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Abstract: Since its origins and numerous applications in material science, the Birnbaum–Saunders
family of distributions has now found widespread uses in some areas of the applied sciences such as
agriculture, environment and medicine, as well as in quality control, among others. It is able to
model varied data behaviour and hence provides a flexible alternative to the most usual distributions.
The family includes Birnbaum–Saunders and log-Birnbaum–Saunders distributions in univariate
and multivariate versions. There are now well-developed methods for estimation and diagnostics
that allow in-depth analyses. This paper gives a detailed review of existing methods and of relevant
literature, introducing properties and theoretical results in a systematic way. To emphasise the
range of suitable applications, full analyses are included of examples based on regression and
diagnostics in material science, spatial data modelling in agricultural engineering and control charts
for environmental monitoring. However, potential future uses in new areas such as business,
economics, finance and insurance are also discussed. This work is presented to provide a full
tool-kit of novel statistical models and methods to encourage other researchers to implement them in
these new areas. It is expected that the methods will have the same positive impact in the new areas
as they have had elsewhere.

Keywords: asymmetric distributions; control charts; diagnostics; multivariate methods;
non-normality; regression; R software; spatial models

1. Introduction and Literature Review

The Birnbaum–Saunders (BS) family of distributions was first proposed as a failure-time model
in material science; in particular, for situations following a mechanism of small incremental changes
in crack length until a critical threshold is reached. This univariate distribution has a single mode,
is positively skewed (but nearly symmetric in some cases) and is defined over a non-negative range
of values making it suitable as a more general lifetime model; see Birnbaum and Saunders (1969a);
Leiva and Saunders (2015); Leiva (2016) and Leiva and Vivanco (2016).

Since its first use in the late 1960s, research into the BS distribution can be divided into
three distinct periods. The initial period (1969–1999) contains few published papers reflecting
the slow development of the methodology; see, for example, Birnbaum and Saunders (1969a);
Rieck and Nedelman (1991); Johnson et al. (1995); Dupuis and Mills (1998) and
Owen and Padgett (1999). The second period (2000–2010) includes papers that discuss varied aspects
of estimation, modelling and diagnostics, as well as generalizations, computational issues and novel
modelling examples, but with justifications still mainly based on an argument of cumulative effects; see,
for example, Owen and Padgett (2000); Volodin and Dzhungurova (2000); Tsionas (2001); Rieck (2003);
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Galea et al. (2004); Owen (2006); Xie and Wei (2007); Lemonte et al. (2008); Leiva et al. (2008, 2009);
Balakrishnan et al. (2009) and Vilca et al. (2010). The third period (2011 to the present) is characterized
by a new inventiveness, breaking the link with lifetime data analysis and hence extended application
in new areas such as: biology, crop yield assessment, econometrics, energy production, forestry,
industry, informatics, insurance, inventory management, medicine, psychology, neurology, pollution
monitoring, quality control, sociology and seismology; see, for example, Bhatti (2010); Kotz et al. (2010);
Balakrishnan et al. (2011); Leiva et al. (2010, 2011, 2012, 2014, 2014, 2014, 2015, 2015, 2016, 2016, 2017);
Vilca et al. (2010); Villegas et al. (2011); Azevedo et al. (2012); Ferreira et al. (2012); Paula et al. (2012);
Santos-Neto et al. (2012, 2014, 2016); Marchant et al. (2013, 2016); Saulo et al. (2013, 2018);
Barros et al. (2014); Rojas et al. (2015); Wanke and Leiva (2015); Bourguignon et al. (2017);
Garcia-Papani et al. (2017); Leiva and Saulo (2017); Lillo et al. (2018) and the references therein.
In addition, risk and hazard analysis applications, in engineering and medicine, using the BS
distribution were performed by Bebbington et al. (2008); Kundu et al. (2008); Azevedo et al. (2012);
Athayde (2017); Leão et al. (2017, 2018a, 2018b); Athayde et al. (2018) and Desousa et al. (2018).
Furthermore, the issue of robust parameter estimation has been considered, for example, by
Wang et al. (2013, 2015) and Lemonte (2016).

The univariate BS distribution has many closed-form properties, due to the relationship with the
normal distribution, making it a convenient model. In particular, all random variables following a BS
distribution can be written as transformations of a random variable following the standard normal
distribution; see Johnson et al. (1995, pp. 651–63) and Leiva (2016, p. 18). In addition, a logarithmic
verion of the BS distribution (log-BS) was introduced by Rieck and Nedelman (1991) allowing the
extension to BS log-linear regression models; see Tsionas (2001); Galea et al. (2004); Xie and Wei (2007);
Desmond et al. (2008); Lemonte (2011); Lemonte and Ferrari (2011a, 2011b).

Bivariate BS distributions were proposed by Kundu et al. (2010) and Vilca et al. (2014),
being then extended to the multivariate case by Kundu et al. (2013), with a matrix version
introduced by Caro-Lopera et al. (2012); see also Sánchez et al. (2015). Other work related to
the multivariate BS distribution include Jamalizadeh and Kundu (2015); Khosravi et al. (2015);
Kundu (2015b); Lemonte et al. (2015); Marchant et al. (2016, 2018); Garcia-Papani et al. (2017).
The work in Kundu (2015a) presented the bivariate log-BS distribution, but studies on
multivariate log-BS distributions and BS log-linear regression models have only appeared recently;
see Marchant et al. (2016). The multivariate BS and log-BS distributions were extended to BS spatial
modelling with a first application in tourism proposed by Xia et al. (2011), based on Markov processes,
who compared several distributions including the BS model. The work in Garcia-Papani et al. (2017)
provided a detailed and mathematically rigorous study of spatial modelling based exclusively on
BS distributions.

A crucial step in any statistical analysis is the validation of modelling assumptions.
Goodness-of-fit (GOF) tests of an assumed BS distribution were proposed by Barros et al. (2014);
see D’Agostino and Stephens (1986) for details on GOF tests. Another important stage in modelling
is the identification of potentially influential data, which usually considers the stability of parameter
estimates to small changes in the data or in the model. Influence diagnostics are widely used
for normality-based linear regression models, and a variety of approaches is well reported in the
literature; see, for classical examples, Cook and Weisberg (1982) and Chatterjee and Hadi (1988).
The local influence method, proposed by Cook (1987), has had an important role in regression
diagnostics by assessing the effect of small perturbations in the model and/or data on the
maximum likelihood (ML) estimates in the normality-based linear regression model context. Influence
diagnostics have subsequently been studied for other modelling situations; see Paula (1993); Shi (1997);
Galea et al. (2004); Osorio et al. (2007); Atkinson (2009); Santana et al. (2011); Villegas et al. (2011);
Paula et al. (2012) and Leiva et al. (2014). Recent works have extended influence diagnostic methods
for multivariate BS regression models and BS spatial models; see Marchant et al. (2016) and
Garcia-Papani et al. (2017).
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Turning attention away from regression and spatial modelling, another important area in statistics
has been control charts to monitor the quality of a dynamic process. Control charts for single quality
characteristics were introduced by Shewhart (1931), but it is often necessary to consider several
characteristics simultaneously. When dealing with correlated characteristics, using multiple univariate
control charts is usually not sufficient. Then, Hotelling (1947) introduced the multivariate control
chart (see also, Alt 1985), which takes into account the correlation structure and the requirement to
have a single control scheme. The aim of multivariate control charts, as with all control charts, is
to identify the existence of special causes of variation. In particular, they can be used to discover
multivariate outliers, mean shifts and distributional deviations from the in-control process. The works
by Lio and Park (2008) and Leiva et al. (2015), for example, considered univariate BS control charts,
with Marchant et al. (2018) presenting work on BS-based multivariate control charts.

