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The Gibbons-Hawking radiation of gravitons in the Poincaré and static patches of

de Sitter spacetime
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1Faculdade de F́ısica, Universidade Federal do Pará, 66075-110, Belém, Pará, Brazil.
2Department of Mathematics, University of York, YO10 5DD, Heslington, York, United Kingdom.

(Dated: February 27, 2018)

We discuss the quantization of linearized gravity in the background de Sitter spacetime using a
gauge-invariant formalism to write the perturbed gravitational field in the static patch. This field
is quantized after fixing the gauge completely. The response rate of this field to monochromatic
multipole sources is then computed in the thermal equilibrium state with the well known Gibbons-
Hawking temperature. We compare this response rate with the one obtained in the Bunch-Davies-
like vacuum state defined in the Poincaré patch. These response rates are found to be the same as
expected. This agreement serves as a verification of the infrared finite graviton two-point function
in the static patch of de Sitter spacetime found previously.

PACS numbers: 04.60.-m, 04.62.+v, 04.50.-h, 04.25.Nx, 04.60.Gw, 11.25.Db

I. INTRODUCTION

Physics in de Sitter spacetime is an interesting subject
in its own right but it has increased its importance be-
cause the Universe’s early stage of expansion is believed
to have happened in a de Sitter-like phase [1–5]. More-
over, the accelerated expansion of our Universe [6] means
that de Sitter spacetime is likely to approximate its late
stages of evolution as well.
It is well known that the graviton two-point function

is divergent in the infrared (IR) in the synchronous-
transverse-traceless gauge in the Poincaré patch, or the
spatially-flat patch, of de Sitter spacetime [7]. These di-
vergences arise because the graviton mode functions re-
duce to those of the massless minimally-coupled scalar
field that suffers from IR divergences [8]. In fact it is
known that there is no Hadamard state invariant under
the de Sitter group for massless minimally-coupled scalar
field in de Sitter spacetime [9]. It has been claimed that
there is no de Sitter-invariant vacuum state for linearized
gravity because of these and other IR divergences [see,
e.g. Refs. [10–14]]. However, since the gravitational field
is a gauge field unlike the scalar field, it is possible that
these IR divergences can be a gauge artifact.
Indeed it has been shown that the IR-divergent part

of the graviton two-point function mentioned above can
be expressed in a pure-gauge form [15–17]. More re-
cently, it was shown that the graviton mode functions
can be modified by large gauge transformations corre-
sponding to global shear transformations to make the
two-point function IR finite and, hence, de Sitter in-
variant [18]. Some authors object by asserting that a
large gauge transformation, which by definition affects
spatial infinity, would change physics [19, 20]. However,

∗ rafael.bernar@icen.ufpa.br
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‡ atsushi.higuchi@york.ac.uk

as pointed out in Ref [18], a large gauge transformation
is equivalent to a local one as long as one is interested
only in local physics.
It is also interesting to point out that the graviton two-

point function constructed in the hyperbolic patch [21],
global patch [22] and static patch [23, 24] are all IR finite.
These IR-finite two-point functions are consistent with
the fact that the IR divergences in the two-point function
constructed in the Poincaré patch can be gauged away by
(large) gauge transformations.
Now, the Bunch-Davies, or Euclidean, vacuum

state [25–27] is a thermal state of temperature H/2π,
where H is the Hubble constant for the de Sitter ex-
pansion, with respect to the energy corresponding to the
time translation in the static patch [28]. This fact, which
we call the Gibbons-Hawking effect, is closely related to
the Hawking radiation [29] and the Unruh effect [30, 31].
Strictly speaking, the Gibbons-Hawking effect has not
been shown for the graviton field, but the two-point func-
tion of Refs. [23, 24] was found assuming this effect. That
is, this two-point function is for the thermal state of
gravitons with temperature H/2π in the static patch of
de Sitter spacetime.
In this paper we verify that the Bunch-Davies-like state

for the graviton field in the Poincaré patch of de Sitter
spacetime, which has an IR-divergent two-point function,
is indeed the thermal equilibrium state with tempera-
ture H/2π in the static patch, which has an IR-finite
two-point function. We do so by showing that a con-
served multipole point source responds to the graviton
field in the Bunch-Davies-like state as if it was placed
in a thermal bath of temperature H/2π with respect to
the energy corresponding to the time translation in the
static patch. Similar calculations have been done for the
scalar and vector fields in Ref. [32]. Similar comparisons
between response rates of sources in Schwarzschild space-
time have also been made in the context of the Hawking
and Unruh effects in Refs. [33–36].
The rest of the paper is organized as follows. In Sec. II

we describe the linearized gravitational field (gravita-
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tional perturbations) in (3 + 1)-dimensional de Sitter
spacetime and present the mode functions for these per-
turbations in spherical polar coordinates in the Poincaré
patch. In Sec. III, we describe our method of quantiza-
tion of the gravitation field and determine the normaliza-
tion constants for the modes found in Sec. II such that the
annihilation and creation operators satisfy the standard
commutation relations. We also review the quantization
of the linearized gravitational field in the static patch pre-
sented in Refs. [23, 24]. In Sec. IV we verify the Gibbons-
Hawking effect for the gravitational field by comparing
the response rates to a conserved multipole source in the
Bunch-Davies-like state in the Poincaré patch and in the
thermal equilibrium with temperature H/2π in the static
patch. We conclude this paper with some remarks in Sec.
V. In Appendix A we present a derivation of the expan-
sion of the gravitational plane wave in terms of the modes
in spherical polar coordinates. Throughout this paper we
use the metric signature −+++ and natural units such
that G = c = ~ = kB = 1.

