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Abstract. The relationship between the spatial variability of soil multifunctionality (i.e., the capa-
city of soils to conduct multiple functions; SVM) and major climatic drivers, such as temperature and
aridity, has never been assessed globally in terrestrial ecosystems. We surveyed 236 dryland ecosystems
from six continents to evaluate the relative importance of aridity and mean annual temperature, and
of other abiotic (e.g., texture) and biotic (e.g., plant cover) variables as drivers of SVM, calculated as
the averaged coefficient of variation for multiple soil variables linked to nutrient stocks and cycling.
We found that increases in temperature and aridity were globally correlated to increases in SVM.
Some of these climatic effects on SVM were direct, but others were indirectly driven through reduc-
tions in the number of vegetation patches and increases in soil sand content. The predictive capacity of
our structural equation modelling was clearly higher for the spatial variability of N- than for C- and
P-related soil variables. In the case of N cycling, the effects of temperature and aridity were both direct
and indirect via changes in soil properties. For C and P, the effect of climate was mainly indirect via
changes in plant attributes. These results suggest that future changes in climate may decouple the spa-
tial availability of these elements for plants and microbes in dryland soils. Our findings significantly
advance our understanding of the patterns and mechanisms driving SVM in drylands across the globe,
which is critical for predicting changes in ecosystem functioning in response to climate change.

Key words: carbon cycling; climate change; multifunctionality; nitrogen cycling; phosphorous cycling; spatial
heterogeneity.

INTRODUCTION

The uneven distribution of soil characteristics is a ubiqui-
tous feature of most terrestrial ecosystems, and is known to
regulate a wide range of ecosystem processes including indi-
vidual plant performance and competitive ability (Day et al.
2003), community-level productivity (Maestre and Reynolds
2006), trophic interactions (Tsunoda et al. 2014), and nutri-
ent cycling (Schlesinger et al. 1990, Ochoa-Hueso et al.
2018). This spatial variability in soil variables (SV hereafter)
is largely controlled by the interaction of multiple biological,
chemical, and physical processes acting simultaneously at
multiple scales (Jackson and Caldwell 1993, Farley and Fit-
ter 1999, Zuo et al. 2010). While the environmental drivers
of SV have been studied on individual functions and at local
scales (e.g., N availability), the role of environment in driv-
ing multiple ecosystem functions simultaneously still needs
to be considered to achieve an integrative understanding on
the drivers of within-site SV (Byrnes et al. 2014).
Given the ubiquitous nature of SV and its role as a modu-

lator of plant and soil fauna responses to climate change

(Garc�ıa-Palacios et al. 2012), a deeper understanding of the
major drivers of the spatial variability in multiple soil func-
tions (i.e., soil multifunctionality, SVM) across the globe is
of paramount importance to anticipate changes in ecosys-
tem functioning under global change scenarios (Fraterrigo
and Rusak 2008, IPCC 2013). Remarkably, a relatively large
body of literature has explored the effects of SV locally or in
regional comparisons (Linst€adter et al. 2014, Guuroh et al.
2018), but no study has yet assessed the major environmen-
tal drivers of SVM in terrestrial ecosystems across the globe,
which remains largely unexplored and poorly understood.
This is particularly relevant for dryland ecosystems (i.e.,
arid, semiarid, and dry-subhumid ecosystems), where SVM
is a widespread phenomenon (Schlesinger et al. 1990,
Ochoa-Hueso et al. 2018). In drylands, which typically have
a patchy plant distribution, SVM likely arises from the
strong functional differences between vegetated patches,
where plants largely drive biological processes such as litter
decomposition or N fixation, and unvegetated areas, with
higher importance of physical processes such as erosion by
wind or water (Li et al. 2007). Drylands cover about 45% of
Earth’s land surface and support more than 38% of the glo-
bal human population (Pr�av�alie 2016), and their global
extent may increase by up to 23% by the end of this century
due to forecasted increases in aridity (Huang et al. 2016).
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These areas are particularly sensitive to the effects of climate
change, so expected increases in aridity and temperature (up
to 2–4°C, depending on projections; IPCC 2013) will pro-
mote changes in vegetation and soil properties that could
have significant consequences for SVM in drylands world-
wide. For instance, recent field surveys have found that
increases in aridity are linked to decreases in plant cover and
to increases in the encroachment rate of woody vegetation
across the globe (Dougill and Thomas 2004, Vicente-Ser-
rano et al. 2012, Delgado-Baquerizo et al. 2013), phenom-
ena that would likely lead to parallel increases in SVM.
However, to date, no study has considered the multiple
direct and indirect (e.g., via plant and soil features) effects of
temperature or aridity on SVM. The likely influence of cli-
mate on SVM, together with the well-known influence of
SVM on ecosystem functioning, anticipate changes in the
ability of dryland ecosystems to provide goods and services
under ongoing climate change. This, together with the global
importance of drylands and their particular sensitivity to cli-
matic changes, justify efforts to better understand the role of
major climate change drivers, such as temperature and arid-
ity, in determining SVM globally directly and indirectly via
plant and soil attributes.
Here, we used a database including 236 dryland sites from

