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The exchange of diffusive metabolites is known to control the spatial patterns formed by microbial populations,

as revealed by recent studies in the laboratory. However, the matrices used, such as agarose pads, lack the structured

geometry of many natural microbial habitats, including in the soil or on the surfaces of plants or animals. Here we

address the important question of how such geometry may control diffusive exchanges and microbial interaction.

We model mathematically mutualistic interactions within a minimal unit of structure: two growing reservoirs

linked by a diffusive channel through which metabolites are exchanged. The model is applied to study a synthetic

mutualism, experimentally parametrized on a model algal-bacterial co-culture. Analytical and numerical solutions

of the model predict conditions for the successful establishment of remote mutualisms, and how this depends,

often counterintuitively, on diffusion geometry. We connect our findings to understanding complex behavior in

synthetic and naturally occurring microbial communities.

DOI: 10.1103/PhysRevE.97.022411

I. INTRODUCTION

Microorganisms display a broad spectrum of interactions

that determine the behavior of microbial communities [1].

Predicting this behavior is a fundamental challenge in current

microbial ecology [2]. A wealth of experimental data on

microbial community structure and dynamics is now available

from “omics” approaches [2,3]. These, however, need to

be complemented by laboratory-based studies of synthetic

consortia and mathematical models to reach a mechanistic

understanding of microbial dynamics [1,2]. The study of

mutualistic interactions between microbial populations is an

active area of current research. Recent experimental studies

have investigated synthetic mutualisms between microbes

across the kingdoms of life. These include strains of enteric

bacteria [4–6] and yeast [7] engineered to be mutualistic, and

synthetic consortia combining wild type microbial species,

such as bacterial tricultures [8], mixed cultures of algae and

fungi [9], and algae and bacteria [10–13].

Mutualistic interactions are conventionally modelled using

Lotka-Volterra type models, with positive interaction coef-
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ficients [14]. Linear mutualistic Lotka-Volterra models are

known to display unrealistic unbounded growth [14], but

logistic versions have been used to study demographically

open mutualistic populations [15], transitions between inter-

species interactions [16,17], and the steady state dynamics of

algal-bacterial co-cultures [18]. Since the pioneering work of

May [19], such models have also been fruitfully employed

to describe mutualistic interactions in network models of

communities [20]. In such models the interaction coefficients

coupling species together define an interaction or community

matrix (for mutualistic interactions the coefficients are positive

and symmetric). Significant shortcomings of Lotka-Volterra

models have recently been pointed out. For example, when

species interact by exchanging metabolites, a metabolite-

explicit model does not in general map onto a Lotka-Volterra

implicit model [21]. Only in special instances does the micro-

bial Lotka-Volterra form provide a good description of the mi-

crobial dynamics, e.g., when a fast equilibration approximation

holds [22]. Resource-explicit models of bacterial mutualisms

compare well with experiments in which mutualists are well

mixed [5,6,23,24]. Explicitly modeling resources is critical

when studying spatially structured mutualistic systems (not

well mixed) whose interactions are controlled by metabolite

dynamics and their spatial transport.

Recent studies have considered spatial aspects of mutualis-

tic and cooperative microbial interactions. Simulations using

flux balance analysis (FBA) successfully predict the spatial

growth on agar of colonies of synthetically mutualistic enteric

bacteria [4]. The FBA approach requires explicit knowledge of

every known metabolic biochemical pathway in each mutualis-

tic species, restricting its applicability to mutualisms between

metabolically well-characterized organisms. Spatial effects on
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cheating [25] and genetic drift [26] observed in yeast colonies

growing on agarose pads have also been modelled explicitly.

In these models, coupled cells and nutrients diffusing in two

dimensions are simulated to predict how nutrient-mediated

interactions control spatial heterogeneity and survival of the

populations. In general, interactions have been shown to

control the spatial structure of laboratory biofilm communities

[27]. However, the homogeneous environments of nutrient

agarose or laboratory biofilm substrates do not possess the

intrinsic geometric or topological structure of natural microbial

environments, such as the porous matrix of soil or microfluidic

analogs [28]. Mutualistic microbial dynamics have not thus far

been studied in such structured environments, to the best of our

knowledge.

Here, we study a model of mutualistic microbial species

in a simple geometry representing a minimal unit for a struc-

tured environment: populations growing in spatially separated

reservoirs, metabolically linked by a channel. The model is

generally applicable to auxotrophs cross-feeding remotely. We

apply it to make predictions for the dynamics of mutualis-

tic populations of algae and bacteria diffusively exchanging

vitamin B12 and a carbon source, using model parameters

obtained from independent co-culture experiments on this

same mutualistic model system (see the Appendix). Such well-

mixed co-cultures have been previously studied experimentally

[11]. Our predictions provide insights into the behaviour of

microbial communities residing in structured geometries, both

within synthetic consortia in the laboratory and environmental

microbial communities.

II. MODEL

The model describes two populations of mutualistic micro-

bial species, A and B, interacting at a distance. The mutualistic

interactions are predicated on auxotrophy: A requires metabo-

lite V (for “vitamin”), excreted by B; conversely B requires

metabolite C (for “carbon”), excreted by A. In formulating the

problem we shall first use variables with an overbar to denote

dimensional quantities (concentrations, time, space), reserving

symbols without typographical modification for appropriately

rescaled variables. Populations of A and B, with densities ā(t̄)

and b̄(t̄) respectively, reside in two well-mixed reservoirs, of

equal volume Ŵ. These are spatially separated, but connected

by a cylindrical channel (length L, cross-sectional area �),

as in Fig. 1. The channel is impervious to cells, but porous

to metabolite exchange by diffusion. Population A produces

metabolite C with local concentration c̄a(t̄), which diffuses out

of the reservoir and into the channel at x̄ = 0 (with x̄ denoting

the position along the channel axis), where it develops a

spatial profile c̄(x̄,t̄) and eventually reaches the other reservoir

at x̄ = L, where its concentration is c̄b(t̄). Symmetrically,

metabolite V produced by B with concentration v̄b(t̄), diffuses

out at x̄ = L giving v̄(x̄,t̄), feeding the other reservoir at x̄ = 0,

generating a concentration v̄a(t̄).

We first consider dynamics within the channel connecting

the reservoirs, within which metabolites obey one-dimensional

diffusion equations,

∂v̄

∂t̄
= Dv

∂2v̄

∂x̄2
and

∂c̄

∂t̄
= Dc

∂2c̄

∂x̄2
, (II.1)

FIG. 1. Diffusive cross feeding at a distance. Auxotrophic mi-

crobial populations A and B (concentrations ā and b̄) reside in

well-mixed reservoirs of equal volume Ŵ separated by a channel

of length L and cross section �. Microbe A produces a carbon

source C, of homogeneous concentration c̄a , in its reservoir. This

diffuses through the channel, forming a profile c̄(x̄,t̄), a function of

position along the channel x̄ and time t̄ . On reaching the reservoir

where microbe B resides the concentration is homogenized to c̄b.

