
DOI: 10.1111/cgf.13333 COMPUTER GRAPHICS forum
Volume 37 (2018), number 6 pp. 382–394

Data-Driven Crowd Motion Control With Multi-Touch Gestures

Yijun Shen1, Joseph Henry2, He Wang3 , Edmond S. L. Ho1 , Taku Komura2 and Hubert P. H. Shum1,∗

1Northumbria University, Newcacstle upon Tyne, United Kingdom
{yi.shen, e.ho}@northumbria.ac.uk

2University of Edinburgh, Edinburgh, United Kingdom
{j.henry, tkomura}@ed.ac.uk

3School of Computing, University of Leeds, Leeds, LS2 9JT, United Kingdom
h.e.wang@leeds.ac.uk

Abstract
Controlling a crowd using multi-touch devices appeals to the computer games and animation industries, as such devices provide
a high-dimensional control signal that can effectively define the crowd formation and movement. However, existing works
relying on pre-defined control schemes require the users to learn a scheme that may not be intuitive. We propose a data-driven
gesture-based crowd control system, in which the control scheme is learned from example gestures provided by different users.
In particular, we build a database with pairwise samples of gestures and crowd motions. To effectively generalize the gesture
style of different users, such as the use of different numbers of fingers, we propose a set of gesture features for representing a set
of hand gesture trajectories. Similarly, to represent crowd motion trajectories of different numbers of characters over time, we
propose a set of crowd motion features that are extracted from a Gaussian mixture model. Given a run-time gesture, our system
extracts the K nearest gestures from the database and interpolates the corresponding crowd motions in order to generate the
run-time control. Our system is accurate and efficient, making it suitable for real-time applications such as real-time strategy
games and interactive animation controls.

Keyword: Animation

ACM CCS: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation

1. Introduction

Controlling a crowd using hand gestures captured by multi-touch de-
vices appeals to the computer games and animation industries. First,
multi-touch systems are getting more and more popular nowadays
due to the advancement of hardware. Secondly, a crowd has a large
degree of freedom, which is difficult to be controlled using tradi-
tional controllers with lower dimensional control signals, such as
mice and keyboards. Multi-touch devices register several simulta-
neous control inputs, such that the user can control the complex
formation of a crowd intuitively.

The hand gestures captured by multi-touch devices are typically
sets of time series of finger positions. Many existing works show
that it is possible to map such control signals to a crowd motion
using pre-defined control schemes [HSK12, HSK14]. This allows
the user to control the formation and movement of the crowd

∗Corresponding author: Hubert P. H. Shum (hubert.shum@northumbria.
ac.uk)

by performing specific gestures. While these manually designed
control schemes are efficient in crowd control, different systems
usually employ different control schemes. This is because there are
an infinite number of possible mappings between the gesture and the
crowd space. Rules need to be explicitly defined to fulfill the con-
trol needs optimally. As a result, the users have to learn the schemes
in advance before using the systems. Unlikely previous work, we
learn a mapping that focuses on both user friendliness and control
expressibility in this work to shorten the learning curve.

To this end, we present different crowd motions to a group of users
and ask them to give their desirable control gestures, which allow
us to generalize the preferred gestures and implement an intuitive
control scheme. For every crowd motion in our training data set,
we ask the users to perform a control gesture that they think to be
the best to create such a motion. It results in a database with pairwise
samples of gestures and crowd motions. During run-time, we obtain
a gesture from the user, and find the K nearest gestures from the
database. We then interpolate the corresponding K crowd motions
in order to generate the run-time control. Since the control scheme

c© 2018 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

382

http://orcid.org/0000-0002-2281-5679
http://orcid.org/0000-0001-5862-106X
http://orcid.org/0000-0001-5651-6039


Y. Shen et al. / Data-Driven Crowd Motion Control With Multi-Touch Gestures 383

is learned from different users without prior constraints, our system
is intuitive to use.

One important component of our research is the gesture space
representation. As we do not impose any constraints when collecting
the control gestures, a representation invariant to individual gesture
variations is needed, such as the number of fingers used, different
speed, etc. Users often articulate gestures with one or both hands,
using multiple fingers when performing similar tasks [RGR13].
At the same time, they show similar variations in their gestures
when asked to provide control for the movement of robot groups
[MDC*09]. We propose a set of gesture features that effectively
represents a wide variety of gestures while independent to inter-user
style differences. This includes the centroid feature, the distance to
centroid feature, the rotation feature and the minimum oriented
bounding box (MOBB) features. We further propose a distance
function to evaluate the distance between two gestures in such a
space in order to obtain the K-nearest neighbours of a run-time
gesture.

Similarly, crowds under different scenarios contain variations
such as the numbers of characters within the crowd, and there-
fore crowd motions also require a general representation. Such a
representation should ideally parametrize the whole crowd motion
space based on the crowd data. We propose a crowd motion feature
space that models a crowd motion with a Gaussian mixture model
(GMM), in which the trajectory of each character is modelled by
the distribution of the Gaussian component. The major advantage of
GMM is that we can set up multiple Gaussian components to accu-
rately model the movement of small groups of characters within the
crowd. We further propose a scheme to interpolate multiple crowd
motion in the feature space in order to generate the run-time control
signal.

We demonstrate that our system can accurately infer the crowd
motion based on a given gesture. Users can effectively control a
crowd of arbitrary size with intuitive gestures and guide the crowd
to navigate through a given virtual environment. Our system is best
to be applied in computer games like the crowd control systems
in real-time strategy games, and in interactive character animation
designs.

This paper presents the following contributions:

� We propose a data-driven method for inferring an appropriate
crowd motion based on the gesture input obtained from a touch
device. Our approach is not restricted by a pre-specified control
scheme. Instead, the control scheme is learned as a mapping be-
tween user-preferred gestures and corresponding crowd motions,
which encodes both user-friendliness and control expressibility.

� We propose a set of gesture features that are invariant to the
variations of the user’s preferred touch input style such as the
number of fingers used. These features are used for recognizing
different properties of a user’s multi-touch input, allowing the
system to distinguish between a variety of control signals.

� We propose to represent crowd movement with a set of crowd
motion features that are obtained from GMM. This representa-
tion allows modelling different subgroups of the crowd and is
independent of the number of characters. We further propose a

method to interpolate crowd motion features in order to generate
a new crowd motion that matches the user input the best.

The rest of the paper is organized as follows. Section 2 discusses
the related works and identifies the research gap in gesture-based
crowd control. Section 3 provides an overview of our proposed
system. Section 4 details the data collection process in order to
create the gesture and crowd motion database. Sections 5 and 6
explains our proposed gesture space and crowd motion space, re-
spectively. Section 7 explains the method to synthesize run-time
crowd motions. Section 8 gives detailed evaluations on the system.
Finally, Sections 9 and 10 discusses the limitations and concludes the
work.

2. Related Work

Crowd simulation has been widely used in many areas such as enter-
tainment production and urban planning, where two central issues
are control and simulation. Related to our research, there are mainly
three subfields where we draw our inspirations upon: gesturing on
multi-touch devices, crowd motion control and formation control.