The objectives of the present paper are: (i) to present univariate and multivariate BS and log-BS
distributions; (ii) to propose multivariate BS log-linear regression models with their ML estimation
and diagnostics; (iii) to introduce multivariate BS spatial models considering ML estimation and their
diagnostics; and (iv) to derive multivariate BS quality control charts.

This paper is structured into seven sections including the introduction section. Section 2 presents
the univariate BS and log-BS distributions and their use in data modelling. Then, in Section 3,
we describe the multivariate BS and log-BS distributions, illustrating them graphically. In Section 4,
multivariate BS regression models, considering their estimation and diagnostics, are derived and
illustrated with real-world data. Section 5 introduces and illustrates with real-world data a
methodology for estimation and diagnostics in BS spatial models. In Section 6, we develop and
illustrate with real-world data multivariate quality control charts based on the BS distribution using a
modified Hotelling statistic. All illustrations are performed with aid of the R software. Finally, Section 7
provides the discussion and conclusions, as well as some ideas for future research.

2. Univariate Birnbaum–Saunders Distributions

In this section, univariate BS and log-BS distributions are defined along with discussion of
corresponding data modelling. The section finishes with an illustration based on a graphical
comparison of probability density functions (PDFs).

2.1. Genesis and Features of the Univariate BS Distribution

The work in Birnbaum and Saunders (1969a) used knowledge of the failure process of materials,
due to fatigue, to construct the BS distribution. They considered a material that is subject to cyclic
loading producing a crack, with failure then occurring when the crack length exceeds a threshold ω.
The total crack length, Yk+1, due to multiple shocks during the (k + 1)-th cycle, is a random variable of
finite mean µ and variance σ2 defined by:

Yk+1 = Xkm+1 + · · ·+ Xkm+m, k = 0, 1, 2 . . . , m ∈ N,

where Xi is the crack length during the i-th load cycle, with Yk+1 in different cycles assumed
independent. The BS distribution corresponds to the smallest number of cycles, N?, such that
Sn = ∑n

j=1 Yk > ω, that is, N? = inf{n ∈ N : Sn > ω}. Thus, based on the classical central

limit theorem and the above assumptions, as n→ ∞, it is possible to establish that Sn
·∼ N(n µ, n σ2),

that is E(Sn) = n µ and Var(Sn) = n σ2. Therefore, we get:

Zn =
Sn − n µ

σ
√

n
·∼ N(0, 1). (1)
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Let N be the number of cycles required until failure of the material. Given that Yk > 0 for all k ≥ 1,
the damage is irreversible, and then, we have {N ≤ n} ≡ {Sn > ω}. Thus, from (1), we obtain that:

P(N ≤ n) = P(Sn > ω) = P
(

Zn >
√

µ ω
σ

(√
n
√

µ
ω −

1√
n

√
ω
µ

))
≈ Φ

(√
µ ω
σ

(√
n
√

µ
ω −

1√
n

√
ω
µ

))
,

(2)

where Φ is the cumulative distribution function (CDF) of the standard normal distribution. The work
in Birnbaum and Saunders (1969a) used (2) to define a life distribution based on the discrete random
variable N through a continuous random variable T. Specifically, the number of cycles until the
failure N is converted to the total time until the occurrence of a failure T. Hence, from (2), defining
α = σ/

√
µ ω and λ = ω/µ, we obtain the CDF of the univariate BS distribution with shape parameter

α ∈ R+ and scale parameter λ ∈ R+ as:

FT(t; α, λ) = Φ(A(t; α, λ)), t ∈ R+, (3)

where:

A(t; α, λ) =
1
α

[{
t
λ

} 1
2
−
{

λ

t

} 1
2
]

.

If a random variable T has a CDF as in (3), the notation T ∼ BS(α, λ) is used. This means we are
accepting that, if T ∼ BS(α, λ), it can be written as:

T = T(V; α, λ) = λ

α V
2

+

{(
α V
2

)2
+ 1

} 1
2
2

, (4)

where V is a random variable following the standard normal distribution. Then,

V =
1
α

[√
T
λ
−
√

λ

T

]
∼ N(0, 1). (5)

Thus, the PDF of T ∼ BS(α, λ) is expressed as:

fT(t; α, λ) = φ(A(t; α, λ))a(t; α, λ), t ∈ R+, (6)

where φ is the PDF of the standard normal distribution and a(t; α, λ), the derivative of A(t; α, λ),
is given by:

a(t; α, λ) =
1

2αλ

[{
λ

t

} 1
2
+

{
λ

t

} 3
2
]

.

Therefore, two approaches can be used to generate the BS distribution. The first originates from
material science (see Leiva 2016), which enables the BS model to be considered as a life distribution.
The second approach is based on (4) and (5), which is used as the definition of the BS distribution.
In such an approach, we can assume that any random variable following a BS distribution is a
transformation of a random variable with a standard normal distribution, which allows the BS model
to be considered as a general distribution.

Three properties of the BS distribution, T ∼ BS(α, λ), are:
(A1) k T ∼ BS(α, k λ), with k ∈ R+.
(A2) 1/T ∼ BS(α, 1/λ).
(A3) V2 = [T/λ + λ/T − 2]/α2 ∼ χ2(1), that is, V2 follows a χ2 distribution with one degree

of freedom.
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It is also worth noting that the system of ML equations, to find the corresponding estimators of
the BS model parameters, has a unique solution (Birnbaum and Saunders 1969b). Hence, although
numerical methods are needed, estimation is straight forward.