Symmetrically, the vitamin V produced by microbe B in its reservoir

at concentration v̄b diffuses to reservoir A creating a profile v̄(x̄,t̄),

homogenized to v̄a in the reservoir. Here, this general model is applied

to an algal-bacterial partnership.

with Ds the diffusion coefficients for metabolite S = C or V .

The boundary conditions to (II.1) obtained from continuity

at the channel-reservoir interface are c̄a(t̄) = c̄(0,t̄), c̄b(t̄) =
c̄(L,t̄), v̄a(t̄) = v̄(0,t̄), v̄b(t̄) = v̄(L,t̄). Clearly, one character-

istic time scale of the problem is set by diffusive equilibration

along the length of the channel,

τdiff =
L2

Ds

, (II.2)

where we anticipate that the diffusion constants of both

metabolite species are similar. From Fick’s law, the flux Js

(molecules area−1 time−1) of metabolite species S (C or V )

entering, say, the left reservoir from the channel is

J 0
s = Ds

∂s̄

∂x̄

∣

∣

∣

∣

0

. (II.3)

The rate such molecules enter the reservoir is J 0
s �, and with

instantaneous homogenization there, the rate of change of the

reservoir concentration s̄a is J 0
s �/Ŵ. The characteristic length

ℓ =
Ŵ

�
(II.4)

will play an important role in the model. If �s̄ is a typical

difference in concentration of S between the two reservoirs,

then the typical gradient within the channel is �s̄/L, giving

rise, by the arguments above, to an associated rate of change of

reservoir concentration scaling as ds̄/dt̄ ∼ (�/Ŵ)Ds�s̄/L ∼
Ds�s̄/ℓL, from which we can identify a characteristic equili-

bration time

τeq =
ℓL

Ds

. (II.5)
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We define the ratio of equilibration and diffusive time scales

to be

ζ ≡
τdiff

τeq

=
L

ℓ
. (II.6)

The regime ζ ≪ 1 is that of fast establishment of the linear

concentration profile in the tube relative to changes of concen-

trations in the reservoirs, while for ζ � 1 the transients within

the channel are on comparable time scales to that for changes

in the reservoirs. Semianalytical solutions to the problem of

chemical diffusion between two connected reservoirs further

demonstrate the existence of these two regimes and the role of

the previously identified time scales (see Appendix).

We now turn to the population dynamics within the reser-

voirs, in which we explicitly assume that algae reside in

reservoir A and bacteria in B, and that vitamin B12 and carbon

are exchanged. The dynamics obey the ordinary differential

equations

reservoir A (x̄ = 0) : reservoir B (x̄ = L) :

dā

dt̄
= μa

v̄a

Kv + v̄a

ā

(

1 −
ā

Ka

)

− δa ā,
db̄

dt̄
= μb

c̄b

Kc + c̄b

b̄

(

1 −
b̄

Kb

)

− δb b̄, (II.7a)

dc̄a

dt̄
= pcā +

1

ℓ
J 0

c ,
dc̄b

dt̄
= −μb

c̄b

Kc + c̄b

b̄

Yb

+
1

ℓ
JL

c , (II.7b)

dv̄a

dt̄
= −μa

v̄a

Kv + v̄a

ā

Ya

+
1

ℓ
J 0

v ,
dv̄b

dt̄
= pv b̄ +

1

ℓ
JL

v , (II.7c)

where JL
s = −Ds

∂s̄
∂x̄

|
L

is the flux of metabolite S = C or

V entering the right reservoir. In Eqs. (II.7a) we model

cell growth as logistic, with maximum growth rate μi and

carrying capacity Ki for species i = A or B. Growth rates

are limited by the abundance of the required metabolites.

This is modelled using Monod factors [29], e.g., for C,

μbc̄/(Kc + c̄), where Kc is the half-saturation constant (and

symmetrically for V ). Linear death terms, with mortality

rates δi for i = A or B, ensure exponential negative growth

in the absence of the limiting metabolites. Equations (II.7b)

describe the dynamics of metabolite C. This is produced by

species A in proportion to its concentration with a rate pc,

and diffuses out at 0. In the other reservoir, C, is taken up

by B. The uptake is assumed proportional to the cell growth

rate; the proportionality constant is 1/Yb, where Yb is the

yield coefficient (how much metabolite C results in a given

concentration of species B). Equations (II.7c) describe the V

dynamics, which are completely symmetric to the C dynamics.

Although inspired by bacterial-algal symbiosis, it is clear that

the structure of these dynamics is quite broadly applicable to

mutualistic systems in general.

A. Identifying the key model parameters

In order to access the general dynamics of remotely cross-

feeding monocultures, we nondimensionalize Eqs. (II.7). Be-

cause our focus is on the impact of geometry on the biological

processes, we choose a scheme accordingly. First, normalize

the bacterial and algal concentrations by their respective carry-

ing capacities, the organic carbon and vitamin concentrations

by their respective half-saturation concentrations, rescale time

by the bacterial growth rate, and rescale space by the length

scale ℓb =
√

Dc/μb of organic carbon diffusion on the time

scale of bacterial growth, defining

a =
ā

Ka

, b =
b̄

Kb

, c =
c̄

Kc

, v =
v̄

Kv

,

t = μb t̄ , x =
x̄

ℓb

. (II.8)

The ratios of algal and bacterial growth rates and of their

diffusion constants,

ǫ =
μa

μb

, θ =
Dc

Dv

, (II.9)

are two additional parameters. With now three characteristic

lengths in the problem (L,ℓ,ℓb) one can form two independent

dimensionless ratios. These can be taken to be

λ =
L

ℓb

and η =
ℓ

ℓb

, (II.10)

so that the parameter ζ , defined previously in Eq. (II.6), is

ζ = λ/η.

There are three pairs of parameters remaining which capture

the relative strength of cellular death, uptake and production in

bacteria and algae respectively. They are the ratios of death rate

to maximum growth rate of bacteria and algae, which define

mortality parameters

mb =
δb

μb

and ma =
δa

μa

, (II.11)

which must be less than 1 for any population increase to occur;

and finally, for both carbon and vitamin, the ratios of the typical

uptake rate to the typical rate of change define the uptake

parameters

κb =
Kb

YbKc

and κa =
Ka

YaKv

; (II.12)

for both carbon and vitamin, the ratios of the typical production

rate to the typical rate of change define the production strengths

σc =
pcKa

μbKc

and σv =
pvKb

μaKv

. (II.13)

With these rescalings, the dimensionless evolution equa-

tions are

1

ǫ

da

dt
=

va

1 + va

a(1 − a) − maa,

db

dt
=

cb

1 + cb

b(1 − b) − mbb, (II.14a)
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TABLE I. Nondimensional model parameters for the mutualistic

association of M. loti and L. rostrata obtained from fitting independent

co-culture experiments we carried out, as described in the text and the

Appendix.

