
This is a repository copy of The influence of channel anion identity on the high-pressure 
crystal structure, compressibility, and stability of apatite.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/128180/

Version: Accepted Version

Article:

Skelton, R and Walker, AM orcid.org/0000-0003-3121-3255 (2018) The influence of 
channel anion identity on the high-pressure crystal structure, compressibility, and stability 
of apatite. Mineralogy and Petrology, 112 (5). pp. 617-631. ISSN 0930-0708 

https://doi.org/10.1007/s00710-018-0565-z

© Springer-Verlag GmbH Austria, part of Springer Nature 2018. This is a post-peer-review,
pre-copyedit version of an article published in Mineralogy and Petrology. The final 
authenticated version is available online at: https://doi.org/10.1007/s00710-018-0565-z

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


The influence of channel anion identity on the high-pressure 

crystal structure, compressibility, and stability of apatite

Richard Skelton1 , Andrew M. Walker2

 Richard Skelton

richard.skelton@anu.edu.au

1 Research School of Earth Sciences, Australian National University, Canberra, ACT, 0200, 

Australia

2 School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK

Abstract The material properties of the common phosphate mineral apatite are influenced by the 

identity of the channel anion, which is usually F-, Cl-, or (OH)- . Density functional theory 

calculations have been used to determine the effect of channel anion identity on the compressibility 

and structure of apatite. Hydroxyapatite and fluorapatite are found to have similar zero pressure 

bulk moduli, of 79.2 and 82.1 GPa, respectively, while chlorapatite is considerably more 

compressible, with K0 = 55.0 GPa. While the space groups of hydroxyapatite and fluorapatite do not

change between 0 and 25 GPa, symmetrization of the Cl- site in chlorapatite at ~7.5 GPa causes the 

space group to change from P21/b to P63/m. Examination of the valence electron density 

distribution in chlorapatite reveals that this symmetry change is associated with a change in the 

coordination of the Cl- anion from 3-fold to 6-fold coordinated by Ca. We also calculate the 

pressure at which apatite decomposes to form tuite, a calcium orthophosphate mineral, and find that

the transition pressure is sensitive to the identity of the channel anion, being lowest for fluorapatite 

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24



(13.8 GPa) and highest for chlorapatite (26.9 GPa). Calculations are also performed within the DFT-

D2 framework to investigate the influence of dispersion forces on the compressibility of apatite 

minerals. 
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Introduction

The major host mineral for phosphorus in the Earth's crust and upper mantle is apatite, a calcium 

phosphate mineral with composition Ca10(PO4)6X2, where the channel anion, X, is typically F-, OH-, 

or Cl- (Pan and Fleet 2002). In addition to being the primary ore for phosphorous, apatite is the most

important mineral in the global phosphorous cycle, and can help transport incompatible elements 

such as the rare earth elements (REEs) and large lithophile elements (LILEs) into the Earth’s mantle

(Konzett et al. 2012). Apatites are also the major mineral components in animal bones and teeth, 

and their mechanical and chemical properties play a prominent, if poorly understood role in tooth 

durability (eg. Menendez-Proupin et al. 2011). Because of this, medical implants are often coated in

apatite to improve biocompatibility (Elsinger and Leal 1996; Moore et al. 2001). Natural apatites 

can contain high concentrations of actinides, and for this reason apatite has been proposed as a 
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potential solid state host for the long-term storage of waste radio-nuclides produced by nuclear 

reactors (e.g. Arey et al. 1999). 

The prototypical calcium apatite unit cell, shown in Fig. 1, is hexagonal with space group 

P63/m. Each unit cell contains 10 Ca2+ ions, which are distributed between two crystallographically 

distinct cation sites, labeled CaI and CaII. The CaI sites, of which there are four, are 6+3 

coordinated by O2-, while the six CaII sites, which are arranged in triangles around the channel site, 

are highly asymmetric, with six Ca-O bonds and one Ca-X bond. To minimize interactions between 

Ca ions, adjacent CaII triangles (along [0001]) are rotated relative to one another by 60o. The 

channel sites are typically occupied by either F- (fluorapatite or FAP), OH- (hydroxyapatite or 

HAP), or Cl-, (chlorapatite or CAP). However, other anions may occupy these sites under certain 

conditions, most notably oxygen (Trombe and Montel 1978), carbonate (Comodi and Liu 2000) and

hydrogen-carbonate (Fleet and Yiu 2007). The identity of the channel anion has a significant 

influence on the crystal structure of apatite. Changing the channel anion species can even change 

the crystal symmetry and, while FAP only exists in hexagonal form with space group P63/m, both 

HAP (Elliott et al. 1973, Ikoma et al. 1999, Ma and Liu 2009) and CAP (Mackie et al. 1972) have 

monoclinic variants, although . Due to their large, high-coordination cation sites and isolated PO4 

tetrahedra, the apatite crystal can accommodate significant distortion and is thus able to host high 

concentrations of a wide range of elements, including rare earth elements (REEs) and actinides. 

This makes apatite important in geochemistry, as its presence can significantly alter REE trends in 

igneous rocks (eg. Watson and Capabianco 1981).

Although the influence of the channel anion identity on the properties apatite is well 

established at ambient conditions using theoretical calculations (eg Calderin et al. 2003; Rulis et al. 

2004), the relationship between channel anion identity and the compressibility and high-pressure 

properties of apatite remains poorly understood. X-ray diffraction studies on HAP, FAP, and CAP 

indicate that the channel anion affects the compressibility of apatite, with CAP having the lowest 
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bulk modulus, while those of HAP and FAP are similar (Brunet et al. 1999). The measured 

compressibilities of synthetic lead fluorapatite (Pb10(PO4)6F2) and lead bromapatite (Pb10(PO4)6F2) 

suggest that the channel anion also influences fine features of the response to pressure, such the 

ratio of the a and c cell parameters, a/c, a measure of the anisotropy of compression, which is 

largely pressure independent for lead fluorapatite (Fleet et al. 2010), but decreases moderately with 

increasing pressure in lead bromapatite (Liu et al. 2011). Intriguingly, both studies found 

compressibility anomalies at high pressure, suggesting a change in the compression mechanism.

