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Abstract— The development of a light source on Si, which caalum [3]-[6]. A lot of potential to improve performance
be integrated in photonic circuits together with CMO$emains, since the maximum lasing temperature is still limited
electronics, is an outstanding goal in the field of Silicotw 180K [6], lasing thresholds are well above 100 kWidor
photonics. This could e.g. help to overcome bandwidtptical pumping, and electrically driven laser sources are
limitations and losses of copper interconnects as the nuhbecompletely missing. This contribution will concentrate on
high-speed transistors on a chip increases. Here, we disgesitiction of the threshold by employing heterostructures,
direct bandgap group IV materials, GeSn/SiGeSncluding quantum-well designs. The effects of local carrier
heterostructures and resulting quantum confinement effectsdonfinement andof quantum confinement are shown via
laser implementation. After material characterization, opticahotoluminescence studies, and lasing from microdisk cavities
properties, including lasing, are probed via photoluminescens@resented.
spectrometry. The quantum confinement effect in GeSn wells
of different thicknesses is investigated. Theoretical I STRUCTURALSSSEIEI\IRET&'E?\@ND QUANTUM
calculations show strong quantum confinement to be
undesirable past a certain leve$ the very different effective  All presented heterostructures are grown via chemical vapor
masses of and L electrons lead to a decrease of the [-to deposition in an AIXTRON Tricent reactor. Disilane,
valley energy difference. A main limiting factor for lasingligermane and tin tetrachloride are used as precursor gases. The
devices turns out to be the defective region at the interfacematerial is grown on Ge buffered 200 mm silicon wafers. To
the Gesubstrate due to the high lattice mismatch to GeSn. Tigsluce the compressive strain in the structures, an additional
use of buffer technology and subsequent pseudomorpfig.sSrba buffer layer of 200 nm thickness is used for strain
grO\N'[h of mu]ti-quantum-we”s structures offers Conﬁnemerﬁglaxation before Starting heterostructure grOWth. One further
of carriers in the active material, far from the misfiddvantage of the GeSn buffer technology is the possibility to
dislocations region_ Performance is Strong|y boosted, a§(ﬁ]strain misfit dislocations at the interface betweenGhe
reduction of lasing thresholds from 300 kWfchior bulk virtual substrate and the GeSn buffer, away from the active
devices to below 45 kW/chin multi-quantum-well lasers is device region. Three different structures are presented here: one
observed at low temperatures, with the reduction in thresh&i@uble heterostructure (DHS) and two multi-quantum-well
far outpacing the reduction in active gain material volume. Structures with well/barrier thickneessof (22/22)hm (MQW1)
and (12/16nm (MQW2), respectively. The well material

. INTRODUCTION Ga&ysShy.1z is embedded irSio.osGe.s:Smv.a1s barriers. Fig. &

Many approaches to develop an infrared laser source @ifl P show secondary ion mass spectrometry (SIMS)
Silicon are under investigation, in order to push the integratifffasurements of MQW1 and MQW?2. Incorporation of Sn and
of Silicon photonics with CMOS technology. Integration op! IN Wells and barriers homogeneous across the layers. A
electro-optical components promises the decrease of pofg@y diffraction (XRD) reciprocal space map (RSM) of
consumption and heat production as well as a rise MRW1 in Fig. 2 confirms pseudomorphic growth on top of the

communication bandwidth [1], [2]. One material system optio(ﬁesn buffer. In cpntrast, misf_it dislocations.at the interface
for such semiconductor lasers are direct bandgap GeSn allyiween the loer SiGeSn cladding and the active GeSn region
which can be epitaxially grown on standard Si wafers. Alloyirff the DHS are revealed by the transmission electron
Ge with Sn changes the electronic band structure and ptN§"OSCOPYTEM) micrograph in Fig. 3. This indicdthat the
down the conduction band Htfasterthan that at L. This can 2¢tVe GeSn. Iaygr relax_e_s even furthgr on top of the QeSn
lead to the transition from a fundamentally indirect to dire@f"ﬁer’ resulting in additional non-radiative recombination
bandgap semiconductor behavidihe existence of a direct paths

bandgap and optically pumped lasing has already been shownTheoretical calculations, based on an 8-bamdnkethod