2.1. Gesture recognition on multi-touch device

Since the invention of multi-touch devices, gestures have pro-
vided a rich capacity of control input design. Gestures can be
sequenced to express complex control purposes and are typically
represented by time series of positions and velocities. For any pre-
designed stroke patterns, there are some user input variations. Spa-
tially based control design [JTZ*12, VAW12, RVG14] mainly tar-
gets on recognizing stroke patterns out of variations to improve the
expressibility, but with limited understanding on the time depen-
dencies between strokes. To model temporal or semantic dependen-
cies, rule-based systems such as gesture formalization [GCG10],
grammar [GGH*03, KWK*10], state machines [LL12] or syntax
[KHDA12] are proposed. However, they either lack the accommo-
dation of user input variations or do not generalize well.

Among the previous research works, Lü and Li’s work [LL13]
is most related to ours. They present a set of features based on
translation, rotation and scaling of a user’s finger configurations
to encode strokes and recognize gestures. Our proposed gesture
representation has similar concepts but different designs for bet-
ter representativeness. In particular, we utilize both the average
distance to centroid and the MOBB, instead of a single scaling pa-
rameter, to help identifying gestures such as expand versus split.
Furthermore, instead of simply recognizing the gestures, our sys-
tem focuses on finding a good mapping between gestures and crowd
motions, which involves comparing gestures using the proposed rep-
resentations. This has not been explored in previous work such as
[LL13].

2.2. Crowd motion control

Crowd motion control has been studied extensively, including
controlling the whole crowd [Par10, GD11], subgroups [OO09,
KHKL09], sets of control points [KLLT08] and the style [LCHL07,
JCP*10].

c© 2018 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



384 Y. Shen et al. / Data-Driven Crowd Motion Control With Multi-Touch Gestures

Field-based control focuses on the design of guidance fields in
the environment. Dynamic potential fields can be used to represent
the flow of the crowd with respect to other moving characters and the
environment [TCP06]. Vector fields are typically used to guide each
subgroup of the crowd [KSII09]. In [JXW*08], the user can con-
trol crowd motion by adding anchor points to indicate their moving
directions, with which a vector field is generated. In [PVDBC*11],
the movement of the agents is generated by the guidance field that
is sketched by the user or extracted from the video. Such a field
is used to construct a navigation field that refines the flow of the
crowd by avoiding collisions in the environment. While these meth-
ods enable the user to easily author the movement of a crowd, they
typically require a high-dimensional representation of the crowd
motion based on the 2D terrain. Field-based methods are, therefore,
ineffective for data-driven crowd control, as the system needs to
learn from/interpolate high-dimensional feature vectors. Motivated
by the strength of data-driven systems that they can model com-
plex relationships between gestures and crowd motions, we decide
to represent the crowd using GMM, in which crowd motions are
modelled by low-dimensional feature vectors.

Mesh-based control is another control scheme that evaluates the
crowd movement and formation using mesh deformation. Utiliz-
ing a single-pass algorithm, crowd movements can be evaluated
based on a deformable mesh [HSK12, HSK14]. It is also possible
to interactively edit large-scale crowd while maintaining the spatial
relationship between individuals [KSKL14]. Voronoi diagram can
be used to represent the spatial relationship between different agents
and organize the crowd movement in constraint space using Torso
Crowd Model [SMTT*17].

One particular problem of exiting methods is the lack of high-
dimensional control signals that can be used to define the movement
details of a crowd that consists of multiple subgroups. Existing
methods typically employ multiple levels of control rules, such that
the user can define the overall crowd movement first, and define the
details of subgroup later. Instead, we decide to embed the control
mechanism into our learned mapping between the control signal
and the corresponding crowd motions. It solves the problem of
potentially contradictory control objectives on different levels, such
as different overall crowd and subgroup targets.

2.3. Formation control

Formation control is a technique to control the movement of crowds
while maintaining formations. A significant number of papers pro-
pose to represent the shape of the crowd by modelling the geometric
relations between individual agents. Mesh-based methods are very
popular because they can easily represent the formation and accom-
modate some randomness due to individual motions by controlled
mesh deformation. Laplacian mesh editing [SCOL*04] controls and
combines existing crowd formations into larger scale crowd anima-
tion [KLLT08]. An intermediate 2D mesh between user input and
crowd motion can be defined so that crowd formations are con-
trolled by simple user gestures [HSK12, HSK14]. Spectral analysis
smoothly transforms the crowd from one formation to another which
is represented by Delaunay tetrahedral meshes [TYK*09]. A local
coordinate system called formation coordinates maintains the adja-
cent relationship between individuals in the crowd [GD11]. More

variants of these methods can be found in [KO10, ZZC*14, GD13,
XWY*15].

The Morphable Crowds [JCP*10], which is based on data exam-
ples of different styles of crowd motion, is conceptually similar to
our work. While their method is based on modelling the positions of
characters surrounding an individual in a crowd motion, our method
models the full trajectories of characters in the crowd. Such a full
modelling enables us to build up a precise control mapping from the
input to crowd motions, which enhances the quality of controlling
and synthesizing new crowd motions.

Path pattern that consists of flows of location-orientation pairs
is also a good representation of crowd motions, which can be ex-
tracted from crowd video [WOO16]. However, the representation
is complicated and is too computationally expensive to be used for
interactive control purpose.

3. Method Overview

The overview of our system is shown in Figure 1. In the offline
stage, we collect user data that describe the mappings between ges-
ture inputs and given crowd motions and create a database. We
prepare a number of pre-computed crowd motion trajectories (Fig-
ure 1a) and obtain the corresponding gesture trajectories (Figure
1b) from the users. As trajectories information has inconsistent di-
mensions and inefficient representation, we propose to map gesture
and motion trajectories into their respective high-level feature space
(Figures 1c and d). The correlated gesture and crowd motion fea-
ture spaces generalize and unify the representation of the gesture
and crowd data, respectively. In the online stage, our system receives
run-time user gestures and evaluate the corresponding crowd mo-
tion. Given the run-time gesture trajectories (Figure 1e), we calcu-
late its gesture features (Figure 1f) and conduct a K-nearest neigh-
bours (KNN) search in the database. This allows us to obtain K

similar gestures and their corresponding K crowd motion. We in-
terpolate the K crowd motion and generate the resultant run-time
crowd motion features (Figure 1g), which is finally converted into
crowd motion trajectories (Figure 1h) that can control the run-time
crowd. Since the gesture data in the database are obtained from real
user inputs with different variations, our system allows intuitive
control of crowd in real-time.

Figure 1: The overview of our crowd control system.

c© 2018 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



Y. Shen et al. / Data-Driven Crowd Motion Control With Multi-Touch Gestures 385

4. Data Collection

In this section, we explain how we collect user gesture data based
on a set of pre-generated crowd motion data.

We first generate a set of crowd motions with the crowd simula-
tion system presented in [HSK12, HSK14]. We created 150 motions
under 10 different motion classes, which are shown in Figure 2. Such
a set of crowd motions consists of six classes of typical crowd mo-
tions, including translate (i.e. characters all moving in a direction),
twist (i.e. characters moving in a circular direction around the centre
of the scene), contract (i.e. characters moving towards the centre of
the scene), expand (i.e. characters moving away from the centre of
the scene), join (i.e. two groups of characters moving towards one
another) and split (i.e. two groups of characters moving away from
one another). It also consists of four classes of more complicated
crowd motions, including split then translate, translate then join,
twist while expanding and twist while contracting. The motion set is
designed to demonstrate that our system can handle typical crowd
motions seen in computer games and movies, as well as compli-
cated motions that consist of combinations of typical motions. Our
proposed framework is easily extensible. Developers can add or

Figure 2: Examples of crowd motion shown to users to collect their
control gestures, with the light blue colour indicating the start of the
motion and the dark blue indicating the end: (a) translate, (b) twist,
(c) contract, (d) expand, (e) join, (f) split, (g) split then translate,
(h) translate then join, (i) twist while expanding and (j) twist while
contracting.