II. GRAVITATIONAL PERTURBATIONS IN

THE POINCARÉ PATCH OF DE SITTER

SPACETIME

A. Background de Sitter Spacetime

The line element covering the expanding half of de Sit-
ter spacetime (Poincaré patch) is given by:

ds2 = −dτ2 + e2Hτ
(

dρ2 + ρ2dΩ2
2

)

, (1)

where

dΩ2
2 = γijdx̂

idx̂j = dθ2 + sin2 θdφ2 (2)

is the line element on the unit 2-sphere. We reserve the
letters from the Latin alphabet starting from i, j, k, ...
to denote angular components. The (metric compatible)

covariant derivative on the 2-sphere is denoted by D̂i.
We also indicate any quantity on the 2-sphere with a hat
over it. The line element which describes the static patch
of de Sitter spacetime reads

ds2 = −
(

1−H2r2
)

dt2 +
dr2

1−H2r2
+ r2dΩ2

2, (3)

where the coordinates t and r are given in terms of the
coordinates τ and ρ as follows:

r = ρeHτ , (4)

t = τ − 1

2H
ln
(

1− ρ2e2Hτ
)

. (5)

The Hubble constant H is related to the cosmological
constant Λ by Λ = 3H2.

B. Linearized Gravity in the Poincaré patch of

de Sitter spacetime

The Einstein-Hilbert action with a cosmological con-
stant term is given by

SEH =
1

16πG

∫

√

−g̃(R̃− 2Λ)d4x. (6)

The action for gravitational perturbations in a back-
ground spacetime (or linearized gravity) can be obtained
by expanding the action SEH about a background met-
ric, i.e. by writing g̃µν = gµν+

√
32πGhµν , and retaining

only terms of second order in hµν
1. In our case, the back-

ground metric gµν is the de Sitter metric and we obtain
the following quadratic Lagrangian:

L =
√−g

[

∇µh
µλ∇νhνλ − 1

2
∇λhµν∇λhµν

+
1

2
(∇µh− 2∇νh

µν)∇µh−H2

(

hµνh
µν +

h2

2

)]

,

(7)

where h = gµνhµν . The resulting Euler-Lagrange field
equation is

hµν − 2∇(µ|∇λh
λ
|ν) + gµν∇λ∇σh

λσ

+∇µ∇νh− gµν�h− 2H2

(

hµν +
1

2
gµνh

)

= 0. (8)

Due to the general coordinate invariance of the full
Einstein-Hilbert action, the linearized theory is invariant
under the gauge transformation

hµν → h′µν = hµν +∇µξν +∇νξµ, (9)

provided that the background spacetime is a vacuum so-
lution to the Einstein’s field equation with a cosmolog-
ical constant [37]. We can choose a gauge such that
h = ∇µh

µν = 0, which greatly simplifies the equation
of motion to

(

�− 2H2
)

hµν = 0. (10)

(See, e.g. Ref. [38] for justification of this gauge.) We
shall find the solutions to Eq. (10) in the Poincaré patch
in spherical polar coordinates. Thus, we expand the field
hµν in terms of harmonic tensors, following Refs. [39, 40].
In 3 + 1 dimensions, there will be metric perturbations
(i) of the scalar type, for which the angular dependence
comes from the scalar spherical harmonics and their co-
variant derivatives, and (ii) of the vector type, with angu-
lar dependence described by vector spherical harmonics
and their covariant derivatives. Additionally, there are

1 The zeroth order term is the Einstein-Hilbert action for the back-
ground solution and the linear term is a total derivative.
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perturbations of the so-called tensor type, with angu-
lar dependence described by rank 2 tensor spherical har-
monics in higher dimensions. However, as is well known,
there are no rank 2 tensor spherical harmonics on the 2-
sphere [41], and hence we do not need to consider them
here. The scalar spherical harmonics and their deriva-
tives are orthogonal to the vector spherical harmonics
and their derivatives with respect to the integration on
the unit 2-sphere.
In the Poincaré patch, it is convenient to make an ad-

ditional gauge choice in which hµτ = 0. This set of gauge
conditions is called the synchronous-transverse-traceless
(STT) gauge. (This gauge choice is possible because the
hµτ component comes from transverse-traceless solutions
to Eq. (10) of the pure-gauge form hµν = ∇µξν +∇νξµ.)

