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Abstract:

Ptychography is a computational imaging technique. A detector records an
extensive data set consisting of many inference patterns obtained as an object is
displaced to various positions relative to an illumination field. A computer
algorithm of some type is then used to invert this data into an image. It has three
key advantages: it does not depend upon a good-quality lens, or indeed on using
any lens at all; it can obtain the image wave in phase as well as in intensity; and it
can self-calibrate in the sense that errors that arise in the experimental set-up
can be accounted for and their effects removed. Its transfer function is in theory
perfect, with resolution being wavelength-limited. Although the main concepts of
ptychography were developed many years ago, it has only recently (over the last
ten years) become widely adopted. This chapter surveys visible light, X-ray,
electron, and EUV ptychography as applied to microscopic imaging. It describes
the principal experimental arrangements used at these various wavelengths. It
reviews the most common inversion algorithms that are nowadays employed,
giving examples of meta code to implement these. It describes, for those new to
the field, how to avoid the most common pitfalls in obtaining good quality
reconstructions. It also discusses more advanced techniques such as modal
decomposition and strategies to cope with 3D multiple scattering.



1) Introduction

We have an object, possibly a very small object, and we want to make a
magnified image of it. There are various strategies open to us. For many years
the answer was to make one or more lenses as accurately as possible, and
arrange them as accurately as possible in a microscope column (Figure 1a). New
possibilities opened up with the advent of computers. If the image has minor
systematic faults arising from the physical hardware, we can process it in the
computer to improve upon it (Figure 1b). Alternatively we can build flexible
adaptable optics that are controlled by a feedback loop, via detailed
quantification of the distortion in the image. One of the biggest breakthroughs in
transmission electron imaging relies on computationally measuring lens
aberrations, and then compensating for them using complicated non-round
lenses driven by dozens of variable currents (Figure 1c and see Chapter
**EDITOR** in this volume). Similar compensation strategies have been
employed in astronomical telescopes and in many other fields of optics.
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Figure 1: The computational imaging paradigm. a) The conventional microscope. b)
Errors in aberrated or imperfect optics are corrected by post-processing. c) Errors in the
optics are measured in a detector plane. Variable optics are then adjusted to improve the
image via a feedback computation. d) Ptychography: the detector measures something
rich in information, but not the image. Decoding computation is used to form the final
image. The system is a type of transmission line.

A more radical conceptual leap is to realise that perhaps we should not worry
about our image at all. All we need is a detector lying somewhere in an optical
system that records something rich in information (Figure 1d), whether an



image or not. Now what we need is optics that encodes information about our
object as efficiently as possible before it reaches the detector. Once we have
those data, we can decode them (assuming we know something about the
encoding optics) and computationally generate our image. This imaging
paradigm is nowadays widely called ‘computational imaging.” A communication
channel replaces the optical transfer function of the traditional lens: structural
information is transferred via three steps: physical encryption; detection; and
finally a decoding algorithm.

Ptychography is a method of computational imaging. It employs a source of
radiation (light or matter waves of arbitrary wavelength), an object that scatters
that radiation, and a detector. We will see that we can have all sorts of optical
elements between the source and the object, and between the object and the
detector: the variety of modern implementations of ptychography is enormous.
But it has five defining properties:

(1) There must be an optical component, which is usually, but not always, the
object itself, which can move laterally relative to whatever is illuminating that
optical component.

(2) The detector must be in an optical plane in which the radiation scattered
from the optical component has intermixed to create an interference pattern,
usually a diffraction pattern, but more generally any interference pattern,
possibly even an image.

(3) The detector collects at least two interference patterns, arising from a
minimum of at least two known different lateral physical offsets of the illumination
with respect to the object or other relevant optical component (modern
implementations can use 100s or 1000s of lateral offsets). The offsets must be
arranged so that adjacent areas of illumination overlap with one another.

(4) The source of radiation must be substantially (but not necessarily wholly)
coherent.

(5) The image of the object is generated by a computer algorithm, which solves
for the phase of the waves that arrived at the detector, even though the detector
itself was only able to measure the intensity (flux or power) of the radiation that
impinged upon it. If we were designing a normal communication channel, say a
telephone transmission line, the very last thing we would ever choose to do is to
have this catastrophic disposal of phase information right in the middle of the
system. But that’s what happens with light, X-ray and electron detectors. An
important strength of ptychography is that it can handle this regrettable ‘phase
problem’ with no effort at all.

One thing is clear. Unlike the immediacy of a conventional microscope,
ptychography puts a huge obstruction between the microscopist and the image.
First, we must wait while at least the two interference patterns are recorded: the
experiment takes time. Second, we have to rely on the computer to reconstruct
the image from the data. The data usually looks nothing at all like the object of



interest: we must wholly trust a computer algorithm to deliver our results,
something that unnerves quite a lot of scientists.

So, why would anyone want to use such a roundabout way of creating an image?
There are three key benefits of the technique.

(1) It does not need a lens. Most implementations of ptychography do in fact use
a lens, but the lens can be very poor quality: it will not affect the final (high)
resolution of the ptychographic image. This has been the driving motive for X-ray
ptychography, where high-resolution lenses are hard to make and very costly. X-
ray ptychography nowadays routinely improves upon lens-based X-ray imaging
resolution by a factor of between 3 and 10. Ironically, the original motive of
ptychography was to overcome the resolution limit of electron lenses, but
aberration correctors (Chapter **EDITOR**) now provide such high resolution -
fractions of an atomic diameter - that extra ptychographic resolution has little to
offer, at least at the time of writing. Of course, at visible light wavelengths, lens
optics is a mature field, already offering wavelength-limited resolution.

(2) It produces a complex image (that is, both the modulus and phase of the exit
wavefield at the back of the object). Image phase is an elusive thing, which is
nevertheless crucial for imaging transparent objects like live biological cells that
do not absorb radiation, but do introduce a phase change in the wave that passes
through them. Consequently all sorts of optical methods have been developed
over the last century for expressing the phase in an image, for example Zernike
contrast, differential phase contrast, holography or processing through-focal
series. However, it is a matter of fact that ptychography produces extraordinarily
good phase images: the transfer function of the technique is, at least under most
circumstances, almost perfect. This phase signal remains a pressing need over all
wavelengths, and is the main motive for ptychography at visible light and
electron wavelengths. It is also the key to the success of high-resolution X-ray
ptycho-tomography (see section 6.1).

(3) We have stated that all sorts of optical components can be used in a
ptychographical experiment. One would suppose that the characteristics of these
components would have to be known exactly, or at least very well. After all,
methods like holography need exquisite optical alignment, and even then various
calibration steps must be undertaken to characterise the reference wave
inhomogeneities. But a remarkable peculiarity of ptychography is that the
method self-calibrates. It blindly characterises the optical components in the
experimental set-up. It computationally provides a map of all the aberrations in
any lens which is being used in the system, including apertures and slits. It can
measure (and remove the effects of) any partial coherence in the source. It can
find and correct for errors in the lateral displacements that are themselves the
central source of the ptychographical information. It can infer the physical
position of the detector. It can even correctly estimate the intensity of thousands
of pixels that are inoperable in the detector, and even infer the intensity that
would have been measured outside the edges of detector had the detector been
larger.



What is the secret of this remarkable technique? There are many inverse
computational imaging methods that solve for extra information, say the phase
of an image, using multiple images collected as a function of some variable or
other. More images mean more measurements, and more measurements usually
mean more overall diversity in the entire data set. It happens that the source of
diversity in ptychography - lateral shift - is easy to implement experimentally;
unlike, say, a through-focal series, ptychographical data can be collected in
endless abundance; and the diversity of these data is large. In other words, the
communication channel of ptychography (Figure 1d) has a very wide bandwidth
(see Section 4). Because most of this bandwidth is redundant, any errors in the
encoding system can be corrected: it is very hard for the message (the image) to
be lost or corrupted by instrument noise (of course, the fundamental limits of
counting statistics will always apply).

Any computational imaging strategy must have its decoding algorithm.
Ptychography’s involves a procedure that must solve the ‘phase problem’, which
has historically been seen as extremely difficult. Wave amplitudes add linearly,
their intensities do not, and so the solution space is highly non-linear. We might
suppose that the decoding algorithm in ptychography must be very complicated
and very ill-conditioned. This is not the case. Perhaps another key reason for its
success is that the most popular reconstruction algorithms available today are
both intuitive and very easy to code. They also invariably work without too much
tweaking or insider knowledge. It is astonishing that any one of the core
algorithms can be used for any of the very diverse range of ptychographical set
ups, or for any of wavelength - photon or electron. The only exception to this is
that the “WDD” inversion method (see section 10) must have very densely
sampled data: conversely, any of the iterative algorithms works for densely
sampled data.

1.1 Nomenclature

Ptychography/cCDI: History dictates that in certain communities ptychography
is seen as a type of coherent diffractive imaging (CDI). Recent developments,
especially Fourier ptychography which records images but not diffraction
patterns, perhaps renders this classification out-dated. Furthermore, CDI is
inextricable linked with the term ‘oversampling’, which is not a fundamental
constraint in ptychography. Here we will therefore reserve the term
‘conventional CDI” (cCDI) for methods that recover structure from a single
diffraction pattern (see Chapter **EDITOR** this volume which is dedicated to
this subject): ptychography always uses data from more than one interference
pattern and is probably best thought of in terms of Figure 1d.

Illumination/probe-object/specimen. The illumination function is very often
called a probe, because the illumination is often made using a lens that
convergences a conical beam onto the specimen. We will use ‘probe’
interchangeably with ‘illumination’ depending on context. The same applies to
‘object’ and ‘specimen’.



Exit wave or transmission function. There has been some confusion about
whether ptychography solves for the exit wave of the object or the transmission
function of the object. Very early work on ptychography sometimes used v, to
represent the exit wave from a specimen illuminated by a plane wave. This is
only valid if the object function is indeed identical to the exit wave under plane
wave illumination, which is true if the object is infinitively thin. However, as soon
as we introduce depth effects, say by solving for multiple layers of a specimen
(see Section 6.2), then the only interpretation of the object function is as a
physical transmission function. The actual exit wave, from one probe position,
bears no obvious relation to any of the layers in a 3D object, and there is no
single two-dimensional function that can account for all the different exit waves
that occur at every probe position. Propagation can also lead to features in the
exit wave having higher amplitude than any part of the incoming wave. In short,
we solve for transmission functions (and sometimes multiple layered
transmission functions), not the exit wave. We do however have to solve for each
different exit wave at each probe position.

Object functions as propagating waves: In some configurations, ptychography
solves for a wave while an aperture of some type acts mathematically in the role
of the illumination. In Fourier ptychography (Section 5.2), the aperture lies in the
back focal plane of the objective lens and the ‘object’ function is the complex-
valued diffraction pattern lying in the same plane. In selected area ptychography
(SAP - Section 5.3) the aperture lies in an image plane and now the ‘object’ is the
complex-valued image formed by the objective lens. The important point is that
the mathematics of ptychography applies to any complex-valued function moved
across another complex-valued function. Which one of these scatters
(object/aperture) and which illuminates (probe/image or diffraction pattern) is
inconsequential.

Fourier/detector projection: Historically, the projection in the diffraction
plane of an iterative reconstruction algorithm has been called the ‘Fourier
constraint’. Because in ptychography this constraint can occur in the Fresnel
near field or in the image (in the case of Fourier ptychography), we will call it
here the ‘detector constraint’.

Bright- and dark-field data: We may occasionally use the term ‘dark-field
intensity’. If the illumination is of the form of a convergent beam, then in the far-
field the aperture in the probe-forming optics appears as a disc. The intensity in
the disc is what is used for bright-field imaging in scanning transmission
microscopy (the intensity there is collected as a function of a continuous scan of
the probe). The intensity outside the disc is then the dark-field intensity, which is
invariably much weaker than the bright-field disc. By reciprocity, in Fourier
ptychography dark field intensity is called the same as in conventional
microscopy: i.e. when recording a dark-field image the incident beam has been
tilted far enough so that it is blocked off by the objective aperture. The resolution
of a perfect lens can only be improved by ptychography if dark-field data is
processed.



The ‘Fat-H’ and the ‘Trotters’: We will later introduce these two informal terms
that are widely adopted by the community, but are not recorded in any
published paper. We think this is timely because the subject to which they relate
(Wigner Distribution Deconvolution (WDD) - see section 10) has had a recent
resurgence. They are compact terms for complicated data structures and are
now regularly used in discussions at conferences, etc.

STEM/STXM: We will call both the scanning transmission electron microscope
(STEM) configuration and the scanning transmission X-ray microscope (STXM)
‘STE/XM’. This is because, being optically equivalent to one another,
ptychography treats them both identically.

Ronchigram: This term is used in the electron literature but rarely in the X-ray
imaging literature. It refers to the unscattered beam created by a convergent
focused beam in the far-field. This is usually circular in electron microscopy
(being the shadow image cast by the condenser aperture). For an X-ray Fresnel
zone plate lens it is usually doughnut-shaped because of the central stop
required to block undiffracted intensity. If Kirkpatrick-Baez (KB) mirrors are
used, it is rectangular. When the probe is defocused from the object plane, it is
equivalent to a Gabor in-line hologram.

Circles: As a warning to the reader, we remark that the science of ptychography
involves lots of diagrams of circles. The probe function (in real space) is often
circular, or represented by a circle. Diffraction disks (in reciprocal space) from a
crystalline object are circular when a focused lens with an aperture in its back
focal plane is used to form the probe. The Fat-H and the trotters are made out of
parts of circles. Fourier ptychography and SAP ptychography have their own
circular apertures. The modulus constraint in the complex plane is circular.
Know which circle is which: they are not all the same!

2) A Brief History

This Chapter is not an historical review. However, for the benefit of those new to
the subject, we now make one or two non-essential observations about its
history.

First - where did the name come from? Ptychography derives from the Greek
‘ptycho’, meaning to fold. Hoppe and Hegerl [1] introduced it to describe a
method of calculating the phase of the Bragg reflections from a crystal [2-4]. If a
localised spot of radiation illuminates a crystal, the Fraunhofer diffraction
pattern is a convolution (or in German ‘Faltung’, folding) of the crystal Bragg
reflections with the Fourier transform of the illumination function. The latter is
wide, because the illumination is narrow, and so the Bragg peaks, which are
usually perfect spots, are made to overlap one another. If the radiation is
coherent, the overlaps interfere with one another (as can be seen in Figure 2c,
which we discuss in detail in Section 10). Hoppe observed that this interference
could be used to estimate the phase difference between any pair of overlapping
discs, bar an ambiguity of a complex conjugate. He realised that the ambiguity



could be resolved by shifting the illumination to a second position. He also
proposed that the method could be extended to generalised non-periodic objects.
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Figure 2: a) A lens brings a beam to a cross-over in front of a periodic object. b) In the
far-field we see a shadow image (experimental data using a laser incident on a TEM
grid). c) When the lens in (a) is stopped down by an aperture, we see explicit diffraction
orders which interfere with one another.

For an explicit description of this phenomenon, see [5]. Modern ptychography
has very little in common with this original concept, but the name has stuck. In
fact it is still true to say that the word captures the essence of a diffraction
pattern determined by a convolution, and a shift of illumination relative to the
object. Note that in the context of near-field or full-field ptychography, which we
will discuss in Section 5.4, the Fresnel integral can also be formulated as a
convolution, but in this case there is no requirement for the illumination to be
localised. In Fourier ptychography the measured data is the convolution of the
image (the Fourier transform of the object diffraction pattern) with the Fourier
transform of the lens aperture, i.e. the impulse response function of the lens.

After having had one research student (Hegerl) work on the technique, Hoppe
abandoned it, as he describes in [6] written at the time of his retirement in 1982.
There was some work done on ptychography by a small group in Cambridge led
by one of the authors during the 1990s (reviewed in [5]). Nearly all of this was
based on non-iterative ptychographic inversion algorithms, except for the work
of Landauer, who developed iterative algorithms for Fourier ptychography [7].
Chapman successfully applied one of these techniques to soft X-ray
ptychographic data[8], but this class of direct inversion algorithm required very



large quantities of data, which could not easily be handled by the computers
available at the time. The X-ray data took a long time to collect because in those
days source brightness was relatively low. Certainly the electron detectors
available then were utterly dismal. Now that technology has moved on, there is a
resurgence of interest in these techniques [9, 10], which will be discussion in
Section 10, and which may yet prove to be very powerful.

The big explosion of interest in ptychography began in 2007, starting in the X-ray
synchrotron microscopy community [11-13]. We can identify four reasons for
this:

First, the development of third generation synchrotrons supplied very bright,
spatially coherent sources, suitable for conventional coherent diffractive imaging
(cCDI).

Second, following the first “Coherence” conference in 2001 [14], there developed
a large community of scientists interested in both the physical implementation
and iterative solutions of the cCDI X-ray phase problem as it relates to single
diffraction patterns from finite objects[15, 16]. This meant that when the first
real-space iterative solution to the ptychographical phase problem was
demonstrated experimentally [11, 17], there were many workers who could
immediately implement it on existing beamlines and instrumentation. It helped
that the simplest experimental set up required only an aperture and a stepper
stage, and that the associated iterative solution [18], although very quickly
superseded by more comprehensive approaches, was very simple to code.
Furthermore, because of the diversity of ptychographical data, all reconstruction
algorithms for it are relatively robust, at least compared with those used for
cCDI.

Third, there was a strong demand for higher resolution in X-ray microscopy that
could not be easily satisfied by improved optics, but which could be delivered
easily by ptychography [12, 19]. Although ptychography was originally
developed to overcome the electron lens resolution problem, by the time it came
to maturity aberration-corrected lenses could provide all the resolution one
could usefully employ, although its ability to recover image phase accurately is
still in demand.

Finally, the phase sensitivity of ptychographical micrographs, measuring
quantitatively and linearly the projected optical potential, meant it could be very
effectively used for tomographic imaging[20, 21], which has become one of its
most scientifically significant applications (Section 6.1).

These benefits were already established in the literature by 2010. Since then
there have been numerous developments over many different wavelengths and
in many different optical configurations. We will try to cover most of the
important trends in this Chapter, but as the rate of progress in the field
accelerates, much of what we write here will quickly become out of date. Treat
this chapter as an elementary introduction to the field.



3) How Ptychography Solves the Phase Problem

Chapter **EDITOR** of this volume is dedicated to single pattern diffractive
imaging. In many situations of experimental importance, such as the strategy of
‘diffract and destroy’, we can only record one diffraction pattern because after
one exposure the object of interest has been damaged or completely destroyed.
However, we can use some of the concepts in cCDI to work our way towards an
understanding of ptychography, especially in how it solves the phase problem.
There is therefore inevitably some small overlap with Chapter **EDITOR** in
what follows.