Figure 3: Examples of collected user gesture, with the light colours
indicating the starts of the trajectories, the dark ones indicating the
ends and different colours representing different set of gestures: (a)
translate, (b) twist, (c) contract, (d) expand, (e) join and (f) split.

remove classes of crowd motions based on the requirement of the
target application.

Ten volunteer participants, aged between 20 and 50, were asked
to provide gestures for the crowd motions shown on a touchscreen
(the Wacom Cintiq 27QHD sized 27′′ diagonally). Each participant
was allocated with 15 crowd motions, which were randomly picked
from the 150 motions required to train the system. The participants
were asked to provide a corresponding hand gesture on the screen
as if they were controlling each of such motions with two or more
fingers. They were not given any instruction about what the gestures
should be, the number of fingers to be used, as well as the duration of
the gestures. The orientation of the crowd motion on the screen was
varied to prevent any bias in terms of the positioning of the hands
when recording the gesture. On average, it took the participants
7 s to observe a crowd motion and provide a gesture. Figure 3
shows some example input of typical crowd motions.

5. Gesture Space

The success of finding a good mapping between the gesture and
crowd motion space lies in their corresponding parametrization,
such that the variation of the data can be captured. For gestures, we
find that the combination of multiple features provide a powerful
representation. In this section, we propose a set of gesture features
that can be extracted from raw gesture trajectories. Such features
form the gesture space, which is a low dimensional, continues space

c© 2018 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



386 Y. Shen et al. / Data-Driven Crowd Motion Control With Multi-Touch Gestures

in which each point represents one gesture. It allows us to compare
and distinguish gesture effectively.

Our concept of a gesture space is similar to the idea of Motion
Fields [LWB*14], in which the authors propose a high-dimensional
continuous space that incorporates the set of all possible motion
states in character motion. However, unlike character motion, the
way a user performs a particular gesture can vary significantly from
person to person. For example, users can use a different number of
fingers to perform the same intended gesture. Our proposed gesture
space consists of a set of features that are independent of such inter-
user variations, while capable of capturing the intent of the input.
This allows us to robustly distinguish between different types of
user gesture.

5.1. Gesture trajectories

Here, we define the representation of raw gesture trajectories and
explain the process to resample the gesture with a spline function.

A raw gesture is described by the set of trajectories corresponding
to the finger inputs provided by a user. The touchscreen records the
position of each touch points in discrete time intervals. As a result,
a gesture Graw is defined as a set of trajectories:

gn(t) ∀ n ∈ [1, N ], t ∈ [1, Tn], (1)

where N is the total number of trajectories, Tn is the total number
of time intervals (i.e. points) in the trajectory n, the representation
gn′ (t ′) indicates the 2D location of a specific trajectory n′ at a specific
time t ′. Similar to existing research [WWL07, VAW12, RVG14],
we normalize the gesture by translating and uniformly scaling the
whole gesture. In particular, the whole gesture is translated such
that the minimum x and y position in the gesture is at the origin.
We calculate a scaling factor λ to scale the gesture uniformly:

λ = 1/ max(dv, dh), (2)

where dv and dh are the maximum vertical and horizontal distance
among all points, respectively. After normalization, all trajectory
points are within the range [0, 1] × [0, 1].

We assume all touch trajectories have a similar number of time in-
tervals, as a gesture usually starts and ends with all fingers touching
and leaving the screen at the similar time. This allows us to utilize
spline functions for approximating and resampling touch trajecto-
ries to the same length. In our implementation, we apply the Hermite
spline [Lal09] to approximate each of the n touch trajectories. Then,
we uniformly resample each trajectory from Tn points to TH points.
The choice of value for TH is important since undersampling would
remove too much information from the original gesture, but over-
sampling would add unnecessary details and increase computational
overhead in later stages. We follow the suggestion in [WWL07] and
set TH = 64, which works effectively in all of our experiments. As
a result, we define a gesture G as

gn(t) ∀ n ∈ [1, N ], t ∈ [1, TH ], (3)

where T is the pre-defined sample number.

There are multiple advantages of approximating and resampling
the gesture utilizing Hermite splines. First, different touchscreens
have slightly different sample rate. Resampling the trajectories al-
lows the system to work robustly with different hardware. Secondly,
it unifies the density of points in a trajectory, which helps us to more
accurately identify a gesture using a gesture database. Thirdly, from
our discussion with practitioners, crowd control is usually based on
the geometry of the trajectories instead of the speed of performing
them, as the movement speeds of a crowd are usually constrained in
graphics systems. Representing the geometry of the overall trajec-
tories with spines and then uniformly resampling them allow us to
model the trajectories with fixed lengths, which removes the speed
factor from the trajectories. If the gesture speed is needed, it can
be calculated before the resampling stage and stored as an extra
feature.

5.2. Gesture features

Here, we define a set of high-level gesture features extracted from
the gesture trajectories. Such features are designed to represent the
essential components of a gesture in low dimension, making them
effective in identifying gestures. Also, they are independent of the
number of touch points. As a result, with gesture features, gestures
of different touch points can be directly comparable.

The centroid feature represents the average position of the user’s
touch inputs over time . It captures the general shape of the gesture
and is independent of the number of touch points. It is defined as a
column vector:

C(G) = [cG(1), cG(2), . . . , cG(TH )]T , (4)

where cG(t) is the centroid at time t :

cG(t) = 1

N

N∑
n=1

gn(t). (5)

The distance to centroid feature represents the distance of each
touch point relative to the centroid over time. It allows us to capture
the spread of the gesture. It is defined as

S(G) = [sG(1), sG(2), . . . , sG(TH )]T , (6)

where sG(t) is the spread at time t :

sG(t) = 1

N

N∑
n=1

|gn(t) − cG(t)|, (7)

where | ∗ | represents the Euclidean norm, cG(t) is calculated in
Equation (5).

The rotation feature represents the average cumulative change in
rotation over time of the touch inputs around the centroid. Such a

c© 2018 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



Y. Shen et al. / Data-Driven Crowd Motion Control With Multi-Touch Gestures 387

feature allows us to capture the overall rotation in the gesture. It is
defined as

R(G) =
[

0∑
t=0

rG(t),
1∑

t=0

rG(t), . . . ,
TH∑
t=0

rG(t)

]T

, (8)

where rG(t) is the average change in rotation at time t :

rG(t) =

⎧⎪⎨
⎪⎩

0, if t = 0,

1
N

∑N

n=1 arctan (gn(t)−cG(t))×(gn(t−1)−cG(t−1))
((gn(t)−cG(t))·(gn(t−1)−cG(t−1)) ,

otherwise.

(9)

The minimum oriented bounding box feature represents the min-
imum and maximum dimension of the MOBB of the touch inputs
at each time step. It allows us to represent the movement variation
of the gesture over time, which can approximate the area of the
gesture. Given a set of touch points at time t , gn(t), we apply the
rotating calipers method [Tou83] to calculate the minimum rectan-
gle bounding the points. We extract the width, bw(t), and the height,
bh(t) of the rectangle, and define the feature as

B(G) = [(bw(0), bh(0)), (bw(1), bh(1)), . . . , (bw(TH ), bh(TH ))]T ,

(10)

Finally, the gesture space is formed by concatenation of the four
gesture features. As a result, a gesture G can be represented by a
point in the space with the feature vector:

G = [G(G), S(G), R(G), B(G)]T . (11)

5.3. Distance between two gestures

Here, we explain how we compare gestures using gesture features
in the gesture space.