In experiments, apatite disproportionates at moderately high pressure to form tuite, γ-

Ca3(PO4)2, a high density calcium orthophosphate, plus an additional phase which depends on the 

channel anion identity, typically either CaX2 (X=F, OH, or Cl), or CaO and a fluid phase (for HAP),

and it is thought that this the route by which tuite may form in the mantle (Murayama et al. 1986). 

Tuite formed by this process could be important for the trace element inventory of the mantle (Zhai 

et al. 2014; Skelton and Walker 2017).  However, the pressure at which apatite reacts to form tuite 

varies between studies, from as low as 7.5 GPa (Konzett and Frost 2009) to as high as 12 GPa 

(Murayama et al. 1986).

In this study, we use quantum mechanical calculations, with and without dispersion 

corrections, to determine the effect of pressure on the crystal structures of HAP, FAP, and CAP, 

obtaining the relaxed atomic structures, cell shapes, and cell volumes of the hexagonal phases of 

HAP, CAP, and FAP in the range 0-25 GPa. Additionally, we computed enthalpies for the 

monoclinic variants of CAP and HAP, to determine the pressure dependence of the hexagonal to 

monoclinic phase transition. Valence electron densities were obtained at a range of pressures, 

showing the effect of pressure on the bond topology of apatite. Ultimately, it is hoped that these 

calculations will help shed light on the radically divergent high-pressure behavior of the different 

apatite minerals.
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Methodology

We studied the properties of apatite using plane-wave density functional theory (DFT, Hohenberg 

and Kohn, 1964; Kohn and Sham, 1965), which is a mean-field approach to solving the Schrödinger

equation, as implemented in version 5.2 of the Quantum Espresso software package (Giannozzi et 

al. 2009). The exchange-correlation (xc) energy was treated using the PBE generalized gradient 

approximation (GGA) xc-functional (Perdew et al. 1996). 

All calculations were performed using a kinetic energy cutoff of 60 Ry (~816 eV), with 

reciprocal space sums carried out using Monkhorst-Pack scheme (Monkhorst and Pack 1976), with 

grid sizes of 2x2x2 and 2x1x2 for the hexagonal and monoclinic apatites, respectively. These values

were found to be sufficient to converge the total energy of the simulation cell to <5 meV/atom. 

Ionic cores were treated using Vanderbilt ultrasoft pseudopotentials (Vanderbilt 1990), which are 

smoother than regular norm-conserving pseudopotentials and hence require fewer plane waves for 

accurate calculations. Valence configurations were 3s23p64s2, 3s23p3, 3s23p5, 2s22p4, 2s22p5, and 1s1 

for Ca, P, Cl, O, F, and H, respectively. At each pressure, the crystal structure was determined by 

simultaneously relaxing the cell parameters and atomic positions using the BFGS quasi-Newton 

scheme (Pfrommer et al. 1997). In order to accommodate possible transitions between high- and 

low-symmetry apatite structures, no symmetry was imposed on the calculations.  

To determine the effect of channel anion identity on the pressure at which apatite 

decomposes to form tuite, the enthalpy of the following decomposition reaction is computed:

Ca10 (PO4 )6 X2⇒CaX2+3Ca3 ( PO4 )2 (1)

where X=F, Cl, or OH. Murayama et al. (1986), in synthesizing tuite at high pressure and 

temperature, found that the CaF2 produced by decomposition of FAP was a solid phase, and that 

crystalline Ca(OH)2 was produced during decomposition of HAP, at least below 1273 K, above 

5

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123



which the decomposition products should be CaO and H2O. As the calculations here are performed 

at static conditions (ie. at 0 K), and since the enthalpies of fluid phases cannot be easily computed 

with DFT, only decomposition reactions which produce tuite and solid CaX2, (X=F, OH, Cl) are 

considered here. 

The enthalpies for the products of reaction (1) were computed with DFT, with the ionic 

cores treated using the same set of pseudopotentials as were used for apatite. The kinetic energy 

cutoff used for apatite (60 Ry) was found to be sufficient to ensure convergence of the total energies

of tuite and the CaX2 phases. For tuite, a 4x4x2 k-point grid was sufficient to guarantee 

convergence of the total energy to <5meV/atom. CaF2, Ca(OH)2, and CaCl2 all undergo phase 

transformations in the pressure interval considered here, and enthalpies were computed for the low-

pressure and high-pressure phases. For CaF2,  there is a pressure induced phase transition at ~9 GPa 

(Qi et al. 2013), from the low density fluorite phase (space group Fm3m) to a higher density 

orthorhombic phase with space group Pnma. Converged cell energies were obtained by using a 

4x4x4 k-point grid for the fluorite phase and a 6x4x4 grid for the high-pressure Pnma phase. For 

low pressure Ca(OH)2 (portlandite, space group P3m1), a 6x6x6 k-point grid was sufficient to 

guarantee convergence of the total cell energy. Like CaF2, Ca(OH)2 undergoes a phase 

transformation at high pressure, adopting a structure similar to ZrO2 baddeleyite (space group P21/c;

Kunz et al. 1996), for which a 4x4x4 k-point grid was used. Finally, CaCl2 also undergoes a phase 

transformation over the pressure range considered in this study (0-30 GPa), from the low pressure 

rutile-type phase (space group P42/mnm) to a high-pressure cotunnite-type phase with space group 

Pbcn (Liu et al. 2007).  6x6x8 and 6x4x4 k-point grids were used for the low and high pressure 

phases, respectively. 

