg": "Remote peer removed file Enron3111.rtf", "time": 1428193777 },
{ "id": 13, "msg": "Added file Enron3111.docx", "time": 1428153859 }…

4.3 Physical memory

Memory analysis is invaluable for recovering information which would otherwise be lost (Canlar et al.,
2013). Memory analysis in this research included undertaking data carving using Photorec, keyword search using a
Hex editor, and contextualising the RAM contents using Volatility. During RAM analysis, a practitioner must aware
that memory changes frequently according to users’ activities and will be wiped off as soon as the system is shut

down. Thus, the data remnants identified this research does not represent those recoverable in a typical "real world"
circumstance but serves as a guideline for detecting possible recoverable evidences.

Analysis of the running processes using the ‘pslist’ function of Volatility was able to recover the process
name associated with the BitTorrent Sync client application (e.g., ‘BitTorrent Sync.exe’ for Windows OS,
‘BitTorrent Sync’ for Linux OS, and ‘BitTorrent Sync’ for Mac OS), which included the process identifier (PID),
parent process identifiers (PPID) as well as the process initiation time; Examinations of the network details using the
‘netscan’ or ‘netstat’ function of Volatility determined that the network and socket information such as the
transportation protocols used, local and remote IP addresses (including the IP addresses of the peer discovery
methods used and the peer nodes), socket states, as well as the timestamp information could be recovered from the
RAM (see Figure 5).

Figure 5: An excerpt of BitTorrent Sync network information recovered using the ‘netscan’ function of Volatility.

Undertaking data carving of the RAM captures and swap files determined that only the images used by the
client application and synced files could be recovered. However, a search for the term ‘btsync’ or ‘bittorrent sync’
was able to recover the complete text of the log and metadata files of forensic interest (e.g., sync.log, sync.dat,
history.dat, and settings.dat) in the RAM in plain text. In cases when the original file has been deleted, a Yarascan
search for the text from the remnants could help attribute the remnants to the BitTorrent Sync or other processes of
relevance to identify its origin. Figure 6 illustrates an occurrence of history.dat in the memory space of ‘BitTorrent
Sync.exe’ of the Windows 8.1 VM investigated. The term ‘bittorrent’, bencode keys specific to the metadata files of
relevance (see Section 4.1 and Section 4.2), and log entries as identified in Table 5 could be used to narrow down
the search space.

Figure 6: Copy of history.dat file recovered from the memory space of ‘BitTorrent Sync.exe’.

Unsurprisingly, a keyword search for Enron-related keywords (e.g., ‘Enron’) was able to locate the
complete text of the sample files in the RAM captures of all the file synchronisation VMs investigated. Although the
login credentials were encrypted, we were able to recover the username (login email) and password for the Linux
client application’s web GUI following the strings ‘username=’ and ‘nwpwd=’ in the RAM respectively. These
appeared to be remnants from the form input field of the Linux client application’s web GUI; an example is shown
in Figure 7. In addition, we also located several password hits in the similar fragments containing the login email in
the memory space of BitTorrent Sync. In a real life scenario, this could potentially provide the practitioner the

opportunity to extrapolate the login password from the non-dictionary or alphanumeric terms surrounding the email
string in the memory space of BitTorrent Sync.

Figure 7: Username and password recovered from the RAM of Ubuntu OS.

4.4 Thumbnail cache

Analysis of the Windows thumbcache (stored under %AppData%\Local\Microsoft\Windows\Explorer)
recovered copies of thumbnail images for the BitTorrent Sync client application and its download site (e.g.,
BitTorrent Sync logo and image icons), indicative of BitTorrent Sync usage. Examinations of the thumbnail cache
from the file synchronisation VMs only revealed copies of thumbnail images for the synced files from the Windows
8.1 and Mac OS VMs. We could discern the thumbnail cache from the ‘folder’ table field (of the ‘files’ table) which
made reference to ‘BitTorrent Sync’ in the /private/var/folders[Random subfolder]/[Random
subfolder]/C/com.apple.QuickLook.thumbcache/index.sqlite database of the Mac OS VM investigated. The
timestamp references recorded alongside the thumbnail cache would assist a practitioner to identify the last accessed
or deletion (only in a Mac OS device; see Figure 8) date of a sync file or folder. Moreover, the presence of the
thumbnail cache in the file deletion and uninstallation VMs suggests that thumbnail cache is an important source
evidence to recover deleted images; this seems to agree with the findings of Quick et al. (2014b). Analysis of the
Ubuntu VMs did not recover any thumbnail instance relevant to BitTorrent Sync.

Figure 8: Thumbnail information recovered from the index.sqlite database of Mac OS’ thumbcache folder.

4.5 Windows Registry

Windows registry provides a rich source of information associated with installed programs (Do et al. 2014).
Although five hives could be seen in the registry, only HKEY_USERS (HKU) and HKEY_LOCAL_MACHINE
(HKLM) hives are tangibly real since the remaining are merely symbolic links to the two master keys (Farmer,
2007). Our analysis of the HKLM hive determined that the BitTorrent Sync installation could be detected from the
presence of the HKLM\SOFTWARE\BitTorrent\Sync key, and the installation path could be discerned from the

‘SyncPath’ subkey. In addition, the HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\BitTorrent
Sync key could provide supporting information for the installation such as the display icon’s path, display name,
BitTorrent Sync version installed, installation and uninstaller paths, and other entries of relevance.

Similar to any other Windows application, when the BitTorrent Sync client application was started up, we
located full path reference for the BitTorrent Sync executable file in HKU\<SID>\Software\Classes\Local
Settings\Software\Microsoft\Windows\Shell\MuiCache, indicative of recent BitTorrent Sync usage. Further evidence
to indicate the client application usage could be ascertained from the occurrence of ‘BitTorrent Sync: ""%Program
Files%\BitTorrent Sync\BitTorrent Sync.exe" /MINIMIZED"’ entry alongside the last executed time in
Software\Microsoft\Windows\CurrentVersion\Run.