Given two gestures G0 and G1, we define the distance as

D(G0, G1) = α DTW(C(G0), C(G1))

+β DTW(S(G0), S(G1))

+γ DTW(R(G0), R(G1))

+δ DTW(B(G0), B(G1)), (12)

where DTW provides a distance between two vectors using dynamic
time warping [BC94], and α, β, γ and δ, are weights for each
feature. We empirically found that α = 0.04, β = 0.36, γ = 0.36
and δ = 0.24 work well in our data set. Figure 4 shows two pairs of
example gestures, in which (a) and (b) are more different according
to Equation (12) (D = 6.1980), (c) and (d) are more similar (D =
0.7064). This shows that our distance function is less affected by
the number of fingers used and is effective in identifying the context
of the gestures.

The feature set and distance metrics together determine the well-
represented gesture space where algebraic operations can be sensi-
bly defined. It forms the basis of the control scheme learning in later
sections.

Figure 4: Example gestures, in which (a) and (b) are more different
according to Equation (12), (c) and (d) are more similar.

6. Crowd Motion Space

In this section, we present our formulation of a crowd motion space,
which is conceptually similar to a gesture space. We consider the set
of movement trajectories from the characters of the crowd, and rep-
resent the overall crowd movement with a set of features modelled
by a mixture of Gaussian processes.

6.1. Crowd motion trajectories

Here, we represent the motion of a crowd using the trajectories of
the characters in the crowd.

A crowd motion C is defined as a set of trajectories:

cm(s) ∀ m ∈ [1, M], t ∈ [1, S], (13)

where M is the total number of character in the crowd, S is the
duration of the crowd motion, the representation c′

m(s ′) indicates
the 2D location (c′

m(s ′).x, c′
m(s ′).y) of a character m′ at time s ′.

Similar to the gesture trajectories, we normalize the crowd motion
trajectories by translating the whole motion such that the starting
point is at the origin.

We also resample the crowd motion trajectories from S points
to SH points using the Hermite spline [Lal09] and set SH = 64
[WWL07], as we do for the gesture trajectories in Section 5.1. As a
result, a crowd motion C is defined as

cm(s) ∀ m ∈ [1, M], t ∈ [1, SH ]. (14)

For the sake of calculation simplicity, we express the trajectory
of the m

′
th character, cm′ (s), as a vector of serialized X and Y

positions:

cm′ (s) = [cm′ (1).x, c1(1).y, cm′ (2).x, c1(2).y,

. . . , cm′ (SH ).x, cm′ (SH ).y.]T . (15)

c© 2018 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



388 Y. Shen et al. / Data-Driven Crowd Motion Control With Multi-Touch Gestures

6.2. Crowd motion features

Next, we present our crowd motion features that describe the high-
level features of a moving crowd. Such features are independent of
the number of characters in the crowd. They can also be used to
interpolate two crowd motions in order to generate new ones.

Since the character trajectories in a crowd is controlled by one
input gesture, we assume that there exists a linear low-dimensional
space that can represent the trajectories of all characters. Trajecto-
ries can be treated as functions. Essentially, each crowd motion is a
series of 2D functions that defines the trajectories of all characters.
This allows us to construct a low-dimensional space and represent
the motion trajectories of all characters using Functional Principle
Component Analysis (FPCA). FPCA projects a group of functions
linearly into a space where a mean function and functional varia-
tions serve as the basis of function representation, similar to PCA
but on a function level. The mean function, c̄s where s ∈ [1, SH ],
can be computed by averaging the motion trajectories of all charac-
ters. Then, a set of eigenfunctions, EC

V , and a set of eigenscores, EC
S

can be computed. The eigenfunctions describe the principle move-
ment over time of all characters in the crowd, and the eigenscores
represents how the movement of a character can be projected into
the low-dimensional space. The trajectory of the m′th character can
be recovered as

cm′s = c̄s + EC
V EC

Sm′ , (16)

where EC
Sm′ is the eigenscore of the m′th character.

Although FPCA gives a compact representation, it does not gen-
eralize enough to take all the input variations into account such as
different numbers of trajectories or style variations of the same mo-
tion. This motivates us to further generalize the representation. We
discover that the high-level visual observation of the general mo-
tions can be described by the eigenscore distributions. As a result,
modelling the crowd motion trajectories of the whole crowd can be
considered as modelling the distribution of the eigenscores of the
characters. This high-level model allows us to interpolate the distri-
bution of eigenscores, instead of the actual trajectories, between two
crowd motions effectively. In addition, such a distribution-based rep-
resentation does not depend on the number of characters, and does
not explicitly map the trajectories of the characters from one crowd
to another.

Since the eigenscores of a group of similar motions usually exhibit
multi-modality, we propose to use GMM to model the distribution
of the eigenscores. There are three main advantages. First, the non-
linearity of GMM fits the trajectory data well. Secondly, the multi-
modality nature of GMM captures semantic-level meanings such
as the crowd being split into multiple groups, which cannot be
modelled easily with a single model. This is particularly relevant to
crowd motion such as splitting and joining. Finally, multiple GMMs
can be easily interpolated and the interpolation has visual as well
as semantic meanings, which is important to generate new crowd
motions.

There are two import issues in applying GMMs to model the data,
which are the optimal parameters and the number of components
of the model. We apply the Expectation-Maximization algorithm

[Bis96] to optimize the parameters for the distribution of eigen-
scores, φ(EC

S ). The component number essentially allows the sys-
tem to accurately model multiple subgroups in the crowd motions.
In theory, it is possible to automatically determine that by iterating
from one and choose the smallest value that reaches the required
data likelihood. In practice, we found that users rarely split a crowd
into more than two subgroups, even with two hands controlling the
crowd. As a result, two Gaussian components are enough to model
our database. For simpler motion with only one subgroup, the two
components in the GMM blends together to represent the distribu-
tion of character trajectories. If more complicated crowd motions
with multiple subgroups of characters are involved, an analysis on
data likelihood should be performed and more components can be
used.

Therefore, the crowd motion features of a crowd C is defined by
a vector:

C = [
c̄s , E

C
V , φ

(
EC

S

)]T
, (17)

where c̄s is the mean trajectory, EC
V is the set of eigenvectors and

φ(EC
S )T is the distribution of the eigenscores modelled by GMM.

Conceptually, our crowd motion feature is similar to the morphable
motion primitives [MCC09, MC12]. The difference is that it is ap-
plied on a crowd instead of an individual motion.

Here, we include an optional step to improve the performance
of our system. We observe that there is an intrinsic redundancy in
the crowd motion trajectories as the characters’ trajectories are not
arbitrary. Therefore, it is not necessary to use all the eigenvectors EC

V

as the features. In fact, we only use the first 15 principal components
returned by FPCA, and the recovered trajectories from Equation (16)
achieves <1% error for all the crowd motion in our database. This
not only reduces computational cost, but also removes noises that
may exist in the motion data.

7. Crowd Motion Control

In this section, we explain how a run-time gesture can be identified
based on the set of gestures in the database. Then, we explain how
such a gesture generates the corresponding crowd motion.