3.1) The Phase Problem

Let us consider a very simple version of ptychography, as shown in Figure 3. A
source of illumination passes through an aperture and then the object. The
resulting exit wave from the object propagates to the far-field Fraunhofer
diffraction plane, where it is recorded on a detector with NxN pixels. For
simplicity, we assume the aperture is so close to the object that there is no
diffractive spreading of the beam between the aperture and the object. Figure 4
shows two NxN arrays of complex (real and imaginary) numbers, related to one
another by Fourier transformation. The leftmost array shows an estimate of our
object where it has been illuminated by the round aperture. The rightmost array
represents the pixels in our detector: this array is the data we measure. Because
the Fraunhofer integral is a linear, invertible Fourier transform, we should be
able to back Fourier transform the pixels in the detector array and then discover
the exit wave coming from the object.
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Figure 3: The simplest type of diffractive imaging experiment. An aperture, which we
will start by assuming lies right against the specimen, i.e. there is no propagation
spreading of the wavefield between it and the specimen. A detector lies in the far-field
Fraunhofer diffraction plane.
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The exit wave is also a complex function, intimately related to the structure of
the object. Roughly speaking, its modulus represents the object’s transmittance
(1 equals total transmittance, which is free space, 0 being total absorption), and
its phase is the accumulated phase difference, relative to free space, caused by
the real part of the refractive index of the object as the wave passes through its
thickness. Ideally, we want to measure both the modulus and the phase of the
exit wave to find out the most about the object. In general, all microscopes suffer
from the image phase problem, although there are many ways to express phase
in an image, at least approximately. Ptychography is a way of achieving a very
clean exit wave phase estimate.

For some radiations, for example electromagnetic radio waves, it is easy to build
an NxN detector that can measure both the modulus and the phase of the wave
arriving at it. This is how aperture synthesis radio astronomy works. In our case,
however, all the radiations that have short enough wavelengths to be useful as
high resolution microscopes oscillate at correspondingly high frequencies: no
detectors can sense the phase of these oscillations.

What we have here is a classic inverse problem. If we know the object wave,
calculating its diffraction pattern - the ‘forward calculation’ - is easy: it requires
one two-dimensional Fourier transform from the LHS to RHS of Figure 4. But the
backward, or inverse, calculation - inferring the object from the recorded data -
appears to be profoundly intractable: we can assign any phase at all to each pixel
of the diffraction patterns, but how can we select the single set of phase
assignments that correspond to the actual phases lost in the experiment?

Fourier transform (or other
NxN array of propagator) NxN array of

complex numbers complex numbers

Exit wave from the object can be seen
inside the circle of the opaque aperture

Figure 4: The Fourier relationship between a real-space object delineated by an aperture
and its complex-valued Fourier transform lying in the far-field diffraction plane.

3.2 Iterative solution methods

Like all inverse problems, we proceed by applying ‘constraints’, i.e. knowledge
from the experiment (the data) and also a priori information, which we know
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about the object independently of the measurements we have made. In the two-
dimensional image phase problem, the most powerful of these is if we know the
object is both two-dimensional and exists wholly within a delineated, finite, area
[22, 23]. This area is called the ‘support’ of the object. In practice everything
outside this region is either free space or must be blocked off by an aperture, like
in our experiment in Figures 3 and 4.

Each pixel in the diffraction pattern corresponds to a single Fourier component
in the object exit wave. Changing the phase of that pixel has the effect of shifting
laterally the Fourier wave component corresponding to that frequency in the
object function. The phase of all the Fourier components in the object must
therefore be such that they add up to zero outside the support. One can imagine
that if all the phases are correct except one, then it is bound to give an amplitude
contribution to the object wave outside the support, because it will not cancel
out all the other correct amplitude contributions, also lying outside the support.
The set of possible phases is now fantastically reduced, although it is still not
obvious that there is only one unique combination of phases that gives rise to the
localisation. In fact, it turns out that this single constraint can very often imply a
unique object wave solution[23], except for several unavoidable ambiguities
such as a shift of the whole object function, or that the object is its complex
conjugate centrally inverted.

Even if there is a unique solution, this does not mean that we can construct a
solution algorithm that will always find it. A key breakthrough in the generalised
2D image phase problem occurred when Fienup[24, 25] modified a solution
strategy originally pioneered by Gerchberg and Saxton [26, 27]. The method is
intimately related to the iterative methods used in ptychography, so it is worth
explaining it conceptually in some detail. With reference to Figure 5, we set up an
iterative computational loop. On the left hand side we have our computational
array representing our estimate of the object function, and also our known
aperture, which selects part of our object function. On the right hand side we
have a computational array representing an estimate of the modulus and phase
of our measured data. We also have the measured data itself (its modulus) in an
array of identical size.
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Figure 5: Computation process for projection onto constraint sets. Real space is on the
left hand side, where the aperture constraint is applied; reciprocal space on the right,
where the modulus of the measured diffraction pattern is applied, but where phase
remains untouched.

In Figure 5, A to B and C to D are forward and backward propagation transforms,
respectively. These model the relationship between our object plane and our
diffraction plane: normally via a Fourier transform or a Fresnel integral of some
type. Between B to C, we enforce our knowledge of what we have measured in
the detector plane: that in this plane the modulus of the wavefunction must be
the square root of the intensity of our data. Between D and A we enforce our
aperture constraint: there must be no amplitude lying outside the extent of our
aperture. Where we start the iteration is a matter of taste, although if we know
anything else about the object (more a priori knowledge)- say that it’s likely to
be mostly transparent, which would be true for many specimens of interest -
then we could start at D with an image field made up of 1s (total transparency) in
every image pixel.

Now we apply our aperture constraint, moving from D to A. We put all the values
of our object function to zero everywhere outside the aperture (mathematically,
this process is called a projection). We computationally propagate the result to B.
The calculated estimate of the detector wave at B is complex, but its modulus will
(most likely) bear no relationship to the measured modulus at the detector.
Moving from B to C we perform another projection, this time applying the
constraint of the measured modulus (we replace the modulus that arrived at B
with the measured modulus): but we don’t touch the phase that came out of B.
Now the modulus of the data at C is correct, but the phase is almost certainly
wrong.

When we back transform from C to D. The wrong phase from C will almost
certainly result in the image having some amplitude over all the field of view,
including outside the region of the aperture where we know there should be
none. We get rid of this wrong result by simply reapplying the aperture
constraint (D to A), forcing all those wrong pixels to zero. And then off we go
around the iteration again, perhaps for as many as 10,000 times. Sometimes, but
certainly not always, this strategy will converge upon a reasonable estimate of
the object. There are dozens of variations on this approach, some of which we
will discuss later.

Crucial to what follows is how many data we measure relative to the number of
variables we are attempting to solve for. The Fourier transform of the object
wave maps one-to-one to the number of pixels in the diffraction plane. Once we
have lost the phases of the diffraction pattern pixels, we still need at least enough
measurements - more than twice the number of pixels in our object wave - in
order to give the two numbers we require for the real and imaginary
components of the object wave pixels.

The number of pixels in the detector fixes the size of our calculation box in the

object space, which must be able to contain our aperture. Of course, as far as the
computer is concerned, the two arrays - in the object space and the detector
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space - are only arrays of numbers, which are always of the same dimension. In
reality, the detector pitch has a physical size corresponding to the angle
subtended from the specimen. This size is inversely proportional to the field of
view of our calculation box in the object space, such that, for small angle
scattering

_ A
Ag == (1)

where A6 is the angular dimension of a detector pixel, D is the field of view in the
object space, and A4 is the wavelength of our radiation.
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Figure 6: Intensity components of the Fourier transform of an object have half the
periodicity of amplitude components. When the aperture fills the real-space object
estimate (top left), its Fourier transform (top right) is undersampled by a factor of two.
Halving the size of the aperture (bottom) means that now the intensity of the diffraction
pattern can be sampled adequately, at the Nyquist periodicity in reciprocal space.

With reference to Figure 6, the upper sine waves in both detector arrays
represent a modulus component of the highest frequency that can occur in the
diffraction pattern determined by the corresponding physical width of the
aperture in the object plane. The lower sine waves are the intensities of these
modulus components, which have twice the periodicity of the underlying
modulus (the periodicity of sine?, say, is twice that of sine). Clearly the sampling
condition of the intensity is not the same as the sampling in our original complex
function. For the same sized object (or in our case aperture), the Fourier
transform array of intensity will be under-sampled by a factor of two.

If we want to measure intensity properly, we have a choice. We can buy a new
detector with four times as many pixels (2Nx2N) in order to fulfil the Nyquist
sampling in the detector plane, or stick with the same detector and make the
(physical) diameter of the aperture less than half the width of the calculation
box. Let’s do the latter, as shown in Figure 6. We have now halved the
periodicity of all intensity components in the diffraction pattern so that the
detector pixel size can indeed record all the information in it. (We could also put
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the detector twice as far away from the object, but the resolution of our object
pixel will then worsen by a factor of two.)

The requirement for the object aperture to be half the lateral size of the
calculation box in real space means that that the majority of the unknowns in
real space - the empty pixels - are in fact known: they are all zero. There are
now more than enough numbers measured in the diffraction pattern to solve for
the real and imaginary parts of the object within the smaller aperture area. Note
that making the aperture smaller still will not give us any more information
because this has the effect of sampling the diffracted intensity at more than the
Nyquist frequency. By definition, the Nyquist condition has already captured all
the information there is; a qualification is that higher sampling may help if the
modulation transfer function (MTF) of the detector falls off quickly.

3.3 Ptychography: multiple diffraction patterns

Now comes the trick. Our detector fixes the size of the calculation box
surrounding our aperture function. But there is nothing to stop us declaring an
indefinitely large array in our computer in order to describe a much bigger
object. We match the pixel size of this large array with that of our detector-
defined calculation box in the object plane. We move the aperture from one
position to the next over the object (or move the object with respect to the
aperture) as shown in Figure 7, and collect a diffraction pattern from each
aperture position. We now run our iterative loop in Figure 5 on each of these
areas, one after the other.

-

i

Figure 7: If we move the aperture over a larger field of view, we can collect a diffraction
pattern from each aperture position. The constraints are still are performed as before
(Figure 4), but an on-going estimate is maintained over the whole field of view (right
hand side). An estimate of the object function from the first aperture position is fed into
the object estimate for the second position within the area of overlap.

The first published example of such a calculation is shown in Figure 8[28]. Four
calculations are run simultaneously, but the areas covered by any one aperture
do not overlap with any of the others: the calculations are completely
independent of one another, and show some of the usual ambiguities inherent to
the phase problem. Most noticeably, the cormorant in the phase part of the
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image has a centro-symmetric inversion also present, with its phase reversed.
This is the complex conjugate ambiguity arising from the fact that the Fourier
intensity is the same for both these centro-symmetric functions; these two
solutions ‘fight’ with one another because they are both equally valid given the
recorded data.

(g) Recovered intensity (h) Recovered phase

(separated apertures) (separated apertures)

Figure 8: When separate reconstructions are undertaken (via the method in Figure 4),
each using a single diffraction pattern from four entirely different areas of an object
(top), the usual ambiguities of the phase problem arise. Images on the left are the
modulus, and on the right are the phase, of the reconstruction. In the top right, the
cormorant appears twice, one reflected and opposite phase (i.e. its complex conjugate).
When the four calculations are undertaken simultaneously with overlapping areas
(bottom) constrained to be identical, the reconstruction loses the ambiguities. Taken
from [28].

Now consider the lower half of Figure 8. There is one continuously updated
estimate of the whole area of the object. At each iteration, a circle of the object
corresponding to one of the aperture areas is removed and imbedded a separate
aperture box, as with the single diffraction pattern iteration. Once the object has
been updated (a whole cycle from A to A in Figure 5), this circular area is
replaced from where it was removed. Now when we begin our iteration for the
adjacent aperture area, we already have a first estimate of the object in the
overlap area. This information is fed into the second iterative loop, thus forcing
the object solution to be consistent with all the diffraction patterns.

We see that the overlapping update of the object very quickly delivers a much
better reconstruction than when we were processing each aperture area
independently. The picture appears after just a few iterations. Ambiguities are
destroyed. Centro-symmetric ambiguities cannot exist in adjacent aperture
areas: there has to be only one value for both functions in the area of overlap, so
the ambiguous polarity of both object estimates is forced to resolve itself. This is
the power of ptychography. The degree of overlap between these simple
aperture functions can be really very small, yet still the solution is forced to be

16



unique. Ptychography provides a new prior: knowledge of the illumination
positions, or at least their relative positions. It also provides more measurements
than unknowns because some of the unknowns (object pixels) are expressed in
more than one diffraction pattern. The subset of object functions that are
consistent with two diffraction patterns - and with the exact known illumination
positions and their precise area of overlap, where the object wave must be
identical for both diffraction patterns - is drastically reduced.

Hoppe’s original formulations of ptychography reached a similar conclusion,
although by a rather different route. He thought about the solution strategy in
reciprocal space, in terms of interfering diffraction beams [2, 5]. Sampling
intensity between any two spots makes it possible to estimate their relative
phase within an ambiguity of a complex conjugate. Changing that interference
condition, also by shifting the illumination to a new position, can obtain a second
estimate of relative phase in order to resolve the ambiguity. The real space
picture show in Figure 8 is probably much easier to understand.

So ptychography can solve the phase problem easily because it folds together
information from more than one diffraction (or scattering) pattern. Remember,
the support constraint cCCD problem is generally soluble with just one
diffraction pattern, except for a few ambiguities; a little extra information from
the illumination overlap constraint is a disproportionately powerful way to
remove these ambiguities and improve the likelihood of finding a correct and
unique solution.

Anything more than this - any extra information in our data over and above the
need to solve the phase problem - can now be used for all sorts of different
things. In section 4 we discuss how it can be used to account for experimental
errors and unknowns. Sections 5 and 7 will describe other uses for diversity:
multi-slice volumetric imaging and multi-modal decomposition of incoherent
states in the illumination and/or object or detector. Describing ptychography as
a solution of the phase problem is perhaps therefore an understatement. Yes, it
solves the phase problem, but that is only the first step, and a tiny first step, of
what it can achieve.

3.4 An example ptychographic algorithm: update for a spatially soft
illumination function

Unlike cCD], real-space ptychography rarely has a sharp support function.
Having an aperture right up against an object is impractical. (Although Fourier
ptychography and SAP do indeed employ sharp apertures.) In real-space
ptychography, the illumination is not sharply defined, but is ‘soft’ in the sense of
an extended, slowly decaying or ringing amplitude, like an Airy disc or a wave
propagated from an aperture to the object, which gives rise to Fresnel fringes. In
this section we discuss how an iterative reconstruction can cope with this type of
soft illumination.

When we do the reconstruction for a ‘top hat’ sharply defined illumination
function, we can cut out the current estimate of the object and put it into a
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separate calculation box. After going around our iterative loop (Figure 5), we
then ‘paste’ the new function back into the image from where it came. Of course,
we only paste the area defined by the probe, not the whole calculation box
function, most of which will contain zero amplitude. We do not touch the area of
the object that was not illuminated at this probe position. The whole process is
called ‘the object update’.

When we have a soft-edged illumination function, the update has to be subtler.
Now we have to copy a box in the object that is big enough to contain most of the
illumination. We multiple this copy of the small area of the object by the probe
function (D to A) to get the exit wave function, 1,. Then we go round the iterative
loop. What comes out of C to D, is a new estimate of the exit wave, which we can
call a corrected version of i,, namely .. It is corrected because the
experimental data has been fed into the loop (B to C). Y. will usually look
substantially like 1,, certainly after the iteration has run over all the probe
positions many times.

However, unlike the sharp aperture, we cannot just cut out a part of this function
and paste it back into the image estimate, because it is unevenly modulated by
the probe amplitude. Instead we use the new estimate of the soft exit wave to
alter, but not replace, the existing running estimate of the object. For example,
there may be points within the illumination function (say the rings of an Airy
disc function) that are zero. No photons or electrons went through those pixels
of the object, so it is unreasonable to change our estimate at those pixels based
on whatever we measured in the diffraction plane at that probe position: we just
leave them alone. Conversely, areas that were strongly illuminated by the probe
scattered most information into the diffraction pattern, so it makes sense to
weight the alterations we make in the object estimate more heavily in those
areas, and less so in weakly illuminated areas.

How can we do this in a consistent reliable way for a complicated probe? We can
develop a heuristic algorithm as follows [18]. A more formal treatment can show
that this update approximates to Newton’s method [29]: it is a very efficient and
effective search algorithm, although many more complicated, but
computationally more intensive algorithms, can improve upon it.

The two-dimensional exit wave is given by

Y. =a.q, (2)

where a is a two dimensional illumination function and g is a small area of our
two-dimensional object function, located around the probe position. For brevity,
we do not include the x, y coordinates of the functions. If these were 2D arrays in
MATLAB, for example, the multiplication would be pixel by pixel, coded as

Exitwave=Illumination.*Specimen; [COPY EDITOR - (SIC), including ;]

All the arrays have the same pixel size, but the size of the box our probe is
imbedded within is usually much smaller than the total object size.
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We go round the right hand side of our iterative loop, A to B to C to D, thus
applying the detector projection constraint. The back propagation C to D gives us
a new exit wave, which also corresponds to a new estimate of the object function,
such that

Ynew = A.Qnew- (3)

We want to alter g in the light of ¥y gy, to give a better estimate of it, qyew- Ynew
should be an improved estimate on 1, because we have injected known
experimental data during the detector projection constraint. Subtracting the
equations and rearranging, we have

dnew = q + % (Ynew — Pe)- (4)

The trouble with this equation is that when a is small or zero - which it certainly
will be in places if it was something like and Airy disc - the second term will tend
to infinity. A common way of dealing with this is via a Wiener filter. If we
multiply top and bottom by the conjugate of a, a*, the denominator is then real,
so we can add a small real number, ¢, to avoid this catastrophe, giving

Anew = q + m (Wnew — Pe)- (5)

However, we are still giving the same credence to the change we are going make
to q at any point spanned by the illumination. It would seem logical to change it
most where the amplitude of a is large, as we postulated above. The simplest
scheme is to multiply the second term by the magnitude of a, scaled so that its
maximum is unity. That is to say we put

la a

lalmax (lal?+¢€)

Wnew = We), (6)

dnew = 4

where |a|y4x is a single number which is the value of the maximum modulus of
the probe. All the other terms are 2D functions, with the subtraction,
multiplication and addition being pixel by pixel. Now we are completely
changing the object with the new estimate at the point where the probe has
maximum modulus, and all other points are only being changed in proportion to
the modulus of the probe incident at that point. Points not illuminated are not
changed at all. A little thought will show that when a is the sharp aperture we
first described, this update has an identical effect as the cut-out-and-paste
strategy. When the solution is correct, the object is not altered: an elementary
requirement of any search algorithm.