2.2. Univariate Log-BS Distribution and BS Modelling

Consider the regression model proposed by Rieck and Nedelman (1991) defined as:

Ti = exp(β>xi)ζi, i = 1, . . . , n, (7)

where Ti is the response variable, xi = (xi1, . . . , xip)
> is a p× 1 vector of values for p explanatory

variables (called covariates hereafter); β> = (β1, . . . , βp) is a 1× p vector of parameters, with β j
corresponding to xj, for j = 1, . . . , p, and x1 = 1; with model errors ζi ∼ BS(α, 1). From this definition
and Property (A1), then Ti ∼ BS(α, exp(β>xi)). Taking the logarithm of the model defined in (7),
the BS univariate log-linear regression model can be defined as:

Yi = β>xi + εi, i = 1, . . . , n, (8)

where Yi = log(Ti) is the log-response and εi is the model error under a log-scale,
with εi = log(ζi) ∼ log-BS(α, 0). That is, since ζi, defined in (7), follows a BS distribution, then its
logarithm, εi = log(ζi), follows a log-BS distribution. More generally, if T ∼ BS(α, λ),
then Y = log(T) ∼ log-BS(α, µ), where µ = log(λ). Thus, the corresponding PDF of Y is expressed as:

fY(y; α, µ) = φ(B(y; α, µ)) b(y; α, µ), y ∈ R, (9)

with shape parameter α ∈ R+ and mean µ ∈ R, where φ is defined in (6) and b(y; α, µ) is expressed as:

b(y; α, µ) =
1
α

cosh
(

y− µ

2

)
,

which is the derivative of:

B(y; α, µ) =
2
α

sinh
(

y− µ

2

)
.

Three properties of the log-BS distribution, Y ∼ log-BS(α, µ), are:
(B1) Y = µ + 2 arcsinh(α W/2) ∼ log-BS(α, µ), with W ∼ N(0, 1), that is, a random variable

with log-BS distribution can be obtained directly from a random variable with standard
normal distribution.

(B2) W = B(Y; α, µ) = [2/α] sinh([Y− µ]/2) ∼ N(0, 1).
(B3) W2 = B2(Y; α, µ) ∼ χ2(1), that is, V2 follows a χ2 distribution with one degree of freedom.

2.3. Illustration

Figure 1a shows the PDF for the univariate BS distribution with α ∈ {0.2, 0.5, 1.0, 3.0} and λ = 1.0
(without loss of generality). Note that, as α increases, the PDF becomes more asymmetric, and hence,
α modifies the kurtosis and shape of the distribution, of course also its symmetry. Figure 1b displays
the PDF for the univariate log-BS distribution with α ∈ {0.2, 0.5, 1.0, 3.0} and µ = 0.0. From this figure,
note that, when α ≤ 2, the PDF has a single mode, whereas when α > 2, the PDF is bimodal. Hence,
α controls the kurtosis and bimodality of the log-BS distribution.
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Figure 1. Probability density functions of Birnbaum–Saunders (BS) and log-BS distributions for the
indicated α.

3. Multivariate Birnbaum–Saunders Distributions

In this section, first, we summarise the multivariate normal distribution and present the
multivariate BS distribution. Second, we introduce the multivariate log-BS distribution. Third,
the Mahalanobis distance is defined, and methods for the generation of log-BS random vectors
are derived. This section finishes with a discussion of the shape of multivariate BS and log-BS PDFs.

3.1. Multivariate Normal Distribution

Let random vector V = (V1, . . . , Vm)> ∈ Rm follow a multivariate normal distribution, denoted
by V ∼ Nm(µ, Σ), with mean vector µ = (µi) ∈ Rm and variance-covariance matrix Σ = (σjk) ∈ Rm×m

(rank(Σ) = m). The PDF of V is given by:

fV (v; µ, Σ) = [2π]−m/2|Σ|−1/2 exp
(
−1

2
[v− µ]>Σ−1[v− µ]

)
, v = (v1, . . . , vm)

> ∈ Rm, (10)

where its CDF is denoted by FV (v; µ, Σ). When the mean vector is zero, µ = 0m×1, with 0m×1 being an
m× 1 vector of zeros, then we use the notation φm(·; ·) and Φm(·; ·) for the PDF and CDF, respectively.

3.2. Multivariate BS Distribution

The random vector T = (T1, . . . , Tm)> ∈ Rm
+ follows a multivariate BS distribution with

parameters α = (α1, . . . , αm)> ∈ Rm
+, λ = (λ1, . . . , λm)> ∈ Rm

+ and scale matrix Σ ∈ Rm×m if
Ti = T(Vi; αi, λi), for i = 1, . . . , m, where T is given in (4) and V = (V1, . . . , Vm)> ∈ Rm ∼ Nm(0m×1, Γ),
with Γ ∈ Rm×m being a correlation matrix. Furthermore, since for the BS case σkk = 1, for all
k = 1, . . . , m, then:

Σ =


1 ρ12 · · · ρ1m

ρ12 1 · · · ρ2m
...

...
. . .

...
ρ1m ρ2m · · · 1

 = Γ. (11)

Hence, we denote the m-variate BS distribution by T ∼ BSm(α, λ, Γ). Thus, the CDF and PDF of T are,
respectively, defined as:

FT(t; α, λ, Γ) = Φm(A; Γ),

fT(t; α, λ, Γ) = φm(A; Γ) a(t; α, λ), t = (t1, . . . , tm)
> ∈ Rm

+,
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where A = A(t; α, λ) = (A1, . . . , Am)>, with Aj = A(tj; αj, λj),

a(t; α, λ) =
m

∏
j=1

a(tj; αj, λj),

and both A(tj; αj, λj) and a(tj; αj, λj) given in (6).
Three properties of the m-variate BS distribution, T ∼ BSm(α, λ, Γ), are:

(C1) k T ∼ BSm(α, k λ, Γ), with k ∈ R+.
(C2) T∗ = (1/T1, . . . , 1/Tm)> ∼ BSm(α, λ∗, Γ), with λ∗ = (1/λ1, . . . , 1/λm)>.
(C3) A>(T ; α, λ)Γ−1 A(T ; α, λ) ∼ χ2(m).

Unlike parameter estimation in the case of the univariate BS distribution, where uniqueness is
guaranteed (see Birnbaum and Saunders 1969b), in the multivariate case, there is no certainty that
the system of ML equations has a unique solution. Then, care must be taken to ensure that numerical
procedures yield a global maximum.

3.3. Multivariate Log-BS Distribution

Let T = (T1, . . . , Tm)> ∼ BSm(α, λ, Γ). Then, Y = (log(T1), . . . , log(Tm))> follows a multivariate
log-BS distribution with shape parameters α = (α1, . . . , αm)>, mean vector:

µ = E[Y ] = (E[Y1], . . . , E[Ym])
> = (log(λ1), . . . , log(λm))

> ∈ Rm,

and correlation matrix Γ ∈ Rm×m given in (11). This is denoted by Y ∼ log-BSm(α, µ, Γ). The CDF of Y
is defined as:

FY (y; α, µ, Γ) = Φm(B; Γ), y = (y1, . . . , ym)
> ∈ Rm, (12)

where B = B(y; α, µ) = (B1, . . ., Bm)>, with Bj = B(yj; αj, µj), for j = 1, . . . , m, as given in (9). The PDF
of Y is expressed as:

fY (y; α, µ, Γ) = φm(B; Γ)b(y; α, µ), y ∈ Rm, (13)

where φm is given in (10) and b(y; α, µ) = ∏m
j=1 b(yi; αj, µj), with b(yj; αj, µj) as given in (9),

for j = 1, . . . , m.
If Y ∼ log-BSm(α, µ, Γ), then from (B2) and (11), we have the following two properties:

(D1) D(α) B(Y ; α, µ) ∼ Nm(0, D(α)ΓD(α)), where D(α) = diag(α1, . . . , αm) and

D(α)ΓD(α) =


α2

1 α1α2ρ12 · · · α1αmρ1m
α1α2ρ12 α2

2 · · · α2αmρ2m
...