It follows that the non-vanishing positive-frequency2

components of the scalar-type perturbations, satisfying
the gauge constraints, read

h(S;klm)
ρρ =

Akl
S

ρ2
Φkl(τ, ρ)S(lm), (11)

h
(S;klm)
ρi = −A

kl
S S

(lm)
i

kS

(

∂

∂ρ
+

1

ρ

)

Φkl(τ, ρ), (12)

h
(S;klm)
ij = Akl

S S
(lm)
ij Ψkl(τ, ρ)− Akl

S

2
γijΦ

kl(τ, ρ)S(lm),

(13)

where S
(lm) = S

(lm)(θ, φ) are the scalar spherical har-
monics, which satisfy

[D̂iD̂
i + k2S ]S

(lm)(θ, φ) = 0. (14)

The eigenvalues k2S are

k2S = l(l + 1), l = 0, 1, 2, . . . (15)

Solutions to Eq. (14) are given by

S
(lm)(θ, φ) =

√

(2l + 1)

4π

(l − |m|)!
(l + |m|)!P

|m|
l (cos θ)eimφ.

(16)

The tensors S
(lm)
i (θ, φ) and S

(lm)
ij (θ, φ) are given by

S
(lm)
i (θ, φ) = −D̂iS

(lm)(θ, φ)

kS
(17)

and

S
(lm)
ij (θ, φ) =

[

D̂iD̂j

k2S
+

1

2
γij

]

S
(lm)(θ, φ). (18)

The field Φkl(τ, ρ) is a master variable and Ψkl(τ, ρ) reads

Ψkl =
2ρ2

(l − 1)(l + 2)

[

∂2

∂ρ2
+

3

ρ

∂

∂ρ
− (l − 1)(l + 2)

2ρ2

]

Φkl.

(19)

2 The meaning of “positive-frequency” will be clarified later.

The normalization constants Akl
S will be determined

later.
It is not possible to find hµν satisfying the STT gauge

conditions in this form if l = 0 or 1. There are solutions
with l = 0, 1 which are not in this form, but they are
either singular at the origin or of pure-gauge form. Thus,
we only need to consider the values of l larger than or
equal to 2. To emphasize this point we have outlined,
in Appendix A, the expansion of the gravitational plane
wave in terms of the modes in spherical polar coordinates,
where only the modes with l ≥ 2 are present.
The non-vanishing components of the vector-type met-

ric perturbations can be written as

h
(V ;klm)
ρi = Akl

V Φkl(τ, ρ)V
(lm)
i , (20)

h
(V ;klm)
ij = −

2kVA
kl
V ρ

2
V

(lm)
ij

(l − 1)(l + 2)

(

∂

∂ρ
+

2

ρ

)

Φkl(τ, ρ).

(21)

The vector spherical harmonics satisfy

(D̂jD̂
j + k2V )V

(lm)
i = 0, D̂i

V
(lm)
i = 0, (22)

with

k2V = l(l + 1)− 1, l = 1, 2, 3, . . . . (23)

The tensor V
(lm)
ij is written as

V
(lm)
ij = − 1

2kV
(D̂iVj + D̂jVi). (24)

On the unit 2-sphere, one can write solutions to Eqs. (22)
as

V
(lm)
i (θ, φ) =

ǫij
√

l(l + 1)
D̂j

S
(lm)(θ, φ), (25)

where ǫij is the Levi-Civita tensor on S2, defined by

ǫθθ = ǫφφ = 0, (26)

ǫθφ = −ǫφθ = sin θ. (27)

As in the scalar-type case there are no solutions to the
gauge conditions of this form if l = 1. (There are no
vector spherical harmonics for l = 0 as can be seen from
the definition 25.) For the same reason as for the scalar-
type case, we only need to consider the case with l ≥ 2.
The normalization constants Akl

V will be chosen later.
For the scalar- and vector-type perturbations to solve

the equations of motion given by Eq. (10), the master
variable Φkl(τ, ρ) takes the following form (or its complex
conjugate or a linear combination of the two):

Φkl(τ, ρ) =
ke

Hτ
2

√
2H

H
(1)
3
2

(

k

H
e−Hτ

)

jl(kρ), (28)

where H
(1)
3
2

(

k
H e

−Hτ
)

is the Hankel’s function of the first

kind, jl(kρ) is the spherical Bessel function of the first
kind, k is a positive constant, and the overall constant
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factor has been chosen for later convenience. The time-
dependence of Φkl(τ, ρ) is the same as that for the plane-
wave modes.
We now give a criterion to specify positive-frequency

solutions in this setting. We require that Φkl for the
positive-frequency solutions of the gravitational pertur-
bations to satisfy

∂

∂τ
Φkl ≈ −ike−HτΦkl, (29)

in the limit k → ∞. In other words, it should approach
the positive-frequency solution in flat spacetime in the
short wavelength limit3. Note that Φkl given in Eq. (28)
satisfies this requirement. Now, one of the de Sitter
boosts, τ → τ + α, ρ → e−αρ, transforms the solution

Φkl to Φke−α,l. Thus, once we choose the solutions (28)
as the positive-frequency solutions for large k, we need to
choose them as such for arbitrary k to preserve the de Sit-
ter invariance of the set of positive-frequency solutions,
which leads to the de Sitter invariance of the vacuum
state (see, e.g. [16]). This choice of positive-frequency so-
lutions corresponds to the Bunch-Davies-like state, which
is the standard choice of the vacuum [42]. From now on,
we also set the Hubble constant to unity, i.e. H = 1.