Another registry key of forensic interest is the
Software\Microsoft\Windows\CurrentVersion\Explorer\ComDig32, which keeps track of a list of filename
references (e.g., filenames for the executable and synced files) associated with the BitTorrent Sync client application
as well as the timestamp information during the last usage. According to Carvey (2014), the ‘CIDSizeMRU’ (MRU
is the abbreviation for Most-Recently-Used) subkey maintains a list of recently used applications, the
‘OpenSaveMRU’ registry subkey records list of files that have been opened or saved within a Windows shell dialog
box, and the ‘LastVisitedMRU’ subkey is responsible for tracking specific executable files used by an application to
open the files documented in the ‘OpenSaveMRU’ subkey. Other evidence indicating the BitTorrent Sync client
application usage includes the presence of entries referencing the link file as well as the last executed time in
Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist.

4.6 Prefetch files

Examination of the prefetch files located two prefetch files for BitTorrent Sync, namely
‘BITTORRENT_SYNC.EXE.pf’ and ‘BITTORRENT SYNC.exe.pf’. Amongst the information of forensic interest
recoverable from these files include the executable path, a number of times the application has been loaded, as well
as the last run time which are useful to supplement timeline analysis. However, no prefetch instance was located for
the synced files in our experiments. The presence of the prefetch files in the uninstall VMs (H1.1.1.3 and H1.1.1.3)
implies that there will be BitTorrent Sync references remaining in the prefetch files to indicate its use after
uninstallation of the client application.

4.7 Link files

Link (.lnk) files are shortcut metadata files used by Windows to maintain a list of linked paths relating to a
file (commonly the paths where the original files are located), associated timestamps (created, written, and last
accessed times), and file sizes (original and modified) which are useful to identify the origin of a file (Microsoft,
2015). An inspection of the directory listings located instances of link file for %Program Files (x86)%\BitTorrent
Sync\BitTorrent Sync.exe at %Users%\Public\Desktop\BitTorrent Sync.lnk and %Program
Data%\Microsoft\Windows\Start Menu\BitTorrent Sync.lnk, and its presence may be indicative BitTorrent Sync
installation.

5. Sync analysis on mobile clients

With the growing use of mobile handheld devices, mobile client artefacts can prove an invaluable evidence source in
digital forensics investigations (Dezfouli et al., 2015). In this section, we present the BitTorrent Sync findings on
iPhone 4 running iOS 7.1.2 and a HTC One X running Android KitKat 4.4.4.

5.1 BitTorrent Sync analysis on iOS 7.1.2

Analysis of the directory listing revealed that the iOS app installation could be discerned from the presence
of the /private/var/mobile/Applications/[Unique SHA-1 identifier for the BitTorrent Sync iOS app]/BitTorrent
Sync.app file. The application and storage folders (similarly to those presented for the computer applications as
highlighted in Section 4.1) could be located at /private/var/mobile/Applications/[Unique SHA-1 identifier for the
BitTorrent Sync iOS app]/Documents/BitTorrent Sync and /private/var/mobile/Applications/[Unique SHA-1

identifier for the BitTorrent Sync iOS app]/Documents/Storage respectively. Notice that the sync files/folders will
only be downloaded when viewed in the app. Within the /private/var/mobile/Applications/[Unique SHA-1 identifier
for the BitTorrent Sync iOS app]/iTunesMetadata.plist file there maintains a list of mobile-specific metadata
associated with the Symform app such as the Apple ID used to purchase the app, the purchase date, the BitTorrent
Sync version installed. Alternatively, copies of the application and storage folders aforementioned could be located
in /User/Applications/[Unique SHA-1 identifier for the BitTorrent Sync iOS app]/.

Inspecting the log files, it was determined that the app installation could be distinguished from entries
referencing ‘BitTorrent Sync’ in the /private/var/mobile/Library/Logs/MobileInstallation/mobile_installation.log.#,
which includes the installation time. Meanwhile, the /private/var/mobile/Library/Logs/Powerlog.powerlog maintains
a list of power and network consumption details associated with the BitTorrent Sync app; useful when seeking to
determine the app usage pattern. An example of the log entry is as follows:

“05/05/15 01:50:46 [Network Connections Symptoms] procName=BitTorrent Sync;
bundleName=com.bittorent.BitTorrent-Sync; wifi-in=5461675bytes; wifi-out=1206024bytes; cell-in=435717bytes;
cell-out=626892bytes; sinceTime=03/19/15 01:08:39”

Undertaking uninstallation of the iOS app determined that all the files and folders of forensic interest
aforementioned were removed, with the exception of the BitTorrent Sync entries located within the OS log files of
relevance.

5.2 BitTorrent Sync analysis on Android KitKat 4.4

 The installation of the Android BitTorrent Sync app resulted in the creation of
/data/data/com.bittorrent.sync app folder. The file of particular interest with this folder is the
/data/data/com.bittorrent.sync/shared_prefs/preferences.xml, which keeps track of a list of paths for the shared
folder added by or downloaded to the device under investigation in the ‘folders’ entry, a count of the number of
times the app was run in the ‘number_of_runs’ entry, and other information of relevance. Another file of particular
interest is the /data/data/com.bittorrent.sync/SyncStatistics.xml. Within this file there holds a list of sync statistics
associated with the app such as the last sync time (which could be discerned from the ‘last_sent_time’ entry).

 The application and storage folders could be located at /data/data/com.bittorrent.sync/files/.sync and
/Home/Download/BitTorrent Sync respectively. Inspecting the directory listing, it was observed that these folders
share the same directory structure as those presented for the computer applications (see Section 4.1), and the shared
folders could be easily distinguished from the ‘.sync’ subfolder. Similar to the iOS app, the sync files/folders were
only downloaded (to the storage folder) when viewed. Only the storage as well as locally added shared folders
remained after uninstallation of the app.

6. Network analysis

Analysis of the network captures determined that the network traffics were encrypted (due AES-128
encryption from the client) and the synced files were not recovered. However, we were able to recover the peer
discovery packets that contain information of forensic interest such the IP addresses, port numbers, peer IDs, and
share IDs associated with the host and the peers.