The GGA xc-functional fails to fully capture the effects of long-ranged dispersive 

interactions, which contributes to the well-documented tendency of this xc-functional to 

overestimate cell volumes (see eg. Otero-de-la-Roza and Luana 2011; Luo et al. 2013). Inclusion of 
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dispersion interactions has been found to be important for layer  silicates (Ulian et al. 2013a; Ulian 

et al. 2014). Their correct treatment is also of more general importance when calculating the 

properties of ionic materials with DFT, and their inclusion is essential for calculating the correct 

stable phase of cesium chloride (Zhang et al. 2013). Consequently, we recalculate the atomic 

positions, cell parameters, and reaction enthalpies for FAP, HAP, and CAP using the DFT-D2 

approach (Grimme 2006). In this formulation, the energy of a DFT calculation is modified by 

adding an additional term, representing energy of the long-ranged dispersion interactions, which has

the form

Edispersion=− s6∑
i=1

N

∑
j=1

N

f (r ij)
C6

ij

r
6 ij

(2)

where s6 is a xc-functional dependent scaling factor, taken to be 0.75 for the PBE xc-functional 

(Grimme 2006), rij is the interatomic distance, and C6
ij is a numerical coefficient giving the 

strength of the dispersion interaction between atoms i and j. In the DFT-D2 scheme, this is given by 

the expression C6
ij=√C6

i
C6

j , where C6
i  is the dispersion coefficient for atom i. The taper 

function f  is used to prevent double counting of short-ranged dispersive interactions, and is given 

by

f (r ij)=
1

1 +e
− d (rij /Rij

vdw
− 1) (3)

where d is a steepness parameters and Rij
vdw is the sum of the van der Waals radii of atoms i and j. 

Since dispersion forces may affect apatite minerals and their high-pressure decomposition products 

differently, enthalpies for the tuite and CaX2 phases in reaction (1) are also calculated using DFT-

D2. 

Results and Discussion
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Influence of channel anion identity on crystal structure

We begin by examining the relationship between channel anion identity and compressibility of the 

apatite unit cell (Table 1). Calculated cell volumes, a and c parameters, and a/c ratios are plotted in 

Fig. 2, where it can be seen that CAP has the largest cell volume and highest compressibility, while 

HAP and FAP have similar cell volumes and compressibilities at all pressures. To quantify this, the 

calculated cell volumes are fit to a 3rd order Birch-Murnaghan (BM3) equation of state (EOS)

 P (V )=
3K 0

2 [( V 0

V )
7 /3

−(V 0

V )
5 /3

]×[1+
3
4

( K0
'
− 4 ){(V 0

V )
2 /3

−1}] (4)

where V0 is the zero pressure volume, K0 the zero pressure isothermal bulk modulus, and K0
'  is 

the pressure derivative of the bulk modulus at 0 GPa. K0 and K0
'  are covariant, and so we also fit

the cell volumes to a second order Birch-Murnaghan EOS, in which K0
' is fixed to 4.0. However, 

this results in a significant reduction of the goodness of fit for all three apatites. Moreover, whether 

or not K 0
'  is allowed to vary, the BM3 EOS gives a poor fit to the cell volume data of CAP. The 

fitted BM3 EOS parameters are given in Table 2. CAP is the softest of the three apatite minerals, 

with a K0 of just 55.0 GPa, while FAP is the stiffest, with K0 = 90.7 GPa. The values for the bulk 

moduli obtained here are significantly lower than those determined by Brunet et al. (1999), by up to

11% in the case of HAP, and the fitted values of V0 for FAP and HAP are larger than the 

experimental values, by 3.5 and 3.7 %, respectively. This is a consequence of the underbinding of 

the GGA exchange correlation functional. The calculated zero-pressure cell volume of HAP (549.5 

Å3) is larger than the 532 Å3 found by Ulian et al. (2013b) using all-electron density functional 

theory with the B3LYP hybrid functional.

The order of the a cell parameter lengths at ambient pressure is a(CAP) > a(HAP) > a(FAP),

while the order of the c cell parameters is c(FAP) > c(HAP) > c(CAP). At high pressure, the order 
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of the magnitudes of the a cell parameters does not change, while the ordering of c(HAP) and 

c(FAP) reverses at ~7.5 GPa. As can be seen from the a/c ratios of the three apatites (Fig. 2d), the a 

cell axis is more compressible than the c axis, as the a/c ratio is strictly decreasing with pressure. 

The magnitude of this decrease is greatest in the case of CAP. This is consistent with the finding of 

He et al (2012), that the incorporation of large radius ions into the apatite structure dilates the a axis

more than the c axis, increasingly the relative compressibility of the a axis. To give a quantitative 

indication of the relative stiffness of the crystal axes of the different apatite minerals, we fit the 

BM3 EOS (equation 4) to the cubes of each cell parameter. For the a cell parameters, this give 

effective bulk moduli K0 of 68.0(16), 60.3(20), and 37.1(21) GPa and K 0
'  of 4.7(2), 4.9(2), and 

5.6(3) for FAP, HAP, and CAP, consistent with the ordering found for the total cell volumes. Fitting 

the cubes of the c cell parameters of FAP and HAP (excluding HAP at 0 GPa, where the curvature is

apparently negative) gives bulk moduli of 135.6(42) and 158.9(45) GPa and K 0
'  of 4.5(4) and 

3.4(3) for FAP and HAP, respectively. For CAP, no meaningful fit parameters can be obtained, due 

to the anomalous stiffening of the c-axis at ~7.5 GPa, a result which explains the poor fit obtained 

for the cell volumes. 