III. QUANTIZATION OF METRIC

PERTURBATIONS

To quantize the field hµν , we follow a standard proce-
dure outlined, for example, in Refs. [23, 43], which follow
the general framework given in Ref. [44]. We first de-
fine the symplectic product between two solutions of the
equations of motion, given by Eq. (8), to be

Ω(h, h′) ≡
∫

Σ

dΣnα(hµνp
′αµν − pαµνh′µν), (30)

where Σ is a Cauchy surface of a given patch of the space-
time with future-directed unit normal nα and pαµν is the
conjugate momentum current defined by

pαµν ≡ 1√−g
∂L

∂(∇αhµν)
. (31)

This symplectic product is independent of the choice of
the Cauchy surface [45].
We choose the set of positive-frequency solutions given

in Sec. II, together with their complex conjugates, as a
basis for the solutions to the free field equations (8) in
the STT gauge. Then we define the inner product

〈h, h′〉 = −iΩ(h, h′), (32)

where hµν is the complex conjugate of hµν . A positive-
and a negative-frequency solutions are mutually orthog-
onal with respect to this inner product. Moreover, the

3 Note that the proper wave number is given by ke−Hτ in this
case.

inner product (32) is positive definite on the space of
positive-frequency solutions. Note that, since the STT
gauge fixes the gauge completely, the symplectic product
is non-degenerate. In other words, there are no solutions

h
(null)
µν in the STT gauge satisfying Ω(h(null), h) = 0, for

all solutions hµν . (In our case it can readily be verified
that all such solutions to Eq. (8) are pure-gauge solutions
of the form ∇µξν+∇νξµ.) Thus, we are considering only
the space of physical solutions, i.e. all gauge degrees of
freedom are eliminated, and the inner product (32) is
positive definite in the space of positive-frequency solu-
tions.

A. Quantization in the Poincaré patch

The quantum field hµν (in the STT gauge) can be ex-
panded as

hµν =
∑

P,l,m

∫

dk
[

aPlm(k)h(P ;klm)
µν + aPlm(k)†h

(P ;klm)
µν

]

,

(33)

where the label P = S, V stands for scalar-type or vector-
type perturbations, respectively, and the classical solu-

tions h
(P ;klm)
µν are the positive-frequency solutions given

by Eqs. (11)- (13) and Eqs. (20) and (21). The canonical
equal-time commutation relations are equivalent to

[aPlm(k), aP
′

l′m′(k′)†] = δPP ′

δll
′

δmm′

δ(k − k′) (34)

and

[aPlm(k), aP
′

l′m′(k′)] = [aPlm(k)†, aP
′

l′m′(k′)†] = 0, (35)

provided the complete set of positive-frequency solutions
are normalized with respect to the inner product (32),
i.e. if

〈h(P ;klm), h(P
′;k′l′m′)〉 = δPP ′

δll
′

δmm′

δ(k − k′). (36)

Then, the vacuum |0〉, defined to be the state annihilated
by all aPlm(k), is the standard Bunch-Davies-like state.
In the STT gauge, the conjugate momentum current

is simply pαµν = −∇αhµν , so that the inner product can
be written as

〈h, h′〉 = −i
∫

Σ

dΣ
(

h′µν∂τh
µν − hµν∂τh

′µν
)

, (37)

where, in this case, Σ is a τ = constant hypersurface.
Using Eq. (37) and the identities

H
(1)
ν (x)∂xH

(1)
ν (x)−H(1)

ν (x)∂xH
(1)
ν (x) =

4ieπImν

πx
(38)

and
∫ ∞

0

dρ ρ2 jl(kρ)jl(k
′ρ) =

2

πk2
δ(k − k′), (39)

one can readily compute the normalization constants for

h
(P ;klm)
µν , with P = S and V , defined by Eqs. (11)-(13)
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and Eqs. (20) and (21), respectively. After some cumber-
some but straightforward computations, we obtain

Akl
V =

1

k

√

(l − 1)(l + 2)

2
(40)

and

Akl
S =

1

k2

√

(l − 1)l(l + 1)(l + 2)

2
. (41)

B. Quantization in the static patch

In Refs. [23, 24], the quantization procedure outlined in
the previous subsection was used to quantize the metric
perturbations in the static patch of de Sitter spacetime.
We review it here for completeness.
One can write the non-vanishing components of the

(positive-frequency) scalar-type metric perturbations as

h
(S;ωlm)
ab = S

(lm)

(

DaDb −
1

2
gab�

)

(

rψωl
S

)