Once the update has been applied at one probe position, it must be applied at all
other probe positions spanning the desired field of view, continuously updating
the same object function. The whole process is repeated, perhaps 50 times - i.e.
5,000 updates for a 10x10 array of probe positions - always refining the same
estimate of the object. The algorithm is called the ptychographical iterative
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engine (PIE) [17]; a name that also playfully teases an eminent scientist who, in
the early 1990s, described ptychography as ‘Pie in the sky’. It can be altered in all
sorts of ways by introducing various constants or raising the scaling factor to
some power. We will discuss these changes further in Section 9.

3.5 A survey of ptychographic algorithms

Since the arrival of the PIE algorithm in 2004 [18], a growing list of alternatives
have been demonstrated, such that today (early 2017) it is a difficult task to keep
abreast of all the developments; to ease the burden somewhat, this section
provides a brief historical survey.

Our survey will split ptychographic algorithms into two kinds. Class 1 are those
that invert the standard ptychographic data set, where the illumination is
coherent, no account is taken of noise, the specimen shifts are accurately known
and the multiplicative approximation is satisfied. (Apart from the original PIE, all
of the algorithms in this category also solve for the probe.) Class 2 are those
algorithms that loosen one or other of the standard assumptions - for example
by accommodating partial coherence or allowing for thick (non-multiplicative)
probe/specimen interactions.

The first algorithm to appear in class 1, after PIE, was the conjugate gradient
approach suggested by Manuel Guizar-Sicairos [30]. This was also the first
algorithm to solve for the probe and the first to employ a global, rather than a
step-by-step approach to ptychographic reconstruction. Figure 9 explains this
important distinction; most class 1 algorithms adopt the global update strategy,
since in this way the many well-tested non-linear optimisation routines are
readily adapted to the ptychographic problem.

Calculate j*"
revised exit wave

Next iteration... Next iteration...

(@) (b)

Figure 9: There are two strategies that iterative algorithms take to recover an image
from a ptychographic data set. In (a), a whole collection of updated exit waves are
calculated in parallel, one for each of the diffraction patterns in the data set. This
collection is then used to perform one batch update of the probe and the object. Popular
algorithms such as the Difference Map and Conjugate Gradient method take this
approach. In (b), updated exit waves are calculated serially, one-by-one, with each
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update being fed into a corresponding update to the object and probe. This is the tack
taken by the ‘PIE’ family of algorithms.

Next, a key paper by Thibault and colleagues in 2008 [12] conclusively
demonstrated the power of simultaneously solving for the probe. Thibault’s team
repeated the original X-ray experiment by Rodenburg et al. by imaging a zone
plate using hard X-rays, but used the probe-solving ability of the Difference Map
(DM) algorithm [31] to realise a significant improvement in image quality and
resolution over the earlier work.

The Authors’ ePIE algorithm [32], published in 2009, extended the PIE scheme to
solve for the probe. Optical bench experiments were used in the original paper,
but shortly after, Schropp and colleagues [33] used ePIE in the X-ray regime to
characterise the X-ray beam’s focus (perhaps the first important real-world
application of ptychography), and in the same year (2010), ePIE was shown to
work with electrons [34]. Along with DM, ePIE has become the most widely used
reconstruction method, so Section 9 will look in detail at the mechanics of these
algorithms, and how they are coded.

The ptychographic inversion problem lends itself well to a variety of non-linear
optimisation strategies, as Marchesini and colleagues showed in a wide-ranging
survey in 2010 [35]. The survey covered conjugate gradient and Newton-type 2nd
order optimisation, as well as set projection approaches, in particular the
Relaxed Average Alternating Reflections (RAAR) method popular amongst the
cCDI community. The survey paper began a series of studies by Marchesini’s
group, which continued with papers on alternating direction minimisation [36]
and the idea of phase synchronisation to accelerate algorithm convergence [37],
as well as ‘class 2’ algorithms to combat diffraction pattern noise. RAAR itself has
gone on to form the basis of the SHARP ptychography system at the Advanced
Light Source, where ptychographic images can now be obtained in close to real
time [38].

Almost all of the work on ptychography up until the start of 2014 concerned X-
ray microscopy. However, around this time the emergence of Fourier
ptychography and further demonstrations of electron ptychography began to
broaden the appeal of the technique, and so spurred further interest in new
algorithms. One example was the ‘GPILRUFT’ scheme used to reconstruct atomic
scale images of cerium dioxide at Oxford [39]. GPILRUFT tackled the
reconstruction by linearising the inversion problem, and so was the first to go
some way toward provable convergence results, although the significant
practical difficulties with electron ptychography that the Authors faced seemed
to outweigh any benefits from the new algorithm. Fourier ptychography (FP)
used ePIE at the outset [40], but the very different nature of the data in FP -
combined with the fresh eyes of newly-interested research groups - quickly
resulted in alternatives; rather than give a full run down here, the Reader is
directed to a comprehensive review by Yeh et al,, in particular for the
comparison there between the step-by-step and global approaches [29].
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The most recent work on class1 algorithms, at least that the Authors are aware
of, come from two papers. A 2015 paper by Hesse [41]- working with D. Russell
Luke, inventor of RAAR - presented the ‘PHeBIE’ proximal gradient algorithm,
together with a welcome rigorous look at the convergence properties of ePIE and
DM. This year (2017), a paper by one of the Authors [Maiden, Optica, in press]
re-examined and improved ePIE, with changes to the probe and object update
steps (see Section 9) and the introduction of ‘momentum’, an idea borrowed
from the machine learning community.

Of the algorithms in class 2 (those allowing a relaxation of the assumptions in the
standard ptychographic model), most have attempted to deal with noisy data,
and most of these have assumed that noise arises from counting statistics and so
is governed by the Poisson distribution (see Section 4.7). Quite early on, Thibault
and Guizar-Sicairos took this tack with their maximum likelihood algorithm [42];
since then, ePIE has been adapted to accommodate Poisson noise [43], and a
variety of schemes have been used for FP to the same end [29, 44]. Another
major source of noise, camera readout, was combatted by Marchesini by
adapting the Fourier constraint in RAAR [45], and by the Authors with an
adaptation of ePIE in the electron [46] and optical [47] regimes.

Arguably, the most important class 2 advance came with the advent of mixed-
state ptychography [48] (see Section 8). The mixed state forward model can
quite readily be applied to any of the conventional algorithms. Apart from
dealing with partial coherence in the X-ray [48], electron [49] or optical [50]
regimes, one or other mixed-state algorithm has since been employed to deblur
diffraction patterns in ‘fly-scan’ ptychography, where the probe rapidly scans
across the specimen without stopping [51]; multi-wavelength ptychography
[52]; ptychography with a vibrating specimen [53]; and in the previously
mentioned ‘probe relaxation’ algorithm to handle a probe that fluctuates during
the experiment [54].

Another popular grouping of class 2 algorithms correct errors in measurement of
specimen translations (see Section 4.4). That this is possible was first shown by
Manuel Guizar-Sicairos in his early conjugate gradient paper [30]. Later an
annealing algorithm that randomly agitated the measured specimen positions
during the reconstruction showed that position correction could be effective in
optical and electron ptychography [55], and a cross-correlation based add-on to
ePIE gave excellent results in the X-ray regime [56]. A refined conjugate gradient
search also solved the position error problem effectively [57].

Last in our survey are the class 2 algorithms that relax the thin (or
multiplicative) specimen assumption. Two approaches have been reported:
multi-slice ptychography (see Section 6.2 and [58]) and diffraction tomographic
ptychography [59]. This is an exciting area for further research, although the
hugely enlarged object space for volumetric imaging makes the reconstruction
task immensely more demanding.
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The following Sections provide further details of the myriad ways in which
ptychography can be implemented, improved and expanded; we will revisit
ptychographic algorithms in more detail in Section 9.

4) Sampling and removal of artefacts in images

We are going to use a very old result to illustrate some important concepts about
information content in ptychography. Figure 10 was published by Bunk et al
[60], almost immediately after the first experimental demonstrations of visible
light and X-ray iterative phase-retrieval ptychography[11, 17]. It used the PIE
reconstruction algorithm described in the last section.

Figure 10: An early very example of a visible-light ptychographic reconstruction
obtained using iterative solution methods, collected in the simple aperture configuration
(section 5.10), illustrating the improvement in the reconstruction as the degree of
overlap between adjacent illumination positions increases. Taken from [60]. Artefacts
can now be removed by various strategies (section 4.8).

If you are completely new to ptychography, you might be disappointed that these
reconstructions seem to be full of artefacts, especially in view of what has been
said in the previous sections. The first thing to stress is that their lack of quality
is absolutely nothing to do with the capabilities of the authors of the paper.
When these results were published, they were cutting edge, and certainly no
worse than the first proof-of-principles [refs]. But at that time really the only
thing that was known about ptychography was that it could solve the phase
problem for an indefinite field of view, as discussed in the previous section. All
the many developments that have taken place since then mean that now very
high resolution, artefact-free reconstructions can be obtained with almost total
reliability. For example, see Figure 11, where a modern visible light ptychograph
is compared with traditional contrast techniques. However, we start our
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experimental narrative here because (a) the work in Figure 10 represents the
first experimental exploration into the effect of ‘extra’ information in
ptychography (beyond the solution of the phase problem), and (b) because we
think it will be useful to illustrate to any new-comer to the field what sort of
things can go wrong if you don’t know the tricks of the trade. We will re-assess
the artefacts in these pictures in section 4.8.

In this section we are going to consider the width and nature of the
communication channels illustrated in Figure 1d in the context of ptychography.
First we consider sampling of our data. A great emphasis in the early days of X-
ray cCDI was on the sampling condition in the diffraction plane, which was called
over-sampling [61]. In ptychography the intensities measured at the pixels in the
detector change as we scan the illumination or object. If we move the
illumination in very small steps, the changes are small and incremental: changes
are much larger for large step sizes. A more general view of sampling in
ptychography is therefore to examine not only the sampling in the diffraction
pattern in reciprocal space, but also the sampling in real space: the grid over
which we scan the illumination. We need to consider the sampling over a four-
dimensional cube made up of 2D diffraction patterns collected from an array of
2D probe positions. (Or, in the case of Fourier ptychography, the sampling of the
illumination beams in angle space and the pixel sampling in the image plane.)
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Figure 11: Example of a modern visible-light ptychograph of cells (left) - compare Figure
10. The right hand image is the conventional fluorescence image. Ptychography does not
need fluorescence signals, so the cellular structure can be imaged directly without
affecting the cells in any way, e.g. for screening live embryos. Taken from [62].
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There are two ways of thinking about sampling in real space. One way is simply
to state the periodicity of the probe movements in real space. More commonly,
workers in the field often talk about the ‘overlap parameter’. This is the ratio of
step size through which the illumination is moved in relation to the width of the
illumination. Because the illumination is invariably roughly circular, both these
definitions are imprecise: the step size has to be about 30% before all the gaps
between circular areas have been covered just once.

Let’s look at Figure 8 in detail. In this visible light optical experiment, an 11x11
grid of illumination positions is fed into the PIE serial iterative reconstruction
method [18]. In the first frame, the probes do not overlap with one another, at
least as defined by the aperture diameter. In subsequent frames the probes are
made larger so that the overlap between them increases in steps of 10% up to
100%. In fact, some structure comes out of the 0% overlap data set because PIE
can account for diffraction effects caused by the small propagation distance from
the aperture to the sample, thus allowing some information to ‘seep’ between
probes. Clearly, 100% overlap contains no ptychographic (probe shift)
information whatsoever. The result is worse than an error reduction support
constraint algorithm because the PIE constraint in real space has soft edges
arising from the broadening of the probe.

Clearly, as the overlap increases, the quality of the reconstruction becomes
better and better, at least until the 100% overlap catastrophe. Is this what we
expect? Because of the geometry of the gaps between circular apertures, as
discussed above, the overlap must be at least 30% before every pixel of the
object is illuminated even once. This accounts for the sudden jump in the quality
of the image between Figures 10c and 10d. As the overlap increases further, we
are making more and more measurements for a smaller and smaller field of view
of the specimen: the ratio of measured data points to unknowns is increasing.
Remember, a single diffraction pattern contains enough numbers to solve for an
isolated object (any one of these illuminated areas). Once we have enough
overlap to supress the few ambiguous solutions that can arise in cCD], it is not
obvious why having any further extra data - often called ‘redundant data’ -
should necessarily make the reconstruction better. We will find that a key
application of this redundant ptychographic data is to supress the artefacts
present in these early results. (Of course, if redundant data is employed usefully,
the word ‘redundant’ becomes a misnomer.)

A key requirement for cCDI is that the sampling in the diffraction plane must
become smaller (more dense) as the size of the object increases. This follows
from a simple analysis of the scattering geometry - that beams scattered from
the edges of the object will become out of phase more quickly as a function of
scattering angle if the size of the object is large: i.e. the detector pixels lying in
angle space must be smaller to pick up all the relevant interference information.
As we have seen, when we measure intensity in the far-field, the calculation box
over which we solve for the object must have dimensions of roughly twice the
size of the object itself. One might suppose that this same condition must hold in
ptychography. Indeed, most ptychographic reconstructions are undertaken with
the probe imbedded in a similar calculation box.
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Surprisingly, the minimum sampling condition for ptychography is not
constrained by the probe size. Rather than think of overlap as a measure of
redundancy, it is more informative to think of the probe movement defining a
grid of real-space sampling. The fundamental minimum sampling condition in
ptychography must take into account both real- and reciprocal-space sampling.
Strangely the size of probe is independent of the sampling requirement, quite
unlike in conventional cCDI, provided that for a given real-space sampling the
probe is big enough so that adjacent illumination areas overlap somewhat and
span the entire field of view.

If we simplify the illumination shape as a square, so that we do not have to
handle the awkward geometry of overlapping circles, it can be shown using
simple physical arguments [63] that the minimum ptychographic sampling
condition is

AR = — 7)

where AR is the sampling interval in real space and Au is the sampling interval in
reciprocal space. The same conclusion can be reached by a more formal
derivation [64].

We see that we can exchange sampling between real and reciprocal space as we
wish: it is as if we have a dial that can, in a continuous manner, reduce sampling
in one plane and increase it in the other, while still preserving the necessary
quantity of information to reconstruct the specimen. If the probe is large, but the
sampling in real space is very fine, this formula implies that the pixel size in the
detector can be large, even though the structure of the diffraction pattern is very
fine (a large probe in real space implies small features in reciprocal space). This
is quite contrary to anything that follows from cCDI. However, it transpires that
we can recover unmeasured small pixels (that do satisfy the conventional
diffraction sampling condition), from the large pixel data - see section 8.5. Very
dense sampling in real space is normally associated with a very small probe (see
see Sections 5.1 and 10 below), so that features in the diffraction plane are
anyway very large and can be captured by only a few large detector pixels. This
type of data, although subject to the same sampling condition, is better
processed by non-iterative means (see Section 10.4)

It should be emphasised that the fundamental sampling condition relates only to
Fourier domain ptychography where the scan is over an infinite field of view,
and where we know the probe function. It is also the minimum sampling
required to solve the phase problem. In any practical ptychography experiment
the sampling in diffraction space is high and there is considerable probe overlap
in real space. So we generally have much more information than we need. Now
we discuss the things we can do with these extra data in order to improve image

quality.

4.1) Probe recovery:
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One of the most important breakthroughs in iterative phase retrieval
ptychography was to discover that it is possible to solve for both the object
function and the illumination function [12, 65]. The two functions express
themselves equivalently in the mathematics, so perhaps this is not quite so
surprising. It was known some time ago that the WDD method (section 10) could
be used to solve for both object and illumination, but experimental tests on the
optical bench were not particularly convincing [66]. On the contrary, iterative
methods to retrieve the probe work very well. The two most popular algorithms
for this simultaneous recovery involve either projections over the whole data set
at once (DM) or a serial update process (ePIE), which were brief introduced in
Section 3.4 and will be discussed in detail in section 9.

An immediate unintended consequence of this development was that workers in
the X-ray field began to use ptychography not to make images of an object, but
solely to characterise and reconstruct the illumination function. There are now
many examples in the literature. Because the full complex field is recovered, it
can be back-propagated to the lens aperture, thus elegantly displaying any phase
aberrations in the optics. This is enormously more informative than a simple
resolution test, say by scanning the focus of the beam across a knife edge. In the
particular example shown in Figure 12, [67], the probe calculation from a
refractive aberrated optic has been used to make a perturbing phase plate that
corrects for the aberrations. This is an example of how ptychography can
enhance the technology of its lens-based imaging cousins in order to improve the
very fine probes used for analytical STX/EM. Similarly, Figure 13 shows a cross-
section through an electron probe recovered from ptychographic data in the
scanning electron microscope [68]. The explicit map of the complex wavefield of
the probe in both of these examples is not available by any other means.
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Figure 12: An example of a cross-section through a focused X-ray beam, calculated via
ptychography, taken from[67].The beam is calculated at one level of defocus where the
object is positioned, and then propagated computationally to produce the cross-section.
The optics are imperfect (top), generating a large crossover. In the lower picture, the
optics have been corrected by inverting the aberrations in the lens measured from the
top cross-over. The inference fringes of the right (caused by a diffraction grating in the
beam) are like those in Figure 2: when they are straight, there is only defocus present
and no higher-order aberrations.
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Figure 13: As Figure 13, but for an electron probe in a scanning electron microscope
(SEM), taken from[68].

No matter how well the optics within a ptychography experiment are calibrated,
all reconstructions nowadays solve for both the object and the probe. Of course,
for a set up that remains constant from one day to the next, it is logical to start
the reconstruction with the last known probe solution.

An interesting and possibly very important development in probe recovery has
recently been demonstrate by Odstrcil [54]. In the context of EUV ptychography,
experimental constraints dictate that every single probe is different and
unknown. We might suppose that absolutely no progress could be made in such
a situation. The whole technique of ptychography depends on the probe and the
object remaining constant. The premise of his reconstruction technique is that
though all the probes are different, each probe can be described as a sum of a few
(5-10) fundamental probes, all of which are orthogonal to one another. There are
still innumerable possible probes, but each one is described by a few numbers,
instead of the 1,000s of pixels needed to describe a completely general probe.

A little thought will suggest that this is a very reasonable assumption. After all,
the optical components remain same. In this case, each shot for the EUV source
has a different structure, but each probe will be perturbed by a set of possible
variables that can change in the experiment, and these variables may be rather
few. If each probe were completely different from every other, we would indeed
have an impossible problem.