7.1. Run-time gesture representation

Here, we explain how we represent a gesture using neighbour ones
in the database, which allows us to understand the crowd motion the
user intended to perform.

We have collected a set of gestures with the corresponding crowd
motions as explained in Section 4. The gesture space is non-linear
due to the complex nature of hand gesture. Modelling the whole
space with high degree non-linear functions would require a large
amount of gesture data, which is labour-intensive to obtain and
would limit the feasibility to increase the gesture types. Instead, we
propose to model a local area of the gesture space that is relevant to
the run-time gesture using a linear function. Such a method works
robustly even with smaller database and generates reliable results.

c© 2018 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



Y. Shen et al. / Data-Driven Crowd Motion Control With Multi-Touch Gestures 389

Figure 5: Generating crowd motion with run-time gesture. The
circles represent gestures in the gesture space, with the hollow one
representing the gesture obtained in run-time. Based on the run-time
input, we obtained the K-nearest gestures, visualized by the double
lines. The triangles represent crowd motion in the crowd motion
space. We find the crowd motions corresponding to the K nearest
gestures, pointed by the black arrows. We finally interpolate these
crowd motions to create the run-time crowd motion represented by
the hollow triangle.

In particular, given a run-time gesture, Gr , we utilize
Equation (12) to evaluate its distance with the stored gestures in
the database. We represent Gr using a set of K-nearest neighbours,
Gk∀k = [1, K]. The neighbours are associated with the correspond-
ing weights, wk∀k = [1, K], which are inversely proportional to the
distance with respect to the run-time gesture. The particular weight
wk′ that is corresponding to the gesture Gk′ is defined as

wk′ = 1

D(Gr, Gk′ )

/
K∑

k=1

1

D(Gr, Gk)
, (18)

where the summation term acts as a normalization factor to ensure
that all the weights sum up to 1.0. In our experiment, we found that
K = 10 produces good results. This process is visualized in the left
part of Figure 5.

Since our gesture database is relatively compact, a brute force
search is quick enough to find the K-nearest neighbours in real
time. For a larger database, we may organize the database with data
structures such as the k-d tree to speed up searching.

The mapping between gestures and motions is necessary to cap-
ture the variations of control styles, even for the same motion. A
user study could be a good way to establish a mapping but only
when there is a consensus on the best gesture for a specific motion.
The fact that different users used different gestures even for simple
motions suggested that this might not be the case. As an example,
for the twist motion, some users prefer to use an outwards spiral
gesture but some prefer an inwards one. In addition, when doing
control on the fly, the input variations are also better handled by the
mapping because the input gesture would not be exactly the same
as the optimal one, if there is one at all.

While it is possible to apply methods such as regression to evalu-
ate the run-time gesture, we find that KNN is the most reliable way,
mainly because our gesture database contains a variety of gestures,

where the sample size is big enough to locally approximate the
gesture manifold as hyperplanes. In theory, if the database is dense
enough, it could be possible to use the most similar gesture only.
However, KNN is more robust against outliers, and constructing a
dense database is labour-intensive.

7.2. Run-time crowd motion creation

Here, given the K-nearest neighbours of the run-time gesture, we
interpolate the corresponding K crowd motions in the database in
order to generate the run-time crowd motion.

Given a run-time gesture, the obtained K-nearest gestures,
Gk∀k = [1, K], are corresponded with K crowd motions, Ck∀k =
[1, K], according to the database. The run-time crowd motion,
Cr = [c̄r

s , E
Cr

V , φ(ECr

S )]T , is evaluated as the weighted sum of the
K crowd motions. This process is visualized in the right part of
Figure 5. Such an interpolation involves interpolating the crowd
motion features individually as follows.

The run-time mean crowd trajectory can be obtained by vector
sum, as all mean trajectories in the database has the same size SH :

c̄r
s =

K∑
k=1

wkc̄k
s . (19)

Similarly, we interpolate and create a new set of eigenvectors:

ECr

V =
K∑

k=1

wkE
Ck

V . (20)

To ensure orthonormalization of the new eigenvectors, we apply the
modified Gramm–Schmidt method presented in [CK08].

The blend weights wk is important to ensure the quality of the
resultant GMM, which account for the naturalness of the generated
crowd motion. Considering that our gesture-motion pairs in the
database are very distinctive and that both the gesture space and
crowd motion space can be modelled by the local hyperplane, we
use wk′ in Equation (18) as the blend weights for the crowd motion
wk . The underlying assumption here is that similar gesture in the
gesture space would indicate similar crowd motion in the crowd
motion space.

Finally, we propose a mass transport solver based method to com-
bine multiple distributions of eigenscores and generate φ(ECr

S ). A
naive one-to-one combination of the Gaussian components of two
GMMs does not work well. As shown in Figure 6, assuming each
GMM has two components, depending on how we match the com-
ponents, blending two GMMs has two possible outputs. One of
them retains the features from the source GMM, while the other
does not as Gaussian components of very different parameters are
blended, resulting in a scenario known as cross fading. We follow
the displacement interpolation method presented by [BvdPPH11]
here. First, given two GMMs, we establish the correspondence of
their Gaussian components. Each Gaussian component is defined
by a mean value and a covariance value. We evaluate the correspon-
dence using the mass transport solver [HSK12], in which the source

c© 2018 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



390 Y. Shen et al. / Data-Driven Crowd Motion Control With Multi-Touch Gestures

Figure 6: (Left) Mixing two GMM (each with two components)
can generate different results depending on how the Gaussian com-
ponents are matched. (Middle) The desired result that retains the
features of the source GMMs. (Right) The undesired result of cross
fading.

and target are set as the Gaussian means of the Gaussian compo-
nents. Secondly, we produce a weighted sum of the Gaussian mean
and covariance of each matching Gaussian component, in which the
weights are obtained by Equation (18), in order to generate a com-
bined GMM. We iteratively combine all the GMMs in the K-nearest
crowd motions, and obtain φ(ECr

S ).

7.3. Crowd motion synthesis

Here, we explain how we apply the crowd motion created in the last
section to control a run-time crowd.

Assume that the user is controlling a group of M characters.
Given a user gesture, we obtain the corresponding crowd motion
Cr = [c̄r

s , E
Cr

V , φ(ECr

S )]T as explained in Section 7.2. We first utilize
the distribution of the eigenscores, φ(ECr

S ) to sample M eigenscores.
Secondly, we apply the eigenscores with the mean trajectory c̄r

s and
eigenvectors ECr

V to generate M crowd motion trajectories using
Equation (16). Third, we apply a mass transport solver [HSK12]
to find out the optimal matching between the controlling characters
and the calculated crowd motion trajectories. This is done by setting
the positions of the characters as the source and the starting points
of the trajectories as the target. By using the mass transport solver to
evaluate the matching, we avoid visual artefact in which characters
have to move a long distance before reaching the starting point of
their corresponding trajectories. Finally, the characters move to the
starting point of their respective trajectories, and then follow the
trajectories, in order to produce the overall motion.

For handling collision detection and avoidance, we implemented
the high-level crowd motion synthesis and the low-level character
collision avoidance as two separate levels. The high-level system
provides the desired position of all characters in the crowd, while
the low-level system resolves their positions locally. In our experi-
ments, the low-level system models each character as a cylinder, and
utilizes a spring-mass model to calculate the forces required to move
the characters into their respective target locations. It resolves the
penetration among characters by calculating the push-back forces
based on the penetrated depth and direction. Time-integration is ap-
plied in each time step to calculate the positions of the characters
after all forces are applied. Other more advanced collision avoidance
systems can be directly employed into our framework.