,

(42)

h
(S;ωlm)
ij =

r2

2
γijS

(lm)(�+ 2)
(

rψωl
S

)

, (43)

where ψωl
S is the master field for this case (see Ref. [23]

for the details). The first letters of the Latin alphabet
(a, b, c, . . .) are used to denote components in the orbit
spacetime spanned by the t and r coordinates, with met-
ric

ds2orbit = −
(

1− r2
)

dt2 +
dr2

1− r2
. (44)

The derivative operator Da is the covariant derivative
on this spacetime. The positive-frequency vector-type
perturbations read

h
(V ;ωlm)
ai = ǫabD

b
(

rψωl
V

)

V
(lm)
i , (45)

with all other components vanishing, where ǫab is the
Levi-Civita tensor in the orbit spacetime.
The master fields ψωl

S and ψωl
V are given by

ψωl
P (t, r) = AP ;ωl

statice
−iωtrl+1(1− r2)iω/2

×F
(

1

2
(iω + l + 1),

1

2
(iω + l + 2); l +

3

2
; r2

)

, (46)

where AP ;ωl
static are normalization constants. Since we are

in the static patch, the positive-frequency property is
manifest with the factor e−iωt. One then expands the
quantum field in the same manner as in Eq. (33). That
is,

hµν =
∑

P,l,m

∫

dω
[

bPlm(ω)h(P ;ωlm)
µν + bPlm(ω)†h

(P ;ωlm)
µν

]

.

(47)

By normalizing the classical fields h
(P ;ωlm)
µν with respect

to the inner product (32), i.e. by letting

〈h(P ;ωlm), h(P
′;ω′l′m′)〉 = δPP ′

δll
′

δmm′

δ(ω − ω′), (48)

one obtains the usual commutation relations between the
operators bPlm(ω) and bPlm(ω)†, i.e.

[

bPlm(ω), bP
′

l′m′(ω′)†
]

= δPP ′

δll
′

δmm′

δ(ω − ω′), (49)

with all other commutators vanishing. The static vacuum
|0S〉 is defined by requiring that it should be annihilated
by all the annihilation operators bPlm(ω). By comput-
ing the inner product (32) with the metric perturbations
given in Eqs. (42)-(43) and Eq. (45), the normalization
constants are determined as follows [23]:

|AS;ωl
static|2 =

sinhπω
∣

∣Γ
(

iω+l+2
2

)

Γ
(

iω+l+1
2

)
∣

∣

2

2π2(l − 1)l(l + 1)(l + 2)
∣

∣Γ
(

l + 3
2

)
∣

∣

2

(50)

and

|AV ;ωl
static|2 =

sinhπω
∣

∣Γ
(

iω+l+1
2

)

Γ
(

iω+l+2
2

)
∣

∣

2

8π2(l − 1)(l + 2)
∣

∣Γ(l + 3
2 )
∣

∣

2 . (51)

IV. RESPONSE RATE TO A MULTIPOLE

EXTERNAL SOURCE

A. Response rate in the Poincaré patch

Having obtained the normalized graviton modes, we
introduce a multipole source term that couples to the
field hµν in the Lagrangian density (7) as follows:

Lint√−g =

√
32π

2
Tµν(x)hµν(x), (52)

where Tµν is the energy-momentum tensor of the source.
We note that, since Tµν is a symmetric second rank ten-
sor, one can expand it in the same way as the metric
perturbations. Moreover, the coupling in the interaction
term implies that products of scalar- and vector-type
parts vanish when integrated on the whole spacetime.
Thus, we can consider separately each type of energy-
momentum tensor which couples to the same type of
graviton modes. Moreover, the energy-momentum ten-
sor has to be conserved in the background spacetime, in
order for the interaction Lagrangian given by Eq. (52) to
be gauge invariant. We construct the conserved scalar-
type energy-momentum tensor Tµν

(S;Elm) with the condi-

tion that T τµ
(S;Elm) = 0. Then the conservation equation

∇µT
µν
(S;Elm) = 0 leads to the following nonzero compo-
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nents:

T ρρ
(S;Elm) =

jEl
S

ρ2
S
(lm), (53)

T iρ
(S;Elm) = − 1

kSρ2

(

∂

∂ρ
+

1

ρ

)

jEl
S S

i(lm), (54)

T ij
(S;Elm) = gEl

S S
ij(lm) − γijjEl

S

2ρ4
S
(lm), (55)

where

gEl
S ≡

{

2ρ−2

(l + 2)(l − 1)

[

∂2

∂ρ2
+

3

ρ

∂

∂ρ

]

− 1

ρ4

}

jEl
S . (56)

The function jEl
S (τ, ρ) is arbitrary and we will choose its

form later.
The conserved vector-type energy-momentum tensor

can be found under the same condition T τµ
(V ;Elm) = 0 as

T ρi
(V ;Elm) =

jEl
V

ρ2
V

i(lm), (57)

T ij
(V ;Elm) = −2kV g

El
V

ρ2
V

ij(lm), (58)

with all other components vanishing, where

gEl
V ≡ 1

(l + 2)(l − 1)

(

∂

∂ρ
+

2

ρ

)

jEl
V . (59)

Note that this energy-momentum tensor satisfies the con-

servation condition because the V
(lm)
ij are traceless. The

function jEl
V (τ, ρ) is arbitrary, as in the scalar-type case.