Unless configured otherwise, BitTorrent Sync uses tracker servers for peer discovery by default. It was
determined that a client utilising this peer discovery method will first send a tracker request packet to the tracker
servers, one each for disparate share IDs, to retrieve the peer list. The tracker request packet could be discerned from
the term ‘get_peers’ and amongst the information of forensic interest recoverable from the packet includes the local
IP address, port number, peer ID, as well as the 20 or 32 bytes share ID for the requesting folder (see Table 7). Note
that the act of requesting a peer lookup also serves to register the requesting client as a source (Scanlon et al., 2014).
Upon receiving the tracker request packet from the requesting client, the tracker server will respond the requesting
client with a tracker response packet containing a peer list which shares the same share ID (see Table 8). The tracker
response packet will always contain at least the originating peer information and, hence, will never be empty.

Table 7: Details of tracker request packet of BitTorrent Sync (Information of forensic interest is bolded).

Bencode key and value pairs Description

µTP header type 0 µTP header type 0 which signifies regular data packet (BitTorrent Inc., 2009)

d Start of bencode dictionary key:value pairs

2:la Label identifier for local address

6:[local IP:Port number] Local IP address (4 bytes) and port number (2 bytes) combination in network byte order

2:lp Label identifier for local port number

i[5-byte port number]e 5 bytes local port in integer format

1:m Label identifier for message

9:get_peers Label identifier for ‘get_peers’ message type

4:peer Label identifier for local peer

20:[20-byte peer ID] 20 bytes local peer ID

5:share Label identifier for share ID

20:[20-byte Share ID]e OR

32: [32 bytes share ID]

20 or 32 bytes share ID

Table 8: Details of tracker response packet of BitTorrent Sync (Information of forensic interest is bolded).

Bencode key and value pairs Description

µTP header type 0 µTP header type 0 which signifies regular data packet.

00 Null

d Start of bencode dictionary key:value pairs

2:ea Label identifier for external address of the requesting client.

6:[external IP:Port number of the requesting

client]

External IP address (4 bytes) and port number (2 bytes) combination of the

requesting client in network byte order

1:m: Message label identifier

5:peers Label identifier for ‘peers’ message type

5:peers Label identifier for ‘peers’ message type

l Start of peer list

d Start of bencode dictionary key:value pairs for the peer list

1:a Label identifier for external address

6:[external IP:Port number] External IP address (4 bytes) and port number (2 bytes) combination of the

corresponding peer in network byte order

2:la Label identifier for internal address

6:[internal/local IP:Port] Internal IP address (4 bytes) and port number (2 bytes) combination of the

corresponding peer in network byte order

1:p Label identifier for peer ID

20:[20-byte peer ID]e Peer ID of the corresponding peer

e End of peer list

5:share Label identifier for share ID

20:[20-byte share ID]e OR

32: [32 bytes share ID]

20 or 32 bytes share ID

4:time:i[timestamp]e 4 bytes timestamp in integer and format (Unix epoch)

When the local peer discovery method (Search LAN) was used, it was observed that the requesting client

first broadcasted the multicast packets to the IP address 239.192.0.0:3838 for revealing its presence. The information
of forensic interest recovered from the packets include the local port number, peer ID, and the the 20 or 32 bytes
share IDs for the requesting folders (see Table 9). Whilst separate multicast packet was used for disparate share IDs
in the older BitTorrent Sync version (Scanlon et al., 2014a, 2014b, 2015), it was identified that the share IDs were
broadcasted as a list using a same multicast packet in our research. The peers receiving the multicast message
containing the share ID(s) they possess then responded the requesting client with a multicast response packet which
shares the same format as the multicast packet.

Table 9: Details of multicast ping packet of BitTorrent Sync (Information of forensic interest is bolded).

Bencode key and value pairs Description

BSYNC BSYNC header

00 Null

D Start of bencode dictionary key:value pairs

1:m Message label identifier

4:ping Message type ‘ping’
4:peer Label identifier for peer

4:port Label identifier for local port number

I[Port number]e Local port number in integer format

20:[20-byte peer ID] 20 bytes local peer ID

6:shares Label identifier for share ID

L Start of share ID list

20:[20-byte peer ID]e OR

32: [32 bytes share ID]e

20 or 32 bytes share ID

E End of share ID list

Other than inspecting the packet formats, the peer discovery methods could be discerned from the IP
address and port number combinations maintained in the sync.conf file, which is accessible through
http://config.usyncapp.com/sync.conf. Table 10 summarises the latest IP addresses and port numbers obtained from
the sync.conf file downloaded in our research. Alternatively, we could also locate copies of the sync.conf file in the
sync.log file as outlined in Table 5. Since our experiments only limited to the default peer discovery options, only
the tracker server and local peer discovery methods were used. Comprehensive analysis of the network protocols
used by the remaining peer discovery methods is beyond the scope of this paper.

Table 10: IP addresses and port numbers used by BitTorrent Sync.

Sync preferences IP address(es) Port number URL

Use tracker server 52.0.104.4.40, 52.0.102.230, 52.1.40.103,
52.1.1.135

TCP and UDP port 3000 t.usyncapp.com

Use relay server when required 67.215.231.242, 67.215.229.106 TCP and UDP port 3000 r.usyncapp.com

Search LAN 239.192.0.0 UDP port 3838

Automatic ports mapping over UPnP
and NAT-PMP UDP multicast

239.255.255.250 port 1900 UDP unicast to
default gateway port 5351

mobile_push_proxies 54.235.182.157 TCP and UDP port 3000

7. BitTorrent Sync investigative methodology

Based on our investigations of BitTorrent Sync, we outline a process that can be used to guide future
forensic practitioners. In order to minimise the risk of the evidence from being questioned in court of law, it is
imperative that the process adhere to generally accepted forensic principles, standards, guidelines, procedures and
best practices (NIJ, 2004; Kent et al., p.5, 2006; ACPO, 2011). Mckemmish (1999), for example, defines four rules
for digital forensics, namely minimal handing of the original, account for any changes, comply with the rules of
evidence, and not to exceed knowledge. Similarly, the digital forensic principles of the United Kingdom Association
of Chief Police Officers (ACPO) specify that: no action should change data, when it is necessary to access original
data the persons accessing data should be competent to do so, a record of processes should be made, and the
investigator in charge is responsible to ensure the principles are adhered to. Meanwhile, the NIST requires a digital
forensics framework to support collection, examination, analysis, and reporting of (digital) evidences (Kent et al.,
2006).