six continents (Appendix S1: Fig. S1) to evaluate the role
and relative importance of aridity and mean annual temper-
ature, together with other key environmental factors (soil
properties and plant attributes), as drivers of SVM in dry-
lands worldwide. We hypothesized that increases in aridity
and temperature will promote SVM directly, but also indi-
rectly via reductions in plant cover and shifts in soil proper-
ties, as plant community composition and structure are
largely known to be major drivers of soil spatial variability
in drylands (Schlesinger et al. 1990).

METHODS

We used data from a global field survey conducted in 236
dryland sites from 19 countries (Appendix S1: Fig. S1;
Argentina, Australia, Botswana, Brazil, Burkina Faso,
Chile, China, Ecuador, Ghana, Iran, Israel, Kenya, Mexico,
Morocco, Peru, Spain, Tunisia, USA, and Venezuela). These
sites include the 224 drylands used in Maestre et al. (2012)
plus 12 additional sites from Botswana, Ghana, and Burk-
ina Faso surveyed in 2012 and 2013. All sites surveyed were
restricted to dryland ecosystems (defined as regions with an
aridity index [AI = mean precipitation/mean potential evap-
otranspiration] between 0.05 and 0.65 [Gao and Giorgi
2008]) and encompassed a wide variety of dryland vegeta-
tion types, including grasslands, shrublands, savannas, dry
seasonal forests, and open, tree-dominated woodlands.
Mean annual precipitation and temperature of the study
sites ranged from 66 to 1219 mm, and from �1.8° to
27.8°C.
Data collection was carried out between February 2006

and December 2013, focusing on 30 9 30 m plots represen-
tative of the vegetation at each site and using a standardized
sampling protocol (Maestre et al. 2012). Soils were sampled
during the dry season in most of the sites using a stratified
random procedure. At each plot, five 50 9 50 cm quadrats
were randomly placed under the canopy of the dominant

perennial species and in open areas devoid of perennial veg-
etation. A composite sample consisting of five 145-cm3 soil
cores (0–7.5 cm depth) was collected from each quadrat,
bulked, and homogenized in the field. When more than one
dominant plant species was present, samples were also col-
lected under the canopies of five randomly selected individu-
als of the co-dominant species. Thus, the number of soil
samples varied between 10 and 15 per site. Soil samples were
taken to the laboratory, sieved (2 mm mesh), air-dried for
one month, and stored for laboratory analyses. In drylands,
soil properties remain largely similar after air drying (the
most common status for these soils), so we did not expect
large changes in soil properties after air drying (Zornoza
et al. 2006, 2009). To facilitate the comparison of results
across sites, dried soil samples from all sites were shipped to
Spain for laboratory analyses.
We measured the cover and number of perennial plant

patches at each site using the line-intercept method along
four 30 m long transects separated from each other by 8 m
(Brun and Box 2006). At each transect, we also surveyed 20
contiguous 1.5 9 1.5 m quadrats (80 quadrats per site).
Within these quadrats, we counted the number of species
present to estimate species richness. Soil pH was measured
with a pH meter, in a 1:2.5 (mass : volume, soil :water) sus-
pension. Soil sand content was estimated according to (Ket-
tler et al. 2001). Mean annual temperature (MAT) and
aridity (1 � aridity index [ratio of precipitation to potential
evapotranspiration]) were obtained from Zomer et al.
(2008), who used interpolations from the Worldclim global
database (Hijmans et al. 2005).
We measured 14 variables closely related to C, N, and P