...
. . .

...
α1αmρ1m α2αmρ2m · · · α2

m

 . (14)

(D2) B>(Y ; α, µ)Γ−1B(Y ; α, µ) ∼ χ2(m), that is, a χ2 distribution with m degrees of freedom.

3.4. Mahalanobis Distance and Generation of Log-BS Random Vectors

The Mahalanobis distance (MD) for observation i, using Property (D2), is given by:

MDi(θ) = B>(Yi; α, µ)Γ−1B(Yi; α, µ), i = 1, . . . , n, (15)

with θ = (α>, µ>, svec(Γ)>)>, where ‘svec’ denotes vectorization of a symmetric matrix. Note that
later, MD is used to identify multivariate outliers and to assess the goodness of fit in multivariate
log-BS distributions. Random vectors from multivariate log-BS distributions can be generated using
Algorithm 1; see Leiva et al. (2008) for details of the generation of numbers following BS and
log-BS distributions.
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Algorithm 1 Generator of random vectors from multivariate log-BS distributions.

1: Make a Cholesky decomposition of Γ as Γ = LL>, where L is a lower triangular matrix with real
and positive diagonal entries.

2: Generate m independent standard normal random numbers, namely W = (W1, . . . , Wm)>.
3: Compute Z = (Z1, . . . , Zm)> = LW .
4: Obtain the vector Y with elements Yj = µj + 2 arcsin(αj Zj/2) for j = 1, . . . , m.
5: Repeat Steps 1 to 4 until the required vector of data is generated.

3.5. Illustration

Figure 2 shows contour plots of the BS2 PDF for ρ ∈ {0.25, 0.75,−0.25,−0.75} and α = (α1, α2)
>,

with α1 = α2 ∈ {0.2, 0.5, 1.0, 3.0} and λ = (1, 1)>. Note that the BS2 distribution is more asymmetric
as α1 and α2 increase. In addition, it is observed that, as the magnitude of the correlation between the
variables increases, the degree of asymmetry in the PDF also increases.
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Figure 2. Contour plots for the BS2 distribution with λ = (1, 1)> and indicated α = (α1, α2)
>, ρ.
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Figure 3 displays contours of the log-BS2 PDF for ρ ∈ {0.25, 0.75,−0.25,−0.75} and α = (α1, α2)
>,

with α1 = α2 ∈ {0.2, 0.5, 1.0, 3.0} and µ = (0, 0)>. Observe that the log-BS2 distribution is also more
asymmetric as α1 = α2 increases. Note also that, when α1, α2 > 2, the log-BS2 distribution is bimodal,
as in the univariate case, but such values are likely to be rare in practice; see Lepadatu et al. (2005);
Leiva et al. (2015) and Desousa et al. (2018).
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Figure 3. Contour plots for the log-BS2 distribution with µ = (0, 0)> and indicated α = (α1, α2)
>, ρ.

4. Regression Modelling Based on Multivariate Birnbaum–Saunders Distributions

In this section, the regression methodology based on the multivariate BS distribution is presented
along with a diagnostic analysis and results from a lifetime modelling example from material science.

4.1. Formulation

The BS log-linear regression model, defined in (8), can be extended to the multivariate case as:

Y = Xβ + E, (16)
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where Y = (Yij) ∈ Rn×m is the log-response matrix and X = (xis) ∈ Rn×p is the model design
matrix of rank p, which contains values of p covariates. Here, X, Y are linked by a coefficient matrix
β = (βsj) = (β1, . . . , βm) ∈ Rp×m, and E = (εij) ∈ Rn×m is the error matrix. Furthermore, let Y>i , x>i
and ε>i be the i-th rows of Y , X and E, respectively. Thus, the model defined in (16) can be rewritten as:

Yi = µi + εi = β>xi + εi, i = 1, . . . , n, (17)

where ε1, . . . , εn are independently and identically log-BSm(α1m×1, 0m×1, Γ) distributed, with 1m×1

being an m× 1 vector of ones.
Consider a sample from a multivariate log-BS distribution, Y = (Y1, . . . , Yn)>, with E[Yi] = β>xi

and observations y = (y1, . . . , yn)>. Then, the log-likelihood function for θ = (α, vec(β)>, svec(Γ)>)>,
with ‘vec’ representing the vectorization of a general matrix and ‘svec’ as above, is given by:

`(θ) = −m log(2)− m
2

log(2π)− 1
2

log(|Γ|)− 1
2

φ>i Γ−1φi +
m

∑
j=1

log(ξij), (18)

where φi = (φi1, . . . , φim)
>, with:

φij = B(yij; α, µij) =
2
α

sinh
(yij − µij

2

)
, ξij = 2 b(yij; α, µij) =

2
α

cosh
(yij − µij

2

)
,

and µij = β>j xi, for i = 1, . . . , n, j = 1, . . . , m.

The ML estimate θ̂ of θ is defined as the values maximising the log-likelihood function defined
in (18). When this corresponds to a stationary point, it can be obtained from the solution of a
homogeneous system of equations given by:

∂`(θ)

∂α
= 0,

∂`(θ)

∂β∗
= 0(pm)×1,

∂`(θ)

∂Γ∗
= 0(m(m−1)/2)×1, (19)

where β∗ = vec(β)> and Γ∗ = svec(Γ)>; see the details in Marchant et al. (2016). As this
system cannot be solved analytically, the ML estimate θ̂ of θ must be found using an iterative
procedure. Here, we use the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton procedure
(see Lange 2001; Nocedal and Wright 1999) implemented in the R software; see www.R-project.org
and R Core Team (2016). In addition, the Hessian matrix is examined to confirm that a valid maximum
is obtained.

4.2. Illustration

Next, a typical dataset on metal die fatigue in material science is considered, where stress during
the regular life cycle of the die eventually leads to failure; see Lepadatu et al. (2005). Although the
die lifetime is the main measure of fatigue, other response variables can also be studied. We consider
as responses: (i) von Mises stress (T1, in N/mm2) and (ii) manufacturing force (T2, in Newtons (N));
and as covariates: (i) the friction coefficient (X1, dimensionless) and (ii) the working temperature
(X2, in ◦C). Figure 4 shows scatter-plots for log-responses, Y1 and Y2, and covariates, from which we
observe that: (i) no correlation exists between (X1, X2), removing any collinearity concerns; (ii) there
is a strong correlation between (Y1, Y2), justifying the use of a multivariate distribution; (iii) a weak
correlation exists between (X1, Y1) and between (X1, Y2); and (iv) there is a strong correlation between
(X2, Y1) and between (X2, Y2).

www.R-project.org
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Figure 4. Scatter-plots of the die fracture data variables along with corresponding correlations.