We now let

jEl
P (τ, ρ) = lim

ρ0→0
λ
e−(l+5+nP )τ

(l + 2)!

(

− ∂

∂ρ

)l+2

δ(ρ− ρ0)e
iEτ ,

(60)

where nS = 2, nV = 1, and λ is a small coupling constant.
The number of ρ-derivatives has been chosen so that
there is a nonzero but finite response rate for given an-
gular momentum l. The exponential factor e−(l+5+nP )τ

has been chosen so that the response rate does not vary
with τ .

Let us now compute the response rate (probability of
emission/absorption per unit time) of the graviton field
in the vacuum to the multipole sources Tµν

(P :Elm). If the

initial state is the vacuum, there is only the possibility
of emission, to lowest order in λ. Due to the form of the
sources given by Eqs. (53)-(55), in the scalar-type case,
and by Eqs. (57)-(58), in the vector-type case, the only
non-vanishing amplitudes (to lowest order in perturba-
tion theory) are the ones for the emission of a P -type
graviton (when the initial state is the vacuum |0〉) with
quantum numbers k, l and m. These amplitudes are
given by

AP
klm = i〈0|aPlm(k)

∫

d4xLint|0〉

= i

∫

dτ

∫

dρdΩ2e
3τρ2h

(P ;klm)
µν Tµν

(P ;Elm). (61)

The response rate from the vacuum |0〉 is then [32]

RP ;E
Poincaré =

∫ ∞

0

dk
|AP

klm|2
Ttot

, (62)

where

Ttot = 2πδ(0) =

∫ ∞

−∞

dτ (63)

is the total time as measured by the comoving observer
(cf. Refs. [34, 35, 46–48] and references therein). The
source is nonzero only at ρ = 0. Therefore, we can use
the following expansion around ρ = 0 for the master field:

φkl(τ, ρ) ≈
√
πke

τ
2 H

(1)
3
2

(ke−τ )

2
3
2Γ

(

l + 3
2

)

[

(

kρ

2

)l

−

(

kρ
2

)l+2

(

l + 3
2

) +

(

kρ
2

)l+4

2
(

l + 3
2

) (

l + 5
2

)






. (64)

Using this expansion and Eq. (61), we find that the
squared transition amplitude, integrated over k, can be
written as

∫

dk|AP
klm|2 =

πλ2|knpAkl
P |−2

22l+3|Γ
(

l + 3
2

)

|2
∫

dk

k

∞
∫

−∞

dτ

∞
∫

−∞

dτ ′(ke−τ )l+nP+ 3
2 (ke−τ ′

)l+nP+ 3
2H

(1)
3
2

(

ke−τ
)

H
(1)
3
2

(

ke−τ ′

)

eiE(τ−τ ′).

(65)

Note that the factor |knPAkl
P |−2 does not depend on k

and, hence, it can be moved outside the integral.4

4 The normalization factor squared, |Akl

P
|2, appears in the numer-

ator, but a factor proportional to |Akl

P
|4 appears in the denomi-

nator. This explains the factor |Akl

P
|−2 in Eq. (65).
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Now, we make the following change of variables

T =
τ + τ ′

2
, (66)

τr = τ − τ ′, (67)

K = ke−
τ+τ′

2 , (68)

so that the integrand does not depend on T and the in-
tegral over this variable can be factored out. It will be
cancelled by the total time [see Eq. (63)] when we com-
pute the response rate. Thus, we find

RP ;E
Poincaré =

πλ2|knpAkl
P |−2

22l+3|Γ
(

l + 3
2

)

|2
∫

dK

K

∫ ∞

−∞

dτrK
2l+2nP+3

×H(1)
n+1

2

(

Ke−τr/2
)

H
(1)
n+1

2

(

Keτr/2
)

eiEτr .

(69)

We perform a further change of variables given by

x = Ke−τr/2, (70)

y = Keτr/2. (71)

We thus obtain

RP ;E
Poincaré =

πλ2|knpAkl
P |−2

22l+3|Γ
(

l + 3
2

)

|2

×

∣

∣

∣

∣

∣

∣

∞
∫

0

dxxl+nP+ 1
2
+iEH

(1)
3
2

(x)

∣

∣

∣

∣

∣

∣

2

. (72)

Using Eq. (A6) of Ref. [32], namely

∫ ∞+iǫ

0

zµH(1)
ν (z)dz =

2µ

π
exp

[

1

2
i(µ− ν)π

]

×Γ

(

µ+ ν + 1

2

)

Γ

(

µ− ν + 1

2

)

,

(73)

for Reµ− |Re ν|+ 1 > 0, we find the following result:

RP ;El
Poincaré =

λ2e−πE
∣

∣Γ
(

l+iE+nP+3
2

)

Γ
(

l+iE+nP

2

)∣

∣

2

41−nP π|knpAkl
P |2

∣

∣Γ
(

l + 3
2

)∣

∣

2 .