This anomaly manifests in the increase of the z-coordinate of the Cl- ion with pressure, from 

0.398 at 0 GPa to effectively 0.5 at 7.5 GPa, as can be seen in Fig. 3. This corresponds to the Cl- ion

being situated exactly halfway between adjacent CaII triangles. This change in compression 

mechanism is also associated with a change of space group, which is determined using the program 

FINDSYM (Stokes and Hatch, 2005), from P63 at low pressure to P63/m at high pressure. This 

transition is associated with a change in the Wyckoff site occupied by the Cl- anion, from 2a to 2b. 

Since the z-coordinate approaches 0.5 continuously, but its pressure derivative is discontinuous 

where the Wyckoff site changes from 2a to 2b, the transition from the P63 to P63/m space group is 

of second order. 
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Among the apatites considered in this study, this high-pressure transition appears to be 

unique to CAP, as no similar compressibility anomalies can be seen for either FAP or HAP. In the 

former case, the F- ion remains at z = 0.25 (ie. in the center of a CaII triangle) to 25 GPa. Similarly, 

in HAP, although the hydroxyl group is displaced along the channel with increasing pressure (Fig. 

3), the pressure derivatives of the O2- or H+ coordinates do not vary between 0 and 25 GPa. In 

principle,  this could change at pressures substantially above 25 GPa but, as will be shown below, 

HAP decomposes at high pressure, which means that any such change in the compression 

mechanism does not fall within its pressure-stability range. 

Unsurprisingly, given the wildly divergent pressure response of the cell parameters for the 

three apatites, we find that the influence of pressure on the channel is depends strongly on the 

identity of the channel anion. To illustrate this, we use the trigonally distorted whose six corners are 

the Ca2+ atoms from two adjacent CaII triangles and which is centered on a hypothetical ion at z = 

0.5 (Fig. 4a),  commonly called the “channel polyhedron” (Fleet et al. 2010). By taking this point to

be the center of the polyhedron, we separate the displacement of the channel anion from the 

distortion of the shape of the channel. At high pressure the channel polyhedron corresponds to the 

coordination polyhedron of the Cl- anion in CAP. As can be seen from Fig. 4b, the pressure 

dependence of the channel polyhedron’s volume varies greatly between FAP, HAP, and CAP. 

Furthermore, the channel anion identity also affects the shape of the channel polyhedron, as can be 

seen from the bond angle variance (BAV; Robinson et al. 1971), which is a measure of the angular 

distortion of the coordination polyhedron, defined as

σ
2=

1
m −1

∑
i=1

m

(θ i− θ0 )2 (5)

where m is equal to 3/2 times the number of faces in the polyhedron. The θi are the bond angles 

made by two Ca atoms at the vertices of the coordination polyhedron with the site at its center, and 

θ0 is the ideal bond angle for a regular polyhedron with 2m/3 faces. BAV values for the channel 

polyhedra in FAP, CAP, and HAP are plotted in Fig. 4c. For both FAP and HAP, the BAV of the 
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channel polyhedron increases steadily with pressure, although the BAV is somewhat greater for 

FAP, which may be because the channel anions in FAP (ie. F-) remain in the faces of the channel 

polyhedra at all pressures.  

The pressure dependence of the shape and compressibility of the CAP channel polyhedron is

markedly different from the other apatites. In particular, whereas BAV values for HAP and FAP are 

monotonic increasing, the BAV of the channel polyhedron in CAP decreases rapidly at low 

pressure, from 9.47 (°)2 at 0 GPa to <0.1 (°)2 at 7.5 GPa. Thereafter, it increases steadily with P, at a

rate similar to that of the BAV for the FAP channel polyhedron. At 0 GPa, the channel polyhedron 

in CAP is substantially larger than those of HAP or FAP. However, its compressibility is also much 

greater and, above 15 GPa, the channel polyhedra of CAP and HAP have similar volumes and 

compressibilities. These differences can be quantified by fitting a BM3 EOS to the calculated 

polyhedral volumes. From this, we find that V0 = 38.6(2), 34.44(3), and 32.58(1) Å3 for CAP, HAP, 

and FAP, respectively, consistent with Cl- being the largest of the channel anions and F- the smallest.

Looking now at the bulk modulus and its derivative, we find that, for CAP, K0 = 28.1(21) GPa and

K0
'  = 5.5(3). For HAP and FAP, the corresponding values are K0 = 71.8(11) and 72.4(3) GPa and

K0
'  = 3.3(1) and 4.53(3), respectively.

The contrasting response to pressure can also be seen by examining the internal parameters 

of the apatite cell. One quantity of particular interest is the metaprism twist φ, which is the angle 

between the projections of the CaI-O1 and CaI-O2 bonds onto (0001) (illustrated in Fig. 5a). This 

quantity is known to be sensitive to apatite composition, and is consequently used as a probe for 

chemical composition and order (Lim et al. 2011). For FAP, the metaprism twist increases from 

22.67° at 0 GPa, compared with the value of 24.3° found by Lim et al. (2011). The metaprism twist 

angle increases with pressure, reaching a maximum of 23.38° at 7.5 GPa, before declining steadily 

to 22.80° at 25 GPa. Similarly, for HAP, the value of φ increases from 21.57° at 0 GPa, rather less 

than the value of 23.2° found by Sudarsanan and Young (1972), reaching a maximum value of 
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23.05° at 10.0 GPa, and decreasing to 22.63° by 25 GPa. While the range of angular values is 

somewhat greater in HAP than in FAP, in both cases the metaprism twist is only weakly dependent 

on pressure. However, as can be seen in Fig. 5a, the effect of pressure on the metaprism twist angle 

in CAP is radically different, with φ increasing rapidly from a value of just 14.37° at 0 GPa,  to 

20.21° at 22.5 GPa, declining slowly thereafter. Note that, as for the other two apatites, φ is rather 

less than the experimentally determined value of 17.8° (Sudarsanan and Young 1980). However, the

relative magnitudes of the metaprism twist angles is reproduced successfully, with φ(CAP) < 

φ(HAP) < φ(FAP).