cycling and storage. Total N was determined using a CN
analyzer (Leco CHN628 Series; Leco Corporation, St.
Joseph, Michigan, USA). Total organic C was determined
by colorimetry after oxidation with a mixture of potas-
sium dichromate and sulfuric acid (Anderson and Ingram
1993). Soil pentoses and hexoses, as well as soil ammo-
nium and nitrate were measured colorimetrically from soil
extracts as described in Delgado-Baquerizo et al. (2015).
Soil samples (2.5 g of soil) were extracted with 0.5 mol/L
K2SO4 in a ratio of 1:5. Extracts were shaken in an orbi-
tal shaker at 200 rpm for 1 h at 20°C and filtered to pass
a 0.45-lm Millipore filter (Jones and Willett 2006). Poten-
tial net N mineralization rate was estimated as the differ-
ence between initial and final inorganic N (sum of
ammonium and nitrate) before and after incubation under
potential conditions (Allen et al. 1986). Phosphatase activ-
ity was measured by determination of the amount of p-
nitrophenol released from 0.5 g soil after incubation at
37°C for 1 h with the substrate p-nitrophenyl phosphate
in MUB buffer (Tabatabai and Bremner 1969). The activ-
ity of b-glucosidase was assayed following the procedure
for phosphatase, but using p-nitrophenyl-b-D-glucopyra-
noside as substrate and trishydroxymethyl aminomethane
instead of NaOH when preparing the buffer (Tabatabai
1982). Available phosphorus was determined colorimetri-
cally from sodium bicarbonate extracts (Moir and Tiessen
2007). Soil proteins, phenols and aromatic compounds
were evaluated as detailed in Maestre et al. (2012). These
variables were selected because they are considered good
proxies of key ecosystem processes linked to soil fertility,
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nutrient cycling, biological productivity, and the build-up
of nutrient pools.
To estimate SVM, we first calculated the variability

within each site of the different soil variables measured. To
do so, we calculated the site-level coefficient of variation
(CV) using the composite soil samples obtained at each site
(n per site varied between 10 and 15; see above). The CV is
a relative measure of heterogeneity that can accommodate
variance-mean scaling, avoiding the tendency for variance
to increase with the mean (Duarte 1991). Therefore, it has
been shown to be more useful than absolute measures of
variability such as the standard deviation for comparing
variability within biological properties (Schlesinger et al.
1990, Fraterrigo and Rusak 2008). We calculated SVM as
the arithmetic mean for all individual site-level CVs of all
soil variables. We also calculated the SVM of C-, N-, and
P-related variables separately (hereafter C-SVM, N-SVM,
and P-SVM) by calculating the arithmetic mean of individ-
ual site-level CVs of soil variables related to the C (i.e.,
total organic C, activity of b-glucosidase, phenols, aromatic
compounds, hexoses, and pentoses), N (total nitrogen,
ammonium, nitrate, proteins, potential nitrification rate,
and amino acids), and P (available phosphorus, and phos-
phatase activity) cycles.
To evaluate the effects of biotic and abiotic factors on

SVM, we first explored the relationships between MAT,
aridity, and SVM using regression analysis. Then we used
random forest modelling (Breiman 2001) to identify the
most important predictors of SVM among the following:
latitude, longitude, mean annual temperature, aridity, plant
species richness, plant cover, number of plant patches, the
ratio between woody and herbaceous cover, soil sand, and
soil pH. Finally, to achieve a system-level understanding of
the major drivers of SVM, we used structural equa-
tion modelling (SEM; Grace 2006). In particular, we used
SEM to evaluate the multiple direct and indirect effects of
biotic and abiotic drivers on SVM (our a priori model
based on our current knowledge is available in App-
endix S1: Fig. S2). Structural equation modelling is partic-
ularly useful in large-scale correlative studies because it
allows us to partition causal influences among multiple
variables and to separate the direct and indirect effects of
the predictors included in the model (Grace 2006). Vari-
ables were log- or square-root-transformed when necessary
to improve linearity in the relationships in our SEM mod-
els. There is no single universally accepted test of overall
goodness of fit for SEM, applicable in all situations regard-
less of sample size or data distribution. Here we used the
chi-squared test (v2; the model has a good fit when v2 is
low, i.e., ~≤2, and P is high, traditionally >0.05) and the
root-mean-square error of approximation (RMSEA; the
model has a good fit when RMSEA is low, i.e., ~≤0.05, and
P is high, traditionally >0.05; Schermelleh-Engel et al.
2003). After verifying the adequate fit of our model, we
were free to interpret the path coefficients of the model and
their associated P values. A path coefficient is analogous to
the partial correlation coefficient, and describes the
strength and sign of the relationships between two variables
(Grace 2006). The probability that a path coefficient differs
from zero was tested using bootstrap tests (Schermelleh-
Engel et al. 2003). We calculated the standardized total