for bulk GeSn alloys with various Sn concentratjonbich  and including the influence of strain via deformation potentials,
allows tunable emission at wavelengths between 2 um afig used to obtain information on band structure properties such
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as bandgap, energy offset between L dh@AE -r) and the previously discussed, lasing performance in both types of
formation of quantized statesOne distinct uncertainty sampleds strongly limited by the presence of defects adjacent
regarding these calculations is the value of the optical Sito the active region. However, a clear difference is visible in
bowing parameter dxr, whose reported values are spreacase of MQW1, where the lasing threshold is reduced to around
between 3.9 and 28V in the literature. Calculations presented5 kW/cn? at 20 K (1550 nm). Confining the carriers in many
here correspond tosk, =3.9 eV. Bandgaps andE,-r are Wells, keeping them away from any misfit dislocatidns
calculated for all three structures and are given in Tableconformal growth on top of a buffer layer region seems to be
Additionally, effects of quantization, dependent on the weadvantageous for optimized laser structures.

thickness, are shown in Fig. 4. With decreasing well thickness Comparing high resolution spectra of 4 Fig. 11, only

the qu_antézid I elecgon states atje.ﬁ"fmd m#ch_ faster than 5 yery slight energy shift of 0.48 meV can be observed,
quantized L states ( ue to very ditierent efiective '”f_‘ass"-‘s) ‘implying that the effect of heatinig very slight Comparing the

a direct bandgap semiconductor will turn into an indirect Onehighest reachable lasing temperature in each structure
a certain point. Therefore, very.thm wells in a Gesn/S'G_ef_microdisk lasers seem to work at ~20 K higher temperatures if
system may not be the best choice for the design of an eﬁ'c'pumped bya 1550 nm laser (Fig. 10). At temperatures above
laser. To verify calculatgd bandgaps, photqlumlnesc.erlzo K, carrier confinement in GeSn wells is weak (offset GeSn-
measurements, performed in step scan F"Od.e W|th'an excitagizesn ~30-50 meV) and carriers can escape from the active
Wavelengtlh (;fBZ.;m, are dgmonstrated in F.'g' ‘Baking Into f_region. The MQW characteristics then look simitathose of
g%:ount (slight) di erﬁnces In Srllconqe;ntrat;pn apd Str‘i'n 0 rthe DHS (compare emissions in Fig. 6). Additionally, increased

ifferent structures, the PL peak positions fit quite well 10 th g r yecombination and free carrier absorption occur aehigh

cgl%LIJIa'ted valuefs. ;or_ M%\INZ tr:]'?t effect of dquixt'@"\"ltl'of‘”temperatures. This is exacerbated by carrier excitation at higher
visible in terms of a distinct blue shift compared to MQW1. Tk o ies influencing the maximum lasing temperature.
temperature dependent PL intensiig. 6, shows the clear

favorite for laser performance. The increase of intensity with V. CONCLUSION

decreasing temperature is one order of magnitude higher for|n conclusion, the epitaxy and confinement effects in
MQW1 than for DHS. Since similar barrier heights should Rgesn/siGesn MQW and double heterostructures was
present in both structures, the effect can be attribugbligher yresentedOpticaly pumped lasing from group IV (Si)GeSn
non-radiative recombination rate in caseDHS, due to the heterostructures was demonstrated for the first time in
presence of misfit dislocations at the interface. However, thscrodisk cavities The effects of both carrier and guantum
effect is onlyvisible below 150 K. Abové, carriers in MQW1  confinement were discussed and found to offer the possibility
can escape from the well region due to their ineeét®rmal  of reducing the lasing threshdby an order of magnitude. For
energy and are able to non-radiativaiscombine at the jmproved lasing devices the ternary SiGeSn cladding layers
defective bottom interface. Nevertheless, PL analysis shows HPé?y a major role and the epitaxy should be pushed towards high
great potential of GeSn/SiGeSn multi wells as future ga#) contents ternaries which offer a strencarier confinement

material. especially important for reaching room temperature lasing
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Fig. 5 Band structure calculations and low temperature PL (4 K) for all-

structures showing a reasonable agreement.
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Fig. 4. Band structure calculations of MQW structur

for different well thicknesss AEL-r becomes smaller

in thinner wells due tthe smaller effective mass of I’

electrons, eventually turning the direct GeSn alloy ir
an indirect one below 7 nm.
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