We apply the full body motion synthesis method in [SKY12] as
an offline process to generate full body running motion based on the
point-based movement trajectories. This involves creating a motion

graph that consists of different running actions, and evaluating the
optimal action to perform in order to follow the trajectories. We also
apply the physical modelling method in [SH12] to create physically
plausible movements. This allows us to resolve body part level
collisions and penetrations effectively.

8. Experimental Results

In this section, we provide both qualitative and quantitative evalua-
tions of our proposed system.

All the experiments are run with one core of a Core i7 2.67 GHz
CPU with 1 GB of memory. For the multi-touch input, we used
a G4 multi-touch overlay from PQ labs, attached to a 24′′ Acer
S240HL LCD monitor. In general, the system runs in 40 frames per
second, which is higher than the real-time requirement of 30 frames
per second. However, there is a slowdown when computing a new
crowd motion from a hand gesture, which takes 330 ms, includ-
ing 300 ms for the KNN searches, 12 ms for generating the crowd
motion features, 4 ms for generating and assigning trajectories to
characters. We believe that adapting a multi-thread implementation
framework can create more consistent frame rate. Also, more effi-
cient search algorithms such as k-d tree search can further reduce
the computational time.

8.1. Qualitative evaluations

Here, we evaluate our system qualitatively with different exper-
iments. The readers are referred to our supplementary video for
more results.

First, we evaluate the effectiveness of our method by producing a
set of crowd motions from a number of user inputs. Figure 7 shows
some user gestures and their corresponding simulated crowd mo-
tion. Our system generates crowd motions that accurately reflect the
different user gesture types. It also works well under different initial
positions of the characters. The number of touch points provided
for the gestures does not affect our system’s ability to produce the
appropriate crowd motion.

We setup some virtual environments and ask a user to use our
system to control the navigation of the crowd. Figure 8 (upper)
shows a corridor environment. The initial crowd cannot fit through
the narrow corridor. The user therefore applies a contract gesture
to reduce the size of the crowd, and two translate gestures to move
the crowd through the corridor. Finally, the user applies an expand
to expand the crowd to its original size. Figure 8 (lower) shows
a more complicated environment, in which there is an obstacle in
the middle of a corridor. The user successively applies the gestures
translate, split, translate, join and translate such that the crowd can
avoid the obstacle and reach the other side of the environment. The
user finally applies a twist gesture such that the crowd can rotate
inside the circular environment. These experiments show that our
system can potentially be applied to console games that require
crowd control, such as the real-time strategy games.

We generate a high-quality, complicated scenario in which 100
characters avoid a number of dynamic moving cars, as shown in
Figure 9. The user controls the crowd movement with our

c© 2018 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



Y. Shen et al. / Data-Driven Crowd Motion Control With Multi-Touch Gestures 391

Figure 7: Examples of user input (orange lines) and the corresponding crowd simulation (blue lines) for (a) translate, (b) twist, (c) contract,
(d) expand, (e) join, (f) split, (g) split then translate, (h) translate then join, (i) twist while expanding and (j) twist while contracting. The light
colours indicate the starts of the trajectories the dark colours indicate the ends.

Figure 8: Screenshots of a user controlling a crowd to navigate
through (upper) a corridor environment, and (lower) a more com-
plicated environment with an obstacle.

Figure 9: Screenshots of a user controlling a crowd in a compli-
cated scenario with dynamic obstacles.

touch-based system that offers intuitive control on the timing for
the change of formation. Multiple gestures are required to steer the
crowd. This kind of real-time, precise, interactive control is diffi-
cult to be achieved with existing systems. As this demo focuses on
demonstrating the animating power of the system for generating re-
alistic scenes, we implement a Gaussian filter to smooth the crowd
motion transitions.

While we propose to utilize [HSK12, HSK14] to generate exam-
ples for constructing the crowd motions in the database, the overall
framework is independent of the underlying method to generate the
crowd motions. Basic crowd simulation systems that control charac-
ters by setting the starting and goal positions can effectively generate
the database and produce comparable results. To demonstrate this,

Figure 10: The synthesized expand crowd motion using the
database built with (left) Henry et al. and (right) RVO2.

we perform an experiment to utilize the Reciprocal Velocity Ob-
stacle (RVO) 2 system [vdBLM08] to generate the crowd motion
database and synthesize new crowd motions based on the user in-
puts. We compare the newly created results with those generated
by our existing database, as shown in Figure 10. We find that while
the two databases result in crowds of different behaviour due to
the different training data, the resultant crowd motion quality is
comparable. This demonstrates the generalizability of our control
system.

8.2. Quantitative evaluations

In order to test if our proposed gesture features are discriminative, we
conduct leave-one-out cross-validation using the gestures for the six
types of typical crowd motions (i.e. translate, twist, contract, expand,
join, split). We first use the gesture features of one gesture as testing
data for classification, and that of all other gesture as training data.
We then obtain the K-nearest gestures. Within them, we conduct a
weighted nearest neighbour voting with the weight obtained from
Equation (18), where the gesture type with the highest total weight
is considered to be the recognized type. We finally check if such
a type is the same as the real gesture type of the testing data. We
iteratively evaluate all gestures and calculate the average accuracy.
Figure 11 shows the confusion matrix of this analysis. It shows
that the proposed gesture features are discriminative in order to
accurately identify an unknown gesture. The average classification
accuracy is 89.6%. For all gesture types except contract, the accuracy
is over 87.5%. The contract type has a lower accuracy of 62.5%,

c© 2018 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



392 Y. Shen et al. / Data-Driven Crowd Motion Control With Multi-Touch Gestures

Figure 11: Confusion matrix of six typical motion types. The cell
in column i, row j indicates the proportion of all ith test gestures
recognized as the j th output gesture.

as some of the gesture samples are very similar to those in the join
type.

We visualize the four gesture features in Figure 12 to show that
they are effective in representing different gesture types. Here, we
group the collected gestures based on the six types of typical crowd
motions they represent and calculate the average gesture per group.
We then plot the features to see how distinctive different gesture
groups can be. While individual features may not be able to clearly
represent all the types (e.g. S(G) cannot distinguish expand and split
easily), the features are complementary to each other (e.g. B(G) can
distinguish expand and split well).

9. Limitations

Our system does not consider the mapping between the gestures
and the full-body motions of the characters. Although this is an in-
teresting idea, such a mapping will suffer from the ambiguity such
as the walking phase as presented in [HKS17], and extra parameter
inputs will be required. Instead, the detailed movements (e.g. walk-
ing or jumping motions) are modelled by another subsystem given
the computed trajectories. Splitting the mapping into two subsys-
tems leaves the degrees of freedom to the animators for designing
their preferred movements. This idea is similar to the framework
proposed by [HSK14].

We only consider zero-order information (i.e. positions) based
on the advice from practitioners that crowd is typically geometry-
based. Depending on the application, if higher-order information
such as velocity and acceleration is needed, one may extract and
integrate the information into the feature vector. It will require some

extra designs to map multi-order information between gestures and
motions in an effective manner.