effects of all biotic and abiotic drivers on the selected
heterogeneity metrics (Grace 2006). The net influence that
one variable had upon another was calculated by summing
all direct and indirect pathways (effects) between two vari-
ables. Then we parameterized the model using our data set
and tested its overall goodness of fit. All SEM and regres-
sion analyses were conducted using AMOS 20 (IBM SPSS,
Chicago, Illinois, USA) and Sigma Plot 12, respectively
(Systat Software, San Jos�e, California, USA). Random for-
est modelling was performed with R 3.3.2 using the rfPer-
mute package (R Core Team, Vienna, Austria).

RESULTS

Regression analyses showed a positive quadratic relation-
ship between SVM and mean annual temperature (MAT;
Fig. 1a) and aridity (Fig. 1b). The random forest models
indicated that all explored environmental factors were signif-
icant predictors of SVM, N-SVM, C-SVM, and P-SVM,
except plant cover and plant richness in the case of P-SVM
(Fig. 2). These models identified, in this order, (1) soil sand
content, MAT, the number of plant patches per plot, soil
pH, and aridity as the major individual predictors of SVM
(Fig. 2a); (2) MAT, soil pH and sand content, and aridity
for N-SVM (Fig. 2b); (3) soil sand content, the number of
plant patches, MAT, and aridity for C-SVM (Fig. 2c); and
(4) the number of plant patches, MAT, soil sand content,
and aridity for P-SVM (Fig. 2d).
Our SEM explained around 22% of the variation in SVM

(Fig. 3a). We found direct effects from both MAT and arid-
ity on SVM (Fig. 3a). Moreover, we found multiple indirect
effects of MAT and aridity on SVM via reductions in num-
ber of plant patches (Fig. 3a). Aridity also promoted SVM
indirectly via positive effects on sand content. The standard-
ized total effects (sum of direct and indirect effects from
SEM) indicated that MAT and aridity were important pre-
dictors of SVM, with strong positive effects on SVM in both
cases (Fig. 3b). Sand content (positive) and the number of
plant patches and soil pH (negative) were also important
drivers of SVM.
The element-specific SEMs explained 26%, 14%, and

12% of the variation observed in N-, C-, and P-SVM,
respectively (Fig. 4). The models showed that N-SVM was
positively and significantly related to MAT and soil sand
content, but negatively related to soil pH (Fig. 4a),
whereas C-SVM and P-SVM were only negatively influ-
enced by the number of plant patches (Figs. 4c,e). The
standardized total effects indicated that N-SVM was posi-
tively influenced by MAT and soil sand content, but nega-
tively by soil pH (Fig. 4b); C-SVM was positively
regulated by aridity and plant cover, but negatively by the
number of plant patches and soil pH (Fig. 4d); and P-
SVM was mainly positively related to aridity and MAT,
but strongly and negatively related to the number of plant
patches (Fig. 4f).

DISCUSSION

Our work represents the first global assessment of the
major environmental predictors of the spatial variability
of multiple surrogates of ecosystem functions (SVM).
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More importantly, we provide new mechanistic insights
indicating that increases in aridity and mean annual tem-
perature are linked to overall increases in the SVM of dry-
lands across the globe both directly and indirectly (via
reductions in plant patches and increases in sand content).
This study builds on the seminal article from Schlesinger
et al. (1990) that illustrated how the loss of vegetation
cover due to human-driven disturbances can lead to
changes in the heterogeneity of soil resources at the local
scale. Although the amount of variance explained by our
models is relatively low (R2 < 0.25), this is a common out-
come in global surveys in which the variability of sampled
sites is inevitably high (Moles et al. 2009). Furthermore, it

is inherently challenging to characterize the heterogeneity
of soil resources, as it can be affected simultaneously by
different sources of variability that can operate and affect
SVM at different temporal and spatial scales (Fraterrigo
and Rusak 2008).
Our results demonstrate that SVM is not only directly

related to changes in temperature and aridity, but also
emerges from the influence of these climatic variables on
vegetation and/or soil features. For instance, increases in
aridity enhanced SVM mainly through increases in soil
sand content and through reductions in the number of
plant patches. On the other hand, increases in MAT were
negatively related to SVM through decreases in soil sand