Eigen probes (U)

Normalized spatial

evolution (V)

Figﬁre 14: A set of orthogonal probe functions that can be used to-comi)ose a probe
function that varies from one position to the next. See text for more details: taken from
[54].
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If all the real probes are already known, finding the underlying fundamental
probes can be done by the standard techniques of principal component analysis.
But at the start of the reconstruction, they are not known. The reconstruction
starts by assuming all the probes are the same and does a normal reconstruction.
The resulting probe and object are very poor approximations of their real
counterparts. However, the object function can be used in the iterative update to
make a new estimate of each of the probes for all the positions. These are now
used to find principal components. They are not the actual principal components
because the first estimate of all the probes is bad. Furthermore, none of the
wrong probes can be fully described by the small number of wrong principal
components. The updated probes are projected onto the first estimate of the
principal components, thus making a new set of probes that are now just
described by the first estimate of the principle components. These new probes
are used to update the object. Then they are updated themselves. The second
iteration of probes creates a second iteration of principle components, and so on
and so forth. The algorithm convergences on the actual principal components
and hence the actual probes. Of course, because each probe is only described by
a handful of numbers, we only need a fraction of the diversity in the
ptychographical data set to solve for them all. Some example results are shown
in Figure 14.

4.2) Some pathological instances where Ptychography struggles

We have said that ptychography suppresses all of the ambiguities that arise in
cCDL. This is not quite true: it does, rarely, suffer from its own special
ambiguities. Of course, now that we are solving for two complex functions, object
and probe, we can expect that the sampling condition will become twice as
demanding. That is true, but other factors must also be taken into account when
solving for both functions. The specimen and probe functions can never be
completely and unambiguously separated from one another. A simple example is
that the probe can increase in amplitude, while the specimen reduces in
amplitude (appears more opaque), but the product of the two maintains the total
measured flux on the detector. This is not serious as far as observing the
structure of the object, but it needs to be handled carefully if quantitative
absorption data is required, say by calibrating the total flux in the probe in an
area of free space around the object. During the reconstruction the probe can be
periodically propagated to the detector plane (without the influence of the
object) where it can be constrained by the correct free-space intensity. Indeed, it
is always advisable to scale the first estimate of the probe by the integrated
intensity in the detector plane. If there is a large disparity between the intensity
of the physical probe and the first guess of the estimated probe, many
reconstruction algorithms find it very hard to recover. If the edge of the field of
view of the reconstruction is very bright or very dark, you have probably made
this mistake.

More profound questions arise when we consider the information content of the

object and the illumination. To get any diffracted information, the specimen and
probe must have structure. If the object structure is sparse, consisting of a very
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few simple features separated by large areas of constant phase or modulus, then
we might suppose that the probe is very poorly constrained. Consider a largely
non-transparent object with only a few empty features. If the probe is scanned
with large step size, but over a small field of view, only a few of these object
features will intersect with it: there may be a large subset of areas within the
probe are never transmitted through to the detector, yet alone solved for by any
algorithm!

Even when the object function has a lot of structure, there are certain types of
probe which are difficult to solve for, one example being a defocused convergent
beam, which we will discuss further in Sections 5.5 and 10.6.6. Another example
occurs in visible light ptychography, where it is common to use a fixed of some
type to create a probe with complicated phase and modulus structure [69].
Counter intuitively, convergence is poor when both the object and illumination is
highly structured. However, once a good estimate of a complicated probe is
known (and can be used to seed the reconstruction), then convergence onto the
object function is much better than using a probe with little structure. The WDD
formulation can be used to suggest probe structures, which are more likely to
improve the convergence of the reconstruction (see Section 5.6).

There are various very unusual combinations of object function and illumination
structure and/or shift positions where ptychography provides no extra phase
information at all. A trivial example is if all the illumination positions are
identical so that the overlap between them is perfect (see Figure 10). Obviously
all the diffraction patterns are identical and therefore lend no extra diversity.
Similarly, if the object is periodic, and the scan of the illumination has the same
periodicity (or any factor times the object periodicity), then all the diffraction
patterns will also be identical. Certain illumination functions can also cause the
obliteration of diversity, for example a convergent beam of finite angular extent
when incident on a high-frequency periodic structure can mean that there is no
overlap in the diffraction orders in the far-field (see caption of Figure 2), in
which case no phase information can be expressed.

If the entire field of view is free space, then clearly we cannot find any sort of
sensible solution. If the reconstruction starts with the assumption that the object
is free space, and with a known probe function (which is now the only
information expressed in the diffraction pattern, but without its phase), then in
theory the object function should not depart from free space. We find that in
general if a significant area of the field of view has some sort of object structure,
then areas that are free space will be reconstructed correctly, although residual
errors in the probe reconstruction arising from the limited field of view occupied
by the object may express themselves in free space at the probe position
locations. The free space problem is clearly a condition for which the
conventional microscope is vastly superior: it will show blank free space. Luckily,
not many microscopists want to look at free space.

If the object is unknown, and especially if it is likely to be sparse or weakly

scattering, it is always better to use a probe that has more structure within it.
This can be shown using arguments based on the WDD method [70, 71],
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although whether these are directly applicable to iterative methods has yet to be
proved. Figure 15 shows an X-ray example of how making the probe (in this case
formed by a zone plate lens) much more complex by the introduction of a
pinhole improves the reconstruction quality.

4.3) Non-periodic scan

Although we have formulated the sampling condition in terms of a periodic scan
over the object, it was realised quite early that periodic scans are not optimal
[65]. As we noted in the previous section, ptychography offers no information if
the probe is shifted across a periodic object, at the periodicity of that object,
because each diffraction pattern is identical and contains no phase information.
We can reverse the argument. A probe scanned periodically over a specimen will
not contain any ptychographical information for a Fourier component in the
object that matches multiples of that periodicity. A periodic scan will always tend
to produce image artefacts at that periodicity. However when we solve for both
the probe and the object, the problem creates the so-called ‘raster scan
pathology’, first pointed out by Thibault et al. [21]. Either the probe or the object
can develop structure at the scan periodicity, causing a further source of

ambiguity.
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Figure 15: Effect of having a more structured illumination, taken from[70]. (a)-(c) show
the real-space probe reconstruction, the diffraction pattern from the probe when there is
no specimen present, and an example reconstruction, respectively, for when a simple
aperture is used to form the illumination. (d)-(f) as above, but for convergent
illumination. (g)-(i) as above, but for convergent probe clipped by an aperture, which
clearly extends the probe function in reciprocal space. The quality of the reconstruction
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improves from top to bottom. This is shown quantitatively in original publication using
Fourier ring correlation [70].

The solution is to deliberately introduce non-periodicity into the scan. One
common way of doing this is via a spiral scan, starting from the centre of the field
of view [12, 20, 65]: a technique that is now used very widely in the synchrotron
X-ray world. Alternatively, a broadly periodic scan can have small random offsets
added to each probe position. There are situations where neither of these
strategies is easy to implement, for example when a STX/EM configured for
smooth rectilinear scans is modified to collect ptychographical data. In fact, if the
early iterations in the reconstruction uses computationally perturbed probe
positions, then periodic artefacts from a regular scan can be supressed at the
cost of resolution. Final polishing of the solution can then use the real regular
probe positions [72].

4.4) Refining probe positions

We can suppose that our knowledge of the probe positions relative to the
specimen is the key a priori constraint in ptychography, replacing the real space
object support constraint in cCDI, especially when we are solving for both the
specimen and the probe. However a densely-sampled data set can allow
refinement of the probe positions after the experiment has been completed. This
has proved important for electron ptychography (at least when real-space step
sizes are large). A STEM scan is designed to be periodic, but when random
position offsets are added to these (see previous section) hysteresis in the scan
coils does not always move the probe to the assumed positions.

If we know our scan positions but think there might be distortions from
specimen drift, stretching, or rotation of the scan, then these can be parametized
using only a few variables, which become a few more variables in our search
space. Guizar-Sicairos and Fienup were the first to investigate the search for
unknown probe positions using conjugate gradient methods [30], but this is
computationally intensive. The two most commonly used techniques have low
computational overhead, increasing the cost of the whole reconstruction by only
a factor of 3 or so. Both look for perturbations in the position of every scan point
one at a time, which reduces the computational overhead, but they use quite
different mechanisms: annealing and cross-correlation. In both cases, an initial
reconstruction is obtained, making no account of position errors.

In the annealing algorithm [55], each probe position then has a number (say 5)
of random offsets applied to it, but only up to a given maximum. Using the
existing estimate of the object and probe, a diffraction pattern is calculated from
all 5 positions. One of these will most closely match the measured diffraction
pattern from that point, i.e. it will have the lowest error metric. This position is
now chosen as the ‘correct’ position, and then the object estimate is updated
using that probe position. (Note that we are describing this in terms of a serial
update algorithm, like the aperture serial iterative update described in Section
9.1, but it can be incorporated into the parallel methods.) The same process is
applied to all probe positions. For the next iteration the new altered probe
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positions are the starting point, but once again random offsets are added to
these. Thus it is possible for a probe position to wander quite far from its original
putative position. However, as the calculation proceeds, the random maximum
distance added to the current probe position estimates is slowly reduced. This
forces an estimated probe position to settle on a single point, in the meantime
gradually stopping it from jumping large distances from a good quality estimate.
Figure 16 shows the improvement that can be obtained using the method, in this
case for electron ptychography data. The effects of a drastic period of drift,
starting half way through the experiment, are entirely removed.

The correlation algorithm [56] starts by storing a copy of the current estimate of
the object function. It then updates the original object function at just one probe
position. The current (pre-updated) estimate of the object has previously been
reconstructed in this particular probe area using lots of diffraction patterns from
all the overlaps occurring within it. In calculating the next update, this ‘good’
image (averaged from lots of data) is fed into the reconstruction algorithm at A
(figure 4), where the exit wave estimate is generated. It is the detector update, B
to C, that impresses the wrong position information for this probe position, but
most the original image data (determined mostly by the phase of the diffraction
pattern, which is not changed) will survive and still be present in the new
estimate of the exit wave at D. In other words, the updated object function
should look like the previous object estimate, but with the newly updated area
being a copy of the image shifted to the wrong position. This is true at least to
first approximation.

Figure 16: Example of the improvement in the object and probe reconstruction when
distortions (present in the left hand side reconstruction) are removed by probe-position
refinement. These electron data were seriously damaged by an unpredictable specimen
drift [55].

We have a copy of the pre-updated estimate of the object, and the updated
estimate, with part of it shifted. Cross-correlating these two should give a peak
that is displaced from the origin. The magnitude of this displacement is very
small, because the cross-correlation is dominated by the areas of the two images
that are mostly identical. However, the peak will lie in a certain direction from
the origin in the two-dimensional plane of the cross-correlation. This can be used
to steer the next estimate of the probe position. The length of the vector from the
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origin to the peak has to be multiplied by some factor to define an actual new
position for that probe.

New algorithms for probe position refinement continue to appear. For example,
Tripathi et al [57] have combined conjugate gradient methods with the
conventional DM and ePIE core algorithms, giving excellent results (Figure 17).
Needless to say, researchers tend to be quite conservative, using algorithms that
they have confidence in. Most algorithms have free parameters that can be
tweaked, and so a lot depends on experience; the optical set up being used also
impacts their efficacy. Consequently, it is hard to compare them objectively.
Groups choose one, develop the requisite knowledge to optimise it, and then
tend to stick with it. Probe positions are just another set of dimensions in the
solution space, so there are undoubtedly much more comprehensive and
efficient ways for solving for them yet to be found.
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Figure 17: An example of probe-position correction in X-ray ptychography, taken
from[57]. (a) and (b) are the uncorrected object and probe reconstructions. (c) and (d)
are after probe position refinement. (e¢) compares putative and actual probe positions
calculated from the probe-refinement procedure. See [57] for more details.

4.5) Field of view

In addition to sampling per se, another important variable is the field of view of
the whole scan. When the sampling in real space has high periodicity but the
probe is large (or in other words, the overlap is very large), the centre of the field
of view will be illuminated many times, whereas the edge of the field of view is
only ever illuminated once. With reference to Figure 18, the ratio of the probe
size, the step size and scan size (4x4) is such that only the very centre of the
object is illuminated 12 times (the corner probe positions do not overlap in this
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area). Extending the scan to 6x6, and the area illuminated 12 times increases in
area by a factor of 9. In other words, at low scan sizes, the constraints on the data
(generated by multiple sampling the same object area) very rapidly increase as
the scan is enlarged. This accounts for the (perhaps surprising) fact that the
bigger the field of view (the more numbers we have to solve for) the easier it is
to solve for those numbers. Early attempts at iterative ptychography, especially
electron ptychography [34, 73, 74], often used very small scan patterns, which
may account for the fact that only the very central regions of such
reconstructions were of reasonable quality. Using a small field of view also
makes solution of the probe function much more difficult, because we need extra
diversity to solve for it. In general, a 10x10 scan with a 70% overlap parameter is
a safe minimum requirement: anything less than this should be avoided. Larger
fields of view are always more desirable.

Figure 18: As the field of view is increased, defined in terms of the number of
illumination areas, the region where the object has been illuminated most often
increases in size quickly.

4.6) Missing data and data truncation

In practice, most ptychographic data sets fulfil the fundamental minimum
sampling criterion in Equation 7 by many factors. This means that astonishingly
large quantities of data can be discarded, or simply not measured, without
affecting the quality of the final reconstruction. One way of thinking of this is via
Hoppe’s ‘ptycho’ convolution. If in a conventional real-space ptychography
experiment the illumination is parallel (which of course means it has no
localisation at the specimen or convolution in the far-field), then a particular
scattering vector will arrive at just one pixel on the detector. If data from this
pixel is lost - say that detector pixel is faulty - the Fourier component in the
object relating to that scattering vector is also irredeemably lost. However, in
ptychography we have a localised probe, which means the diffraction pattern is
convolved with the scattered amplitude. (Note that in Fresnel full field
ptychography, where there is no localisation in the illumination, there is still a
convolution in the Fresnel integral.) This means that information relating to any
one scattering vector is expressed in a number - often a very large number - of
pixels surrounding the faulty pixel. We can therefore happily dispose of the
signal from a detector pixel on the understanding that information expressed
around it will fill the gap left by it. We do this in an iterative reconstruction
algorithm by what is called ‘floating’ the dead pixel. When the exit wave is
propagated to the detector, the missing pixel assumes the modulus and phase of
the forward calculation. This is well determined by the existing estimates of the
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object and probe (propagated to the missing pixel via the exit wave) which have
been generated by all the ‘good’ detector pixels in all the many diffraction
patterns.

A more radical manifestation of this phenomenon is accounting for intensity data
that is scattered outside the detector, and then using redundancy in the
ptychographic sampling to recover intensity that would have been measured had
the detector been large enough [75]. This sounds improbable, but it does work.
As an example we refer to a visible light optical demonstration in Figure 19. The
diffraction pattern (Figure 19a) has been recorded as usual. The well-developed
speckle arises from the fact that the illumination in this particular experiment is
highly structured and there is a wide range of angles in the incident radiation.
Clearly, at the edges of the detector the intensity is still strong and we can
reasonably infer it extends beyond the edges of the recorded data.
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Figure 19: An example of reconstructing data that has not been measured, taken
from[75]. (a) the diffraction pattern, which is clearly larger than the detector size. (b)
Reconstruction using the measured data. (c) Reconstruction with a much larger
diffraction pattern, but with the same data. Pixels outside the region of measured data
are left to ‘float’. See main text.

In Figure 19c we see two reconstructions. The low-resolution image has been
reconstructed as usual, using only the recorded data. The high-resolution image
has used a much larger computational array for the detector, with all pixels
outside the measured region being ‘floated’ during the reconstruction. This
method is not giving us anything for free or breaking the laws of physics in any
way. The lost data has to have a certain value in order to be consistent with the
convolution of the object diffraction pattern with the angular distribution of the
illumination function (i.e. the Fourier transform of the illumination function). In
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this case, the latter is very wide in diffraction space. We end up solving for a
region of reciprocal space the width of the illumination (in reciprocal space)
convolved with the width of the detector. This is exactly the same as the transfer
function of an ordinary optical microscope, which is the convolution of the
condenser lens aperture size with the objective lens aperture size.

Recovery of lost diffraction data does have some practical applications. Many
high-performance X-ray detectors are arranged in tiles, with gaps between each
tile. Rather than interpolating the data in these regions, or simply ignoring them,
ptychography can recover accurately the measurement that should have been
made there. In the context of scattering outside the whole detector, it must be
emphasised that if the diffraction patterns do indeed spill over the extent of the
detector (this should not happen if the experiment has been designed properly),
there can never be a consistent solution for the inverse calculation. Truncated
data should ideally therefore always be padded with floating pixels.

One may ask - ‘how many pixels can [ ignore, and how does that number relate
to the necessary minimum sampling condition?” We leave this as a computational
exercise for the reader, who may be surprised at the vast quantity of pixels that
can be ignored and ‘floated’. Two hints: choose the pixels randomly, not in any
sort of systematic array; and remember that just because an image looks ‘OK’
that does not mean to say you have actually recovered all the information that
was in the object in first place. Although sparse objects can be hard to
reconstruct, because of what we discussed in section 4.2, objects that are
moderately sparse (for example resolution test specimens) contain rather low
information, and so seem to reconstruct well even if the sampling condition is
not reached.

4.7) Shot noise

All data have noise. In the case of electrons and X-rays, specimen damage is
always a concern, meaning that minimal dosage is always desirable, and so our
preferred data will always suffer from a degree of Poisson noise, even if the
detector is perfect. The lower the dose, the lower the specimen damage; but the
fewer the counts the higher the noise. This is a leading issue in all imaging
science, especially electron microscopy of soft matter like biological tissue or
polymers.

Something widely misunderstood is that damage must be a serious weakness of
ptychography because each area of the object must be illuminated many times.
But this is only true if we worry about the noise in any one diffraction pattern.
We must remember that each pixel of the object scatters photons or electrons
into several diffraction patterns: these scattering events, and the information
they contain, are not lost; they are simply distributed over a number of detector
pixels that just happen to lie in different diffraction patterns. Provided our
reconstruction algorithm can put together all these counts, the noise in the
reconstruction is, like conventional imaging, determined by the total number of
counts that passed through each pixel element of the object.
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This phenomenon of dose fractionation occurs in many fields, for example
tomographic reconstruction [76, 77]. Unfortunately it only works well if our
detector is perfect. Background or readout noise mean that we need to minimise
the number of times we readout the detector. If there were only one count per
diffraction pattern scattered from the object, then this would be drowned out by
just a few false counts arising from the detector noise. Hard X-ray detectors and
very modern electron detectors do nowadays achieve virtually perfect event
counting, so dose fractionation in ptychography can now be fully exploited.
When we come to discuss the Wigner Distribution Deconvolution method later
in Section 10, we will see that extraordinarily low counting statistics can be
tolerated in each diffraction pattern.

A low count in each diffraction pattern has consequences for sampling in real
space. Suppose our illumination area is large and we make exposures that are so
short that on average only one photon or electron arrives in each diffraction
pattern. Clearly, if we are going to get enough flux to pass through any one pixel
of the object in order to form a reasonable image of it, then we cannot move our
illumination in large step sizes because most image pixels will not scatter even a
single photon or electron. The optimum step size will then depend on the
characteristics of the detector: some single-event counting detectors can handle
very few counts per pixels, so the step size must be very small. The smallest
meaningful step size depends on the frequency spectrum of the probe. Moving it
less than the periodicity of its highest frequency Fourier component will not
alter the diffracted intensity (or rather the probability distribution of the
intensity) to produce new, independent information, because we are sampling in
real space at periodicity of less than the Nyquist condition.