Nondimensional parameter Symbol Value

Biological parameters

Uptake parameter for algae κa 1.3

Uptake parameter for bacteria κb 2.2

Algal mortality to growth rate ratio ma 0.024

Bacterial mortality to growth rate ratio mb 0.014

Carbon production strength sc 0.018

Vitamin production strength sv 3.2

Algal to bacterial growth rate ratio ǫ 0.72

Physical parameters

Ratio of metabolite diffusivitiesa θ 2.5

Channel length λ 1–30

Equilibration length η 3–100

aObtained considering carbon with diffusivity Dc = 5 ×
10−6 cm2 s−1 as metabolite C and B12 vitamin with diffusivity

Dv = 2 × 10−6 cm2 s−1 as metabolite V .

dca

dt
= σca +

1

η
j 0
c ,

dcb

dt
= −κb

cb

1 + cb

b −
1

η
jλ
c , (II.14b)

1

ǫ

dva

dt
= −κa

va

1 + va

a +
1

ǫθη
j 0
v ,

1

ǫ

dvb

dt
= σvb −

1

ǫθη
jλ
v , (II.14c)

where now the dimensionless fluxes are j a
s = (∂s/∂x)x=a .

These equations are to be solved together with the diffusion

equations

∂v

∂t
=

1

θ

∂2v

∂x2
and

∂c

∂t
=

∂2c

∂x2
(II.15)

for c and v on the interval x ∈ [0,λ], ensuring continuity

of fluxes and concentrations at the ends of the tube. Equa-

tions (II.14) were solved numerically to explore the role of

diffusive geometry on mutualistic coexistence. We used the

nondimensional parameters shown in Table I, corresponding

to the mutualistic association between Lobomonas rostrata,

a B12-requiring green alga, and Mesorhizobium loti, a B12-

producing soil bacterium [11]. These parameter values were

obtained by fitting growth and vitamin B12 assay data (Fig. 7)

from independent co-culture experiments we carried out with

this model mutualistic system, as described in the Appendix.

Before discussing the results from numerical solutions of

the dynamical system of our model, we note that it supports a

trivial set of fixed points corresponding to reservoirs with no

cells (a = b = 0) and any combination of residual concentra-

tions of metabolites. The nontrivial fixed point is given by

a∗ =
σcσv − κaκbmamb

σc(σv + κama)
, b∗ =

σcσv − κaκbmamb

σv(σc + κbmb)
,

(II.16a)

c∗
a = c∗

b +
λη

2

(

σca
∗ + κb

c∗
b

1 + c∗
b

b∗
)

,

c∗
b =

σv(σc + κbmb)

(1 − mb)κbσv + κamaκb − σcσv

, (II.16b)

v∗
a =

σc(σv + κama)

(1 − ma)κaσc + κambκb − σcσv

,

v∗
b = v∗

a +
λǫθη

2

(

σvb
∗ + κa

v∗
a

1 + v∗
a

a∗
)

. (II.16c)

For the fixed point given by Eqs. (II.16) to be physically

relevant, the concentrations it describes must be positive.

Therefore, the parameters must satisfy the following con-

straints:

σcσv − κaκbmamb > 0, (II.17a)

(1 − mb)κbσv + κamaκb − σcσv > 0, (II.17b)

and (1 − ma)κaσc + κambκb − σcσv > 0. (II.17c)

The first condition requires production strength to be strong

enough to overcome cell mortality. This guarantees the ex-

istence of positive equilibrium algal and bacterial concentra-

tions. The second and third conditions guarantee this positivity

for carbon and vitamin concentrations, respectively. They re-

quire that microbial consumption be high enough to overcome

production. When these conditions are satisfied, the mutualistic

microbes can reach a steady state of coexistence. Note that in

this steady state, linear gradients of metabolite concentrations

are present in the connecting tube.

B. Feeding on a distant passive source

Before considering the fully coupled system dynamics, we

consider the case of a single auxotrophic species B, concentra-

tion b, residing in a reservoir initially free of a growth-limiting

metabolite coupled by the channel (also initially nutrient free)

to a strong source of the metabolite with initial concentration

c0
a . This source consists of a reservoir filled with limiting

metabolite. The long time steady state for the model is always

extinction of B once it has exhausted the remote resource.

However, separation of the microbial population from the

source modifies the transient population dynamics. Recalling

the nondimensional channel length λ = L/ℓb and equilibration

length η = ℓ/ℓb, we can define the nondimensional time scales

tdiff = λ2 and teq = λη as the ratios between the typical times

of diffusion and of equilibration between reservoirs, and the

biological growth time scale τb = 1/μb. These ratios gauge

the relative rates of diffusion or equilibration and growth. We

require teq and tdiff ∼ 1 for diffusion to transport metabolites

to species B, stimulating its growth.

We have solved the remotely fed single microbe limit of the

model numerically (see the Appendix) to predict the dynamics

of the rhizobial bacterium Mesorhizobium loti fed from a

remote glycerol carbon source. Figure 2 shows the transient

growth dynamics in the regime for which both geometric

parameters λ and η impact the dynamics. We first consider

the effect of diffusive reservoir equilibration, quantified by η

for a fixed channel length λ. For large η, teq is large: diffusive

equilibration in the reservoir is much slower than growth. Thus,

022411-4
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FIG. 2. Transient dynamics of a bacterial population fed through a

channel that allows metabolite diffusion from a remote carbon source.

The diffusive exchange geometry controls the dynamics through the

nondimensional channel length λ and reservoir equilibration length η.

Model solutions predict that (a) for fixed λ = 3, increasing η delays

the time of peak bacterial growth and curtails growth due to a limited

carbon-source flux; (b) for fixed η = 10, increasing λ significantly

delays peak growth, with an impact on the maximum bacterial

concentration attained. The delay as measured by τmax, the time of

maximal growth rate, is proportional to λ2 (inset). For all simulations,

initial nondimensional bacterial and carbon concentration are b0 =
5 × 10−4 and ca(t = 0) = 10; other parameters are from Table I.

the instantaneous flux from the carbon source reservoir to the

bacterial reservoir is below what the bacteria need to grow to

carrying capacity. As a result, increasing η decreases the value

of the peak bacterial concentration (preceding the inevitable

decay), as well as delaying the onset of growth [Fig. 2(a)]. Next

we fix η and vary λ. Since the diffusive time scale scales like λ2,

increasing λ progressively delays the onset of bacterial growth

[Fig. 2(b), inset]. Large λ values also correspond to weaker car-

bon source gradients across the tube, and thus a “slow-release”

nutrient flux. Consequently, a less concentrated population can

be sustained for longer by the remote source [Fig. 2(b)]. The

passive source case we have just considered demonstrates the

critical role played by both geometric parameters λ and η in

setting the time scale of transients, but also the peak microbial

numbers achievable on a finite resource.

C. Remotely cross-feeding populations

Next, we consider auxotrophic populations in separate

reservoirs, exchanging limiting metabolites through a con-

necting channel. As mentioned earlier, we apply the model

to an algal-bacterial system, obtaining our parameters from

experiments where the phototrophic alga L. rostrata, aux-

otrophic for vitamin B12, is grown in co-culture with the

heterotrophic bacterium M. loti. The algal and bacterial popu-

lations in their reservoirs have initial concentrations, a0 and b0,

respectively. Neither carbon source nor vitamin (the limiting

metabolites) are initially present in the reservoirs and channel.