FIG. 1. Relationships between mean annual temperature and aridity (defined as 1 � aridity index [the ratio of precipitation to potential
evapotranspiration]) and the variability (coefficient of variation) of soil multifunctionality (SVM). The solid lines represent the fitted regres-
sions. R2 shows the proportion of variance explained.

FIG. 2. Random forest mean predictor importance (increase of mean square error [MSE; %]) of biotic and abiotic drivers on the spa-
tial variability (coefficient of variation) of (a) soil multifunctionality (SVM), (b) N-related variables (SVM-N), (c) C-related variables
(SVM-C), and (d) P-related variables (P-SVM). Predictors are latitude, longitude, mean annual temperature (MAT), aridity, plant species
richness (PlantRichness), plant cover (PlantCover), number of plant patches (PlantPatches), the ratio between woody and herbaceous
cover (WoodyHerb), soil sand (Sand), and soil pH. Significance levels of each predictor are as follows: *P < 0.05, **P < 0.01, and
***P < 0.001.
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content. However, this effect was clearly overcome by both
the negative effect of MAT on the number of plant
patches (which further decreases SVM) and the direct
effects of temperature on SVM, resulting in a net positive
and strong effect of increasing temperature on SVM.

Results from previous studies conducted at the local scale
suggest that any disturbance leading to decreases in vege-
tation cover (e.g., overgrazing) and increases in woody
plant encroachment should increase SV (Schlesinger et al.
1990, Dougill and Thomas 2004) through the development

FIG. 3. (a) Effects of mean annual temperature, aridity, soil variables (pH and sand content), biotic attributes (plant cover [P. Cover]
and richness [P. Rich.], number of plant patches [N. Patches], and woody to herbaceous cover ratio [W/H]), and geographical coordinates
(longitude [Lon] and latitude [Lat]) on the spatial variability (coefficient of variation) of soil multifunctionality (SVM). Numbers adjacent
to arrows are standardized path coefficients, analogous to relative regression weights, and indicative of the effect size of the relationship.
*P < 0.05 and **P < 0.01. Only significant relationships (P < 0.05) are shown. Arrow widths are proportional to the strength of the rela-
tionship. Squares are observable variables. The proportion of variance explained (R2) appears alongside the response variable in the model.
Goodness-of-fit statistics for each model are shown in the bottom (df, degrees of freedom; RMSEA, root mean squared error of approxima-
tion). The components within spatial geolocation, climate, soil (properties) and plant attributes are included as independent observable vari-
ables in the model, however, we group them in the same box in the model for graphical simplicity. (b) Standardized total effects (direct plus
indirect effects derived from the structural equation models) of SVM predictors.
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of high fertility areas under and around plant canopies
(characterized by higher production of above- and below-
ground litter, leachates, and exudates and lower erosion
rates), and low fertility areas in the zones devoid of

perennial vascular vegetation (Schlesinger et al. 1990,
Hook et al. 1991, Ochoa-Hueso et al. 2018). Our results
provide partial empirical support for this hypothesis at a
global scale in dryland ecosystems and confirm that any