Another measure of the response of the apatite crystal structure to pressure is the X-X-CaII 

angle (illustrated in Fig. 5b for FAP). This quantity, referred to hereafter as the “skew” angle ψ, 

measures the rotation of the channels relative to one another. If the channels are lined up perfectly 

should be exactly 120°. Indeed, from Fig. 5b it can seen that, at 0 GPa, this is very nearly the case 

for FAP and HAP, for which the values of are 120.02° and 119.51°, respectively. However, the 

effect of increasing pressure is to rotate the channels relative to one another such that, at 25 GPa, 

the calculated values of y are 123.35° for FAP and 123.46° for HAP. As was the case for the 

metaprism twist, the effect of pressure on the skew angle is rather more pronounced for CAP, for 

which ψ increases from 115.82° at 0 GPa to 122.32° at 25 GPa. 

The differences in the high-pressure responses of the different apatites is apparent not only 

in the crystal structure but also in the bond topology in the vicinity of the channel. This can be seen 

in the differences between the low- and high-pressure valence electron density distributions of HAP 

with those of CAP, shown in Fig. 6. In the former, although the channel site shrinks and the 

hydroxyl group is progressively displaced along the c-axis, the bond topology remains unchanged, 

with the hydroxyl oxygen three-fold coordinated to Ca2+ at all pressures between 0 and 25 GPa. At 0

GPa, the electron density distribution of CAP looks very similar to that of HAP, with each Cl- anion 
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in CAP sharing substantial electron density with Ca2+ ions in a only single layer, for a total effective 

coordination number of three. However, at high pressure the Cl- anion has clearly defined bonds 

with all Ca2+ ions in the CaII triangles both above and below it, raising the effective coordination 

number to six. Simultaneously, the channel site symmetrizes, and a mirror planes develop at z =0.25

and z =0.75, halfway between adjacent Cl- anions. This symmetrization coincides with (indeed, 

causes) the substantial stiffening of the CAP c-axis seen at  ~7.5 GPa in Fig. 2c, and the associated 

anomaly in the a/c compression ratio (Fig. 2d).

A similar anomaly in the a/c compression ratio has also been observed in synthetic lead 

fluorapatite (PbFAP; Fleet et al. 2010). Diffraction data shows that, at ambient pressure, the channel

ion in PbFAP, much like the channel anions in HAP and CAP, is displaced along [0001] to z = 

0.461. While Fleet et al. (2010) were unable to refine the location of the F- ion at high pressure, as 

F- is much lighter than Pb2+ and hence difficult to locate in x-ray diffraction, the observed changes 

in the a/c compressibility ratio and the substantially greater compressibility of the channel 

polyhedron are consistent with progressive displacement of the channel anion along [0001] that 

stalls as the anion approaches z = 0.5, as was found to be the case here for Ca-CAP. This may also 

explain similar compressibility anomalies in lead bromapatite (PbBrAp; Liu et al. 2011).

The effect of dispersion forces on the high-pressure structure of apatite

The larger cell volumes and lower zero-pressure bulk modulus of apatite, relative to experiments, 

reported in the previous section can be attributed to the use of the PBE-GGA xc-functional, which is

known to significantly underbind. While several factors contribute to this underbinding, one 

potentially important source is the failure of the PBE-GGA xc-functional to adequately model long-

ranged dispersive interactions. To determine the significance of this for apatite compressibility, cell 

volumes and cell parameters were calculated using the DFT-D2 approach, as described above. 
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Calculated a and c cell parameters and cell volumes for FAP, HAP, and CAP are reported in Table 3 

and plotted in Fig. 7, the inclusion of dispersion forces via the DFT-D2 scheme reduces the cell 

volumes of all apatites considered here, as well as both the a and c cell parameters.

The significance of this reduction can be quantified by fitting the BM2 and BM3 equations 

of state to the cell volumes calculated with DFT-D2. The fitted parameters are reported in Table 4. 

The inclusion of dispersion forces does not affect the ordering of the compressibilities of the three 

minerals, with CAP and FAP remaining the most and least compressible minerals, respectively. 

However, the DFT-D2 BM2 fit parameters are substantially closer to those obtained by Brunet et al.

(1999) for natural apatites, particularly for FAP, whose fitted BM2 K0 is within error of the value 

reported by Brunet et al. (1999). The zero-pressure cell volume V0 is also substantially better 

reproduced by the DFT-D2 calculations, with the calculated values for FAP and HAP just 1.3% and 

1.4% greater than those obtained by Brunet et al. (1999) by fitting to experimental data. 

The inclusion of dispersion forces through the DFT-D2 also influences the response of the a 

and c cell parameters to pressure. As was done in the previous section for the PBE-GGA 

calculations, the relative stiffness of the crystal axes can be quantified by fitting the cubes of their 

values to a BM3 EOS (equation 4). For the a cell parameters, the zero-pressure bulk moduli K0 are 

79.4(3), 73.4(4), and 63.4(11) GPa for FAP, HAP, and CAP, respectively, while the corresponding 

derivatives  K 0
'  are 4.1(1), 4.2(1), and 4.2(1). For the cubes of the c cell parameters, the BM3 

EOS fit parameters are K0 = 132.3(4) and 147.4(17) GPa and K 0
'  = 5.7(1) and 4.5(1) for FAP and

HAP, respectively. 

As was found in preceding section using DFT without a dispersion correction, the c cell 

parameter cannot be meaningfully fitted to a BM3 EOS, as the c axis compressibility changes at 

~7.5 GPa. From Fig. 7c, it can be seen that the DFT-D2 calculations predict that, in contrast to the 

DFT calculations, the c axis actually softens as it approaches this pressure, and then stiffens 

considerably above it. This anomaly in the c axis compressibility can, as in the DFT results, be 
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attributed to the progressive increase of the z-coordinate of the Cl- ion with pressure. At 0 GPa, the 

z-coordinate is 0.449, greater than the value obtained using DFT with no dispersion correction. 