The coexistence diagrams in Figs. 3(a) and 3(b) show what

values in the initial concentration parameter space give rise to

long-term mutualistic coexistence or a population crash due to

metabolite deprivation. These fates are the possible fixed points

of our model, which we shall also refer to as model equilibria.

Figure 3(a) displays the boundary between these two regions

for different values of the channel length λ for a fixed value

of the equilibration length η. In Fig. 3(b) crash-coexistence

boundaries are instead shown for different equilibration lengths

η at fixed λ. Also shown on both diagrams is the membrane

limit (bottom-left grey line). In this limit the distance between

reservoirs vanishes (λ → 0) and they are simply separated by

a membrane impervious to cells, as has been demonstrated

experimentally in metabolomic experiments with co-cultures

[30]. We assume instantaneous equilibration of metabolite

concentrations across the membrane in this limit. It is thus

an ideal case in which exchanges are not limited by diffusion

dynamics along the tube nor by the geometry of the problem,

and as such represents an interesting common reference case

to understand the impact of both the channel length λ and the

equilibration length η.

We see that increasing the channel length has the effect of

pushing the crash-coexistence boundary toward higher initial

microbial concentrations [Figs. 3(a) and 3(c)]. Coexistence

is achieved in the membrane limit for initial concentrations

lower than those for finite λ. The boundary between crash and

coexistence regions shifts quantitatively with λ, but does not

change significantly qualitatively. Its shape is revealing: if the

initial concentration of bacteria b0 is not too large, coexistence

depends weakly on b0, and very strongly on the initial algal

concentration a0. For low enough bacterial concentrations,

the smallest critical initial algal concentration for which

coexistence will occur increases with λ. These features are

reasonable considering that there is a diffusive delay in the

metabolite exchange between reservoirs: if the delay is too

long, auxotrophs will difficultly recover in the absence of a

limiting nutrient. However, we note that the model does not

predict any critical length above which recovery is impossible:

longer separations will simply restrict the establishment of

coexistence to cases with very high initial populations.

The effect of the reservoir equilibration length η on the

coexistence diagrams is more subtle. Recall η is the nondi-

mensional ratio of growing volume to metabolite exchange

area, which controls diffusive equilibration in the reservoirs.

For small η, the crash-coexistence boundary sits above the

membrane limit boundary toward higher initial concentrations.

This boundary is then pushed toward lower initial concentra-

tions for intermediate values of η while still sitting above the
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FIG. 3. Coexistence diagram illustrating the long-time fate of mutualistic populations in terms of initial concentrations. (a) At a fixed

equilibration length η = 3, increasing channel length λ causes the coexistence region to shrink progressively. (b) On the other hand, the

response to an increase in η for fixed channel length λ = 3 is nonmonotonic. The coexistence initially contracts, then expands, and finally

contracts again. The grey lines in both plots corresponds to the membrane limit for which λ → 0 and equilibration of metabolite concentrations

between the two flasks is instantaneous. This provides the maximum possible concentration parameter space for mutualistic coexistence. The

coexistence boundaries were determined by solving Eqs. (II.14) and (II.15) numerically using the parameters in Table I (see the Appendix).

(c) Along the transect (dotted red line) in (a) corresponding to a conserved ratio of initial concentrations b0/a0 = 20.0, the critical initial algal

concentration ac
0 above which coexistence occurs is an increasing monotonic function of the length of tube λ. (d) Using the same transect in

(b), the nonmonotonic behavior of the critical algal concentration ac
0 with η is clearly revealed.

membrane limit (as expected given that the membrane limit

corresponds to the ideal case of instantaneous equilibration for

no separation length), before rising to higher initial values for

high values of η [Figs. 3(b) and 3(d)]. The general shape of the

boundary is preserved for all η. To understand the nonmono-

tonic dependence of the boundary shift with η, we note η/λ

is the ratio between the reservoir and channel volumes. Thus,

with λ fixed, changing η takes the populations through three

regimes: (i) the reservoir volume is small compared to that of

the channel,η/λ ≪ 1; (ii) the volumes are the same size,η/λ ∼
1; (iii) the channel volume is smaller than that of the reservoir,

η/λ ≫ 1. In regime (i), the equilibration time teq = λη is small,

but a large channel volume relative to the reservoirs dilutes

any metabolite produced, making metabolites inaccessible to

the microbial partner and preventing coexistence. In regime

(iii), the relative channel volume is small, but coexistence is

impeded due to the long equilibration time teq ≫ 1, which

slows down significant metabolite exchanges between reser-

voirs. Finally, in regime (ii), where reservoirs and channel have

similar volume and teq ∼ 1, mutualistic coexistence is favored.

Aside from the coexistence or crash fixed points just dis-

cussed, we can use the model to analyze the transient dynamics

leading to these equilibria. In particular, it is illuminating to

evaluate the relaxation time taken for remote populations to

reach the fixed points for a given initial microbial concentration

in reservoirs assumed initially devoid of metabolites, as previ-

ously. Numerical solutions of the model equations show that

this time varies as λ is increased across the coexistence or crash

boundary for given η, as shown in Fig. 4(a). It is clear that the

time to relax to the equilibrium rises sharply on either side of

the critical λ at the boundary. This slow relaxation for λ values

close to the bifurcation between extinction or coexistence is

accompanied by oscillatory transients (see Fig. 9). Similar

considerations apply to the dependence of this time on the

equilibration length η for a given λ, within that case there

is the possibility of two boundaries between extinction and

survival; see Fig. 4(b). We thus predict a complex behavior

of the time needed to reach steady state in such connected

mutualistic systems, with the potential for slow relaxation if

geometrical parameters are close to critical values between

extinction and coexistence.

Interestingly, the algal and bacterial concentration fixed

points, a∗,b∗ respectively, are independent of λ and η,

as already mentioned [see Eqs. (II.16)]. Larger separation
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FIG. 4. The time taken for the populations to relax to equilibrium

(crash or coexistence) depends on the geometric parameters λ and

η. Here, we plot these times for fixed initial microbial concentra-

tions (a0,b0) (assuming, as before, no initial metabolites within the

diffusion geometry). Times for populations reaching coexistence are

shown in white up-pointing triangles, and those for populations that

will crash in black down-pointing triangles. (a) For fixed η = 3,

the relaxation time increases with λ up to the critical value at

the coexistence boundary (where it diverges). On the other side of

this critical value it decreases. (b) For fixed λ = 3, the dependence

of the time as a function of η shows a similar divergence when

approaching a transition between extinction and survival. For the

initial concentrations (a0,b0) here chosen, two of these transitions are

possible, with extinction for low and high values of η and coexistence

for intermediate values. Both panels correspond to a0 = 2 × 10−2 and

b0 = 3 × 10−4.