(74)

B. Response rate in the static patch

We now compare the response rate in the Poincaré
patch, Eq. (74), to the one obtained in the static patch
from the same source in thermal equilibrium with tem-
perature 1/2π, the Gibbons-Hawking temperature for
de Sitter spacetime (with H = 1).

We first assume E > 0. Then
∫

d4x
√−g Tµν

(S;Elm)hµν = 2πλ(l + 1− iE)(l + 3− iE)

×AS;ωl
staticb

S
l,−m(E) (75)

and
∫

d4x
√−g Tµν

(V ;Elm)hµν = 4πλ(iE − l − 2)

×AV ;ωl
staticb

V
l,−m(E). (76)

If the initial state is given by a one-particle state
bPl,−m(ω)†|0S〉, P = S or V , in the static patch, we find
that the absorption probability per unit time is

PS;ωl,−m
static = 2πλ2|l + 1 + iE|2|l + 3 + iE|2

×|AS;ωl
static|2δ(ω − E), (77)

in the scalar-type case, and

PV ;ωl,−m
static = 2πλ2|l + 2 + iE|2|AV ;ωl

static|2δ(ω − E),(78)

in the vector-type case. Hence, in the scalar-type case the
absorption rate in thermal equilibrium with temperature
1/2π is

RS;El
static =

∫

PS;ωl,−m
static

dω

e2πω − 1

=
8λ2e−πE

∣

∣Γ
(

l+iE+5
2

)

Γ
(

l+iE+2
2

)∣

∣

2

π(l − 1)l(l + 1)(l + 2)
∣

∣Γ
(

l + 3
2

)∣

∣

2 , (79)

and the absorption rate in the vector-type case reads

RV ;El
static =

2λ2e−πE
∣

∣Γ
(

l+iE+4
2

)

Γ
(

l+iE+1
2

)
∣

∣

2

π(l − 1)(l + 2)
∣

∣Γ
(

l + 3
2

)
∣

∣

2 . (80)

If E < 0, there is emission of a graviton by the source.
The emission probabilities per unit time are again given
by Eqs. (77) and (78) with the change E → |E|. However,
in this case, we have to take into account both sponta-
neous and induced emissions. Hence, the emission rates
are

RP ;El
static =

∫

PP ;ωl,−m
static dω

(

1

e2πω − 1
+ 1

)

. (81)

Thus, we find that the emission rates are again given by
Eqs. (79) and (80) (without the change E → |E|). By
comparing these results with Eq. (74), where nS = 2 and
nV = 1, and where Akl

P , with P = S and V , are given

by Eqs. (41) and (40), respectively, we find RP ;El
static =

RP ;El
Poinacaré for both P = S and V .
Thus, we have shown that the response rate of the

vacuum |0〉 to the conserved external multipole sources
Tµν
(P ;Elm), P = S, V , is identical to the response rate of

the heat bath with temperature 1/2π in the static patch.

V. CONCLUDING REMARKS

In this paper we verified the Gibbons-Hawking effect,
i.e. the fact that the standard vacuum state for quan-
tum field theory in de Sitter spacetime is a thermal equi-
librium state with temperature H/2π, where H is the
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Hubble constant, for the gravitational perturbations. Al-
though this was an expected result, it is reassuring to
verify it explicitly. Strictly speaking, derivations of this
and other related effects in general spacetimes with bi-
furcate Killing horizons [28, 49, 50] have been given only
for non-gauge fields. It would be interesting to close this
gap and find a general derivation of this and other related
effects applicable also to gauge fields including perturba-
tive gravity.
Our result also serves as a check of the IR-finite

graviton two-point function in the static patch found
in Refs. [23, 24]. That is, we have verified explicitly
that the standard vacuum state for the gravitational
pertubations in the Poincaré patch, correponding to an
IR-divergent two-point function, and the thermal state
in the static patch, corresponding to an IR-finite two-
point function, have the same response to conserved ex-
ternal energy-momentum sources. The conservation of
the energy-momentum tensor also ensures gauge invari-
ance of the response rates. This is an interesting first
step for examining physics in de Sitter spacetime using
the static patch, where the IR properties of the gravi-
tational perturbations are better controlled. Since there
have been disagreement about the physical significance
of the IR divergences in the Poincaré patch, it would be
interesting to develop gravitational perturbation theory
in the static patch, now that the thermal state studied
in Refs. [23, 24] has been shown to produce the correct
physics when probed by an external source.
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Appendix A: Expansion of the gravitational plane

wave in flat space in terms of the modes in spherical

polar coordinates

In this Appendix we review the expansion of the grav-
itational plane wave in spatially-flat spacetime, includ-
ing the Poincaré patch of de Sitter spacetime, in terms
of the modes in spherical polar coordinates. This Ap-
pendix is included in order to emphasize that only the
modes with l ≥ 2 are present in the expansion of the
gravitational plane waves in the Poincaré patch. We note
that both the plane-wave modes and the modes in spher-
ical polar coordinates have the time-dependence given by

e
Hτ
2 H

(1)
3
2

(ke−Hτ/H) [see Eq. (28)]. Hence, it is sufficient

to consider the space-dependence of the plane waves and
the vector- and scalar-type modes. Thus, we extract the
space-dependent part of the scalar-type modes given by