A cloud forensics framework that could provide a sound basis for compliance with the above principles is
the cloud forensics framework of Martini and Choo (2012), since the framework is built on the digital forensics
frameworks of McKemmish (1999) and NIST (Kent et al., 2006). Hence, similar to the approach of Quick et al.
(2014b), we subsequently mapped the BitTorrent Sync investigation process to the framework of Martini and Choo
(2012) to provide an operational methodology for forensic practitioners. This involves the following operation
methodology:

Identification and preservation

http://config.usyncapp.com/sync.conf

In the first stage, a practitioner identifies and seizes physical sources of evidence relevant to BitTorrent
Sync investigation such as desktop computers, laptops, and mobile devices. Before attempting to preserve the data,
it is encouraged to isolate the system from network access to avoid further human intervention. Then, a proper and
timely preservation of the hard drive and volatile data captures using standard forensic image formats (E01, bit-for-
bit dd image, etc.) should be undertaken, as soon as practical. If physical acquisition is not possible, continue with
the next (collection) stage.

Collection

Before collecting the data of relevance, the practitioner should determine whether BitTorrent Sync is
installed on the device under investigation. This could be accomplished by determining the presence of the
BitTorrent Sync installation directory and the pertinent entries in the OS log as well as other OS-specific files e.g.,
the registry, link, and prefetch files of Windows OS. Then, collection commences with extracting (exporting) the
BitTorrent Sync installation, application, and sync/storage (which could be discerned from the ‘.sync’ subfolder)
folders from the forensic image using a forensic browser. In addition, the practitioner is encouraged to carve and
collect the files recorded within the unallocated space, RAM dump, and swap file using a data recovery software for
supporting information. If physical acquisition is not undertaken in the previous (identification and collection) stage,
logical acquisition should be undertaken of the files of relevance (on the device under investigation) using a live
acquisition software and properly preserved in a logical container such as L01, AD1, or CTR format. The collection
should also include OS-specific and web browser files of forensic interest such as $MFT, $LogFile, $UsnJrnl,
prefetch files, thumbnail cache, link files, log files, as well as other files as highlighted in Section 4.

Examination and analysis

In this stage, the practitioner examines the collected files. Both indexed and non-indexed as well as
Unicode and non-Unicode string search should be included as part of the keyword search. The analysis involves the
following steps:
1. Analyse the settings.dat and sync.dat files to determine the BitTorrent Sync installation time, peer ID, and

device name of the device under investigation.
2. Next, analyse the ‘identity’ and ‘identities’ entries of the sync.dat file to determine the identity names of the

device under investigation and the associated peer devices.
3. Analyse the ‘access_request’ entry of the sync.dat file to obtain the identities which sent folder access requests

to the device under investigation as well as the IP addresses, folder IDs, request times, and request permission
types.

4. Analyse the ‘folder’ entry of the sync.dat file to determine the folder IDs, folder names, last added and modified
times, as well as the paths for the shared folders added by or downloaded to the device under investigation.

5. Map the information obtained in step 4 to the physical copies of the shared folders to determine the share ID
(from the ‘ID’ file stored within the ‘.sync’ subfolder), sync filenames or folder names (including the
filenames/folder names for the deleted files/folders resided in the archive folder), as well as the timestamp
information associated with each shared folder.

6. Match the share ID(s) obtained in step 5 with the [share-ID].db database in the application folder to determine
the filenames or folder names associated with each share.

7. Match the synced filenames or folder names determined in step 5 with the history.dat file (or the history.dat
entries recorded in sync.log) to determine the device names associated with a particular synced filename or
folder name.

8. Correlate the folder IDs obtained in step 4 with the folder IDs located in /%BitTorrent
Sync%/SyncUser<Random number>/devices/[Base32-encoded Peer ID]/folders/ to determine the shared
folders associated with a specific peer ID.

9. Correlate the folder IDs obtained in step 4 with the ‘getsyncfolders’ API response entries in sync.log to obtain
additional information pertinent to the shared folders (e.g., the fingerprints of the associated peers).

10. Examine the ‘peers’ subentry of the ‘folders’ entry (of the sync.dat file) to locate supporting information
relating to the peers associated with the shared folders added by or downloaded to the device under
investigation such as the last used IP addresses, last sync times, last seen times, and last data transfer times.

11. Correlate the device names obtained in step 7 with the log entries to identify the non-encoded peer IDs as well
as identity-specific fingerprints.

12. Inspect the last modified time of each synced folder/file to determine if the files have been modified offline. If
changes made are relevant to the investigation, remote synchronisation would assist in determining the changes

made.
13. Once the peer IDs, device names, fingerprints, shared folders, share IDs, folder IDs, and other information of

relevance are located, additional analysis can be undertaken on the OS-specific system and log files, web
browsing information, carved files, memory files, network captures, and other evidence sources to provide
supporting information or recover deleted data.

14. Iterate the framework with evidence source identification and preservation via the associated peer devices using
the peer information (e.g., IP addresses) obtained.

Presentation

Merge the information gathered during the analysis phase into a report. This comprises:
1. The BitTorrent Sync version(s) installed on the device(s) investigated as well as the installation time(s).
2. The non-encoded peer IDs, device names, fingerprints, and IP addresses of the device(s) investigated as

well as the associated peers.
3. The folder names, IDs, as well as timestamp information for the shared folders located in the device(s)

investigated.
4. The peers which sent folder access requests to the device(s) investigated alongside the shared folder IDs,

folder names, and timestamp information associated with the requests.
5. The peers associated with the share IDs or shared folders investigated.
6. Copies of the sync files as well as the timestamp information associated with the share IDs or shared

folders investigated.