(increasing λ) or weaker diffusive coupling to the reservoirs

(increasing η) increases delays in chemical exchanges and

reduces the extent of the mutualistic coexistence region.

However, these geometric changes do not alter the microbial

concentration fixed points, which have the same values as in

the membrane limit: high densities of mutualistic microbes

can be achieved even with weak or slow diffusive coupling.

This equilibration is possible thanks to supply of metabolites

[whose concentrations are also geometry independent; see

Eqs. (II.16)] from the partner reservoir. A sufficiently large

metabolite gradient across the channel is required to support

the equilibrium metabolite and cell concentrations. Indeed, the

model predicts an increase in the metabolite concentration

at the production reservoir. For example, if the equilibrium

concentration of vitamin B12 in the algal reservoir is v∗
a , then

at the bacterial reservoir we predict v∗
b = v∗

a + ληf (a∗,b∗,v∗
a ),

where the function f can be obtained by comparison with

Eq. (II.16). The same applies for carbon. This metabolite

enrichment is an interesting prediction of the model. The

concentration excess at the production reservoir is linear in

both separation λ and equilibration length η: two parameters

with which enrichment could be experimentally controlled.

As an example, for the L. rostrata and M. loti mutualism using

λ = 1.25 and η = 2 (all other parameters as before) our model

predicts a sevenfold enrichment of vitamin B12 in the bacterial

reservoir compared to the algal side.

III. DISCUSSION

Microbial populations often interact by diffusive exchange

of metabolites in structured environments, such as the porous

matrix of soil. Metabolite diffusion is known to play an impor-

tant role in determining microbial dynamics in unstructured

environments [4,7,9,25,27]. Current models of microbial in-

teractions, however, do not explicitly model diffusive transport

in geometrically confining habitats. A recent theoretical study

has investigated microbial invasion in soil networks [31], but

interactions were modelled stochastically, without considering

diffusive exchanges. How the geometry of diffusive exchanges

constrains microbial interactions remains an important open

question. We have addressed this here by modeling a minimal

geometrical unit of microbial interaction: two mutualistic

populations in finite volume reservoirs linked by a diffusive

channel. The model was solved to predict the diffusively

mediated interactions of mutualistic algae and bacteria, whose

dynamics in co-culture have been experimentally characterized

[11]. Two key geometrical parameters control the diffusive ex-

change of metabolites between the populations: the separation

λ (the nondimensional channel length) and the equilibration

length η (the nondimensional ratio of growing volume to

metabolite exchange area). Model solutions allow prediction

of whether initial concentrations of algae and bacteria will

result in mutualistic coexistence or population crash (the model

equilibria) for given values of the geometrical parameters λ and

η. In particular, we can draw the boundary between regions

exhibiting these two equilibria for given initial microbial

concentration, and predict how this boundary shifts when the

values of the geometrical parameters are changed.

The model makes several interesting predictions. For

instance, coexistence between mutualistic partners can be

achieved only if the numbers of one or both partners are abun-

dant; low initial numbers will lead to a crash. This feature is

qualitatively independent of diffusive geometry (λ or η), like

the shape of the coexistence boundary itself (approximately

flat for a broad range of bacterial concentrations, falling very

rapidly thereafter; see Fig. 3). It has an intuitive explanation:

an initially high concentration of one of the two species will

produce a large initial amount of metabolite, which allows the

partner species to grow and recover, even from initially very

low numbers. A more surprising result is that mutualistic popu-

lations at a distance can achieve as high a steady concentration

as in a mixed environment. The effect of the diffusive geometry

is only to modify the transient dynamics and raise the initial

cell concentration values required to avoid a crash. The fact

that, given enough time, separated cross-feeding mutualists

might reach as high numbers as populations in proximity

is a counterintuitive result of great potential significance for

microbial ecology. This contrasts with the case of a population

feeding from a distant passive resource (Fig. 2), for which

maximum achievable concentrations do depend strongly on

geometric coupling.

A final prediction of the model to highlight is the nonmono-

tonic dependence of the boundary position as the equilibration
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length η is varied. As one might expect, increasing the

channel length λ (at fixed equilibration length η and bacterial

concentration b0) increases the critical concentration of algae

that will support coexistence with bacteria. On the other hand

(for fixed λ and b0) the critical algal concentration varies

nonmonotonically, falling and then rising again with increasing

η. The dependence on λ is intuitive: separating the partners

further increases a diffusive delay, which we recall scales like

λ2, so that more algae are required to support coexistence at a

distance. The nonmonotonic behavior with η is less obvious.

It results from a dilution of metabolites in the volume of the

channel for low values of η, requiring higher initial densities for

successful coexistence, and from weak fluxes of metabolites

into the homogenization volume when η is large. With respect

to these two extremes, coexistence is more easily achieved

at intermediate values of η. This is another counterintuitive

prediction, which highlights the value of explicitly accounting

for diffusive transport in modeling mutualistic interactions.

Our findings have implications for the microbial ecology of

synthetic consortia. This is an active area of investigation, with

several recent studies on microbial mutualisms [4–9,11–13].

None thus far have addressed the role of diffusive geometry

on these interactions, which could test the predictions of our

model. A preliminary experiment in which batch cultures of

algae and bacteria grow linked by a channel allowing metabo-

lite diffusion (filled with a hydrogel to prevent cross contam-

ination) demonstrates the possibility of establishing remote

mutualisms; see the Appendix. Further, it provides preliminary

confirmation that vitamins accumulate in the B12 producer

(bacteria) flask, as predicted by our model [Eq. (II.16)]. The

experiment provides a “proof of concept” and a blueprint for

further experiments using our connected flasks setup. These

should explore how the population behavior varies with the

geometrical parameters, and if the stark predictions of the

model, such as the nonmonotonicity of the crash-coexistence

boundary with η, are borne out experimentally. Alternatively,

experiments using diffusively coupled microfluidic chambers

[8,32] could be used, noting that modifications would be neces-

sary to account for stochastic effects associated with the small

cell numbers in such systems [33]. As well as being tested,

the model could be used to describe other synthetic consortia

in which populations also interact diffusively across porous

hydrogels [4,11] or microfluidic structures [8]. It is straight-

forward to extend the model to account for two- or three-

dimensional diffusive exchanges appropriate to these systems.

The present model may also provide the foundation for a

physical description of microbial networks, e.g., consortia for

cooperative biosynthesis [34,35] or microbial communities in

soil, or spatially coupled biofilms [36]. Indeed, as mentioned

earlier, at the microbial scale, soil can be approximated as a

physical network of growth chambers linked by channels [31].

In establishing the key geometric parameters that govern the

most elementary unit in a network, namely two diffusively

linked nodes (reservoirs), the present work provides a basis for

describing population dynamics in a two- or three-dimensional

network of coupled nodes (Fig. 5). It is left to future work to

take up the significant challenge of studying such networks,

particularly when there is inhomogeneity in the diffusive

couplings and stochasticity in the populations themselves.