However, the DFT-D2 calculations predict a lower pressure sensitivity of the z-coordinate of the Cl- 

anion, so that the Cl- anion reaches the site halfway between adjacent CaII triangles  at 

approximately the same pressure as was predicted from DFT calculations without a dispersion 

correction (ie.  ~7.5 GPa). It is likely that this accounts for the qualitatively different response of the

c axis to increasing pressure below the P63 → P63/m transition predicted by the DFT and DFT-D2 

calculations, with the anomaly in the a/c ratios being more pronounced in the latter case, as can be 

seen by comparing Fig. 2c and Fig. 7c). We use FINDSYM (Stokes and Hatch 2005), we determine 

the space group of CAP, which is determined to change from P63 to P63/m at ~7.5 GPa, similar to 

the value determined from the dispersion-uncorrected simulations. 

The monoclinic-hexagonal phase transitions

Although only hexagonal apatite structures have so far considered here, both HAP (Elliot et al. 

1973; Ma and Liu 2009) and CAP (Mackie et al. 1972) are known to have monoclinic symmetry at 

room pressure. Given the different behavior found for the hexagonal phases of these two apatites, it 

is likely that the pressure dependence of the boundary between their hexagonal and monoclinic 

phases will also differ. To test this, we compute enthalpies of the monoclinic phases to 25 GPa and 

compare the enthalpy changes of the monoclinic to hexagonal phase transitions. In addition, to 

account for the possibility of a monoclinic FAP phase, the cell has been relaxed with F- anion 

initially displaced along the [0001] axis (with opposite sense in adjacent channels) from its position 

at (0.0, 0.0, 0.25). However, at all pressures, it was found that FAP relaxes to the hexagonal crystal 

structure with space group P63/m.
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As can be seen from Fig. 9, the stability of the monoclinic phase of HAP increases with 

pressure. This can be attributed to the fact that increasing pressure decreases the distance between 

adjacent channels, thereby strengthening the coupling between channel sites. In contrast, 

monoclinic CAP has the same enthalpy as hexagonal CAP above 7.5 GPa. Indeed, analysis of the 

monoclinic and hexagonal crystal phases using the program FINDSYM (Stokes and Hatch, 2005) 

shows that they are structurally identical above this pressure (ie. hexagonal with space group P63/m 

and the Cl- ion in the 2b Wyckoff site). It is well-established that the underbinding of GGA-type xc-

functionals leads to overestimation of transition pressures. Consequently, the stability of monoclinic

HAP relative to the hexagonal phase should be somewhat greater at constant pressure predicted 

using just the PBE-GGA xc-functional. The inclusion of dispersion forces using the DFT-D2 

scheme has no substantial effect on the relative stabilities of the monoclinic and hexagonal phases, 

although the enthalpy difference between the hexagonal and monoclinic variants of HAP increases, 

from 0.02 eV/ hexagonal cell to 0.06 eV/hexagonal cell at 0 GPa and 0.11 eV/hexagonal cell to 0.19

eV/hexagonal cell at 25 GPa. The energy difference between the monoclinic and P63 hexagonal 

forms of CAP at 0 GPa calculated with DFT-D2 (0.06 eV/hexagonal cell)  is also slightly higher 

than the ∆H of 0.02 eV/hexagonal cell calculated without a dispersion correction. While the energy 

difference between monoclinic and hexagonal cells is calculable, we note that the values are not 

large, which means that the orientations of adjacent channels are not tightly coupled.  

Previous studies have suggested that hydroxyapatites may have ordered channels. 

Disordering of the orientations of the (OH)- groups in the channels has been proposed to be 

responsible for the high-T transition from P21/b to P63/m (Hochrein et al. 2005). However, de 

Leeuw (2010) noted that the coupling energy between adjacent columns is relatively small. 

Consequently, increasing the temperature should mean that, while the hydroxyl groups within a 

channel should remain ordered, the orientations of the hydroxyl groups in adjacent channels are no 

longer correlated. This increases the symmetry of the crystal from P21/b to P63/m. In this model, the
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disordering temperature depends (to first order) on the coupling between channels, which is roughly

proportional to the relative stability of the monoclinic and (ordered, ie. P63) hexagonal phases. 

Consequently, from the relative stabilities of the hexagonal and monoclinic phases calculated in this

study, it is expected that the temperature at which the transition from monoclinic to hexagonal HAP 

occurs should increase with pressure. 

By the same reasoning, CAP should form the disordered (ie. P63/m) hexagonal phase at 

progressively lower temperatures as the pressure increases. The symmetrization of the channel site 

at high pressure means that the monoclinic phase can no longer exist, and above the transition 

pressure CAP will have the ordered hexagonal structure (with Cl at z=0.5) at all temperatures where

apatite is stable. More detailed analysis on the effect of pressure on the temperature of the 

monoclinic to hexagonal phase transition would require a study of the free energy change across the

phase boundary informed by molecular dynamics or lattice dynamics calculations. However, this is 

beyond the scope of the present work.