8. Conclusion and future work

Without the use of systematic investigative procedures and techniques, crucial evidence may be missed in
an investigation and the integrity of the evidence would be compromised. In this paper, we investigated the artefacts
from the use of BitTorrent Sync on computer and mobile devices running Window 8.1, Ubuntu 14.04.1 LTS, Mac
OS X Mavericks 10.9.5, iOS 7.1.2, and Android KitKat 4.4.4. We then outlined an operational methodology with
the view to provide a systematic approach for collecting and analysis of evidence relating to BitTorrent Sync.

Analyses of the directory listings revealed that the that the process of uploading, storage, and downloading
files from/to the shared folders did not change the MD5 and SHA1 hash values, indicating the viability evidence
collection through remote synchronisation. The synced files that were deleted could be forensically recovered from
the peer device’s ‘Archive’ subfolder as well as the non-emptied trash or recycle bin folder of the device which
initiated the file deletion. In addition to directory listing, we were able to recover evidence of BitTorrent Sync usage
from the log and metadata files such as settings.dat, sync.dat, history.dat, sync.log, and [share-ID].db located in the
application folder. These files remained intact even after we unlinked the identity, with the exception of those
located in the identity-specific /%BitTorrent Sync%/.SyncUser<Random number> subfolder. Alternatively, it was
identified that copies of the log and metadata files could be potentially recovered from memory files and unallocated
space intact or in plain text, provided that the remnants are not cleared or flushed.

Analyses of the network captures determined that the network traffics were encrypted and the synced file
remnants were not recovered. However, we were able to recover the peer discovery packets which contain
information of forensic interest such the IP addresses, port numbers, peer IDs, and share IDs associated with the host
and the peers.

Our examinations of the physical memory captures indicated that the memory dump can provide potential
for alternative methods for recovering the login credentials and log and metadata files of forensic interest in plain
text. The memory dump could also provide an alternative method for recovering the running process and network
information using the ‘pslist’ and ‘netscan’/’netstat’ functions of Volatility. The PIDs could assist the investigator in
obtaining data associated with the Symform client application during further analysis of the physical memory dumps
(i.e., locating the data remnants associated with the process using the Yarascan function of Volatility). The presence
of the artefacts in the memory dump also means the artefacts could be potentially located in the swap files as a result
of inactive memory pages being swapped out of the memory to the hard disk during the system’s normal operation
(Quick and Choo, 2013a, 2013b, 2014; Yang et al., 2016). Nevertheless, a practitioner must keep in mind that

memory changes frequently according to users’ activities and will be wiped as soon as the system is shut down.
Hence, obtaining a memory snapshot of a compromised system as quickly as possible increases the likelihood of
preserving the artefacts before being overwritten in memory.

A summary of findings from our research is shown in Table 11. To keep pace with technological advances,
future work would include extending this research to other popular private cloud services (Syncany, Seafile, etc.)
that can be used to inform IoT investigations.

Table 11: Summary of findings (R =Recoverable, P = Possibly Recoverable, N = Not Recoverable).

Platform Source of Evidence Data artefacts found

Installation, uninstallation, and

BitTorrent Sync usage information

Peer device

names/ IP

addresses

Enron sample

files/ path

references

File-sharing

Key

Share ID Peer ID Fingerprint

Windows 8.1 Directory listings R R R R R R R

Registry R N P N N N N

System logs R N, only found
in sync.log

N, only found in
sync.log

N, only
found in
sync.log

N, only
found in
sync.log

N, only
found in
sync.log

N, only
found in
sync.log

 Prefetch R N N N N N N

Thumbcache files P N P, synced image N N N N

Link files R N N N N N N

RAM P, including the log and metadata files P P P P P P

Pagefile.sys P, including the log and metadata files P P P P P P

Unallocated space P, including the log and metadata files P P P P P P

Ubuntu

14.04.1 LTS

Directory listings/Stored files R R R R R R R

System logs N, only found in sync.log N, only found
in sync.log

N, only found in
sync.log

N, only
found in
sync.log

N, only
found in
sync.log

N, only
found in
sync.log

N, only
found in
sync.log

 Thumbcache files N N N N N N N

RAM P, including the log and metadata files P P P P P P

Swap partition P, including the log and metadata files P P P P P P

Unallocated space P, including the log and metadata files P P P P P P

Mac OS X

Mavericks

10.9.5

Directory listings/Stored files R R R R R R R

System logs R N, only found
in sync.log

N, only found in
sync.log

N, only
found in
sync.log

N, only
found in
sync.log

N, only
found in
sync.log

N, only
found in
sync.log

 Thumbcache files R N R N N N N

RAM P, including the log and metadata files P P P P P P

Swap partition P, including the log and metadata files P P P P P P

Unallocated space P, including the log and metadata files P P P P P P

iOS 7.1.2 Directory listings/Stored files R R R R R R R

System logs R N, only found
in sync.log

N, only found in
sync.log

N, only
found in
sync.log

N, only
found in
sync.log

N, only
found in
sync.log

N, only
found in
sync.log

Android

Kitkat 4.4.4

Directory listings/Stored files R R R R R R R

System logs N N, only found
in sync.log

N, only found in
sync.log

N, only
found in
sync.log

N, only
found in
sync.log

N, only
found in
sync.log

N, only
found in
sync.log

Network capture R R N R R R N

References

Ab Rahman, N. H. and Choo, K.-K. R. (2015) A survey of information security incident handling in the cloud,
Computers & Security, 49, pp. 45–69.

Bagh, C. (2011) Amazon EC2 helps researcher to crack Wi-Fi password in 20 minutes [online] Available from:
http://www.ibtimes.com/articles/100314/20110112/amazon-ec2-password-wi-hacking-cracking-brute- force-
attack-wpa-psk-encryption-cloud-computing-iaa.htm (Accessed 20 November 2014).

Birk, D. and Wegener, C. (2011) Technical Issues of Forensic Investigations in Cloud Computing Environments, In
2011 IEEE Sixth International Workshop on Systematic Approaches to Digital Forensic Engineering (SADFE),
pp. 1–10.