Eqs. (11)-(13) as

H(S;klm)
ρρ =

Akl
S

ρ2
jl(kρ)S

(lm), (A1)

H
(S;klm)
ρi = −A

kl
S S

(lm)
i

kS

(

∂

∂ρ
+

1

ρ

)

jl(kρ), (A2)

H
(S;klm)
ij = Akl

S S
(lm)
ij ψkl(ρ)− Akl

S

2
γijjl(kρ)S

(lm),

(A3)

where

ψkl(ρ) =
2ρ2

(l − 1)(l + 2)

×
[

∂2

∂ρ2
+

3

ρ

∂

∂ρ
− (l − 1)(l + 2)

2ρ2

]

jl(kρ).

(A4)

We extract the space-dependent part of the vector-type
modes given by Eqs. (20) and (21) as

H
(V ;klm)
ρi = Akl

V jl(kρ)V
(lm)
i , (A5)

H
(V ;klm)
ij = −

2kVA
kl
V ρ

2
V

(lm)
ij

(l − 1)(l + 2)

(

∂

∂ρ
+

2

ρ

)

jl(kρ).(A6)

The scalar plane wave propagating in the z-direction
can be expanded as follows:

eikz =

∞
∑

l=0

(2l + 1)iljl(kρ)Pl(cos θ). (A7)

The space-dependent part of a circularly polarized grav-
itational plane wave propagating in the z-direction can
be given as

Hpl
xx = −Hpl

yy =
1

2
eikz, (A8)

Hpl
xy = ± i

2
eikz. (A9)

By the standard coordinate transformation of a tensor,
we find

Hpl
ρρ =

1

2
sin2 θ e±2iφeikz

=
1

2

∞
∑

l=0

(2l + 1)iljl(kρ) sin
2 θPl(cos θ)e

±2iφ.

(A10)

Now, by repeated use of the formula

√

1− x2Pm
l (x) =

1

2l + 1

[

−Pm+1
l+1 (x) + Pm+1

l−1 (x)
]

,

(A11)
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where we let Pm
l (x) = 0 if |m| > l, we obtain

Hpl
ρρ =

1

2

∞
∑

l=0

iljl(kρ)e
±2iφ

×
{

1

2l + 3

[

P2
l+2(cos θ)− P2

l (cos θ)
]

− 1

2l − 1

[

P2
l (cos θ)− P2

l−2(cos θ)
]

}

= −1

2

∞
∑

l=2

ilP2
l (cos θ)e

±2iφ

×
{

1

2l − 1
[jl−2(kρ) + jl(kρ)]

+
1

2l + 3
[jl(kρ) + jl+2(kρ)]

}

. (A12)

Then, by using

jl−1(x) + jl+1(x) =
2l + 1

x
jl(x), (A13)

we find

Hpl
ρρ = − 1

2k2ρ2

∞
∑

l=2

il(2l + 1)jl(kρ)P
2
l (cos θ)e

±2iφ

= − 1

ρ2

∞
∑

l=2

il
√

2π(2l + 1)jl(kρ)A
kl
S S

(l,±2)(θ, φ),

(A14)

where S(lm)(θ, φ) is defined by Eq. (16) with the constant
Akl

S defined by Eq. (41). By comparing this expression
with Eq. (A1) we find

Hpl
ρρ = −

∞
∑

l=2

il
√

2π(2l + 1)H(S;kl,±2)
ρρ . (A15)

To find the vector-type contribution to the plane wave,
we note that

Hpl
ρθ =

ρ

2
sin θ cos θe±2iφeikρ cos θ, (A16)

Hpl
ρφ = ± iρ

2
sin2 θe±2iφeikρ cos θ. (A17)

Hence

ǫijD̂iH
pl
ρj = ±kρ2Hpl

ρρ

= ∓
∞
∑

l=2

il
√

2π(2l + 1)l(l + 1)Akl
V jl(kρ)S

(l,±2),

(A18)

where the constant Akl
V is given by Eq. (40). On the other

hand

ǫijD̂iH
(V ;klm)
ρj =

√

l(l + 1)Akl
V jl(kρ)S

(lm). (A19)
By comparing this equation with Eq. (A18) we conclude
that

ǫijD̂iH
pl
ρj = ∓

∞
∑

l=2

il
√

2π(2l + 1)ǫijD̂iH
(V ;kl,±2)
ρj .

(A20)

From this equation and Eq. (A15) we find

Hpl
µν = −

∞
∑

l=2

il
√

2π(2l + 1)
[

H(S;kl,±2)
µν ±H(V ;kl,±2)

µν

]

.

(A21)
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