10. Conclusion and Discussions

In this paper, we propose a data-driven approach for crowd control
using a multi-touch device. Our method learns from a set of user-
performed gestures and allows a user to intuitively control a crowd.
To achieve this, we propose a set of gesture features that represent
high-level information of the user-performed gestures. We also pro-
pose a method to extract crowd motion features using a mixture of
Gaussian processes. Given a run-time gesture, we perform a KNN
search in our gesture database, and find the K corresponding crowd
motions. We then combine the K crowd motions to control the
run-time crowd. Our system runs in real-time and has high control
accuracy.

Like many existing systems, the simulation time increases with
the number of characters. However, our system is relatively compu-
tational efficient with a large number of characters. This is because
the majority part of the system is based on the extracted motion
features and gesture features, which are independent of the number
of characters. The only step that is computationally proportional to
the character number is the synthesis of the final crowd motions.

Theoretically speaking, given the right gesture, it is possible to
interpolate two classes of crowd motion (e.g. translate and join)
to generate a new run-time motion. However, it rarely happens in
practice due to the relatively wide range of gestures we collected to
cover the possible variation within the same class. As a result, the
interpolation performed is mostly intra-class.

Theoretically, the mapping could be contaminated if the gesture-
motion pairs are not generated well, such as two similar gestures
generating very different motions or vice versa. In practice, we
find that KNN helps to reduce the effect of outlier mappings, as
multiple motions/gestures are combined, and less similar ones are
given smaller weights. Also, the mapping in our database is very
descriptive thanks to the distinctiveness among the types of basic
motions, which results in a set of distinctive corresponding ges-
tures. More complex motions can be decomposed into the com-
binations of basic ones to avoid overcomplicated motion-gesture
mappings.

Our system analyzes the gesture in a discrete manner. Each ges-
ture controls the crowd in a short time interval. One possible solu-
tion is to apply the continuous recognition algorithms proposed in
[SKT11], in which the input gesture is continuously being recog-
nized using a variable size sliding window.

Figure 12: The visualization of gesture features by types: (a) avg. y-position versus avg. x-position for C(G), (b) avg. distance from centroid
versus time for S(G), (c) avg. total rotation versus time for R(G), (d) avg. bounding box height versus width for B(G).

c© 2018 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



Y. Shen et al. / Data-Driven Crowd Motion Control With Multi-Touch Gestures 393

An interesting research direction is to introduce more intra-class
differences in the crowd motion. For example, we can have a spread-
out translate crowd motion and a condensed one. We then collect
corresponding gesture inputs from the user into the database. As a
result, a small gesture difference will generate a small variation of
the crowd motion, allowing fine control of the crowd.

Acknowledgements

This project was supported in part by the Engineering and Physical
Sciences Research Council (EPSRC) (Ref: EP/M002632/1) and the
Royal Society (REF: IE160609).

References

[BC94] BERNDT D. J., CLIFFORD J.: Using dynamic time warping
to find patterns in time series. In Proceedings of KDD Workshop
(Seattle, WA, USA, 1994), U. M. Fayyad and R. Uthurusamy
(Eds.). AAAI Press, pp. 359–370.

[Bis96] BISHOP C. M.: Neural Networks for Pattern Recognition.
Oxford University Press, Oxford, UK, 1996.

[BvdPPH11] BONNEEL N., VAN DE PANNE M., PARIS S., HEIDRICH W.:
Displacement interpolation using Lagrangian mass transport. In
Proceedings of the 2011 SIGGRAPH Asia Conference SA ’11
(Hong Kong, China, 2011).

[CK08] CHENEY W., KINCAID D. R.: Linear Algebra: Theory and
Applications (1st edition). Jones and Bartlett Publishers, Inc.,
USA, 2008.

[GCG10] GÖRG M. T., CEBULLA M., GARZON S. R.: A framework for
abstract representation and recognition of gestures in multi-touch
applications. In Proceedings of Third International Conference
on Advances in Computer-Human Interactions, 2010, ACHI ’10.
(Saint Maarten, Netherlands Antilles, 2010), IEEE, pp. 143–147.

[GD11] GU Q., DENG Z.: Formation sketching: An approach to
stylize groups in crowd simulation. In Proceedings of Graph-
ics Interface 2011 (St. John’s, Newfoundland, Canada, 2011),
Canadian Human-Computer Communications Society, pp. 1–8.

[GD13] GU Q., DENG Z.: Generating freestyle group formations in
agent-based crowd simulations. IEEE Computer Graphics and
Applications 33, 1 (2013), 20–31.

[GGH*03] GIBBON D., GUT U., HELL B., LOOKS K., THIES A., TRIPPEL

T.: A computational model of arm gestures in conversation. In
Proceedings of INTERSPEECH (Geneva, Switzerland, 2003).

[HKS17] HOLDEN D., KOMURA T., SAITO J.: Phase-functioned neural
networks for character control. ACM Transactions on Graphics
36, 4 (July2017), 42:1–42:13.

[HSK12] HENRY J., SHUM H. P. H., KOMURA T.: Environment-aware
real-time crowd control. In EUROSCA’12: Proceedings of the
11th ACM SIGGRAPH/Eurographics Conference on Computer
Animation (Aire-la-Ville, Switzerland, Switzerland, 2012), Eu-
rographics Association, pp. 193–200.

[HSK14] HENRY J., SHUM H. P. H., KOMURA T.: Interactive for-
mation control in complex environments. IEEE Transactions on
Visualization and Computer Graphics 20, 2 (2014), 211–222.

[JCP*10] JU E., CHOI M. G., PARK M., LEE J., LEE K. H., TAKAHASHI

S.: Morphable crowds. ACM Transactions on Graphics 29, 6
(2010), 140:1–140:10.

[JTZ*12] JIANG Y., TIAN F., ZHANG X., LIU W., DAI G., WANG H.:
Unistroke gestures on multi-touch interaction: Supporting flexi-
ble touches with key stroke extraction. In IUI ’12: Proceedings
of the 2012 ACM International Conference on Intelligent User
Interfaces (New York, NY, USA, 2012), ACM, pp. 85–88.

[JXW*08] JIN X., XU J., WANG C. C., HUANG S., ZHANG J.: Interactive
control of large-crowd navigation in virtual environments using
vector fields. IEEE Computer Graphics and Applications 28, 6
(2008), 37–46.

[KHDA12] KIN K., HARTMANN B., DEROSE T., AGRAWALA M.:
Proton++: A customizable declarative multitouch framework.
In UIST ’12: Proceedings of the 25th Annual ACM Symposium
on User Interface Software and Technology (New York, NY,
USA, 2012), ACM, pp. 477–486.

[KHKL09] KIM M., HYUN K., KIM J., LEE J.: Synchronized multi-
character motion editing. In ACM Transactions on Graphics 28
(2009), 79:1–79:9.

[KLLT08] KWON T., LEE K. H., LEE J., TAKAHASHI S.: Group motion
editing. ACM Transactions on Graphics 27 (2008), 80:1–80:8.

[KO10] KARAMOUZAS I., OVERMARS M.: Simulating the local be-
haviour of small pedestrian groups. In Proceedings of the 17th
ACM Symposium on Virtual Reality Software and Technology
(Hong Kong, 2010), ACM, pp. 183–190.

[KSII09] KATO J., SAKAMOTO D., INAMI M., IGARASHI T.: Multi-touch
interface for controlling multiple mobile robots. In Proceedings
of CHI’09 Extended Abstracts on Human Factors in Computing
Systems (Boston, MA, USA, 2009), ACM, pp. 3443–3448.