With low count rates we must be careful about how we reconstruct the data. In
any inverse problem, noise masks the minimum in the error metric, and can
create many local minima and a false global minimum. Finding the minimum
without getting stuck in local minima is much harder, and if we do find the global
minimum, it will not be a perfect representation of the object function. After all, a
perfect reconstruction implies we know the diffraction pattern perfectly, which
we clearly do not, because the low counts are distributed stochastically, albeit
with a probability determined by the underlying wavefunction. For noisy data, it
is preferable to use a conventional algorithm (DM, ePIE etc.) initially, then when
close to the solution, refine with Maximum Likelihood (ML) [42]. A formal study
of the convergence properties of this approach has not as yet been undertaken,
but the results are impressive. See Figure 20.
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Figure 20: Demonstration of the maximum likelihood (ML) method by Thibault and
Guizar-Sicairos, from [42]. (a) Original image. (b) Difference Map (DM) reconstruction.
(c) ML reconstruction assuming Gaussian statistics. (d) ML reconstruction assuming
Poisson statistics.

4.8) Artefacts in Figure 10

As we emphasised at the beginning of this section, Figure 10 was one of the best
ptychographical reconstruction obtained by 2008 [60]. By now, we hope a
reader new to the field will appreciate the developments that have occurred
since then, so that if they were faced with a similar reconstruction they would
know how to improve upon it. These are the issues:

i) The object and the probe are sparse. At the centre of the field of view, the
dominant feature in the object is just a line. Data transfer in ptychography is
structure dependent. The probe is also a simple propagated aperture that does
not have much diversity. Nevertheless, there is no reason why this shouldn’t
reconstruct, and where the real-space sampling is finest it does. But at the outset,
the combination of probe and specimen means that this experiment is
demanding.

ii) There are periodic structures, because of the regular scan, which we now
know cannot easily transfer certain frequencies (even with a known probe). An
irregular or circular scan would immediately solve this problem.

iii) The algorithm employed, PIE does not solve for the probe. The probe has
been estimated from knowledge of the aperture and a computational
propagation to the specimen, using a physically measured distance between the
aperture and the object. Solving for the actual probe will certainly improve the
solution.
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iv) The scanning stage may not be perfect. Nowadays if there is any doubt about
hysteresis or backlash, adopting one of the probe position refinement algorithms
could well also improve the reconstruction.

v) Perhaps most important of all (although this has not been a subject covered in
this section), is that we now know that this very simple aperture-only set up is
one of the worst ways of doing ptychography. See Section 5.10.

vi) The data may also benefit from a modal decomposition (covered in Section 8),
not because the laser source is incoherent, although it could have more than one

mode within it, but because a ‘throw away’ mode can take out any detector noise
which may well be present.

Finally, we remark that dose-fractionation properties of ptychography were not
realised when these results were published. For this reason, the authors
concluded that the optimum overlap condition is not the largest possible (very
dense real-space sampling). They balance the overlap parameter with a
consideration of total dose, assuming each diffraction pattern must have the
same number of counts, and not that the counts can be fractionated between
them. If the detector is not perfect, then of course their analysis still applies. If
the detector is perfect, we now know that having as much overlap as possible is
optimal, although this generates huge quantities of data, where each diffraction
pattern may only contain rather few counts.

Section 5: Experimental configurations

Ptychography is very versatile. The ways it can be undertaken are diverse. Most
of the optical set ups that have so far been explored are used with more than one
type of radiation, although for good reasons rarely with all types. For example,
the simple aperture configuration is easily implemented using visible light or X-
rays, but would be fiendishly difficult to do with electrons. Making an aperture
small enough at electron wavelengths, and opaque enough outside the aperture,
would imply an extraordinarily large aspect ratio for the hole: very hard to make,
and which would contaminate almost instantly. Similarly, Fourier ptychography
is perfect for visible light and possible for electrons (where it has historically
been called tilt-series reconstruction). But it is virtually impossible for
synchrotron X-ray ptychography where the beamline direction is fixed: all the
optics and the detector would have to be scanned around the object, an
impossibly demanding experiment with little to recommend it. However, these
examples are exceptions. The benefits and limitations of most aspects of any
particular ptychographical optical set up are usually the same, independent of
radiation type. In what follows, we will therefore categorise ptychography by
optical configuration.

We first make a few general comments. In all that we have said so far we have
assumed that the detector lies in the Fourier domain of the object function. In
fact there is no requirement for this to be true, as long as we know the form of
the propagator between the object and the detector, which, when the detector is
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some distance from the object but not far enough to satisfy the Fraunhofer
condition, will in general be a Fresnel propagator. All the reconstruction
algorithms can equally well apply the detector intensity constraint at any plane
downstream of the object.

So far we have mostly discussed an illumination field (a complex-valued wave)
being incident upon a scattering object (a complex-valued transmission
function): i.e. real-space ptychography. Remember that these can be exchanged
with one another. We can instead have an aperture or stop of some type,
analogous to the illumination, which multiplies a wavefield. We can then move
the aperture or wavefield relative to one another in order to solve for both
functions. This is the principle of Fourier ptychography, although the same
situation occurs in other configurations we will discuss. The wavefield can be an
image or a diffraction pattern and is usually formed by a lens.

In this section we assume that the multiplicative approximation applies (that the
exit wave is the illumination function times the transmission function) and that
the source of radiation is perfectly coherent. We will explore how to circumvent
these approximations in sections 6 and 8 respectively.

5.1 Focused probe ptychography

With reference to Figure 21, we have a coherent source and a lens that focuses a
tight beam cross-over through the plane of the object. In X-ray synchrotron
ptychography the lens is very far from the source (many 10s of metres), so the
radiation incident on the lens is parallel and the coherence width is roughly the
size of the lens. The cross-over is then at the focal length of the lens. In scanning
transmission electron microscopy (STEM) there are a number of lenses between
the source and the final focussing lens, but the effect of these is to demagnify the
source so that it appears (when looking back from the focussing lens) to be
distant, thus ensuring good spatial coherence. Note that the spatial coherence
width across the lens in this configuration (for all types of substantially
monochromatic radiation) is approximately the inverse of the angular size of the
source as seen when looking back to the source from the plane of lens.
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Figure 21: The focused probe geometry. A lens forms a beam-crossover in the plane of
the object. In the far field, the diffraction pattern has a bright region (called the
Ronchigram in electron microscopy), which is a shadow image of the lens pupil. Weak
dark-field diffraction occurs outside this bright area.

If there is a circular sharp aperture within the plane of the lens, then in the
absence of the specimen there appears a round disc of illumination on the
detector (Figure 22). This is always the case in electron microscopy, but X-ray
microscopy often uses a Fresnel zone plate to focus the beam, which requires a
central stop [ref], and so the far-field pattern appears as a doughnut shape (also
in Figure 22). If Kirkpatrick-Baez (KB) mirrors are used, which they often are
because they do not absorb and waste any useable X-ray flux, then there is a
rectangular box in the far-field. For the present discussion, we will only discuss
the use of a circular aperture.
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Figure 22: Diffraction patterns in the focussed probe geometry: left, for electrons in a
scanning electron microscope (from [68]); right, for hard X-rays using a Fresnel zone
lens (from [78]).

Compared to the difficulties of the simple aperture configuration (Section 5.10),
one benefit of using the lens means that most of the unscattered counts are
spread over a relatively large area, which avoids saturation of the detector,
although there is still a large dynamic range between the central disk and the
high-angle diffracted dark-field intensity. In all imaging configurations, there is a
direct relationship between counts per unit area and obtainable resolution given
a certain image contrast. Poisson statistics dictate that detectable contrast
depends on /N of the total number of counts passing through a pixel. If we half
the pixel size in x and y, we need four times the flux per unit area to be sensitive
to the same contrast. For this reason, high-resolution ptychography generally
employs a focused beam wherever a small field of view can be tolerated (for
example [19, 79]).

A focused beam implies that the probe is very small and so the sampling in the
diffraction plane can be very large. If we only had one pixel in the detector plane
positioned right in the middle of the far-field disc, we would have created a
conventional STE/XM in the bright-field mode. The output of this pixel as a
function of the probe position, which is scanned on a very tight grid across the
specimen, would be the conventional bright field image. Is this ptychography
with a single diffraction pixel? It certainly represents the limit of low sampling in
diffraction space and very dense sampling in real space, but it certainly is not
ptychography, if only because it has not solved the phase problem: like all bright
field images, the phase of the image has been lost.

When we double the information (in each x-y coordinate) by splitting the
detector into 4 pixels, or at least 4 quandrants of a circle, as shown in Figure 23,
we are now on the first step towards ptychography, sampling in reciprocal space
on an extraordinarily coarse grid, and on a very fine grid in real space. However,
these four pixels mean that now we have (in principle) enough information to
solve the phase problem. We have 2 numbers in each x-y direction that can be
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used to calculate the real and imaginary components of each real space image
pixel. In fact, for this to be true we have to make some strong assumptions: (a)
that the object is weakly scattering, (b) the illumination optics are perfect, and
that includes not having any defocus, (c) we must accept that the reconstruction
can only process data lying within the central disc of the diffraction pattern, so
we rely on all the resolution coming from the lens (not from high-angle dark-
field intensity). The only (non-negligible) gain is then the recovery of the image
phase. To bring to bear the full power of ptychography to remove lens
aberrations in the STE/XM configuration, to process the dark-field high-
resolution scattering and to be able to cope with strongly scattering specimens,
we must still sample reciprocal space on a fine grid (see section 10).

Figure 23: Sector detectors. The simplest configuration (left) can have its transfer
characteristics improved by further subdivisions (right). See also Figure 76.

The focused probe arrangement has one very important advantage; analytical
signals, like X-fluorescence spectroscopy, can still be simultaneously collected at
the resolution of the probe cross-over. This is true for both X-ray and electron
microscopy. Certainly the main rationale for aberration-corrected STEM is that
elemental composition and bonding information can be obtained at atomic
resolution, whether by X-ray spectroscopy or electron energy loss spectroscopy
(EELS). The incoherent annular dark field (ADF) image also has several benefits
(see Chapter *EDITOR**) that STEM microscopists are loath to lose. With a
focussed probe geometry, X-ray and ADF data, as well as some less common
signals like secondary electrons, Auger electrons and cathodoluminescence, can
be collected simultaneously with ptychographic data. The EELS detector must be
on the optic axis and so short of drilling a hole in the diffraction pattern detector,
EELS cannot be collected simultaneously with ptychographical data.

Figures 24 and 25 show examples of electron ptychographs collected
simultaneously with the ADF signal. Ptychography produces an excellent phase
signal, which is sensitive to both heavy and light atoms. The ADF signal is
sensitive to the atomic mass of the atoms. The principle advantage of ADF
imaging is that the contrast is incoherent and it monotonically increases with the
projected mass of the atoms. It therefore has higher resolution than the bright-
field image, is approximately quantitative, and it does not suffer from coherent
artefacts. However, a consequence of the mass dependence is that it is difficult or
impossible to image light atoms within a matrix of heavy atoms.
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Figure 24: Image of GaN recorded by conventional electron contrast methods: (a) ADF
and (b) and ABF images. (c) and (d), modulus and phase of the ptychographic
reconstruction. Only the latter can clearly image the very light nitrogen atoms (a few are
marked orange) between the heavy Ga atoms (blue). Reproduced from[9].

Figure 24 compares an ADF image with its ptychographical counterpart. The
light oxygen atoms, easily visible by ptychography, are entirely absent in the ADF
image. Similarly, Figure 25 shows a very light structure (carbon Ceo inside carbon
nanotubes), imaged with high phase contrast via ptychography, together with
the ADF picking out a few heavy atoms. The ptychographic phase is also shown
to have higher contrast than other less comprehensive sector-detector type
phase imaging methods. The combination of ptychography with ADF imaging
may well prove to be the most effective use of electron ptychography. Note that
both Figures 24 and 25 were reconstructed using the WDD inversion method
(Section 10).
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Figure 25: (a) ADF image of a carbon nanotube with Ce balls fitting inside it. A few heavy
atoms are also picked out in the image. (b) and (c): Phase of the ptychographic image,
the latter with the positions of the Cgo balls and heavy atoms high-lighted. (d)-(g)
Contrast from various configurations of sector detectors, all of which are weaker or
noisier than the ptychographic reconstruction. Reproduced from[10], where full details
can be found.

5.2 Fourier Ptychography

As we have seen in the previous section, a scanning transmission microscope
employs a lens to focus the image of a small bright source onto the object: the
image is constructed by scanning this tightly focused spot across the object while
recording the transmitted intensity which falls on a detector downstream of the
object. The optical set up in a conventional transmission microscope would at
first appear to be very different. The object is illuminated by a plane wave and
the resulting exit wave is brought to a focus at an image plane by a lens lying
downstream of the object. During the late 1960s, when the first STEM
instruments were developed, there was some confusion in the community when
it was realised experimentally that the bright field STEM image has identical
features, such as Fresnel fringes and limited contrast transfer, to the TEM image,
despite the fact that they are formed in such a completely different way. It was
Cowley who first suggested that the well-known principle of reciprocity could
account for this equivalence [80]. This states that if we have a source of radiation
at a point 4 which has an intensity I,, and we record an intensity Iz due to this
source at another point B somewhere else in the optical system, then the reverse
of this experiment will give the same result: if B radiates with intensity I, the
signal at A due to that source will be I;. With reference to Figure 26, we can now
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see that our two types of microscope - scanning transmission and conventional
transmission - encode identical information. All we have to do is reverse the
directions of the rays in the ray diagrams of the two machines.

diffraction

source detector

uy | source

image detector

specimen

Figure 26: Two very different configurations of transmission microscope. At the top the
STE/XM, at the bottom a conventional microscope with tilted illumination. Via the
principle of reciprocity, both set ups can collect the same information.

Consider a single pixel in the detector plane of scanning transmission
microscope. Keeping all the optical components the same, we now replace that
with a source of radiation and we place a detector at the point originally
occupied by the source. Remember, our scanning mode detector was positioned
in the Fraunhofer diffraction plane a long way away from the specimen, so its
coordinates are a function of angle. When replaced by a source, the incident
radiation bathes the whole specimen with a tilted plane wave, as illustrated in
the lower half of Figure 26. In the conventional transmission microscope we do
not need to scan a probe, because the image arrives simultaneously over the
whole image plane. Rather, each image pixel is, via reciprocity, like a different
probe position, because the effect of moving the source in a scanning
transmission machine is to move the probe. In short, we have a four-dimensional
data set that can be collected in 2 ways: a set of diffraction patterns recorded as a
function of probe position, or a set of images recorded as a function of plane
wave illumination angle. It stands to reason that we can therefore use this
reciprocal configuration to do everything that conventional ptychography can
do. The method is nowadays called Fourier ptychography. It was first proposed
by Hoppe, shortly after his work on ptychography [81].

Consider a conventional microscope in which the illumination is a coherent
plane wave travelling parallel to the optic axis. In the back focal plane of the lens,
we see the conventional parallel beam diffraction pattern. If the specimen does
not scatter too strongly, this will consist of a bright spot on the optic axis with
weaker diffraction amplitude from the specimen lying around it, as shown in
Figure 27. Now when we tilt the beam, the bright central spot will move laterally

47



and, provided the specimen is not too thick, the diffracted amplitude will shift
with it by the same amount. If we place an aperture also in the back focal plane,
then we have constructed a sort of ptychographic experiment. The shifting
diffraction pattern is like the object wave we want to solve for - except in this
case it happens to be a diffraction pattern. The aperture is like the conventional
illumination function. Our data are recorded in the Fourier domain of these two
functions, which in this case is the image plane. Now the folding (convolution, or
‘ptycho’) of the wave intermixture is the convolution of the impulse response
function of the lens/aperture and the exit wave of the object, which gives the
convolved image recorded in intensity. All the general principles of
ptychography apply. If we are going to call this technique Fourier ptychography,
we have to rename conventional ptychography as ‘real-space’ ptychography.

Figure 27: An illustration of the diffraction amplitude at the back focal plane of a
conventional microscope. As the illumination is tilted, different parts of the diffraction
pattern are steered through the lens. In Fourier ptychography, the aperture is treated as
an illumination function, the diffraction pattern as the object. By shifting the angle of
illumination a wide area of the diffraction plane can be reconstructed.

In visible light Fourier ptychography the imaging system often has a low
numerical aperture, meaning that every image recorded in the image plane has
very poor resolution. Once a large diffraction pattern has been calculated using
the ptychographical methods, we can transform back and obtain a very high
resolution picture. Why would anyone want to do this? After all, optical lenses
are nowadays very good indeed. One obvious reason is that we end up with both
the modulus and phase of the image, which is very important for imaging
transparent objects such as biological cells. However, another key advantage is
very high resolution combined with very large field of view. Supposing we have a
CCD camera with 1000x1000 pixels. If we deliberately stop down the imaging
lens so it has very poor resolution for each image we record, we can demagnify
the image on the CCD and capture a very large field of view. If we now step the
diffraction pattern in the back focal plane through enough incident beam tilt
angles to extend the field of view of the diffraction pattern (not to be confused by
the field of view in the image plane, which determines the pixel pitch of the
diffraction pattern) say by a factor of 10, and then back transform to the image
plane, we have a high resolution image of a wide field of view - 100,000x100,000
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pixels. This wide field of view is vital for things like counting abnormal cells in a
cell culture, where statistics from huge numbers of cells are key.

The physical set up of visible light Fourier ptychography also has some
significant advantages over its real space counterpart. The different angles of
illumination can be generated by an array of light emitting diodes (LEDs), so
neither the illumination function nor the object function has to be moved.
Moving the illumination in any optical set up, say by using deflection coils in an
electron microscope or by using mirrors or prisms in the case of visible light
invariably changes the shape of the probe via the introduction of aberrations or
phase gradients, so that one of the principal constraints of ptychography is lost.
There are ways around position-dependent probe variations (section 4.4), but it
is preferable to avoid this complication. The disadvantage of moving the
specimen is that it takes time, and there is invariably hysteresis in mechanical
stages, although we have already described how computational refinement of
probe positions is possible Maiden [55]. In contrast, a Fourier ptychographic
microscope can be made as a fixed structure with no moving parts, with a fast
readout camera easily synchronised with the switching of each illumination
source.
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Figure 28: A Fourier ptychography microscope, shown schematically in (a). (b) A
conventional microscope has been modified using a Lego framework so that an array of
photodiodes can illuminate the object at different angles (see bottom Figure 26). (c) A
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typical image collected at low resolution (a single illumination tilt). (d) Magnified section
of (c). (e) Ptychographically reconstructed image at same magnification as (d).