This view of microbial networks centering on the physics

FIG. 5. Schematic of a diffusively coupled microbial network

representing (a) a structurally and microbially heterogeneous network

as a realistic representation of soil [31]; (b) a crystalline network that

can be engineered in the laboratory. The nodes of this physically

structured network represent reservoirs of different volumes filled

with different growing microbial species diffusively exchanging

metabolites via porous channels, as described in the model formulated

in this work. Diffusive exchanges are parameterised by sets of

geometric parameters, as such as the lengths λij of the channels

connecting nodes.

of diffusion could also help refine interaction matrix models

of microbial communities and extend them beyond contact

interactions [37]. An interesting possibility is that interaction

networks could be simplified by constraints deriving from

diffusion geometry.

Aside from the microbial networks mentioned above, the

model may also be a relevant interpretative tool to understand

the behavior of structured environmental communities with

diffusive exchanges, such as river biofilms [38] or sediment

layers [39]. Moreover, knowledge of the mechanisms for

metabolite exchange between spatially separated organisms is

important to gain insight into how such communities initiate

in the natural environment, and the drivers and constraints on

the evolution of mutualisms within them [40].
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APPENDIX

1. Diffusive reservoir equilibration (no microbes)

We consider here the purely physical equilibration between

two diffusively connected reservoirs to reveal the interplay
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between the diffusive time and the equilibration time in such a

system. This setup utilizes the same geometry as in Fig. 1,

with the reservoir at x̄ = 0 having an initial concentration

c̄0(t̄ = 0) = c̄init of a chemical species, and the reservoir at

x̄ = L having an initial concentration c̄L(t = 0) = 0 of the

same species. The chemical concentration along the tube is

initially equal to zero, and has diffusivity D. Since our focus

here is purely on the different physical time scales independent

of biological processes, we choose a nondimensionalization

scheme restricted to this section only that differs from the main

body of the paper. Rescaling chemical concentrations by cinit,

lengths by L and time by L2/D, we obtain

∂c

∂t
=

∂2c

∂x2
,

dc0

dt
= ζ

∂c

∂x

∣

∣

∣

∣

x=0

,
dcL

dt
= −ζ

∂c

∂x

∣

∣

∣

∣

x=1

, (A1)

where we recognize the nondimensional parameter ζ = L/ℓ,

the ratio of tube length L to equilibration length ℓ = Ŵ/�.

These equations are subject to initial conditions c0(0) =
1, cL(0) = 0, c(x,0) = 0 and boundary conditions c0(t) =
c(0,t) and cL(t) = c(1,t). Despite the fact that this is a linear

partial differential equation (PDE) with apparently simple

boundary conditions, the fact that it exists on a finite domain,

and is coupled to the reservoir dynamics, makes it difficult to

obtain an explicit analytical solution for general values of ζ .

a. Approximate solution for ζ ≪ 1

When ζ ≪ 1, the time evolution of the reservoir concentra-

tions is much slower than the establishment of a concentration

gradient in the tube. Thus, the diffusive dynamics within the

tube reach a quasi-steady-state distribution between the two

reservoir concentrations c0(t) and cL(t). In this approximation,

the solution to the diffusion equation in the tube is the linear

profile c(x,t) ≈ [cL(t) − c0(t)]x. Substituting this solution

into the reservoir dynamics and solving the resulting two

ordinary differential equations (ODEs) yields (in dimensional

units)

c̄L(t) ≈
c̄init

2
[1 − exp(−t̄/τeq)]. (A2)

We thus deduce that in the limit ζ = L/ℓ ≪ 1, the time scale

of exchanges is purely dominated by the equilibration time

τeq = Lℓ/2D, as argued previously. The same time scale plays

a role when the biological dynamics of growth and production

are considered, as discussed in the main text.

b. General solution from Laplace transform

To find the general solution of this problem, we examine

the Laplace transforms of the nondimensional concentrations

L(c0)(s) = f0(s), L(cL)(s) = fL(s), andL(c)(x,s) = f (x,s).

Laplace transforming the diffusion equation in the tube we find

the general solution

f (x,s) = M(s) exp(x
√

s) + N (s) exp(−x
√

s) (A3)

with M(s) and N (s) functions of the Laplace variable to be

determined. Imposing boundary conditions at the tube ends

gives

f0(s) = M(s) + N (s) (A4a)

and

fL(s) = M(s) exp(
√

s) + N (s) exp(−
√

s). (A4b)

Finally, Laplace transforming the dynamical equations for

the reservoir concentrations yields

f0(s) =
1

s
+

ζ
√

s
[M(s) − N (s)] (A5a)

and

fL(s) = −
ζ

√
s

[M(s) exp(
√

s) − N (s) exp(−
√

s)]. (A5b)

Combining the above we obtain explicit solutions for M(s)

and N (s), thus entirely determining the solutions f0(s), fL(s),

and f (s) to the problem in the Laplace space. In particular, for

the concentration in the reservoir initially devoid of chemical,

we obtain

fL(s)

=
2ζe

√
s

√
s[(−1 + e2

√
s)s + 2ζ (1 + e2

√
s)

√
s + ζ 2(−1 + e2

√
s)]

.

(A6)

This solution in Laplace space is not easily inverted into

an analytical expression for the evolution in time of cL(t) =
L−1(fL)|(t). In order to access its time evolution, we adapted

a numerical inverse Laplace code in Python [41] which imple-

ments the Zakian method [42,43]. The numerical evaluation of

cL(t), as a function of the characteristic nondimensional param-

eter ζ = L/ℓ, is shown in Fig. 6. It reveals the typical nondi-

mensional time scale of equilibration 1/2ζ , which in dimen-

sional form becomes the previously discussed equilibration

time τeq = Lℓ/2D. At steady state, the concentration equili-

brates between the two reservoirs and the tube at a final uniform

value cf = 1/(2 + ζ ). Finally, for ζ ≪ 1, the validity of the

approximations of the concentration cL(t) as a saturating expo-

nential in Eq. (A2) is clearly demonstrated (Fig. 6, right panel).

2. Mathematical model of remote mutualistic

cross-feeding and numerical methods

a. Membrane limit

The first natural limit of the model is that of zero channel

length λ → 0, in which the reservoirs are in contact, but

separated by a porous membrane. We call this the membrane

limit because the membrane setup is as in membrane exper-

iments [30], and we consider instantaneous equilibration of

concentrations across the membrane as a good approximation.

Fixed points for this limit are obtained trivially by letting

λ → 0 in Eqs. (II.16b) and (II.16c), which confirms that

metabolite concentrations are equalized between reservoirs at

steady state. We note that the membrane limit is identical to a

mixed co-culture, where A and B grow mixed together in the

same reservoir, except for the dilution effect associated with the

segregation of the two species on either side of the membrane.