The apatite-tuite phase boundary

Enthalpies for the reaction whereby apatite decomposes to produce tuite and CaX2 are calculated 

from using the enthalpies calculated with PBE-GGA without the DFT-D2 dispersion correction. As 

discussed in the Methodology section, CaF2, Ca(OH)2, and CaCl2 all undergo phase transitions in 

the pressure range considered in study. Consequently, for each pressure, we use the enthalpy of the 

stable CaX2 phase at that pressure. Calculated enthalpies for reaction (1) are plotted in Fig. 8, where

it can be seen that the formation of tuite is quite sensitive to the identity of the channel anion in 

apatite, with CAP remaining stable to far higher pressures than either HAP or FAP. The transition 

pressure is lowest when the channel anion is F and highest when it is Cl, with transition pressures of

13.8, 15.5, and 26.9 GPa for FAP, HAP, and CAP, respectively. The ordering of the phase transition 
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pressures is unchanged by the inclusion of a dispersion correction using the DFT-D2 scheme, 

although their values are reduced modestly to 8.0, 9.6, and 19.3 GPa for FAP, HAP, and CAP. These

results suggests that, while HAP and FAP will disproportionate to form tuite + CaX2 somewhere 

between the deep upper mantle and the upper transition zone, CAP may potentially remain stable 

into the lower mantle. In natural apatites, the occupancy of the channel depends on the origin of the 

apatite, with those in metasomatized mantle peridotites being more Cl- rich and F- poor, while those 

crystallized from magma at high-pressure are relatively F- rich (O’Reilly and Griffin 2000; O’Reilly

and Griffin 2013). Thus, the origin of an apatite crystal may influence the pressure at which it 

potentially decomposes to form tuite in the mantle. 

HAP and CAP both have monoclinic polymorphs, which may influence the pressure of the 

apatite → tuite transition. Given that the monoclinic variant of CAP disappears at pressures well 

below the calculated apatite → tuite phase boundary, this will not affect the result when X=Cl-. 

However, as shown above, in the case of HAP, pressure increases the stability of the monoclinic 

structure over the hexagonal structure, which will shift the apatite →  tuite phase boundary to 

higher pressures. Nevertheless, as can be seen in Fig. 8, this is a minor effect, and not enough to 

influence the relative ordering of the high-pressure stabilities for the three apatite compositions. The

pressure derivatives of the enthalpies for each of the three apatites are nearly identical. In contrast, 

the enthalpy per atom of CaCl2 increases much more rapidly with pressure than either Ca(OH)2 or 

CaF2. Consequently, the strong dependence of the decomposition pressure on the channel anion is 

driven by the enthalpy of the CaX2 phase, rather than that of apatite.

Clearly, the identity of the channel anion has a significant influence on the relative stability 

of the apatite and tuite assemblages. Indeed, our calculations predict that, while HAP and FAP 

decompose to form tuite + CaX2 at pressures comparable to those in the upper transition zone, CAP 

can remain stable to considerably greater depths. Konzett and Frost (2009) reported the 

decomposition pressure of hydroxyapatite in a system with a mid-ocean ridge basalt (MORB) 
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composition, finding that tuite was produced at 7.5 GPa, lower than the value reported by 

Murayama et al. (1986), which is halfway between the values calculated here with DFT and DFT-

D2. Similarly, Konzett et al. (2012) reported, in an assemblage containing chlorapatite and 

phlogopite, tuite formed was present at below 9 GPa, significantly lower than the value reported in 

this study. In this case, the decomposition products included a Cl-rich fluid, which may be 

responsible for destabilizing CAP. This suggests that the presence of coexisting phases, whether 

minerals (Konzett and Frost 2009) or fluids (Konzett et al. 2012), can affect the pressure at which 

tuite forms from apatite, particularly in the case of CAP. Temperature will also reduce the pressure 

at which these decomposition reactions occur, but is unlikely to alter their relative order, with FAP 

decomposing at the lowest pressure and CAP persisting to greater depths. 

Conclusions

In this study, ab initio calculations were used to examine the effect of different common channel 

anion species on the compressibility of apatite. It was found that channel anion identity has a 

substantial influence on the compressibility of apatite, as all three apatites displayed different 

pressure dependences of the cell parameters, bond lengths, and polyhedral volumes, as well as 

subtle structural features such as the metaprism twist and channel skew angles. However, the 

differences between CAP and the other apatites were far more significant those between FAP and 

HAP. Moreover, the qualitative nature of the compression mechanism varied between the three 

apatites, with FAP compressing uniformly, HAP compressing through progressive displacement of 

the hydroxyl groups along the channels. In CAP, meanwhile, the Cl- shifted along the channel at low

pressure, but were constrained by symmetry to remain stationary above 7.5 GPa, greatly increasing 

the stiffness of the c-axis. While the inclusion of dispersion forces using the DFT-D2 method was 
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found to decrease the cell volumes of all three apatites and increase their bulk moduli, the ordering 

of these parameters was not, nor was the pressure at which the Cl- site in CAP symmetrizes greatly 

affected, although the evolution of the CAP c axis compressibility below 7.5 GPa does appear to be 

affected by dispersion forces. 

This meant that, although the space groups of hexagonal FAP and HAP (P63/m and P63, 

respectively) do not change over the pressure range studied, hexagonal CAP, whose space group is 

P63 at ambient conditions, has space group P63/m above 7.5 GPa, associated with the development 

of a mirror planes at z = 0.25 and z = 0.75. This is associated with an increase in the coordination of

the Cl- channel anion from three to six-fold coordinated by the CaII sites. By calculating the 

enthalpies of the monoclinic structures, it was found that the compression anomaly in CAP 

coincides with a change in symmetry from monoclinic to hexagonal. While monoclinic HAP 

becomes more stable than hexagonal HAP with increasing pressure, monoclinic CAP ceases to exist

above 7.5 GPa.
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Figure captions

Fig. 1 Crystal structure of apatite, viewed down the [0001] axis. Image produced using the crystal 

structure visualization software VESTA 3 (Momma and Izumi 2011)
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Fig. 2 Pressure dependence of the (a) cell volumes, (b) a0 cell parameters, (c) c0 cell parameters, and

(d) a0/c0 ratios of FAP (squares), HAP (circles), and CAP (inverted triangles)
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Fig. 3 Plot of the pressure dependence of z-coordinates of the F- anion in FAP (squares), the Cl- 

anion in CAP (inverted triangles), and the O2- (filled circles) and H+ (hollow circles) ions in the 

(OH)- group of HAP
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Fig. 4 (a) Unit cell of fluorapatite with the “channel polyhedron” (defined in the text) highlighted. 