Figure 28 shows an image of an optical microscope, modified with an LED array
mounted on a Lego structure, which was used to generate the first published
visible light ptychographic image [40], together with a demonstration of the
resolution improvement over the raw data. Figure 29 shows the reconstruction
process, in both real space and reciprocal space. Figure 30 shows an example of a
biological structure imaged using the approach. The final reconstruction here is
composed of 0.9 gigapixels.

image N-1

Low-resolution intensity image 1

Low-resdution intensity image N

Recovered intensity

—————————————————————

Recovered phase

Figure 29: Iterative reconstruction for Fourier ptychography. Top three images showing
different illumination angles. Below these the raw data for a bright-field image and two
typical dark-field images. Bottom three central frames show the back-focal plane
reconstruction developing. Far right is the recovered image intensity (top) and phase
(bottom). Reproduced from [40].
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Figure 30: Top middle: example of a very wide field of view, high-resolution, 0.9
Gigapixel image reconstructed by Fourier ptychography [40]. The scale bar is 1mm. On
all other images the scale bar is 10um. (c2) and (c3) are conventional images taken with
x20 and x2 object lenses, respectively. The other images are taken from various small
areas of the reconstruction.

Fourier ptychography has also been undertaken in the electron microscope, the
original concept pre-dating the recent interest in the visible light version by 40
years[82]. It is generally called ‘tilt series reconstruction’ in electron microscopy,
and has shown the ability to improve resolution over and above that of a good
electron lens [83]. It is impractical to have an array of electron sources, as is used
with visible light, so the single illuminating beam must be scanned through a
range of discrete incident angles by double deflection coils, which also have a
habit of suffering from hysteresis. Figure 31 shows an example of the raw data
acquired in an electron microscope as a function of illumination angle, and the
corresponding reconstruction in the back focal plane. Figure 32 illustrates the
gain in resolution in real space over and above a conventional through-focal
series reconstruction, which uses only one normally incident beam.
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Figure 31: Fourier ptychography in the electron microscope, where it is usually called
tilt-series reconstruction. Left: raw data from various tilt angles. The specimen is silicon
orientated on the <112> zone axis. Right top: the region of reciprocal space passing
through to the conventional image. Right bottom: the region of reciprocal space
reconstructed. Taken from [83].

Since 2013, when visible light Fourier ptychography was first demonstrated,
there has been a great deal of research undertaken on it and the field is
expanding very quickly. All the inversion algorithms developed for real-space
ptychography apply equally well, with one or two minor alterations, to Fourier
ptychography. Indeed, all the key developments in real-space ptychography have
been reproduced in Fourier ptychography, and many have been superceded: see
for example [29, 59, 84-91]. If you understand reciprocity, everything we have
discussed in Section 4 with respect to sampling, diversity and reconstruction
refinement still applies, as do most of the methods we discuss in sections 6 and
8. The field is also making significant contributions to the theory of the inverse
problem in ptychography, which we discuss in Section 9.
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In the visible light domain, the Fourier configuration of ptychography is
extremely promising. For more information, the interested reader is directed
towards the book by Zheng that has recently been published on the subject [92].

10 nm'!

10 nm-!

Figure 32: Data as in Figure 31. Top left: diffractogram (modulus of the Fourier
transform of the image) for the conventional image, which is shown on the right. Bottom
right, diffractogram of the reconstructed image, clearly extending much further into
reciprocal space. Bottom right is the final high-resolution reconstruction, including the
expected calculated exit wave in colour [83].

5.3) Selected Area Ptychography (SAP)

Another configuration where the reconstruction is of a wave-field instead of a
physical object, in this case an image formed by a lens, is called selected area
ptychography, or SAP. With reference to Figure 33, a conventional microscope
with the specimen illuminated by coherent radiation is used to form a
conventional image. An aperture is placed in the plane of the image and the
resulting diffraction pattern is recorded some distance downstream of the
aperture. The specimen is physically moved laterally so that the image wavefield
moves across the aperture. We treat the image as our object function and the
aperture as our illumination. Once again, everything we have said about real-
space ptychography as far as reconstruction algorithms applies. All electron
microscopes have a ‘selected area (SA) aperture’ in the first image plane in order
to select one area of an object from which to obtain a diffraction pattern. This is
used to characterise small areas of a specimen that may be composed of very
small crystal grains or small isolated objects. Hence SA Ptychography: SAP. The
configuration has been shown to work in the electron microscope in a proof-of-
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principle experiment [46](Figure 34). Unlike real-space electron ptychography,
it can image a very large field of view, and may well compete with conventional
electron holography, say for mapping electric or magnetic fields.
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Figure 33: The SAP configuration. The object is moved, causing its image to move
relative to a selected area aperture in the first image plane of the objective lens. The
detector lies in the Fraunhofer plane (or more normally the Fresnel diffraction plane) of
the aperture.
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Figure 34: Example of electron SAP, taken from [46]. Top left is the conventional bright-
field image. The spherical latex balls appear with flat contrast because the contrast
mechanism relies on weak phase. In the unwrapped ptychographic phase, top right, the
strong phase is rendered perfectly. Bottom left shows the phase wraps, clearly
confirming that these objects are very strong phase. The fractured phase wrap in the
balls is because of the gold structure underlying the balls. Bottom right: phase and
modulus of the aperture function.

To date, the most extensive use of SAP has been at visible light wavelengths,
where it is commercially available as a means of characterising biological cell life
cycle [62, 93]. The main advantage of the technique is that the full coherent
resolution capability of the optical objective lens can be exploited, giving high-
resolution and extremely high quality images, together with a clean phase image.
The latter is crucial for imaging live, unstained or unlabelled cells. Resolution can
be increased further by arranging for the illumination to include a range of
incident angles within it. We showed an example image using this technique in
Figure 11. Because the free space background phase signal is so flat and there
are no ringing effects in the image caused by distortion of low frequencies (as
happens, say, with Zernike phase contrast), even very weakly scattering
transparent objects appear with high contrast. This means that segmentation of
the image is easy and accurate, allowing for reliable cell counting statistics and
the measurement of other biologically important parameters such as
reproduction rates, motility, cell volume, etc. (Figure 35). Very long experiments
(several days) can be performed (in a suitable cell incubator) without the need
for refocusing the image, which can be achieved computationally post data
acquisition.

Figure 35: Visible light SAP (see also Figure 11), taken from[93]. One of the great
advantages of the technique is that cells do not need to be stained or labelled, and so can
be observed over days reproducing and moving. This image shows some cells that are at
various stages in the process of division. See [93] for details. The phase image is
particularly amenable to precise segmentation, as shown on the right.
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5.4) Fresnel full-field ptychography

An early definition of ptychography suggested that a prerequisite for the method
is that the illumination function is localised, so that the convolution in the
Fourier domain allows diffraction components to interfere with one another.
This has nowadays proved to be over-prescriptive. Consider the two
experiments shown in Figure 36. Figure 36a consists of a corrugated wave front
(i.e. the surfaces of constant phase depart significantly from plane surfaces)
incident upon the object. Behind the object, but relatively close, is the detector.
To work out the intensity of the radiation at the detector plane, we add up a sum
of Huygen’s elementary spherical waves, each centred on one point of the exit
wave function, and having the modulus and phase of the exit wave function at
that point. The real part of the impulse response of any one of these waves looks
something like the graph on the right of Figure 36a.

Figure 36: Full field Fresnel ptychography. The incident wave must have structure in
order to provide the ptychographical diversity. Wavelets scattered from the object have
most influence on the detector pixels directly downstream of them. This is because of the
stationary phase effect of the Fresnel integral (top right). Bottom: Shadow imaging to
increase the magnification of the technique.

This intermixture of the waves has a similar effect as the convolution in Fourier
domain ptychography, although how the wave components add together is
rather different. The Fourier integral involves the whole object at once, adding
all rays that head off to the detector at a particular angle. In the near field, the
propagation integral also adds rays arriving at any one detector pixel, but their
path lengths and angles vary considerably from one position on the object to the
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next. Like the Fourier integral, it seems as if all elements of the object contribute
wave amplitude to each detector pixel. However, the pixel size of the detector
means that the intensity of any one pixel is only affected by a rather localised
region of the object exit wave. Over the surface of the detector, the elementary
spherical wave has beyond a certain width, very rapidly varying oscillations. This
is a stationary phase effect. An elementary spherical wave from one element of
the object gives a large contribution to the scattering integral over an area of the
detector where its phase is substantially flat, i.e. of roughly constant value.
Detector pixels laterally displaced from the source of the elementary wavelet
experience a quickly changing phase. Beyond a lateral displacement of more than
the radius of the first Fresnel zone (the area in which the phase changes by less
than m, the phase begins to change very rapidly, roughly as a function of the
lateral displacement squared. There will very quickly come a point where the
size of the pixel is such that it spans many phase cycles, so that the contribution
from the wavelet integrates to zero. Partial coherence in the illuminating beam
(i.e. a finite source size) exacerbates this effect. So, in Fresnel ptychography we
do not need a localised source: the Fresnel integral itself defines a localised area
that contributes to any one detector pixel, although the local area so defined is
different for each detector pixel.

Fresnel ptychography requires us to move the object laterally with respect to the
illumination. Of course, if the illumination is a simple plane wave, the out of focus
image on the detector will just move laterally without changing at all, thus not
giving us any information. That is why the illumination must have diversity - the
wavefronts must be distorted or uneven. Henceforth, iterative solution of the
ptychographic phase problem can proceed as before, using any of the standard
algorithms, the only difference being a change from the Fourier propagator to
one that models the physical propagation from the object to the detector. Note
also the comments in Section 5.11.
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Figure 37: Example of hard X-ray near-field ptychography, from[94]. The frame on the
left shows raw data without (top) and with (bottom) a diffuser. The smaller panels show
the raw data as it is scanned. The data using the diffuser varies more rapidly, implying
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greater diversity. Panel on the right are the reconstructions. (a) and (¢) modulus and
phase for no diffuser. (b) and (d) modulus and phase with the diffuser. Scale bar is 2um.

The experiment shown in Figure 36 will not give us any magnification of the
object: the reconstruction has the same resolution as the detector pixel pitch
(although the phase is recovered). X-ray near-field ptychography has therefore
been undertaken in the X-ray shadow image microscopy mode that was
pioneered by Cosslett [95] in the 1950s, see Figure 36b. The ratio of the
distances from the source to the detector and source to the object determine the
magnification constant. Figure 37 shows a conventional shadow image taken in
this configuration using 16.9 keV hard X-rays [94]. The source was generated by
the focused beam cross-over created by two Kirkpatrick-Baez (KB) mirrors.
Figure 37a shows raw data taken in this configuration, with and without a fixed
diffuser in the beam path. Figure 37b shows the ptychographic reconstructions.
Interestingly, even without the diffuser, the beam line optics, which of course
always introduces some minor imperfections in the wavefield, have introduced
enough diversity in the incident wavefield for the reconstruction to work.
However, when with the diffuser is in place, the reconstruction is very much
better. This is an example of diversity improving ptychographic data.

Near field ptychography has several advantages. The field of view is large, even
when only a few specimen positions are used. Strictly speaking, only four scan
positions are needed to recover the complex components of each pixel in the x-
and y-directions. (This is similar to the need for four sector detectors discussed
in Section 5.1). Of course, more specimen positions are beneficial because they
further constrain the solution: the results shown in Figure 37 nevertheless used
only 16 positions. In real-space ptychography, the diffraction pattern always has
a high-dynamic range, especially between the bright unscattered beam and dark-
field features lying at high scattering angles. This can make it very difficult to
choose an appropriate exposure time: what is correct for the unscattered beam
is far too short for the scattered beams. Conversely, in near-field ptychography
the whole detector is evenly illuminated, which makes setting the optimal
exposure time easier.

5.5) Defocused probe ptychography

With reference to Figure 38, we can use a lens to form a convergent beam but
rather than place the object at the exact focus of the probe, we can defocus it
somewhat, or equivalently move the specimen up or downstream of the beam
focus. This configuration combines near-field ptychography (Figure 36b) and the
focused probe scanning transmission microscopy STE/XM. The difference
between near-field ptychography is that the degree of defocus is relatively small,
so that the field of view within the central disc is small, and that diffracted data
lying at high angles outside the bright disc are also processed. It is therefore a
complicated mixture of Fresnel-type interference and Fourier domain
diffraction. Of course, the reconstruction process remains the same, the only
difference being the probe structure is dominated by curved wavefronts. If that
curvature is included correctly, the far-field pattern is just the Fourier transform
of the exit wave. We do not have to use the Fresnel integral for the central disc,
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because the pre-multiplier of the curved phase distribution, followed by a
Fourier transform, is itself a way of constructing the Fresnel integral.

This type of defocused probe is very commonly used in synchrotron X-ray
ptychography, because by moving the specimen forwards and backwards away
from the beam cross-over the diameter of the probe can be changed at will. Thus
the probe size and step size can be matched to the field of view (see, for example,
in [96]). Another benefit is that it helps keep the number of exposures small,
which is important when the duty cycle of the camera readout and/or the
settling time of the stage make up a significant proportion of the total elapsed
time of the whole experiment. This is especially true of ptycho-tomographic
scans that can take many hours, or even days.
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Dark-field
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Fresnel image
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Figure 38: Defocused probe ptychography. The far-field is both a magnified Fresnel
shadow image (Figure 36), but also has high-angle dark-field intensity.

Yet another benefit of having a large probe is to limit dose-rate specimen damage
effects, at least for electron ptychography where damage can be severe.. As we
have emphasised, ptychography is a dose-fractionation method: moving the
illumination by large step sizes or small step sizes does not affect the total dose
that needs to go through the sample in order to produce an image with adequate
signal to noise in each reconstruction image pixel. However, there is some
evidence that dose rate can be as important as total dose, for example in the
time-dependence of damage observed by electron energy loss spectroscopy [97].
It is possible that ions displaced by knock on damage can relax back into their
original location if there is sufficient time to do so before the next knock on event
occurs. That means that a low dose rate per unit area may induce less damage for
the same amount of total dose. Using a large probe achieves exactly this. It is also
possible that a large area of illumination will ameliorate other annoying
problems that arise in electron microscopy, such as the build up of
contamination (sometimes exacerbated by a focused probe) or local charging of
the specimen, which can lead to uncontrolled and sudden specimen movement.

Figure 39 shows an example of a defocused probe electron ptychograph
obtained from a scanning electron microscope. The was not a STEM operating at
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high accelerating voltage, but a conventional SEM (an FEI Quanta 600) operating
at 30keV, with a two-dimensional detector mounted below the specimen stage.
The stage had also been modified to accommodate a transmission specimen,
which in this case was a standard TEM resolution test specimen consisting of
small gold particles sitting on a thin amorphous carbon support film. Figure 22a,
discussed previously, shows an example of the raw data. Although it is hard to
see it, the central disc, which in electron microscopy is called the Ronchigram,
has some structure within it, which is essentially the same as the Fresnel near-
field image in the equivalent X-ray experiment shown in Figure 37. The
difference here is that the range of illumination angles in the beam is small and
the experiment is also going to process the dark-field diffraction peaks lying well
outside the central discs - indeed, this is where all the high resolution
information in the experiment comes from.

Figure 39: Electron ptychography with a defocused probe in a scanning electron
microscope (SEM), taken from[68]. The specimen is a standard test specimen consisting
of gold particles on amorphous carbon. Phase is represented by colour, brightness
modulus. The scale bar on the large field of view top right is 15nm. The enlarge image
has been contrast enhanced for reproduction; scale bar 5nm.

Atomic fringes are visible in some of the gold particles - those that are orientated
on a zone axis. The smallest fringes visible are separated by 0.23 nm,
corresponding to an increase in resolution over the lens capability by a factor of
about 5. These results imply we could dispose of conventional TEMs, at least for
imaging (as opposed to focused probe analysis), and use instead a rather less
costly SEM fitted with a transmission detector. In fact, careful inspection of
Figure 39 shows that some of the atomic fringes are delocalised from the gold
particles - a similar problem that arises in defocused TEM images, and one that
is fatal for accurately determining the exact position of atomic columns.
Delocalisation is particularly sensitive to any intensity pedestal or read-out noise
in the detector. The comprehensive solution would be to have a single electron
detector.
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From the point of view of the ease of reconstruction, using a defocused probe has
both strengths and weaknesses. The central disc is essentially a Gabor hologram.
In any iterative reconstruction this means that the first low-resolution image of
the object should be a pretty good holographic estimate. Indeed, it is known that
cCDI reconstructions are improved in this Fresnel mode [98]. If there are errors
in the probe positions, this is very obvious in the Ronchigram, and can be used to
coarsely adjust probe position errors, provided only defocus (and not higher
order aberrations) are present[99]: in this case the Ronchigram is an undistorted
near-field image of the object.

Unfortunately, reconstructing data from curved wave illumination also has
several hazards, which can quickly lead to stagnation of the reconstruction
process, or simply give a completely wrong solution. Defocus corresponds to
adding an extra curved phase to the transfer function of the lens. This curvature
will also appear across the Ronchigram disc in the far-field. In real space in the
sample plane, there is also a corresponding curved phase over the illumination.
In an iterative reconstruction, the phase of the correct curvature must be seeded
in the first estimate of the probe in real space.

Suppose that the probe is physically defocused so it has a diameter D. There is
only one phase curvature over this probe that will give rise to a disc in the far-
field of the correct, recorded diameter. As an extreme example, suppose our first
guess of the probe has no phase across it at all. Propagating this to the far-field
will give us an Airy disc - an intensity distribution only a fraction of the width of
the measured far-field disc. When we apply the Fourier constraint, creating a
bright disc of modulus, and back Fourier transform we have a function that is
nothing like our real probe function. In fact it will probably be so small that it
will not even overlap with the adjacent probes that were used to create the data.
Recovering from such a remote position in the solution space is virtually
impossible.

A further problem is that the magnification of the Ronchigram image is also a
function of defocus (as is obvious from Figure 38). This means that if the step
size in real space is poorly calibrated, the only way the reconstruction algorithm
can reconcile the conflicting data is to both increase (or decrease) the
magnification of the image and increase (or decrease) the size of the
illumination, achieved by changing the estimated defocus of the illumination. The
result is a reconstruction that looks out of focus, but it cannot be put back into
focus simply by re-propagating to the correct plane, because the reconstruction
does not relate to any actual physical plane within the wave disturbance; it is just
the best estimate of the object given by the conflicting data. The same effect
occurs if the object to detector distance is not measured accurately, something
which is always poorly calibrated in the conventional transmission microscope
where the intermediate lenses are used to form the diffraction pattern.