Consider a multivariate BS log-linear regression model to describe (Y1, Y2) as a function of
X2 (since X1 is omitted due to its weak correlations with the responses). Therefore, the proposed
multivariate regression model is given by:

Yi = β>xi + εi, i = 1, . . . , 15,

where εi = (εi1, εi2)
> ∼ log-BS2(α12×1, 02×1, Γ). ML estimates for the model parameters are shown in

Table 1, with corresponding estimated standard errors (SE) and p-values. It can be seen that: (i) the
estimated correlation, ρ̂, is statistically significant at 5%, confirming the conjecture from the exploratory
analysis; and (ii) the regression coefficients β11, β12, β21 and β12 must be included in the model.

Table 1. Maximum likelihood (ML) estimate of the indicated parameter with corresponding estimated
asymptotic standard errors and p-values of the usual normal approximation hypothesis test using die
lifetime data.

Parameter

α β11 β12 β21 β22 ρ

ML estimate 0.147407 10.897981 15.524423 −0.005647 −0.005930 0.972392
Standard error 0.014813 0.236175 0.235865 0.000333 0.000333 0.005219

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Validation of the model is based on the MD, after being transformed to normality using the
Wilson–Hilferty (WH) approximation; see Ibacache-Pulgar et al. (2014). Probability-probability
(PP) plots and acceptance bands associated with the Kolmogorov–Smirnov (KS) statistic for testing
normality are constructed using Algorithm 2; for details, see Barros et al. (2014).
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Algorithm 2 PP plots with acceptance bands for testing normality.

1: Consider the data y1, . . . , yn, and order them as y1:n, . . . , yn:n.
2: Estimate the mean and standard deviation of the normal distribution by ȳ = ∑n

j=1 yj/n and
sy = [∑n

j=1{ŷj − ȳ}2/{n− 1}]1/2, respectively.
3: Compute oj:n = Φ([yj:n − ȳ]/sy), for j = 1, . . . , n.
4: Draw the PP plot with points qj:n = [2j− 1]/[2n] versus oj:n, for j = 1, . . . , n.
5: Specify a significance level 1− η.
6: Construct acceptance bands as (max{q− dη + 1/[2n], 0}, min{q + dη − 1/[2n], 1}), where dη is the

100× η-th percentile of the KS distribution and q is a continuous version of qj:n.
7: Determine the p-value of the KS statistic, and reject the null hypothesis of a normal distribution for

the specified significance level based on this p-value.
8: Corroborate agreement between Steps 6 and 7.

From Figure 5a, which shows the PP plot with acceptance bands for a significance level of 5%,
it can be seen that the BS2 model provides a good fit, which agrees with the p-value of 0.2480 from
the associated KS test. Figure 5b displays the MD index plot for the BS2 log-linear regression model
where Observation #1 is identified as a potential multivariate outlier. Figure 6 shows the index plots of
total local influence (Ci) (see Marchant et al. 2016) under the case-weight, correlation, covariate and
response perturbation schemes for θ̂. From this figure, note that Observation #1 has a large influence
on the BS2 log-linear regression model under all perturbation schemes. This observation coincides
with that detected by the MD. In addition, Observation #14 seems to have a large influence on the
model under case-weight and correlation perturbation schemes. However, when these potentially
influential observations are removed, no inferential changes are produced. Therefore, Observations #1
and #14 do not need to be removed, and the prediction model can be estimated considering them.
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Figure 5. (a) Probability-probability (PP) plot with KS acceptance region at 5% for transformed
Mahalanobis distances (MDs) with the BS2 model and (b) an index plot of MDs for the BS2 model and
indicated perturbation scheme with die lifetime data.
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Figure 6. Index plots of total local influence for θ̂ with die lifetime data.

5. Spatial Modelling Based on Multivariate BS Distributions

In this section, the methodology for estimation and diagnostic analysis using a BS spatial model
is presented, along with an example from agricultural engineering.

5.1. Formulation

Consider a stochastic process, {T(s), s ∈ D}, defined over region D ⊂ R2. Let T = (T1, . . . , Tn)>,
where Ti = T(si), for i = 1, . . . , n, is a collection of n measurements recorded at known locations
s = {s1, . . . , sn}. Suppose that a suitable spatial model is of the form:

Ti = exp(µ) ηi, i = 1, . . . , n, (20)

where ηi = η(si) ∼ BS(α, 1), for i = 1, . . . , n. This assumes that the process is stationary, that is,
µi = µ(si) = µ, and the shape parameter, α, is also assumed to be constant across the spatial locations;
see Marchant et al. (2016) and Garcia-Papani et al. (2017). The BS spatial log-linear model is then
obtained by taking a logarithmic transformation of (20) to produce:

Yi = log(Ti) = µ + log(ηi) = µ + εi, i = 1, . . . , n, (21)

where εi = log(ηi) ∼ log-BS(α, 0), for i = 1, . . . , n. For ease of notation, this is written as:

Y = µ1n×1 + ε, (22)

where Y = (Y1, . . . , Yn)> ∈ Rn, ε = (ε1, . . . , εn)> ∈ Rn with E(ε) = 0n×1 and 1n×1 as given
below (17). Suppose that the covariance between pairs (Yi, Yj) is determined by the n × n scale
matrix Γ, whose elements can be well described by a Matérn model. This introduces additional
parameters ϕ = (ϕ1, ϕ2, ϕ3); see details in Garcia-Papani et al. (2017).

Let θ = (α, µ, ϕ1, ϕ2, ϕ3)
> be the, just augmented, unknown parameter vector of the model

defined in (22). Then, based on the observations y = (y1, . . . , yn)>, the log-likelihood function for θ

can be expressed as:

`(θ) = −n
2

log(2π)− 1
2

log (|Γ|)− n log(α)− 2
α2 V>Γ−1V +

n

∑
i=1

log
(

cosh
(

yi − µ

2

))
, (23)

where V = (V1, . . . , Vn)> is an n× 1 vector with elements Vi = sinh([yi − µ]/2), for i = 1, . . . , n. As in
Section 4, we estimate the parameter vector θ with the ML method, but now from the score vector
given by:

∂`(θ)

∂α
= 0,

∂`(θ)

∂µ
= 0,

∂`(θ)

∂ϕ
= 04×1; (24)
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see the details in Garcia-Papani et al. (2017). As before, there is no analytical solution to this system,
and hence, the ML estimate, θ̂, is again computed using the BFGS iterative procedure.