FIG. 4. Effects of mean annual temperature, aridity, soil variables (pH and sand content), biotic attributes (plant cover and richness,
number of plant patches, and woody to herbaceous cover ratio [W/H]) and geographical coordinates (longitude and latitude) on the spatial
variability (coefficient of variation) of the soil multifunctionality of (a) N-, (c) C-, and (e) P-related variables (N-SVM, C-SVM, and P-
SVM, respectively). Numbers adjacent to arrows are standardized path coefficients, analogous to relative regression weights, and indicative
of the effect size of the relationship. *P < 0.05 and **P < 0.01. Only significant relationships (P < 0.05) are shown. Arrow widths are pro-
portional to the strength of the relationship. Squares are observable variables. The proportion of variance explained (R2) appears alongside
the response variable in the model. Goodness-of-fit statistics for each model are shown in the bottom (df = degrees of freedom;
RMSEA = root mean squared error of approximation). The components within spatial geolocation, climate, soil (properties) and plant
attributes are included as independent observable variables in the model, however we group them in the same box in the model for graphical
simplicity. Panels b, d, and f show the standardized total effects (direct plus indirect effects derived from the structural equation models) of
N-SVM, C-SVM, and P-SVM predictors, respectively.
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impact of climatic variation on vegetation spatial variabil-
ity might also have significant consequences for SVM
globally.
Our mechanistic model suggests that total plant cover

has limited direct effects on SVM (Fig. 3). However, a
higher number of plant patches in our plots was strongly
and directly linked to lower levels of SVM. Thus, it seems
that more even inputs of litter and a higher capacity to
redistribute soil nutrients spatially, as a result of a more
homogeneous distribution of plant patches, are more
important than the total area covered by plants to main-
tain lower levels of soil spatial variability, at least at the
scale evaluated in this study. Previous studies show that
increases in aridity, or other disturbances such as overgraz-
ing, are tightly linked to plant cover losses and to increases
in the percentage of sand-sized particles in the soil (Sch-
lesinger et al. 1990, Li et al. 2007). Here, we show that
increases in temperature and aridity such as those fore-
casted with climate change, and the likely concomitant
decreases in total plant cover and increases in the amount
of sand in the soil might result in a general increase in the
spatial variability of soil resources and functionality in dry-
lands worldwide (Vicente-Serrano et al. 2012, Delgado-
Baquerizo et al. 2013). Perennial plants modify soil texture
by decreasing losses (or increasing the accumulation) of
fine soil particles, thus decreasing the relative abundance of
sand-sized grains in the soil (Linst€adter and Baumann
2013). This process is likely to increase the functional dif-
ferences between vegetated areas (where plants typically
drive soil biological processes and promote soil nutrient
redistribution via roots and microorganisms; Schlesinger
et al. 1990, Hook et al. 1991), and open areas between
plant patches dominated by physical processes such as
wind and water erosion (Li et al. 2007).
Soil heterogeneity drives many key ecosystem processes

(Farley and Fitter 1999, Day et al. 2003, Maestre and Rey-
nolds 2006, Zuo et al. 2010, Tsunoda et al. 2014), but pre-
dicting the effects of the observed changes in SVM is not
trivial. According to the traditional view of spatial hetero-
geneity as a driver of species diversity, increased SVM
should promote plant and soil biota diversity (Bakker et al.
2003, Davies et al. 2005). Recent studies suggest that, more
likely, SVM can both increase and decrease not only diver-
sity, but also ecosystem function, depending on factors
such as the scale of the heterogeneity, the environmental
conditions, as well as species identity and composition
(Hutchings et al. 2003). Increases in SVM in low produc-
tivity systems such as drylands could change the size sym-
metry of belowground competition, favoring larger (in the
case of plants) or more mobile (in the case of soil biota)
species, which are more capable of rapidly exploiting nutri-
ent patches than smaller species (Rajaniemi 2007, Reynolds
and Haubensak 2009). On the other hand, changes in SVM
typically promote multiple plant morphological and physio-
logical responses, such as changes in nutrient uptake kinet-
ics, biomass allocation, and root production and
morphology (Robinson 1994, Garc�ıa-Palacios et al. 2012).
Thus, the ability of individual species (and individuals
within species) to adapt to the forecasted increase (with cli-
mate change) in soil spatial variability will likely determine
their establishment (Maestre et al. 2003), competitive

ability (Robinson et al. 1999, Hodge 2004), productivity
(Dougill and Thomas 2004), and survival rate (Wijesinghe
et al. 2005).
Of particular interest were the different responses of the