In X-ray ptychography the object to detector distance is fixed, and can be
measured very accurately. The stepper motors used to scan the object are also
usually well calibrated, as is the focal length of a zone plate lens. It is also easy to
measure the distance the object has been moved out of the beam crossover,
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again by using a stepper motor in the z-direction. Apart from inputting the
correctly defocussed probe function at the start of the reconstruction algorithm,
which can be immediately calculated from these experimental parameters, the
problems described above rarely apply.

5.6) Diffusers

As we remarked in Section 4.2, the bandwidth of ptychography in the sense of
the transmission line in Figure 1d is a function of both the probe structure and
object structure. An object that has broad flat features, i.e. one that has low
entropy, is in general more difficult to reconstruct. The probe and the object
appear equivalently in the mathematics of ptychography, except the probe
contributes to every diffraction pattern, whereas each region of the object is only
expressed in a few diffraction patterns (an exception to this is near-field
ptychography). It is incontrovertible that having no structure in the
illumination- a flat plane wave covering the whole of the object plane - cannot
possibly give us any ptychographical information at all. It would seem logical
therefore, that having a probe function that has lots of structure can greatly
reduce the likelihood of encountering a probe-specimen combination that cannot
easily reconstruct.

Think of a probe composed of random phase and modulus. The randomness
appears in both real and reciprocal space, in the latter appearing as a well-
developed speckle pattern. As we discussed in Section 4.6, this sort of pattern is
excellent for reconstructing gaps in the data that have not been recorded in the
diffraction plane, either because of missing pixels, or because the detector is too
small so that intensity has fallen outside it. At the other extreme, a simple large
aperture with flat phase has a tiny Airy disc response in the far-field, so the
ptychographical convolution at any one pixel is only substantially affected by a
few pixels around it. The diffuse probe would seem to constrain the data set
much more effectively than a simple probe.

The choice of probe positions also matters. If we integrate all the flux that has
passed through the object, summing up the intensity that arrived at it from all
the probe positions, it would be unfortunate to find that some areas had not been
illuminated. We could never possibly reconstruct the object at those points. A
probe with strongly varying random modulus would be likely to span the object
with a relatively even total flux. Sharp features in the probe also make the
intensity at each detector pixel change more rapidly as a function of probe
position, which would seem to put more information into the recorded data.
Another issue is the bit depth of the detector. An even speckle pattern is more
likely to optimise the total information content read out from the entire
diffraction pattern, especially if the detector is imperfect in any way, because
each pixel has made the most of its available dynamic range.

The question of the optimal probe has not been fully resolved. Some insight can
be offered by the WDD method, which requires a division by a function that
depends on the probe. If the probe is made in such a way that this division is
stable (i.e. the Wigner distribution relating to it - see equation 32 - has few
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minima), then there is some evidence that the reconstruction is more stable,
noise robust and accurate[70, 71]. Suffice it to say that diffusers, placed at one
position or another in the optical path, generally improve the reconstruction
[optical useful resolution].

5.7) Bra chograph

One of the principle applications for cCDI is a method of using a Bragg diffracted
beam from a small crystalline particle [robinson]. The configuration has two
principal advantages. By tilting the object through a small angle, many diffraction
patterns can be recorded as the 3D Bragg reflection is scanned through the
Ewald sphere, thus plotting out the intensity of the 3D Fourier transform of the
object. Using the knowledge that the particle is finite, one can then use single
shot Fienup-type iterative methods to recover the phase of the volumetric plot of
the reflection and thus reconstruct the shape of the crystal. More interestingly,
any departure in perfect crystallinity will alter the intensity and phase of parts of
the reflection. The Bragg condition by definition assumes a fixed phase
relationship between all the scattering points (atoms) in the object. If atoms
become displaced, say by a strain field, then these relative phases change.
Similarly, the real space reconstruction of the object will have internal phase
shifts mapping the strain field[100].

Hruszkewycz et al. were the first workers to demonstrate experimentally that
the same principle can be applied to ptychography [101]. They investigated the
strain of an epitaxial SiGe layer grown on silicon-on-insulator (SOI) device. The
geometry of the experiment is shown in Figure 40. A cross-sectional TEM image
of the object and the measured strain maps are shown in Figure 41. The phase of
the ptychographic reconstruction gives a direct measure of the displacement of
the atom planes in the SiGe; the derivative of this gives the slope of the planes,
which can be mapped out and compared with calculations. More recent work has
demonstrated that the method can also be extended to mapping 3D strain in
semiconductors[102, 103].
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Figure 40: Geometric set up for Bragg ptychography, reproduced from [101].

62



Bragg ptychography has potentially very important applications in the
semiconductor industry, where strain induced by epitaxy of materials with
dissimilar unit cell size can be used to control the nature of the band-gap.
Although local strain can be measured by electron microscopy, the need to
prepare a thin sample leads to relaxation of the strain: inference of the original
bulk strain is then difficult. X-ray Bragg ptychography can deal with bulk
materials in their original state of strain, although there are limitations on the
depth of penetration into the surface of the material and, relative to electron
microscopy, the resolution of the technique.
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Figure 41: Example results from a Bragg ptychography experiment, reproduced from
[101]. Top left is a cross-sectional TEM view of the sample. Bottom left is the
ptychographical reconstruction in modulus and phase (colour coded). The phase is
proportional to displacement from the unstrained condition. On the right, this, and its
derivative, is plotted, the latter being proportional to the curvature of the atomic planes.
The data is compared with calculation.

5.8) Visible light reflective ptychography

Visible light has been used to demonstrate ptychography in the reflective
configuration, with both the illumination and detector normal to the surface of
interest, as shown in Figure 42. Clearly, the phase of the reflected beam is
sensitive to surface topology, and vertical sensitivity has been shown to be
comparable with white light metrology [104]. The comparison is shown in
Figure 43. There is a very wide array of competing surface topology
measurement techniques, and so it is unlikely that visible light reflective
ptychography will have wide application, even though these early result could be
significantly improved upon. A complication is that to measure a structure with
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vertical features larger than half the wavelength, multiple phase wraps abound
in the image: a very serious problem when a large step change in height is
encountered. A solution is to employ a second colour of light, in a second
experiment, very close in wavelength to the first, thus generating a large artificial
wavelength by forming the difference between the two phase images, as
demonstrated in [104].
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Figure 42: Set up for visible light ptychography in the normal incidence reflective mode.
In this case, two sources, very close in wavelength, enter on the right. By switching
between them, a long synthetic wavelength can be generated by combining two
reconstructions. Taken from [104]. See main text.
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Figure 43: (a) White light interferometry of the test structure in (b). (c) The reflective
ptychographic reconstruction from the same object. Reproduced from[104].

5.9) Transmission and reflection EUV ptychography
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A considerable limitation of X-ray ptychography is the need for a synchrotron to
obtain high flux and high coherence. Beam time is scarce, so experiments cannot
be easily refined during a single scheduled run. A promising alternative is to use
a higher harmonic source or laser produced plasma EUV sources in the ordinary
laboratory environment. A coherent laser source can generate pulses which are
very well controlled, both spatially and in time, using all the many optical
techniques nowadays used for femto-second studies. Such pulses can be passed
through a non-linear medium, such as a gas. In the pulse of intense electric field,
electrons are almost dissociated from their respective nuclei, but accelerate and
decelerate passing through the atomic potential, thus adding harmonics to the
transmitted EM wave. In this way, EUV radiation is produced.

As far as ptychography is concerned, the huge benefit of this method is that the
source of radiation is essentially fully coherent, unlike a synchrotron that relies
on a large distance between source and optics (and thus the consequent loss of
useful flux) to achieve spatial coherence.

Figure 44: Transmission EUV ptychograph of rat’s neurons. Colour and modulus coded
as in colour wheel. Courtesy of Jo Bailey, John Chad, from the Centre for Biological
Sciences ,University of Sheffield, and Magdalena Miszczak, Michal Odstrgil, Peter Baksh,
and Bill Brocklesby, from the Optoelectronics Research Centre, University of
Southampton.

EUV ptychography can only image thin and weakly scattering transmission
specimens. Figure 44 shows a ptychographic reconstruction of cells from a rat’s
brain. The resolution is about that of a visible light optical microscope. A
disadvantage of EUV is that the specimen must be held in vacuum, which means
that it is not possible for biological structures to imaged wet, non-desiccated or
live. However, there may be many other potential applications to very thin
objects which otherwise do not scatter light strongly. Note that this
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reconstruction, used the varying probe algorithm described in section 4.1.
Another important application is to surface topology measurement using
glancing angle reflection, an example of which is shown in Figure 45[105]. In this
geometry, care must be taken to map the detector coordinates to the scattering
configuration and the elongated probe shape and phase. The method has very
promising applications in high-resolution semiconductor metrology.
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Figure 45: (a) Modulus and (b) phase of a reflective EUV ptychograph of a test object.
The phase is essentially a topographical plot of the object. The reconstruction (from
[106]) compares favourably with the AFM and SEM image (not shown).

5.10 The simple aperture

The simplest ptychographical set up imaginable comprises a source, an aperture,
a moveable object and a detector, with no lenses and no other optical
components. This was the original goal of totally lensless imaging, and at first
ptychography seemed to liberate imaging from the need of any sort of
interferometer or lens at all. But despite its simplicity, the aperture-only set up
should be avoided if at all possible.

The biggest problem is the very bright central spot of the diffraction plane. All
types of detector find this hard to handle. Single photon/electron devices are
count-rate limited, so that the full flux of the source cannot be employed. Over-
exposed CCD pixels bleed charge into adjacent pixels. A central stop can mitigate
the problem, but the powers of ptychography to fill in missing pixels are at their
weakest when the probe function in reciprocal space (in this case an Airy disc) is
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so narrow, as we discussed in Section 5.6. Losing this low frequency information
leads to unwelcome large-scale distortions in the image.

5.11 Probe reconstruction in the Fresnel configurations

Many of the configurations we have discussed have been described in terms of
the detector lying in the Fourier domain. In fact, it is often convenient to place
the detector, or its conjugate equivalent, nearer to the object. So for example in
the case of SAP, the diffraction lens can be defocused to avoid the high intensity
zero-order diffraction peak.

One may suppose that the Fresnel integral must be used in the reconstruction
process, and that consequently the exact distance from the object to the detector
must be known. In fact, if the reconstruction simply assumes the detector is in
the Fraunhofer plane, the object function appears as usual. However the probe
function will have a phase curvature over it, with a radius equal to the object to
detector distance. Without deriving the reason for this formally, we observe that
the phase has the effect of a computational lens, steering parallel beams (which
correspond to the Fourier integral) to a focus on the detector. The approximation
is only true for small scattering angles, but is another example of how
ptychography can self-calibrate.

6) Volumetric imaging

A two-dimensional picture of an object is good, but imaging it in three-
dimensions is greatly more informative. In the field of biological imaging, cell
colonies grown on a flat piece of glass cannot possibly satisfactorily model their
development in a natural three-dimensional tissue structure. There has
therefore been a huge investment in developing reliable volumetric imaging
methods, most notably in the visible light domain with confocal scanning
microscopy. This is now the workhorse of many biological studies. The ability to
label and map the distribution of individual proteins is a powerful component of
technique, allowing detailed studies of how genetic information is expressed
within different parts of a cell (see Chapter **EDITOR**).

Material science also has a pressing need for three-dimensional information. One
of the biggest weaknesses of electron microscopy has historically been the
projection effect. All the three-dimensional information in the object is
concertinaed into a two-dimensional image, rather like a shadow image. Electron
tomography ‘add-ons’ are now supplied by most electron microscope
manufacturers for moderately low resolution reconstructions, and the most
recent research is now demonstrating atomic resolution in 3D, which is as much
as can ever be hoped for (see Chapter **EDITOR** of this volume).

There are two very different ways of undertaking 3D imaging via ptychography,
which we discuss in the next two sections. The first is an extension of
conventional tomography, which puts together many ptychographical images
recorded at different object rotations: we call this ptycho-tomography.
Alternatively, a single data set is used: the probe is scanned as usual but without

67



rotating the sample. The reconstruction procedure is then via a multislice
update, wherein the propagated wavefront through layers of the object is
reconstructed for every probe position and every layer in the object. Unlike
ptycho-tomography, this ‘multi-slice’ method can account for multiple scattering
in the object.

6.1) X-ray Ptycho-tomography

To date, ptychography has had its biggest scientific impact in volumetric imaging
at high-resolution: X-ray ptycho-tomography. Its first application [20], see Figure
46, was at hard X-ray wavelengths for which it is ideally suited. Hard X-rays can
penetrate thick objects, which is clearly good for tomography. They can also pass
through air without creating too much unwanted scattering, unlike soft X-rays
where the object must be in vacuum or close to very thin transparent windows
upstream and downstream of the object, which themselves create unwanted
scattering. But at high energies X-rays pass through an object often with very
little absorption. It so happens that the real component of the refractive index of
many materials at these energies (which induces a phase change in the X-ray
beam) is much larger than the imaginary component (which determines
absorption). The image phase of a ptychograph is therefore of a much higher
contrast than the conventional absorption signal. Even better is the fact that
phase accumulates linearly as a photon passes through an object, and the rate of
that accumulation is related to the refractive index, which is material dependent.
This means that the phase image really is the linear projection of the matter
within the specimen. All this, combined with the much-enhanced resolution of
ptychography over other X-ray methods, means that there is a huge application
niche for the technique in both material science and biological science.

5pm

Figure 46: The first reported example of a 3D X-ray ptycho-tomographic reconstruction
[20]. The sample is bone. It is the phase signal that allows for the high-contrast
ptychographical imaging of biological structures, which otherwise do not absorb
strongly at hard X-ray wavelengths.

The pioneering work at the Swiss Light Source in the Institut Paul Scherrer has
refined the technique so that nowadays it is used as a routine method which can
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analyse and image all sorts of materials: the list of publications dedicated to
specific science problems is far too numerous to list here. One example is the
rather nice series of tomographs showing the in-situ fracture of a
microcomposite in Figure 47. Figure 48, showing a tomographic reconstruction
of a significant volume of an Intel device, is a recent example at the time of
writing. The extraordinary size, detail and resolution of the reconstruction is
stunning. Figure 49 shows a detector device (of the same type used to collect the
data). The experimental reconstruction is so good it looks almost like a CAD
drawing.

Figure 47: In-situ ptycho-tomography time series of the destruction under compression
of a micro-composite. See [107] for more details.

69



Figure 48: Ptycho-tomography of a volume of an Intel microprocessor. Scale bars are all
500nm. Reproduced from [96]

Ptycho-tomography encounters all the usual problems of tomography, such as
registration of successive projections. Thermal instabilities inducing specimen
drift during a long scan can mean that a poorly mounted specimen moves out of
the field of view, etc. When very high resolution is required, these issues are best
addressed by investing in very high quality stages with laser interferometric
feedback. A computational complication is that a thick object will induce phase
wraps in the image. This is a dramatic non-linearity within an otherwise
excellent linear signal. Luckily, there are numerous ways of handling phase
wraps: it is a very large field in its own right, but care must be taken.
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Figure 49: Ptycho-tomography of a detail of a solid-state hard X-ray detector, from[96].
The same type of detector was used to collect the data. The circuitry, shown
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schematically on the left hand side in (a) and (b), is explicitly visible in the experimental
reconstruction (d). (c) is the blueprint for the design used in the manufacturing process.

6.2) Multi-slice reconstruction

In everything we have discussed so far, the object function has been modelled as
a two-dimensional transmission function. So for example in hard X-ray ptycho-
tomography, any one ptychograph is treated as a projection of the electron
density through the whole (thick) object onto a two-dimensional surface normal
to the incident beam; an assumption that is implicit in the back-projection
methods used in the tomographic reconstruction. Similarly, a thin, weakly
scattering object in transmission electron microscopy is accurately
approximated as a 2D projection, constituting an integral of the 3D atomic
potential of the object along the direction of the optic axis. Indeed, for a long time
the projection effect in TEM was one of the technique’s key weaknesses, in that
detailed understanding of an atomic arrangement, say occurring at the interface
of two crystallites, could only be easily undertaken if the pertinent feature
repeated itself along the beam direction. Atomic scale tomography (Chapter
**EDITOR**) is nowadays making significant progress in tackling this problem.

The 2D approximation breaks down for two reasons. The first arises from the
geometry of the rays scattered by features in the object that lie at the same x, y
point in the 2D plane of the projection, but are separated in the z-direction,
parallel to the optic axis. With reference to Figure 50, the 2D approximation
assumes the diffraction pattern at a particular angle arises from the path
difference (and hence phase difference) between any two points in the object
plane (like points B and C). When these are separated along the optic axis (A and
B), an extra path difference is introduced, shown as Ap, meaning that the 2D
Fourier transform can no longer be used to calculate the diffraction pattern. The
effect can also be thought of in terms of the curvature of the Ewald sphere in
reciprocal space [108].

Figure 50: In the forming the Fourier integral, parallel rays from a single surface of the
object are summed (e.g. points B and C). When the object is thick, rays from points in the
same (x,y) position (A and B) have an extra path length introduced, indicated by Ap. The
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geometry is best handled by computing the scattered amplitude of where the Ewald
sphere cuts the 3D Fourier transform space of the whole object, at least in the first Born
approximation.

A second effect is multiple scattering (or, in the parlance of electron microscopy,
dynamical scattering). The mathematics of ptychography, which has no
constraints on the form of the specimen function or the illumination function,
can deal with an arbitrarily strong 2D object (i.e. one with very strong phase and
modulus changes within it). Strong phase can be represented by a Taylor series
expansion of e!?, which leads to a diffraction pattern that can be formulated as
multiple convolutions, equivalent to multiple scattering [109]. However, in
practice, strong phase requires a substantially thick object. The geometric and
multiple scattering 3D effects then become intermixed so that the exit wave
bears little or no relation to the projection of the object. This is particularly
problematic for electrons, which for many materials of interest scatter very
strongly.

There are various ways of calculating the effects of thickness-induced phase
changes and multiple scattering. One of the most common and flexible
approaches used in electron microscopy is the multi-slice method originally
proposed by Cowley and Moodie [110]. In this, the 3D object is represented by a
series of 2D slices lying normal to the optic axis. The layers are assumed to be
transmission functions (like those in everything we have discussed so far) that
are thin enough to satisfy the two-dimensional approximation. The incident
wave forms a product with the first layer in order to calculate an exit wave from
that layer. The exit wave is then propagated, via the Fresnel integral, angular
spectrum method or similar, to the second layer, where it forms a new incident
wave. The exit wave from the second layer is the product of its transmission
function with this new incident wave. The process - product of incident wave
times transmission function, propagation, product of new incident wave on the
next layer, etc. - is used through the whole specimen. The Fresnel propagations
account for the geometric breakdown of the two-dimensional approximation,
and the serial scattering from each layer accounts for multiple scattering.