[KSKL14] KIM J., SEOL Y., KWON T., LEE J.: Interactive manipulation
of large-scale crowd animation. ACM Transactions on Graphics
33, 4 (Jul2014), 1–10.

[KWK*10] KAMMER D., WOJDZIAK J., KECK M., GROH R., TARANKO

S.: Towards a formalization of multi-touch gestures. In ITS ’10:
Proceedings of ACM International Conference on Interactive
Tabletops and Surfaces (New York, NY, USA, 2010), ACM, pp.
49–58.

[Lal09] LALESCU C. C.: Two hierarchies of spline interpola-
tions. practical algorithms for multivariate higher order splines.
arXiv:0905.3564, 2009.

[LCHL07] LEE K. H., CHOI M. G., HONG Q., LEE J.: Group behav-
ior from video: A data-driven approach to crowd simulation. In
Proceedings of the 2007 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation (San Diego, CA, USA, 2007),
Eurographics Association, pp. 109–118.

c© 2018 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



394 Y. Shen et al. / Data-Driven Crowd Motion Control With Multi-Touch Gestures

[LL12] LÜ H., LI Y.: Gesture coder: A tool for programming multi-
touch gestures by demonstration. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (Austin,
TX, USA, 2012), ACM, pp. 2875–2884.

[LL13] LÜ H., LI Y.: Gesture studio: Authoring multi-touch inter-
actions through demonstration and declaration. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Sys-
tems (Paris, France, 2013), ACM, pp. 257–266.

[LWB*14] LEE Y., WAMPLER K., BERNSTEIN G., POPOVIĆ J., POPOVIĆ

Z.: Motion fields for interactive character locomotion. Commu-
nications of the ACM 57, 6 (Jun2014), 101–108.

[MC12] MIN J., CHAI J.: Motion graphs++. ACM Transactions on
Graphics 31, 6 (Nov2012), 153:1–153:12.

[MCC09] MIN J., CHEN Y.-L., CHAI J.: Interactive generation of
human animation with deformable motion models. ACM Trans-
actions on Graphics 29, 1 (Dec2009), 1–12.

[MDC*09] MICIRE M., DESAI M., COURTEMANCHE A., TSUI K. M.,
YANCO H. A.: Analysis of natural gestures for controlling robot
teams on multi-touch tabletop surfaces. In Proceedings of the
ACM International Conference on Interactive Tabletops and Sur-
faces (Banff, Alberta, Canada, 2009), ACM, pp. 41–48.

[OO09] OSHITA M., OGIWARA Y.: Sketch-based interface for crowd
animation. In Proceedings of Smart Graphics (Salamanca, Spain,
2009), Springer, pp. 253–262.

[Par10] PARK M. J.: Guiding flows for controlling crowds. Visual
Computer 26, 11 (2010), 1383–1391.

[PVDBC*11] PATIL S., VAN DEN Berg J., CURTIS S., LIN M.
C., MANOCHA D.: Directing crowd simulations using navigation
fields. IEEE Transactions on Visualization and Computer Graph-
ics 17, 2 (2011), 244–254.

[RGR13] REKIK Y., GRISONI L., ROUSSEL N.: Towards Many Gestures
to One Command: A User Study for Tabletops. In Proceedings of
INTERACT - 14th IFIP TC13 Conference on Human-Computer
Interaction (Cape Town, South Africa, Sept. 2013), Nelson Man-
dela Metropolitan University, CSIR Meraka Institute and the Uni-
versity of Cape Town, Springer.

[RVG14] REKIK Y., VATAVU R.-D., GRISONI L.: Match-up & conquer.
In Proceedings of the 2014 International Working Conference on
Advanced Visual Interfaces - AVI ’14 (Como, Italy, 2014), pp.
201–208.

[SCOL*04] SORKINE O., COHEN-OR D., LIPMAN Y., ALEXA M., RÖSSL

C., SEIDEL H.-P.: Laplacian surface editing. In Proceedings of the
2004 Eurographics/ACM SIGGRAPH symposium on Geometry
Processing (Nice, France, 2004), ACM, pp. 175–184.

[SH12] SHUM H. P. H., HO E. S. L.: Real-time physical modelling
of character movements with microsoft kinect. In VRST ’12:
Proceedings of the 18th ACM Symposium on Virtual Reality Soft-
ware and Technology (New York, NY, USA, Dec 2012), ACM,
pp. 17–24.

[SKT11] SHUM H. P. H., KOMURA T., TAKAGI S.: Fast accelerometer-
based motion recognition with a dual buffer framework. Interna-
tional Journal of Virtual Reality 10, 3 (Sep2011), 17–24.

[SKY12] SHUM H. P. H., KOMURA T., YAMAZAKI S.: Simulating
multiple character interactions with collaborative and adversarial
goals. IEEE Transactions on Visualization and Computer Graph-
ics 18, 5 (May2012), 741–752.

[SMTT*17] STUVEL S. A., MAGNENAT-THALMANN N., THALMANN D.,
VAN DER STAPPEN A. F., EGGES A., undefined, undefined, undefined,
undefined: Torso crowds. IEEE Transactions on Visualization
and Computer Graphics 23, 7 (2017), 1823–1837.

[TCP06] TREUILLE A., COOPER S., POPOVIĆ Z.: Continuum crowds.
In ACM Transactions on Graphics 25 (2006), 1160–1168.

[Tou83] TOUSSAINT G.: Solving geometric problems with the rotat-
ing calipers. In Proc. IEEE Melecon (1983).

[TYK*09] TAKAHASHI S., YOSHIDA K., KWON T., LEE K. H., LEE

J., SHIN S. Y.: Spectral-based group formation control. Computer
Graphics Forum 28 (2009), 639–648.

[VAW12] VATAVU R.-D., ANTHONY L., WOBBROCK J. O.: Gestures
as point clouds: A $P recognizer for user interface prototypes.
In ICMI ’12: Proceedings of the 14th ACM International Con-
ference on Multimodal Interaction (New York, NY, USA, 2012),
ACM, pp. 273–280.

[vdBLM08] VAN DEN BERG J., LIN M., MANOCHA D.: Reciprocal
velocity obstacles for real-time multi-agent navigation. In Pro-
ceedings of 2008 IEEE International Conference on Robotics and
Automation (Pasadena, CA, USA, May 2008), pp. 1928–1935.

[WOO16] WANG H., ONDŘEJ J., O’SULLIVAN C.: Path patterns: Ana-
lyzing and comparing real and simulated crowds. In Proceedings
of ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games 2016 (Redmond, WA, USA, 2016), ACM, pp. 49–57.

[WWL07] WOBBROCK J. O., WILSON A. D., LI Y.: Gestures without
libraries, toolkits or training: A $1 recognizer for user interface
prototypes. In UIST ’07: Proceedings of the 20th Annual ACM
Symposium on User Interface Software and Technology (New
York, NY, USA, 2007), ACM, pp. 159–168.

[XWY*15] XU M., WU Y., YE Y., FARKAS I., JIANG H., DENG Z.:
Collective crowd formation transform with mutual information–
based runtime feedback. Computer Graphics Forum 34 (2015),
60–73.

[ZZC*14] ZHENG L., ZHAO J., CHENG Y., CHEN H., LIU X., WANG W.:
Geometry-constrained crowd formation animation. Computers &
Graphics 38 (2014), 268–276.

Supporting Information

Additional Supporting Information may be found in the online ver-
sion of this article at the publisher’s web site:

Video S1

c© 2018 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.