element-specific N-, C-, and P-SVM to the environmental
predictors. The predictive capacity of our model was clearly
higher for N-SVM than for C- and P-SVM. While we also
found strong direct effects of aridity on N-SVM, the fate of
C- and P-SVM was mainly indirectly driven by reductions
in number of plant patches. Different ecosystem compart-
ments or processes may have different sensitivities to the
direct or indirect effects of aridity (Evans and Burke 2012),
and past studies have shown asymmetrical responses of N,
C, and P cycles to climate change, with N cycling being
consistently the most susceptible among them (Dur�an et al.
2013). Several mechanisms linked to increases in aridity
and temperature could be behind this different sensitivity
of the spatial variability of N, C, and P in soils. For
instance, different microbial communities have different
sensitivities to warming and drought, leading to the accu-
mulation of different soil nutrient pools (Sheik et al. 2011).
Also, unlike P and C, whose availabilities are principally
linked to the parent material and the decomposition of lit-
ter from plant communities, respectively, soil N is fixed
from the atmosphere by soil microbial communities (e.g.,
most cyanobacteria), which are common in many dryland
soils (Schlesinger and Bernhardt 2013). Increases in aridity
will increase the amount of potential habitat available for
biocrust communities, which spread in the open areas
between plant patches and form mosaics of multiple species
(Delgado-Baquerizo et al. 2016a). Similarly, increases in
aridity promote the abundance of autotrophic communities
tightly linked to the N cycle (e.g., archaeal nitrifiers; Del-
gado-Baquerizo et al. 2016b). Thus, the strong links
between aridity and the spatial distribution of N cycling-
related microbial communities might help explain the
strong direct effect of climate on N-SVM, not observed for
P- or C-SVM. On the contrary, the strong indirect effects
of aridity on C- and P-SVM via reductions in number of
plant patches might be related to reduced litter decomposi-
tion, as our C- and P-SVM indexes include the activities of
enzymes, such as beta-glucosidase and phosphatase, that
are involved in the degradation of organic matter into sim-
pler C and P components.
The biogeochemical cycles of N, C, and P are tightly

interlinked in terrestrial ecosystems by processes such as
photosynthesis, atmospheric N fixation, respiration,
decomposition, and microbial mineralization (Vitousek
2004, Schlesinger and Bernhardt 2013). However, as these
processes are likely to be altered, perhaps in different ways,
by anthropogenic disturbances such as climate change, it
has been suggested that N, C, and P cycles can become
decoupled (Schlesinger et al. 1990, Pe~nuelas et al. 2012,
Vicente-Serrano et al. 2012, Delgado-Baquerizo et al.
2013). Here we show that increasing aridity and tempera-
ture had stronger effects on the heterogeneity of N- than C-
and P-related variables. These results suggest that expected
changes in climate, by compromising the essential co-occur-
rence of areas with similar N, C, and P contents, might lead
to a decoupling of the spatial availability of these elements
for plants and microbes in dryland soils across the globe.
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Heterogeneity is rarely employed as a response variable to
assess the effects of human impacts on ecosystems, but
recent studies indicate that it can be a sensitive metric per
se, capturing effects and differences sometimes not detected
by averaging (Underwood 1991, Callaghan and Holloway
1999, Fraterrigo and Rusak 2008). Indeed, whereas a recent
study using our same database showed that C and N cycles
are likely to become uncoupled from the P cycle in coming
decades due to increasing aridity (Delgado-Baquerizo et al.
2013), our explicit consideration of SVM unveiled an addi-
tional (spatial) C-N-P decoupling mechanism that could
have important consequences for ecosystem functioning
(Schimel 2010, Finzi et al. 2011, Pe~nuelas et al. 2012, Del-
gado-Baquerizo et al. 2013).
Together, our work provides the first empirical evidence

that changes in temperature and aridity are linked to alter-
ations of the SVM in drylands across the globe. Our results
also confirm that the direction of these effects is maintained
when analyzing the spatial variability of N, C, and P vari-
ables independently. However, the spatial variability of N-
cycling processes was more sensitive to changes in tempera-
ture and aridity than that of C-, and P-cycling. Whereas the
effects of aridity and temperature on N-SVM were mainly
direct, in the case of C-SVM and P-SVM these effects were
indirectly driven by reductions in the number of plant
patches promoted by aridity. These findings significantly
advance our understanding of the patterns and mechanisms
driving the spatial heterogeneity of soil multifunctionality
across the globe, which is critical for understanding the
responses of terrestrial ecosystems to ongoing climate
change.
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