BitTorrent Inc. (2009) uTorrent transport protocol [online] Available from:
http://www.bittorrent.org/beps/bep_0029.html (Accessed 30 June 2015).

BitTorrent Inc. (2014) Glossary [online] Available from: http://help.bittorrent.com/customer/portal/articles/179175-
glossary (Accessed 30 June 2015).
BitTorrent Inc. (2015a) Guide to UI (folder preferences) [online] Available from: http://sync-

help.bittorrent.com/customer/portal/articles/1627229-guide-to-ui-folder-preferences (Accessed 26 March 2015).
BitTorrent Inc. (2015b) How it Works [online] Available from: https://www.getsync.com/how-it-works (Accessed

26 March 2015).
BitTorrent Inc. (2015c) Key structure and flow [online] Available from: http://sync-

help.bittorrent.com/customer/portal/articles/1628254-key-structure-and-flow (Accessed 28 February 2015).
BitTorrent Inc. (2015d) Link structure and flow [online] Available from: http://sync-

help.bittorrent.com/customer/portal/articles/1628463-link-structure-and-flow
 (Accessed 28 February 2015).
BitTorrent Inc. (2015e) Sync Preferences [online] Available from:

http://help.getsync.com/customer/portal/articles/1902098-sync-preferences (Accessed 26 March 2015).
BitTorrent Inc. (2015f) Sync Private Identity & Linking My Devices [online] Available from:

http://help.getsync.com/customer/portal/articles/1901247-sync-private-identity-linking-my-devices (Accessed
28 February 2015).

Carvey, H. (2014) Windows Forensic Analysis Toolkit: Advanced Analysis Techniques for Windows 8, Elsevier.
Canlar, E. S., Conti, M., Crispo, B. and Di Pietro, R. (2013) Windows Mobile LiveSD Forensics, Journal of

Network and Computer Applications, 36(2), pp. 677–684.
Choo, K.-K. R. (2008) Organised crime groups in cyberspace: a typology, Trends in Organized Crime, 11(3), pp.

270–295.
Choo, K-K. R. (2010) Cloud computing: Challenges and future directions. Trends & Issues in Crime and Criminal

Justice no 400, pp. 1–6.
Chung, H., Park, J., Lee, S., and Kang, C. (2012) Digital forensic investigation of cloud storage services. Digital

Investigation, 9(2), pp. 81–95.
Cisco (2014) Global Cloud Index: Forecast and Methodology 2013-2018 White Paper [online] Available from:

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-
gci/Cloud_Index_White_Paper.html (Accessed 12 March 2015).

Damshenas, M., Dehghantanha, A., Mahmoud, R. and bin Shamsuddin, S. (2012) Forensics investigation challenges
in cloud computing environments, In 2012 International Conference on Cyber Security, Cyber Warfare and
Digital Forensic (CyberSec), pp. 190–194.

Daryabar, F., Dehghantanha, A., Udzir, N. I., Sani, N. F. binti M. and Shamsuddin, S. bin (2013) A REVIEW ON
IMPACTS OF CLOUD COMPUTING ON DIGITAL FORENSICS, International Journal of Cyber-Security
and Digital Forensics (IJCSDF), 2(2), pp. 77–94.

Do, Q., Martini, B., Looi, J., Wang, Y. and Choo, K.-K. (2014) Windows Event Forensic Process, In Advances in
Digital Forensics X, IFIP Advances in Information and Communication Technology, Peterson, G. and Shenoi,
S. (eds.), Springer Berlin Heidelberg, pp. 87–100, [online] Available from:
http://link.springer.com/chapter/10.1007/978-3-662-44952-3_7 (Accessed 8 April 2015).

Duke, A. (2014) 5 Things to know about the celebrity nude photo hacking scandal [online] Available from:
http://edition.cnn.com/2014/09/02/showbiz/hacked-nude-photos-five-things/ (Accessed 18 November 2014).

Dykstra, J. and Sherman A. T. (2011) Understanding issues in cloud forensics: two hypothetical case studies. In
Proceedings of the 2011 ADFSL conference on digital forensics security and law, ASDFL, pp. 191–206.

Dykstra, J. and Sherman A. T. (2012) Acquiring forensic evidence from infrastructure- as-a-service cloud

http://www.ibtimes.com/articles/100314/20110112/amazon-ec2-password-wi-hacking-cracking-brute-%20force-attack-wpa-psk-encryption-cloud-computing-iaa.htm
http://www.ibtimes.com/articles/100314/20110112/amazon-ec2-password-wi-hacking-cracking-brute-%20force-attack-wpa-psk-encryption-cloud-computing-iaa.htm
http://www.bittorrent.org/beps/bep_0029.html
http://help.bittorrent.com/customer/portal/articles/179175-glossary
http://help.bittorrent.com/customer/portal/articles/179175-glossary
http://sync-help.bittorrent.com/customer/portal/articles/1627229-guide-to-ui-folder-preferences
http://sync-help.bittorrent.com/customer/portal/articles/1627229-guide-to-ui-folder-preferences
https://www.getsync.com/how-it-works
http://help.getsync.com/customer/portal/articles/1901247-sync-private-identity-linking-my-devices
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
http://edition.cnn.com/2014/09/02/showbiz/hacked-nude-photos-five-things/

computing: exploring and evaluating tools, trust, and techniques. Digital Investigation, 9(1), pp. S90–S98.
Dykstra, J. and Sherman, A. T. (2013) Design and implementation of FROST: Digital forensic tools for the

OpenStack cloud computing platform, Digital Investigation, 10, pp. S87–S95.
European Network and Information Security Agency (ENISA) (2012) Procure secure: a guide to monitoring of

security service levels in cloud contracts. Heraklion, Greece: European Network and Information Security
Agency.

Farina, J., Scanlon, M. and Kechadi, M. T. (2014) BitTorrent Sync: First Impressions and Digital Forensic
Implications, Digital Investigation, Proceedings of the First Annual DFRWS Europe, 11, Supplement 1, pp.
S77–S86.