The pressure dependence of the (b) volumes, and (c) bond angle variances (BAV) of the channel 

polyhedra in FAP (squares), HAP (circles), and CAP (inverted triangles) are also shown
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Fig. 5 Illustrations of (a) the metaprism twist φ and (b) the skew angle ψ, together with their 

calculated pressure dependences, for FAP (squares), HAP (circles), and CAP (inverted triangles)
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Fig. 6 Calculated valence electron densities at 0 GPa and 25 GPa for HAP and CAP
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Fig. 7 Pressure dependence of the (a) cell volumes, (b) a0 cell parameter, (c) c0 cell parameter, and 

(d) a0/c0 ratio of FAP (squares), HAP (circles), and CAP (inverted triangles) calculated with 

dispersion forces treated using the DFT-D2 scheme
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Fig. 8 Plot of ∆H (per hexagonal cell) against pressure, for the phase transition from the monoclinic

to hexagonal forms of HAP (circles) and CAP (inverted triangles)

Fig. 9 Calculated ∆H (per atom), obtained using DFT, for the decomposition of FAP (squares), HAP

(circles), and CAP (inverted triangles) to produce tuite and CaX2 (X=F, OH, Cl). Hollow symbols 

give the reaction enthalpy for monoclinic HAP
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Table 1 Calculated cell volumes and a and c cell parameters for FAP, HAP, and CAP as functions of

pressure

P (GPA) FAP HAP CAP

V (Å3) a0 (Å) c0 (Å) V (Å3) a0 (Å) c0 (Å) V (Å3) a0 (Å) c0 (Å)

0.0 542.74 9.518 6.917 549.52 9.592 6.896 573.07 9.900 6.751

2.5 527.25 9.407 6.880 532.95 9.464 6.871 549.66 9.730 6.704

5.0 514.30 9.317 6.841 519.27 9.363 6.840 531.85 9.588 6.680

7.5 502.86 9.236 6.808 507.57 9.278 6.808 517.71 9.468 6.668

10.0 492.73 9.165 6.774 497.21 9.204 6.777 505.76 9.369 6.654

12.5 483.54 0.100 6.742 487.74 9.136 6.748 495.49 9.286 6.635

15.0 475.43 9.043 6.714 479.20 9.074 6.720 486.20 9.213 6.614

17.5 467.86 8.989 6.687 471.39 9.018 6.694 477.73 9.147 6.593

20.0 460.97 8.939 6.661 4.64.19 8.966 6.668 470.16 9.088 6.573

22.5 454.38 8.891 6.637 4.57.44 8.916 6.644 463.17 9.034 6.554

25.0 448.25 8.846 6.614 451.12 8.870 6.621 456.66 8.984 6.533
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Table 2 BM3 EOS parameters for hexagonal FAP, HAP, and CAP 

K0 (GPa) K0
' V0 (Å3) K 0 V0 (Å3)

FAP 82.1(11) 4.9(1) 542.6(3) 90.7(19) (97.9) 540.8(12)

(522.4)

HAP 79.2(14) 4.8(2) 549.1(5) 87.1(17) (97.5) 547.4(12) 
(526.9)

CAP 55.0(20) 6.3(3) 572.3(10) 73.9(42) 566.2(39)

The last two columns are the 0 GPa bulk modulus and cell volume with K0
'  set equal to 4.0. 

Values in bold are fits to experimental data in Brunet et al. (1999). While Brunet et al. did not 

compress a sample of ClAp, they did compress an apatite with composition Ca5(PO4)3Cl0.7(OH)0.3, 

which had K0= 93.1 GPa and V0 = 539.4 Å3

36

658

659

660

661

662



Table 3 Cell volumes and a0 and c0 cell parameters for FAP, HAP, and CAP calculated as functions 

of pressure with the dispersion forces treated using the DFT-D2 scheme

P (GPA) FAP HAP CAP

V (Å3) a0 (Å) c0 (Å) V (Å3) a0 (Å) c0 (Å) V (Å3) a0 (Å) c0 (Å)

0.0 530.32 9.453 6.853 535.47 9.501 6.849 552.09 9.734 6.729

2.5 516.83 9.360 6.813 521.53 9.404 6.810 535.28 9.597 6.711

5.0 505.02 9.277 6.775 509.25 9.316 6.775 521.64 9.500 6.675

7.5 494.52 9.204 6.741 498.37 9.238 6.744 509.30 9.415 6.634

10.0 485.10 9.136 6.710 488.63 9.167 6.714 498.62 9.333 6.610

12.5 476.57 9.075 6.682 479.60 9.101 6.686 489.01 9.259 6.586

15.0 468.71 9.018 6.654 471.44 9.031 6.660 480.24 9.191 6.564

17.5 461.48 8.965 6.629 463.92 8.986 6.634 472.16 9.128 6.544

20.0 454.80 8.917 6.605 456.96 8.935 6.609 464.76 9.070 6.523

22.5 448.61 8.871 6.583 450.47 8.887 6.586 457.87 9.016 6.486

25.0 442.72 8.827 6.561 444.46 8.842 6.563 451.47 8.965 6.469
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Table 4 BM3 EOS parameters calculated for hexagonal FAP, HAP, and CAP using the cell volumes 

calculated using the DFT-D2 scheme. The last two columns are the 0 GPa bulk modulus and cell 

volume with K 0
'  set equal to 4.0

K0 (GPa) K0
' V0 (Å3) K0 V0 (Å3)

FAP 91.7(2) 4.5(1) 530.3(1) 98.2(6) 529.0(4)

HAP 88.7(3) 4.4(1) 535.6(1) 93.6(5) 534.5(3)

CAP 78.4(4) 4.6(1) 551.7(1) 85.3(7) 549.9(5)
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