The corresponding dynamical system for a mixed co-culture

also admits a positive fixed point (a∗,b∗,c∗,v∗) under the same

conditions (II.17), with a∗ and b∗ given by (II.16a), c∗ = c∗
b

from Eq. (II.16b) and v∗ = v∗
a from Eq. (II.16c). As mentioned

earlier, such a co-culture model is fundamentally different from
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FIG. 6. Evolution of the concentration cL, in a reservoir initially devoid of chemical, diffusively coupled to a reservoir filled with initial

concentration c0(0) = 1. The concentration was evaluated numerically from the inverse Laplace transform of fL, given in Eq. (A6). Each red

curve in panels (a)–(c) corresponds to a numerical evaluation for value of the parameter ζ equal to 1, 0.1, and 0.01 respectively. Dash-dotted

lines are the corresponding nondimensional versions of the approximation of cL as a saturating exponential as given in Eq. (A2), while dashed

lines correspond to the linear approximation cL = ζ t . Note the change of scale of the time axis for different values of ζ , where time itself has

been rescaled by L2/D.

models considering mutualistic nutrient exchanges implicitly

[14,17,18,44].

b. Remotely fed monoculture

Another interesting limit is one in which a species in

one of the reservoirs is replaced by a fixed concentration of

metabolite. For example, we could have species B growing

on C diffusing through the channel from the remote reservoir.

In this limit, the model on the side of C reduces to passive

diffusion from a source, which provides a useful control on

the mutualistic dynamics, as mentioned in Sec. II B. The

mathematical model for such a remotely fed monoculture is

directly obtained from the remotely cross-feeding populations

model [Eqs. (II.7)] by setting one microbial species and the

metabolites it produces to zero.

c. Numerical methods

The system of nondimensional equations (II.14) is solved

numerically through a custom finite difference solver using

Python and Cython, based on an explicit centered scheme for

the diffusion PDEs and an improved Euler scheme for the

integration of the ODEs. The map in Fig. 3 was drawn by setting

a minimum threshold concentration of cells below which the

mutualistic co-culture is considered crashed, here set at 1 cell

mL−1 for both species. The coexistence area corresponds to

initial concentrations that give rise to a time evolution towards

the positive fixed point with cell numbers keeping above the

minimum threshold at any time.

3. Parametrization for specific microbial associations

The results presented in this paper were obtained from

numerical studies of the mathematical model with parame-

ter values corresponding to the mutualistic association be-

tween Lobomonas rostrata, a B12-requiring green alga, and

Mesorhizobium loti, a B12-producing soil bacterium [11]. The

following procedure was used to obtain these parameter values.

First, physiologically relevant ranges for each parameter were

collected by direct measurement (see next section) or from the

published literature. Then, specific parameters—both nondi-

mensional parameters of the reduced model and dimensional

parameters to convert experimental data to nondimensional

units—were obtained by minimizing the squared distance

between simulated time evolution, obtained through a custom

finite difference solver in Python, and experimental results on

mixed cultures, while searching within domains of parameter

values which contain the physically relevant ones, and validat-

ing the fixed-point conditions in Eq. (II.17). The basin-hopping

minimization procedure gives local optima which capture well

the observed dynamics of mixed co-cultures of L. rostrata and

M. loti (see Fig. 7). The range of physiologically relevant

parameters used to constrain the search of parameters for

the association of M. loti and L. rostrata are presented in

Table II, while the fitted parameters, both dimensional and

nondimensional, are given in Tables III and I.

4. Estimation of biological parameters

a. Monoculture experiments: Carrying capacities

of M. loti and L. rostrata

Liquid cultures of M. loti were grown for 3 days (33 ◦C,

shaken at 240 rpm) in TY medium (tryptone 5 gL−1, yeast

extract 3 gL−1, CaCl2 · 2H2O 0.875 gL−1) and washed in

TP+ before serialw dilution for counting of colony form-

ing units. The postwash concentration was estimated to be

5–10 × 108 cells mL−1. Given the existing loss of cells during

washing, we therefore allow the bacterial carrying capacity

of our model Kb to be in the range 5–50 × 108 cells mL−1.

Similarly, we estimated the carrying capacity of L. rostrata

by growing these algae in TP+ with 100 ngL−1 of vitamin

B12 for 6 days to saturation (22 ◦C, shaken at 200 rpm,

day/night cycle of 14h/10h), and plating them after washing

in TP+ and serial dilution on TY agar plates for colony

forming unit counting. We recorded saturation concentration

∼2 × 106 cells mL−1, which, allowing for losses during cell

washing, results in an accepted range of 1–10 × 106 cells mL−1

for the algal carrying capacity Ka in our model.
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FIG. 7. Experimental results and theoretical fits on growth of co-cultures. Rows (a)–(f) display results from six independent growth

experiments for M. loti and L. rostrata co-cultures, for different starting values and ratios of the two species. For each experiment, from left

to right, the panels show the algal concentration ā, the bacterial concentration b̄, and, when data are available, the vitamin concentration v̄.

Continuous thick lines show the average value over a set of replicates, with the interval of +/− one standard deviation shown as a shaded

area. The fits from the model with parameters from Table I are shown with dashed black lines. Number of replicates per experiment from (a)

to (f) is n = 6, 3, 5, 5, 4, and 4. Large downward shaded areas represent on this logarithmic scale time points for which standard deviation is

comparable to the mean.

b. Monoculture experiments: Death rate of M. loti

A preculture of M. loti in TY as above was washed

in fresh TP+ and inoculated at a concentration b0 =
3.2 × 108 cells mL−1 in 70 mL of TP+ without carbon source.

Every two days, a 100-μL sample was taken to determine a live

cell concentration through counting of colony forming units

(CFUs) on TY agar. After a 2-day lag period, we measured an

exponential decay of the bacterial population with death rate

δb ≈ 5 × 10−2 h−1 over the next 6 days.

c. Co-culture experiments: Global fit of model parameters

The experiments whose outcomes were used to fit the model

parameters utilized the following protocol. L. rostrata and M.

loti were grown in TP+ medium at 25 ◦C on a 12h (12h) day

(night) cycle, with 100 microeinsteins of light and shaking at

120 rpm. Bacterial concentrations were estimated with counts

of CFUs on TY agar, and algal concentrations were obtained

with a Coulter counter. In some experiments, B12 concentration
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TABLE II. Physiologically relevant parameter ranges for the mutualistic association of M. loti and L. rostrata.