Farmer, D. J. (2007) A Forensic Analysis of Windows Registry [online] Available from:
http://forensicfocus.com/downloads/windows-registryquick-reference.pdf (Accessed 12 January 2015).

Galante J, and Kharif, O. A. P. (2011). Sony network breach shows Amazon cloud’s appeal for hackers. [online]
Available from: http://www.bloomberg.com/news/2011-05-15/sonyattack-shows-amazon-s-cloud-service-lures-
hackers-at-pennies-an-hour.html (Accessed 5 June 2014).

Gartner (2014) Gartner Says the Internet of Things Will Transform the Data Center [online] Available from:
http://www.gartner.com/newsroom/id/2684616 (Accessed 20 November 2014).

Gebhardt, T. and Reiser, H. P. (2013) Network Forensics for Cloud Computing, In Distributed Applications and
Interoperable Systems, Lecture Notes in Computer Science, Dowling, J. and Taïani, F. (eds.), Springer Berlin
Heidelberg, pp. 29–42, [online] Available from: http://link.springer.com/chapter/10.1007/978-3-642-38541-4_3
(Accessed 6 December 2014).

Grispos, G., Storer, T. and Glisson, W. (2012) Calm before the storm: the challenges of cloud computing in digital
forensics. International Journal of Digital Crime and Forensics, 4 (2), pp. 28- 48.

Hale, J. S. (2013). Amazon Cloud Drive forensic analysis. Digital Investigation, 10(3), 259–265.
Hooper, C., Martini, B. and Choo, K.-K. R. (2013). Cloud computing and its implications for cybercrime

investigations in Australia. Computer Law & Security Review, 29(2), pp.152–163.
Hunt, K. R. (2014) Investigating the Viability of Peer-to-Peer Applications using BitTorrent Sync [online] Available

from: http://www.cs.ru.ac.za/research/g11h3779/kieran-thesis/kieran-thesis.html#fig:Typical-BitTorrent-Sync
(Accessed 30 June 2015).

International Data Corporation (IDC) (2014) Finding Success in the New IoT Ecosystem: Mar- ket to Reach $3.04
Trillion and 30 Billion Connected ”Things” in 2020, IDC Says [online] Available from:
http://www.idc.com/getdoc.jsp?containerId= prUS25 (Accessed 20 November 2014).

International Data Corporation (IDC) (2014a) IDC Reveals Worldwide Internet of Things Predictions for 2015
[online] Available from: https://www.idc.com/getdoc.jsp?containerId=prUS25291514 (Accessed 20 November
2014).

Kent, K, Chevalier S., Grance T. and Dang H. (2006) Guide to integrating forensic techniques into incident
response. SP800–86. Gaithersburg: U.S. Department of Commerce.

Lemos, R. (2010) Cloud-Based Denial Of Service Attacks Looming, Researchers Say [online] Available from:
http://www.darkreading.com/smb-security/167901073/security/perimeter-security/226500300/index.html
(Accessed 27 November 2014).

Martini, B. and Choo, K.-K. R. (2012) An integrated conceptual digital forensic framework for cloud computing.
Digital Investigation, 9(2), pp. 71–80.

Martini, B. and Choo, K.-K. R. (2013) Cloud storage forensics: ownCloud as a case study. Digital Investigation,
10(4), pp. 287–299.

Martini, B. and Choo, K.-K. R. (2014a) Cloud Forensic Technical Challenges and Solutions: A Snapshot, IEEE
Cloud Computing, 1(4), pp. 20–25.

Martini, B. and Choo K-K R (2014b) Distributed Filesystem Forensics: XtreemFS as a case study. Digital
Investigation. 11(4), pp. 295–313

Martini, B. and Choo, K.-K. R. (2014c) Remote Programmatic vCloud Forensics: A Six-Step Collection Process and
a Proof of Concept, In IEEE, pp. 935–942, [online] Available from:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7011349 (Accessed 8 April 2015).

Martini, B., Do, Q. and Choo K-K R (2015) Mobile cloud forensics: An analysis of seven popular Android apps. In
Ko R and Choo K-K R, editors, Cloud Security Ecosystem, Syngress, an Imprint of Elsevier [In press].

Marty, R. (2011) Cloud Application Logging for Forensics, In Proceedings of the 2011 ACM Symposium on Applied
Computing, SAC ’11, New York, NY, USA, ACM, pp. 178–184, [online] Available from:
http://doi.acm.org/10.1145/1982185.1982226 (Accessed 6 December 2014).

http://www.bloomberg.com/news/2011-05-15/sonyattack-shows-amazon-s-cloud-service-lures-hackers-at-pennies-an-hour.html
http://www.bloomberg.com/news/2011-05-15/sonyattack-shows-amazon-s-cloud-service-lures-hackers-at-pennies-an-hour.html
http://www.cs.ru.ac.za/research/g11h3779/kieran-thesis/kieran-thesis.html#fig:Typical-BitTorrent-Sync

Mason, S. and George, E. (2011) Digital evidence and ‘cloud’ computing. Computer Law & Security Review,
27(2011), pp. 524–528.

McKemmish, R. (1999) What is Forensic Computing, Australian Institute of Criminology, [online] Available from:
http://aic.gov.au/documents/9/C/A/%7B9CA41AE8-EADB-4BBF-9894-64E0DF87BDF7%7Dti118.pdf
(Accessed 15 March 2015).

Microsoft (2015) File and Directory Linking [online] Available from: https://msdn.microsoft.com/en-
us/library/windows/desktop/aa364215(v=vs.85).aspx (Accessed 25 February 2015).

National Institute of Justice (NIJ) (2004) Forensic examination of digital evidence: a guide for law enforcement
[online] Available from: http://nij. gov/nij/pubs-sum/199408.htm (Accessed 14 June 2014).

National Institute of Standards and Technology (NIST) (2014) NIST Cloud Computing Forensic Science
Challenges, National Institute of Standards and Technology [online] Available from:
http://safegov.org/media/72648/nist_digital_forensics_draft_8006.pdf (Accessed 28 October 2014).