5.2. Illustration

In this illustration, spatial data from an agricultural study are analysed; for full details,
see Garcia-Papani et al. (2017). In the study, the phosphorus content concentration was measured
at n = 105 locations over a commercial grain production area of about 170 ha near the town of
Cascavel, in the western region of the state of Paraná, Brazil. Phosphorus is an important soil nutrient
affecting plant growth, and hence, monitoring its spatial variability is a crucial part of agricultural
management. For soy bean, levels are considered low below 3 mg/dm3; medium between about 3
and 6 mg/dm3; high between 6 and 9 mg/dm3; and very high greater than 9 mg/dm3. Whereas for
corn, the corresponding values are: less than 2 mg/dm3, between 2 and 4.5 mg/dm3, between 4.6 and
11 mg/dm3 and greater than 11 mg/dm3 for low, medium, high and very high, respectively.

Over the whole study area, the mean phosphorus concentration is 18.11 mg/dm3, which is in the
very high category for each of the two crops, with coefficients of variation CV = 0.41 (41%), skewness
CS = 1.787 and kurtosis CK = 5.104. These indicate a reasonable degree of homogeneity around
the mean, a positive skewness and a high kurtosis level, which supports the use of the BS model.
Figure 7a shows a boxplot of the data, which identifies Observations #32, #53, #57 and #59 as outliers
and contributing to the positive skewness. These values are shown as circled points in Figure 7b,
identifying their locations in the lower part of the study area. Examination of directional sample
variograms (not displayed here) indicates an isotropic spatial structure, which is described with a
Matérn model.
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Figure 7. Results for phosphorus concentration data.

The model parameter, θ, is estimated using the ML method, but the parameter δ, corresponding
to the order of the variogram model in the Matérn family, is chosen by cross-validation to avoid
identifiability problems in the estimation of the spatial covariance parameters in the Matérn model; see
Garcia-Papani et al. (2017). This approach leads to order δ = 2.5, estimated BS model and variogram
parameters (with estimated asymptotic SE in parenthesis) as α̂ = 0.997(3.521), µ̂ = 2.807(0.082),
ϕ̂1 = 0.134(0.946), ϕ̂2 = 0.020(0.142), ϕ̂3 = 177.940(0.0000014) and â = 1.053(0.0000083); see Table 2.
The fitted scale matrix is then Γ̂ = 0.134In + 0.020R̂ and δ = 2.5, where In is the n× n identity matrix;
for details of the scale matrix, see Garcia-Papani et al. (2017). Figure 8a shows the resulting fitted
spatial map with ordinary kriging interpolation. In all locations, the phosphorus concentration is
considered very high and hence is suitable for both crops.
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Table 2. ML parameter estimates with SE in parenthesis and p-values in brackets, as well as the
values of global accuracy (GA) and κ indices for the phosphorus concentration dataset with indicated
case(s) removed.

Removed case(s) Matérn Order α̂ µ̂ ϕ̂1 ϕ̂2 ϕ̂3 â GA κ

None δ = 2.5
0.997 2.807 0.134 0.020 177.940 1053.405 - -

(3.521) (0.082) (0.946) (0.142) (0.0000014) (0.0000083)
[0.389] [<0.001] [0.444] [0.444] [<0.001] [<0.001]

#2 δ = 2.5
0.993 2.831 0.125 0.016 108.655 643.238 0.90 0.72

(4.097) (0.059) (1.031) (0.132) (0.0000008) (0.0000047)
[0.404] [<0.001] [0.452] [0.452] [<0.001] [<0.001]

#48 δ = 2.5
0.996 2.824 0.125 0.019 152.374 902.054 0.97 0.92

(3.417) (0.073) (0.856) (0.133) (0.0000012) (0.0000071)
[0.386] [<0.001] [0.442] [0.443] [<0.001] [<0.001]

#94 δ = 1
0.997 2.817 0.122 0.028 308.828 1235.312 0.84 0.69

(3.417) (0.073) (0.856) (0.133) (0.0000012) (0.0009092)
[0.374] [<0.001] [0.436] [0.437] [<0.001] [<0.001]

#2, #48 δ = 0.5 0.991 2.845 0.071 0.060 81.052 243.156 0.65 0.31

(exponential) (6.149) (0.046) (0.882) (0.746) (0.0000884) (0.0002652)
[0.436] [<0.001] [0.468] [0.469] [<0.001] [<0.001]

#2, #94 δ = 0.5 0.995 2.840 0.097 0.038 182.059 546.177 0.72 0.45

(exponential) (3.308) (0.063) (0.644) (0.254) (0.0002974) (0.0008922)
[0.382] [<0.001] [0.440] [0.441] [<0.001] [<0.001]

#48, #94 δ = 2.5
0.994 2.834 0.114 0.024 144.768 856.737 0.80 0.60

(2.980) (0.077) (0.683) (0.145) (0.0000010) (0.0000059)
[0.370] [<0.001] [0.434] [0.435] [<0.001] [<0.001]

#2, #48, #94 δ = 0.5 0.982 2.855 0.085 0.041 143.699 431.097 0.66 0.35

(exponential) (3.442) (0.056) (0.597) (0.287) (0.0002051) (0.0006153)
[0.388] [<0.001] [0.444] [0.443] [<0.001] [<0.001]

To confirm the suitability of the spatial BS model, it was compared to a Gaussian model
using the Akaike information criteria, AIC = −2`(θ̂) + 2d, and the Bayesian information criteria,
BIC = −2`(θ̂) + d log(n), where d is the number of parameters and n the size of the dataset: a smaller
value of the information criterion indicates a better model; see Ferreira et al. (2012); Leiva et al. (2015)
and the references therein. Numerical values for this example are given in Table 3 showing that the BS
model is superior to the Gaussian model. As a further comparison, the Bayes factor (BF), B12, allows us
to compare two models, denoted by M1 and M2, using 2 log(B12) ≈ BICM2 − BICM1 . An interpretation
of the BF, see Table 3, is given in Table 4 leading to the conclusion that the BS model is superior to the
Gaussian model with very strong evidence.

Table 3. Analysis of the phosphorus concentration data; log-likelihood, Akaike information criteria
(AIC), Bayesian information criteria (BIC) and 2 log(B12) for the Birnbaum-Saunders (BS) and
Gaussian models.

Model `(θ̂) AIC BIC 2 log(B12)

BS −332.576 675.152 688.276 28.224
Gaussian −349.000 706.000 716.500 –
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Table 4. Interpretation of 2 log(B12) associated with the Bayes factor (BF).