Parameter Symbol Value Unit Source

Death rate of M. loti δb 5×10−2 /h a

Diffusivity of carbon (25◦)b Dc 1.8–3.6×10−2 cm2/h [45]

Diffusivity of vitamin B12 (25 ◦C) Dv 1.0×10−2 cm2/h [45]

Carrying capacity of L. rostrata Ka 1–10×106 cells/ml a

Carrying capacity of M. loti Kb 5–50×108 cells/ml a

Growth affinity constant of bacteriac Kc 1–30 000×10−10 mol/cm3 [47,48]

Growth affinity constant of algaed Kv 1–100×10−16 mol/cm3 [47,49]

Maximum growth rate of L. rostrata μa 1.25×10−2 /h [11]

Maximum growth rate of M. loti μb 1–2×10−1 /h a

Release rate of carbon by algaee pc 1–100×10−16 mol/cells/h [50–52]

Release rate of vitamin by bacteriaf pv 1–50×10−23 mol/cells/h [10,53]

Yield of algae over B12 Ya 1–100×1020 cells/mole Ka/Kv

Yield of bacteria over organic carbon Yb 1–106 ×1013 cells/mole Kb/Kc, [54]

aThis work (see SI estimation of biological parameters).
bConsidering glycerol or small sugars such as glucose and sucrose.
cObtained considering E. coli and species of rhizobia growing on different sugars. The range of values is quite wide due to the ability of bacteria

to tune their affinity constant depending on the environmental conditions [46].
dObtained considering L. rostrata and other B12-dependent species.
eObtained considering two species belonging to the same family (Chlamydomonadaceae) as L. rostrata, and arabinose molar mass.
fObtained considering two B12-producing bacterial species, Azobacter vinelandii and Halomonas sp.

was estimated with bioassays [55]. Figure 7 shows the results

for a set of six independent experiments [(a)–(f)] along with

global fits to the model, corresponding to the values shown in

Table I.

5. Mutualism at a distance: Experimental proof of concept

To test experimentally the predictions of the mathematical

model, we developed a system to culture mutualistic microbial

species exchanging metabolites diffusively over a finite dis-

tance. Briefly, each of two 100-mL conical Erlenmeyer flasks

was modified (Soham Scientific Ltd.) to have a side arm (8 mm

long, outside diameter 11 mm, inside diameter 9 mm) in which

a small glass tube could be inserted (25 mm long, outside

diameter 8.65 mm, inside diameter 7.45 mm). Sealing of the

tube-flask junction was achieved by compression of O rings

on each side of a metal washer glued onto the glass tube [see

Figs. 8(a) and 8(b)]. The force of compression was established

and maintained by mounting the flasks on custom sliding plat-

forms [Figs. 8(b) and 8(c)]. To prevent contamination, flasks

were capped with silicon plugs (Hirschmann Silicosen type

T-22) and aluminium foil, while the middle area of the flasks

and tube assembly was also further covered with aluminium

foil. The central glass tube connecting the inside of both flasks

was filled with a polyacrylamide (PAM) gel (4% acrylamide

w/v with a relative concentration of bis-acrylamide of 2.7%,

filter sterilized before pouring, BioRad). Once polymerized,

the gels in their tubes were put in a bottle of sterile water

and left to soak for 6 days to allow for any of the toxic

nonpolymerized monomer to diffuse out of the gel. We verified

the very weakly hindered diffusion of B12 through this gel by

colorimetry, measuring a reduction of ∼10% of diffusivity

with respect to B12 diffusion in water, which validates the

chosen gel pore size as allowing the diffusive transport of

small metabolites. We also performed a test to check for cross

migration of the mutualistic species. Both flasks were filled

with a rich bacterial medium for soil bacteria (TY), but only

one side was inoculated with M. loti (see below for strain

details). These bacteria reached a saturation density within

a few days, but over a time scale of 2.5 months no bacteria

were detected in the first flask, proving the PAM gel is not

penetrable by bacteria (and by inference by the algae, which

are larger).

In such connected flasks, we inoculated one side with

the B12-dependent green alga Lobomonas rostrata (SAG 45-

1, wild type strain) and the other with the B12 producing

FIG. 8. Chambers for proof-of-principle experiments. (a) Sketch of the platform holding the modified flasks during assembly. (b) Sketch

of the diffusive plug filled with polyacrylamide (PAM) gel, used to connect the two flasks in experiments of mutualism at a distance.
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TABLE III. Fitted parameters for the mutualistic association of

M. loti and L. rostrata.

Fitted dimensional parameter Symbol Value

Algal carrying capacity Ka 3.0 × 106 cells mL−1

Bacterial carrying capacity Kb 5.8 × 108 cells mL−1

Growth affinity constant of algae Kv 1.2 × 10−14 mol cm−3

Maximum growth rate of M. loti μb 1.9 h−1

bacterium Mesorhizobium loti (MAFF 303099, wild type

strain, original gift from Professor A. Downie, John Innes

Centre, UK). Both inocula were diluted with TP+ medium

[11] to the desired starting concentrations of microbes. The

L. rostrata preculture was grown in TP+ with 100 ng L−1 of

vitamin B12 from colonies picked from a slant, while the M.

loti preculture was grown in TY medium. Both precultures

were washed in fresh TP+ before inoculation in the assembly

in order to remove any organic carbon and B12 in the initial

growth media. The initial concentrations of M. loti and L.

rostrata were b0 = 2.2 × 108 cells mL−1 and a0 = 5.3e4 ×
cells mL−1, inferred from viable counts. To ensure culture

sterility, flask assembly and inoculation were carried out in a

laminar biosafety cabinet (PURAIR VLF 48). The connected

flasks were mounted on a shaking platform (120 rpm) within an

incubator for 50 days, at 25 ◦C, with continuous illumination

(80 μmol m−2 s−1). After this period, these assemblies were

left in static incubation at 20 ± 2 ◦C and at ambient day/night

light levels.

Viable counts and B12 concentration measurements

Algal and bacterial populations were sampled 55 and

230 days after inoculation. No contamination (external or

between species) was detected, and PCR screening was used

to confirm species identity as Mesorhizobium loti bacteria

and Lobomonas rostrata algae. This confirms the ability of

the PAM gel to prevent cells from crossing, while allowing

metabolites to be exchanged.

10−3

10−1

a(t)

b(t)

0.00 0.02 0.04 0.06
Time t

10−1

101

(a)

(b)

vλ(t)

c0(t)

FIG. 9. Example of oscillations of (a) concentrations of cells and

(b) concentration of metabolites during the time evolution of a co-

culture at a distance system before convergence. Initial parameters are

close to the boundary between survival and extinction (λ = 2, η =
3, a0 = 2 × 10−2, b0 = 3 × 10−4, and no initial nutrients).

Viable counts revealed that the population of bacteria

55 days after inoculation was ∼103 smaller than the inoculum.

At the same time point the algae had grown little: the cell

concentration was only 1.3 times larger than the inoculum.

After 230 days the bacteria had recovered, and the algae had

grown significantly. At this time the algal concentration from

two replicates was a = 7.8 ± 0.3 × 105 cells/cm3 (where the

uncertainty is the standard error in the mean), about 15 times

the inoculation concentration and close to the carrying capacity

they reach in well-mixed co-cultures (see Table II). While

slight initial growth of the algae might be attributed to internal

reserves of vitamin B12, it is difficult to account for growth 230

days after inoculation in the absence of the vitamin. Indeed,

using bioassays [55] we measured a B12 concentration of

24 ± 3 pg/ml in the medium on the side of the algae. On the

side of the bacteria, we found 132 ± 7 pg/ml. This implies the

existence of a concentration gradient across the tube between

the two flasks. This is required for the supply of the B12 to the

algae, as predicted by the model [see Eq. II.16c].
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