Peterson, A. (2013) How Iranian hackers used the cloud to attack major banks and Why [online] Available from:
http://thinkprogress.org/security/2013/01I091l4241711bank-hackings-iran-botnets-cloud!?mobile=nc
(Accessed 28 March 2015).

Pounds, E. (2014) Introducing BitTorrent Sync 1.4: An Easier Way to Share Large Files [online] Available from:
http://blog.bittorrent.com/2014/08/26/introducing-bittorrent-sync-1-4-an-easier-way-to-share-large-files/
(Accessed 13 February 2015).

Oestreicher, K. (2014) A forensically robust method for acquisition of iCloud data, Digital Investigation, Fourteenth
Annual DFRWS Conference, 11, Supplement 2, pp. S106–S113.

Quick, D. and Choo, K.-K. R. (2013a). Digital droplets: Microsoft SkyDrive forensic data remnants. Future
Generation Computer Systems, 29(6), pp. 1378–1394.

Quick, D. and Choo, K.-K. R. (2013b). Dropbox analysis: Data remnants on user machines. Digital Investigation,
pp. 10(1), 3–18.

Quick, D. and Choo, K.-K. R. (2013c). Forensic collection of cloud storage data: Does the act of collection result in
changes to the data or its metadata? Digital Investigation, 10(3), pp. 266–277.

Quick, D. and Choo, K.-K. R. (2014) Google Drive: Forensic analysis of data remnants. Journal of Network and
Computer Applications, 40, 179–193.

Quick, D., Martini, B., and Choo, K.-K. R. (2014b) Forensics Cloud storage. Syngress, an Imprint of Elsevier.
Quick, D., Tassone, C. and Choo, K.-K. R. (2014b) Forensic Analysis of Windows Thumbcache Files, SSRN

Scholarly Paper, Rochester, NY, Social Science Research Network, [online] Available from:
http://papers.ssrn.com/abstract=2429795 (Accessed 8 April 2015).

Ruan, K., Carthy, J., Kechadi, T., & Crosbie, M. (2011) Chapter 2 CLOUD FORENSICS. Advances in Digital
Forensics VII.

Scanlon, M., Farina, J. and Kechadi, M. T. (2014a) BitTorrent Sync: Network Investigation Methodology, In IEEE,
pp. 21–29, [online] Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6980260
(Accessed 11 March 2015).

Scanlon, M., Farina, J., Khac, N. A. L. and Kechadi, T. (2014b) Leveraging Decentralization to Extend the Digital
Evidence Acquisition Window: Case Study on BitTorrent Sync, arXiv:1409.8486 [cs], [online] Available from:
http://arxiv.org/abs/1409.8486 (Accessed 18 March 2015).

Scanlon, M., Farina, J. and Kechadi, M.-T. (2015) Network investigation methodology for BitTorrent Sync: A Peer-
to-Peer based file synchronisation service, Computers & Security, [online] Available from:
http://www.sciencedirect.com/science/article/pii/S016740481500067X (Accessed 9 July 2015).

Shado, S. (2014) Cloud Services Being Used to Distribute Malware [online] Available from:
http://www.cloudwedge.com/cloud-services-used-distribute-malware/ (Accessed 28 March 2015).

Shariati, M., Dehghantanha, A. and Choo, K.-K. R. (2015) SugarSync forensic analysis, Australian Journal of
Forensic Sciences, 0(0), pp. 1–23.

Shariati, M., Dehghantanha, A., Martini, B. and Choo, K-K. R. (2015) Ubuntu One Investigation: Detecting
Evidences on Client Machines. In Ko R and Choo K-K R, editors, Cloud Security Ecosystem, Syngress, an
Imprint of Elsevier [In press].

Simou, S., Kalloniatis, C., Kavakli, E. and Gritzalis, S. (2014) Cloud Forensics: Identifying the Major Issues and
Challenges, In Advanced Information Systems Engineering, Lecture Notes in Computer Science, Jarke, M.,
Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., and Horkoff, J. (eds.), Springer
International Publishing, pp. 271–284, [online] Available from: http://link.springer.com/chapter/10.1007/978-3-
319-07881-6_19 (Accessed 6 December 2014).

Symantec (2011) The Trojan.Hydraq Incident: Analysis of the Aurora 0-Day Exploit [online] Available from:

https://msdn.microsoft.com/en-us/library/windows/desktop/aa364215(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa364215(v=vs.85).aspx
http://www.cloudwedge.com/cloud-services-used-distribute-malware/

http://www.symantec.com/connect/blogs/trojanhydraq-incident-analysis-aurora-0-day-exploit (Accessed 20
November 2014).

Taylor, M., Haggerty, J., Gresty, D., Almond, P. and Berry, T. (2014) Forensic investigation of social networking
applications, Network Security, 2014(11), pp. 9–16.

Thethi, N. and Keane, A. (2014) Digital forensics investigations in the Cloud, In 2014 IEEE International Advance
Computing Conference (IACC), pp. 1475–1480.

Wilkinson, S. (2011) ACPO Good Practice Guide for Digital Evidence (2011).
Yang, T. Y., Dehghantanha, A., Choo, K. R. and Muda, Z. (2016), Windows Instant Messaging App Forensics :

Facebook and Skype as Case Studies. PLoS ONE. available at http://www.plosone.org/ [3 March 2016].
Zafarullah, Z., Anwar, F. and Anwar, Z. (2011) Digital Forensics for Eucalyptus, In Frontiers of Information

Technology (FIT), 2011, pp. 110–116.
Zawoad, S., Dutta, A. K. and Hasan, R. (2013) SecLaaS: Secure Logging-as-a-service for Cloud Forensics, In

Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications Security,
ASIA CCS ’13, New York, NY, USA, ACM, pp. 219–230, [online] Available from:
http://doi.acm.org/10.1145/2484313.2484342 (Accessed 6 December 2014).

Zawoad, S. and Hasan, R. (2015), FAIoT: Towards Building a Forensics Aware Eco System for the Internet of
Things, 279–284, in: 2015 IEEE International Conference on Services Computing (SCC).

http://www.symantec.com/connect/blogs/trojanhydraq-incident-analysis-aurora-0-day-exploit