2 log(B12) Evidence in Favour of M1

<0 Negative (M2 is accepted)
[0, 2) Weak
[2, 6) Positive
[6, 10) Strong
≥10 Very strong

Local influence diagnostics are used to assess the effect of the data values on the fitted spatial
map shown in Figure 8. Firstly, Figure 7c displays an index plot of Ci using the response variable
perturbation scheme. This identifies Observations #2, #48 and #94 as potentially influential. Note that
the outliers identified by the boxplot in Figure 7a do not include these influential points, which
emphasises the importance of using influence methods with preferences for simple univariate
outlier detection.

It is now important to see the effects of these three potentially influential points on the parameter
estimates and fitted models. Estimated model parameters with corresponding SEs are shown in
Table 2 for the full dataset and for subsets with the influential points removed individually and jointly.
There are dramatic changes in â, the spatial range parameter, due to corresponding changes in ϕ̂3 since a
is a function of ϕ3, and even a change in the Matérn variogram model due to a change in δ. The p-values
for hypotheses of the type H0: θj = 0 against H1: θj 6= 0, where θj is any of the parameters, are also
shown in this table calculated based on the usual asymptotic normal approximation. These identify
that µ and ϕ3 are significantly different from zero, but that α, ϕ1 and ϕ2 are not. It is important to also
note that removing the potentially influential points has no effect on these inference results.
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Figure 8. Contour plots showing the effects of removing the indicated observation(s) for phosphorus data.

To visualize the effects of the potentially influential points on the fitted phosphorus concentration
maps, consider Figure 8, which uses ordinary kriging interpolation. The map using the full dataset,
the reference map, is shown in Figure 8a, with Figures 8b to 8d displaying the maps after removing
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selected data points. Note that there is a much greater change due to removal of points together rather
than individually again, which highlights the importance of considering joint influence. To give a
numerical assessment of the changes, two indices have been calculated, the global accuracy (GA)
and kappa (κ); see Table 2 and the details in Garcia-Papani et al. (2017). Pairs of maps have an
acceptable similarity if GA is greater than 0.85, or a low similarity if κ < 0.67, a medium similarity if
0.67 ≤ κ ≤ 0.80 and a high similarity if κ > 0.80; see Anderson et al. (1976) and Krippendorff (2004).
Again, it can be seen that when the potentially influential points are removed separately, the resulting
fitted map is similar to the reference map, whereas there is a low similarity when the points are
removed together. In particular, removing Observations #2 and #94 leads to a medium similarity,
and the others have a low similarity, suggesting that the data points are jointly influential.

6. Multivariate Birnbaum–Saunders Control Charts

In this section, the multivariate log-BS distribution is used in the construction of multivariate
control charts, and an application to environmental monitoring is presented. In particular,
the parametric bootstrap method (see Hall 2013) is applied to calculate Phase I control limits, and the
resulting control chart is used to monitor the process in Phase II.

6.1. Formulation

Suppose that we are interested in modelling a dynamic process with p quality
characteristics and that for each there is a sample of n observations from the evolving process.
Let Yi = (Yi1, . . . , Yip)

> ∈ Rp denote the vector of measured values corresponding to subset i,
for i = 1, . . . , n. Assume that Yi follows a p-variate log-BS distribution, that is, Yi ∼ log-BSp(α, µ, Γ),
the vectors Yi are independent over time and µ0 is the mean vector of the in-control process. To confirm
that the process is in control requires testing the hypothesis:

H0: µ = µ0 = (µ01, . . . , µ0p)
> versus H1: µ 6= µ0. (25)

This can be achieved using a modified Hotelling T2 statistic constructed as follows. Using Property
(A2) and considering that bi = (2 sinh([Yi1 − µ01]/2), . . . , 2 sinh([Yip − µ0p]/2)> has a p-variate
normal distribution, that is, bi ∼ Np(0p×1, D(α)ΓD(α)), for i = 1, . . . , n, we obtain a Hotelling
T2 statistic adapted for multivariate log-BS distributions as:

T2 = n(n− 1)b
>

C−1b, with b =
n

∑
i=1

bi/n, and C =
n

∑
i=1

bib>i . (26)

Note that, if Y ∼ log-BSp(α, µ, Γ), then T2 has a Fisher distribution with degrees of freedom p and
n− p, that is, T2 ∼ F (p, n− p); see Kundu (2015a). Algorithm 1 can be used to construct the bootstrap
distribution of the T2 statistic using random vectors generated from the p-variate log-BS distribution,
and then, Algorithm 3 may be used used to construct the corresponding control limits.

Once constructed, the multivariate BS control chart can be used in Phase II to identify if the
evolving process remains in control. Consider a new vector of values of the quality characteristics,
and let T2

new be the corresponding Hotelling statistic calculated using (26). As the process evolves, a
sequence of values T2

new is produced. Algorithm 4 details how to construct p-variate control charts
based on BS distributions for process monitoring.
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Algorithm 3 Computation of BS control chart limits in Phase I.

1: Collect k samples (y1h, . . . , ynh)
> of size n for an in-control process, with h = 1, . . . , k, assuming

that the p-variate vector with the logarithms of the data follows a log-BSp(α, µ, Γ) distribution.
2: Compute the ML estimates of α, µ and Γ using the data of the pooled sample of size N = k× n

collected in Step 1, and check the distributional assumption using GOF tools.
3: Generate a parametric bootstrap sample (y∗1 , . . . , y∗n)> of size n from a p-variate log-GB distribution

using the ML estimates obtained in Step 2 as the distribution parameters.
4: Compute T2 defined in (26) with (y∗1 , . . . , y∗n)>, which is denoted by T2∗, assuming a target µ0.
5: Repeat Steps 3 to 4 a large number of times (for example, B = 10,000) and obtain B bootstrap

statistics of T2, denoted by T2∗
1 , . . . , T2∗

B .
6: Fix η as the desired false alarm rate (FAR) of the chart.
7: Use the B bootstrap statistics obtained in Step 5 to find the 100(η/2)-th and 100(1 − η/2)-th

quantiles of the distribution of T2, which are the lower and upper control limits for the chart of
FAR η, respectively.

Algorithm 4 Process monitoring using the multivariate BS chart in Phase II.

1: Take a sample of size n, namely (y1, . . . , yn)>, from the process.
2: Calculate the T2

new statistic from the sample obtained in Step 1.
3: Declare the process as in control if T2

new falls between lower and upper control limits obtained in
Algorithm 3; otherwise, the chart indicates an out-of-control state.

4: Repeat Steps 1 to 3 for each sample taken at regular time intervals.

6.2. Illustration

In this illustration, we analyse environmental risk using a multivariate BS quality control
chart to monitor urban pollution produced by particulate matter (PM); for further details,
see Marchant et al. (2013). The data were collected by the Chilean Metropolitan Environmental Health
Service and are available at http://sinca.mma.gob.cl. The data, taken over a calendar year, are hourly
averaged concentrations (in µg/Nm3) of: (i) fine particles of less than 2.5 micrometers, denoted PM2.5
(X1) and (ii) coarse particles of between 2.5 and 10 micrometers, denoted PM10 (X2), recorded at
10 monitoring stations from across the metropolitan region of Chile. Here, only the Pudahuel station,
near to the city of Santiago, is considered as it is believed to have the worst levels of PM pollution
and hence requires careful study. For illustrative purposes, the target values are set at the maximum
permitted under Ministry of the Environment guidelines, that is, 50 and 150 µg/Nm3, during 24 h
for PM2.5 and PM10, respectively; see CONAMA (1998) and MMA (2011). Figure 9 shows the time
series, boxplot and scatter-plot for X1 and X2. From the times series plots, it is clear that the PM2.5
and PM10 concentrations frequently far exceed the target values, and the boxplot indicates substantial
positive skewness, suggesting that BS distributions are appropriate, with a large number of potential
outliers. In addition, the scatter-plot demonstrates a moderate correlation (0.60) between X1 and X2,
which confirms the need to use a multivariate control chart for this dataset.

To construct the control chart in Phase I, data for the first two months are used in Algorithm 3
with k = 59, n = 24, N = 1416, B = 10,000 bootstrap replications and a FAR η = 0.0027. These months
correspond to good and stable air quality representing an in-control process. The modified MD is used
with data transformed by the WH approximation to give a normal distribution, and the GOF methods
described in Section 4 are used to confirm Step 2 in Algorithm 3. The corresponding PP plots, with KS
acceptance regions at 5%, are shown in Figure 10a. These indicate that the BS2 distribution has a good
fit, and this is further supported by the p-value of 0.245 from the corresponding KS test.

http://sinca.mma.gob.cl
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Figure 9. Data summaries for X1 and X2 at the Pudahuel monitoring station.
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Figure 10. PP plots with 5% KS acceptance regions for the modified MD using the BS2 distribution in
(a) Phase I and (b) Phase II, then (c) the MD index plot and (d) the BS control chart based on PM data.

In Phase II, the multivariate BS control chart is then used to monitor the air quality for the
remaining 10 months of the dataset. This period is partitioned into m = 30 new subgroups each of
size n = 24, giving 720 observations. As illustration, the monitoring of the month of April is provided.
Figure 10b shows the PP plot, with 5% acceptance regions, indicating that the BS2 distribution has
a good fit to the data in Phase II, which is again in agreement with the p-value 0.238 from the
corresponding KS test. The modified MD index plot in Figure 10c identifies 19 April (labelled as #19) as
a multivariate outlier. Figure 10d displays the bivariate BS control chart for monitoring April in Phase II
indicating that 10 April (labelled as #10) and 19 April exceed the upper control limit and hence represent
an out-of-control state. These would lead to alerts (on the following days) due to dangerous air quality
levels with significant risk for human health in the Metropolitan region of Santiago, Chile. This is in
agreement with the official information released by the Chilean Ministry of Health, which declared an
environmental alert for 11 April; see www.seremisaludrm.cl/sitio/pag/aire/indexjs3airee001.asp.

7. Discussion, Conclusions and Future Research

It has now been 50 years since the birth of the Birnbaum–Saunders distribution, but in that time,
it has come a long way. The initial conception was as a model for cumulative damage describing the
build-up of fatigue and the eventual failure of materials. As a unimodal distribution and skewed to the
right, it found widespread use as a life distribution over a range of applications even outside material
science, but initially still based on an argument of cumulative effects. Extensions and generalisations led
to multivariate and univariate Birnbaum–Saunders and logarithmic Birnbaum–Saunders distributions,
allowing much more varied applications in regression-type modelling. In the last decade, there have
also been major advances in goodness of fit assessment and model diagnostics.

In the early development of statistics, methods were linear and usually based on normal
distributions. As such, they were tractable for ease of calculation, but lacked flexibility, and hence,

www.seremisaludrm.cl/sitio/pag/aire/indexjs3airee001.asp
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appropriate application was constrained. In practice, a wide variety of statistical approaches, built
on equally varied distributional foundations, are needed. Each application requires a suitable model.
To this end, the Birnbaum–Saunders distribution provides another tool to apply when necessary.
In such situations, it has already proven to be sharp, providing reliable and insightful results. The study
of Birnbaum–Saunders distributions is now a mature topic, with a substantial literature, which has had
significant impact in important and interesting areas. Methods are rigorously defined with theoretical
results well understood and developed. We have brought together these theoretical results in a unified
and consistent notation to allow greater appreciation of an elegant framework.

There are few uses of Birnbaum–Saunders distributions in the financial and economic sciences,
but the potential is substantial. The interpretation of the Birnbaum–Saunders model as an accumulation
of incremental damage leading to an abrupt change once a threshold is reached provides a natural
description of many financial events. Worldwide financial crises over recent decades have sometimes
been attributed to non-normality; for example, the greater downside risk in market movements.
In addition, there is a widely acknowledged belief that such processes are skewed and leptokurtic.
Through rigorous modelling and the application of appropriate model diagnostics, more robust
analyses are possible. This can lead to more accurate understanding of financial processes and more
efficient management of products. In particular, a relevant problem in generalized autoregressive
conditional heteroskedasticity models is the non-normality of the standardized error distribution,
especially the presence of skewness to the right. Although there are several skew distributions
to treat this problem, allowing us to capture the skewness and leptokurtosis present in diverse
high-frequency financial time series, most of these distributions are focused on the mean. However,
when asymmetry is detected, it is well known that the median is a better central tendency indicator
than the mean. Then, generalized autoregressive conditional heteroskedasticity type models defined in
terms of the median are more suitable than those models based on the mean. The Birnbaum–Saunders
distribution has this particular property, putting it ahead of other asymmetric distributions. Some key
works that consider this concept related to the autoregressive conditional duration model proposed
by Engle and Russell (1998), but based on the Birnbaum–Saunders distribution, are attributed
to Bhatti (2010); Leiva et al. (2014) and Saulo et al. (2018). In these works, high-frequency data
on financial transactions related to trade duration are studied. Note that the autoregressive conditional
duration model is the counterpart of generalized autoregressive conditional heteroskedasticity models
for dealing with trade duration data. Therefore, in that context, the Birnbaum–Saunders distributions
can capture situations that other asymmetric distributions cannot capture.

Moreover, some distributions can be expressed as a mixture of normal distributions, which may
be useful to carry out Bayesian analysis using Monte Carlo Markov chain or variational methods;
see, for example, Wand et al. (2011). Some generalizations of the Birnbaum–Saunders distribution can
also be represented as a mixture of normal distributions, so that these ideas on Bayesian analysis will
be explored in a future work; see Balakrishnan et al. (2009) and Leiva et al. (2014).

In summary, with more sophisticated, yet more appropriate, statistical models, future risks can be
more reliably assessed and major financial crises potentially avoided. We have presented new tools for
further investigation within this important application area, and we challenge other researchers to
start this new exploration in the belief that it can make a worthwhile impact.
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