However, this technique is only appropriate for a forward calculation: given a
model object, we can use it to calculate what the exit wave will look like. In
electron microscopy, much work has been spent altering specimen models in
order to find a good match with the measured bright-field high-resolution image,
which itself is an interference pattern altered by the additional effects of the
transfer function of the lens. Even if the exit wave can be measured in modulus
and phase, say via a through-focal series, no one image can be inverted directly
to give the 3D object: a 2D image does not have enough measurements in it to
solve for all the many layers of the 3D object.

The same does not apply to ptychography, where it is now well-established that
the data collected in a single ptychographic scan can, surprisingly, solve for many
2D layers within the object, at the same time removing multiple scattering effects
and calculating the evolution of the incident radiation as it propagates through
the object [58, 111-113]. Once again, this is possible because of the enormous
diversity in ptychographic data.
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Figure 51: Simple ray diagram illustrating why ptychography (probe movement)
encodes 3D information. For a convergent probe (or any localised probe) features in the
object cross the shadow image at different rates (for a constant probe shift speed),
according to their depth in the object. In reality, wave interference effects greatly
complicate the diffracted information, but the latter is still encoded with similar
information.

We note that the probe is localised and so is necessarily composed of a sum of
incident plane waves, which have a significant range of incident angles (k-
vectors). A simple ray diagram, illustrated in Figure 51, suggests that as a
defocused STE/XM probe is scanned laterally, features in the object at different
depths will appear to move over the shadow image at different rates. In reality,
for finite wavelength, interference effects dominate the diffraction plane and in
real-space the probe can have very complicated wave structure. But this mode
illustrates that 3D information affects the recorded data, and so in principle can
be extracted from it. Ptychographical translation diversity also means that we
get a different exit wave for each probe position, unlike the single exit wave in
conventional imaging. If the step size (sampling) in real space is small, there
exists hundreds or thousands of exit waves to process: plenty of data to provide
multiple slices in the object.
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Figure 52: The inverse multi-slice method. At each layer of the specimen, the incident
wave from the previous layer is treated in the same way as the probe in a 2D
ptychographical reconstruction. The forward calculation (green pointers) proceeds as
usual (see main text). The inverse calculation uses the normal update of object layer and
incident wave, at each layer. The updated incident wave is back-propagated to be used in
the update for the previous layer, etc.

The first algorithm to demonstrate multiple-layer reconstruction
computationally reversed the forward multi-slice calculation [58], as shown in
Figure 52. To start, the forward calculation is carried out, but each incident and
exit wave from each layer is stored for later use. As usual, there is a running
estimate of each layer of the object and also of the probe incident upon the first
layer. After undertaking the forward calculation to give an estimate of the
diffraction pattern, the detector modulus constraint is applied as usual. Back
propagation gives us a new estimate of the exit wave from the last layer. The last
layer of the object is then updated as usual for the two-dimensional case (equ 6
or 9), except the role of the probe is replaced by the incident wave at the last
layer calculated from the forward calculation. This incident wavefunction is then
also updated as usual as if it were the probe, and then back-propagated to the
second from last layer, where the procedure is repeated using the stored
incident and exit waves at that layer from the forward calculation, and so on and
so forth. Finally, the actual probe function incident on the first layer is updated
and used for the incident wave at the next probe position to be processed.

Figure 53 shows a visible light example of a 3D reconstruction through slices of a
root. [t compares favourably with the confocal microscopy image of the same
object. The data reconstructed 34 layers of the object, each separated by 2um.
Only 5 of the reconstructed slices are shown. In generating such an image, the
algorithm had to calculate two images (modulus and phase) for each layer, two
images for the probe, and two images for the exit waves from each layer: i.e. 138
two-dimensional images from one ptychography experiment. (We note that the
incident waves are uniquely defined by propagation from the previous exit wave,
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so they do not constitute independent variables.) Ptychography is indeed a very
information intensive technique. On the other hand, we know that two lenses in
the confocal configuration can obtain all this information: ptychography just
happens to do it in a computer. Similar results have been obtained in X-ray

ptychography [114].

Figure 53: Top: selected slices from a ptychographical multi-slice reconstruction of an
embryonic root tip [21]. Bottom: comparison with conventional confocal images of the
same slices. Ptychography does not require the specimen to be labelled or stained.

Fourier ptychography (Section 5.2), which of course contains identical 3D
information, is usually thought of as solving for the diffraction pattern lying in
the back focal plane. The multiple layers cannot be solved for there because as
the illumination is tilted, the Ewald sphere rolls through reciprocal space, so the
diffraction pattern changes as it is moved. However, the lens and aperture
transfer function can be regarded as a propagator between the exit surface of the
object and the detector plane (the image). Diversity arises from the different
incident waves angles so that the inverse propagation gives an equivalent result.

In what we have described, both the forward and back propagation depends on
knowing, or estimating, the separation of the layers and the refractive index of
the ‘free space’ between them. If either of these is wrong, the propagation
integrals give the wrong wavefunctions, and so the reconstruction algorithm
does not converge. However, these can just be put into the algorithm as another
set of free variables, as shown by [115], and illustrated in Figure 54 in the case of
multislice X-ray imaging.
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Figure 54: X-ray 3D multi-slice reconstruction. All are phase images. (a) and (c)
reconstruct two layers, but their separation is assumed known and fixed. (e) plots the
separation as a function of iteration (fixed). (b) (d) and (f) are similar, except here the

separation is also recovered as a free variable, greatly improving the reconstruction
[115].

This particular multi-slice formulation also does not account for backwardly
propagating waves that have been reflected off the layers: forward-only
scattering is a good approximation for the behaviour of high-energy electrons
and X-rays, but not for visible light. Ever more comprehensive search algorithms
within larger solution spaces may accommodate these issues.

The depth resolution of the technique clearly depends on the angles subtended
at the specimen by the illumination pupil and the angular size of detector, but it
is also affected by the strength of the scattering from one layer to the next. A
strongly scattering layer increases the range of incident angles upon the next
layer, and hence the potential lateral and depth resolution. A weakness of the
approach is that because ptychography relies on coherent wave inference, the 3D
transfer function in reciprocal space is doughnut shaped: at high or low
resolution, the depth resolution is very small [112]. This performance compares
poorly with the transfer characteristics of confocal microscopy, where the
contrast mechanism arises from incoherent fluorescence. Intensity in real space
means that the transfer function is reciprocal space is the autocorrelation of the
coherent transfer function, which has the effect of filling in the missing low
frequencies, enhancing both lateral and depth resolution. There has been work
on incoherent optical Fourier ptychography using structured illumination [90],
which could be a truly revolutionary development in the technique.
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A potentially important application of multi-layer reconstruction using visible
light is to image large biological cells, or clusters of cells, without having to kill or
stain them: in ptychography strong contrast arises from the real part of the
refractive index, which is expressed in the phase of the transmission function.
This could be useful for, say, checking the viability of human embryos before
implantation. X-ray imaging is less dependent on the breakdown of the
projection approximation because the scattering angles involved are very small
and so the depth of field is generally much larger than the thickness of the object.
Reversing and removing multiple scattering effects in electron microscopy via
ptychography could represent a major breakthrough, overcoming one of the
biggest limitations of imaging with electrons, although whether this will be
possible remains to be seen. We note that the WDD method can also extract
depth information, but this has only been demonstrated for weakly scattering
objects [9]; see section 10.6.4.

7) Spectroscopic imaging

One of the most common and useful ways of mapping elemental distributions in
specimens is to collect the fluorescent X-ray spectrum from the object while it is
being irradiated by a scanned focused probe of high-energy electrons or X-rays.
As long as the incoming beam has sufficient energy, it can eject inner electrons
from the specimen atoms. Electrons that then fall into the resulting empty core
state can irradiate X-rays which have characteristic energies specific to the
particular element, see Chapter **EDITOR**. This fluorescent signal is incoherent
and so it cannot be used in conventional ptychography (although see [90]).

However, we can plot the distribution of a given element using coherent
ptychography if we take two images, one above and one below the absorption
energy of the core state. Figure 55 shows an example taken of a fibroblast cell
that has within it cobalt ferrite nanoparticles [72]. These are not visible in the
image taken at 703eV, below the absorption edge, which is at 710eV, but are
visible in the image taken above the absorption edge, at 712eV. Interestingly, the
phase of the absorption can also be measured. Figure 56 shows an example of a
very high resolution map of two separate iron compounds within a particle,
scanned as a function of energy [79]. Each point in the image has a different
spectral response. Because the shape of the absorption lines depends on the local
bonding environment of the iron, the authors were able to map the relevant
compounds using principal component analysis. The authors compare the
resolution of the same type of analysis undertaken with a focused probe STXM
with a 25nm optic. The resolution of the ptychographic chemical map is
estimated to be 18nm, compared with 70nm for the STXM data.
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Figure 55: Soft X-ray phase ptychographs of a Balb/3T3 mouse fibroblast, marked by
CoFe;04 particles, taken below (left) and above the absorption edge of Fe [72]. The
distribution of iron is clearly visible in the latter.
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Figure 56: High-resolution X-ray ptychographical chemical mapping of FePO4 and
LiFePO4 in a small particle [79]. By taking images at different energies, the loss peaks
(top) can be used in a principle component analysis to map the two compounds
(bottom).
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8) Mixed State Decomposition and Handling Partial Coherence.

We saw in Section 4 that a typical ptychographical data set is extremely rich in
diverse information. This can be used to correct automatically many imaging
parameters. In Section 5.2 it was found we could extract even more information.
Provided the sampling in both real and reciprocal space is dense so that the
minimum sampling condition defined by Equation 7 is well surpassed, we have
seen that we can solve for dozens of 2D layers through the object thickness.

Thibault and Menzel [48] proposed one of the most important extensions for the
use of information diversity in ptychography. An assumption of the phase
problem is that when we measure the intensity of a pixel it has associated with it
one modulus and one lost phase. The pixel has to be small enough so the wave
does not vary substantially across its width, i.e. the sampling condition is
fulfilled. But what happens if two separate non-interfering waves (i.e. ones that
are incoherent with respect to one another) are incident on the detector? We
only measure one intensity, but now we have lost the two phases, and, even
worse, the two moduli as well. We seem to have four unknowns where before we
had only one unknown. In fact, in this case we have only three unknowns
because we know the intensities of the two moduli must add up to the measured
intensity, a piece of information that will be key.

There are many situations where this occurs in practice. X-ray and electron
sources are mostly incoherent across their physical width in the plane of their
emission. However, a long way from a small incoherent source, the wave
becomes substantially spatially coherent. A star is a huge incoherent source, but
seen from earth it twinkles coherently, a result of the Van Cittert-Zernike
theorem. Good coherence requires the source to be a very long way from the
experiment, but then flux per unit area is low, so we must balance our desire for
as much spatial coherence as possible with the competing need for as much flux
as possible. Inevitably, there will always a small degree of partial coherence in
our wave experiments.

It is not only a diffracted wave that can be a source of incoherence. Vibrations in
the specimen or any part of the instrumentation can be equally harmful. These
are more generally called state mixtures. Our detector is sampling many
different configurations of the experiment during the time it takes to make an
exposure. This is equivalent to adding together (incoherently) the coherent
waves that would have been scattered from all the different states in the system
during the measurement time.

Coherence theory is a large subject area in its own right. One can consider any
two points in a wavefield. Each oscillates in time. If they oscillate in perfect
synchrony (though usually with different phase) then they are coherent. If there
is no correlation between their disturbances, they are wholly incoherent with
respect to one another. The general situation lies between these extremes: there
is some statistical correlation, but it is not perfect. The coherence function
describes the degree of correlation between pairs of points in the wavefield, but
this can be an awkward way of analysing the effects of partial coherence. Wolf
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[116] suggested a different approach, widely adopted in practical situations. The
wavefield is decomposed into a set of modes, each of which is entirely incoherent
with respect to any other mode. The modes do not interfere with one another,
but can be treated separately, each propagating through the optical system
independently. State mixtures in the object and the detector, or any part of the
optical system can also be treated as modes.

An example would be modelling the effects of partial coherence caused by having
a finite source. The source can be divided up into points, each of which is
perfectly coherent. Each source wave (mode) is propagated through the whole
optical system to the detector where its intensity is added to the intensity of the
other waves that arrive at the detector from all the other point sources. This
process might blur the intensity at the detector because the extended source has
induced significant incoherence into the experiment. However, if we choose our
points on the source to be very close to one another, and the whole source is
small, the intensity at the detector from the different points might be, for all
intents and purposes, identical. This means that all these different modes are so
similar to one another they may as well be treated as one mode. In general, we
can decompose a partially coherent wavefront into as many modes as we like,
but this is not an optimal representation of its coherence properties. The modes
we will talk about here have been orthogonalised with respect to one another.
This can be thought of as a sort of principal component analysis, minimising the
number of modes we need to describe the system completely.

In quantum mechanics, the density matrix is used to handle mixed states. In any
particular representation, the usual single-state operators (for energy, position,
momentum, etc) can operate on it. To find the expectation of a particular
measurement, the trace of the resulting matrix is formed, which is simply a way
of calculating the total probability (expectation value) of making a measurement
when two or more states that are incoherent to one another are present in the
same experiment. Diagonalising the density matrix is equivalent to finding the
set of incoherent states that are orthogonal to one another. A pure state then has
only one entry of unity in the density matrix. This type of analysis is now very
common in the field of quantum computing, where the decoherence of a
wavefunction limits the capability of a real-world quantum computer. Thibault
and Menzel wrote their paper casting the ptychographic incoherence problem in
these terms. In fact, actually undertaking a multi-modal decomposition in
ptychography is computationally very easy and the process is quite intuitive, as
we hope to show below, so a reader not familiar with quantum mechanics need
not worry about understanding the process from this perspective.

8.1) Visible light model example

We start with a simple experiment using visible light. With reference to Figure
57, we undertake a ptychography experiment where three completely different
wavelengths of light (green, blue and red) illuminate the object simultaneously.
These three wavelengths are incontrovertibly incoherent with respect to one
another. We have one specimen object, but the different colours of light will be
absorbed differently in different regions of the specimen if it has any colour
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differences within it. To ensure this is the case, the specimen is composed of an
artificially manufactured projector slide that has been specially prepared; it
consists of three superposed images each of a different colour (Figure 59).
(Ideally, the pigments used for three colours would each absorb one, and only
one, of the three incident light wavelengths, but this has not been achieved
perfectly in this experiment.)

Figure 57: Example of ptychographic multiplexing. Three distinct wavelengths of light
are incident simultaneously. The detector is only sensitive to the total summed intensity.
From [52].

Figure 58: The test specimen used in Figure 57, from[52]; an old-fashioned projector
slide consisting of three super-posed images, each of a different colour. The dyes do not
absorb at the laser frequencies in Figure 57 perfectly, so there is cross-talk in the
reconstructions in Figure 60.

So, we have three ptychographical experiments going on simultaneously. Each
colour of light sees a different sample. The different colours of light also interact
with the illumination-forming optics in different ways (diffracting by different
amounts before they reach the sample), so that we also have a different probe
function for each colour of light. But we can solve for all of these functions, three
objects and three probes, using the diversity in the ptychographic data, despite
the fact that the intensity from each experiment is collected on the same detector
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all at the same time. (The detector is colour insensitive, it simply measures the
total power of light incident upon it.)

At first solving for all six functions from this scrambled up data set sounds
impossible. Surprisingly, we just have to make one minor change to any one of
the common iterative reconstruction algorithms. First, we set up and run three
reconstruction iterations simultaneously, each one solving for their respective
object and probe functions. The only difference is when we come to applying the
detector intensity constraint. We don’t know the intensity (and hence modulus)
of any one of the colour signals at a particular detector pixel, but we do know the
total intensity that they all add up to.
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current estimate) scale intensities

Figure 59: Graphical illustration of the detector intensity constraint when more than one
mode is present in a ptychography experiment. See text for details.

In Figure 59, the height of the two columns represents intensity. The first column
is the estimated intensity that has come out of our forward calculations (at B
from A in Figure 5). The three simultaneous forward calculations have given us
three estimated moduli, which have been squared and added together. Each
forward calculation also gave us an estimated phase. The height of the column on
the right hand side is the measured total intensity. To apply the constraint, we
maintain the ratio of intensities of each colour in the estimated intensity, but
scale them uniformly to fit the measured data. We now have three new moduli
estimates, each the square root of their scaled intensity estimates, plus the three
phases that came out of the separate colour iteration loops. These are fed back
into their respective iterations at C in Figure 5. Amazingly, after running the
iterations as usual, the three reconstructions appear from their respective
iteration loops. It helps if the starting estimates of the probe or objects are
slightly different so that they can diverge into the separate solutions, but we do
not need to know whether those estimates have anything to do with the real
functions: it is just an effective way to seed the three separate reconstructions.
The form of the constraint being applied - that the sum of the calculated
intensities must equal the measured intensity - just has to be true when the
solution is correct. Diversity in the data (assuming there is enough) drives the
algorithm to that solution.
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Figure 60 shows the three object reconstructions. Note that there is some cross-
talk between the images, but that is because the dyes in the object slide do not
absorb at one wavelength exclusively, so some of the structure from one
wavelength is expressed slightly in one of the other images. Even so, they are
convincingly separated. Interestingly, each image and each probe reconstruction
comes out a different size in their respective object arrays. This is because of the
wavelength in Equation 1. The detector pixels are the same physical size for all
the reconstructions, so the wavelength changes the magnification in the
reconstruction array. This has been adjusted for in Figure 60.

Figure 60: Reconstructions relating to the object in Figure 58. See text and [52] for more
details.

8.2) X-ray Illumination modes

Most X-ray synchrotron beamlines have some partial coherence within them, no
matter how carefully the optics is arranged. Even if the coherence width at the
final slits lying upstream of the experimental set up is estimated to be entirely
coherent according to the van Cittert-Zernike theorem, vibration in any
intermediate optical element, for example the monochromator, can substantially
reduce the effective coherence.

Unlike the light example given in the previous section, under most normal
circumstances the object function is fixed, however the partial coherence is
equivalent to having multiple modes in the illumination. In Figure 61 we show a
multi-mode decomposition of an X-ray probe in the defocused condition (Section
5.5). The reconstruction proceeds in exactly the same way as before. In this case,
8 parallel iterations have been undertaken. There are an infinite number of ways
that these modes can express themselves, each being a different representation
made up of any linear combination of wavefunctions that might, or more likely,
might not be orthogonal to one another. They can be orthogonalised using the
standard Gram-Schmidt approach, but this is not fundamental insofar as we can
choose any arbitrary vector with which to start the Gram-Schmidt process.
Diagonalisation of the density matrix, which can be computationally undertaken
with principal component decomposition, does give a unique and the most
compact representation of the modes.
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Figure 61: Orthogonal modal decomposition of partially coherent hard X-ray
illumination [78].

As a consequence of the circular path of the high-energy electrons, the source in
a synchrotron appears wider in the horizontal plane than in the vertical plane. As
expected, we therefore see more lateral modes than vertical modes. Lateral
incoherence appears as vertical fringes in the modal structure, because of the
Fourier relationship between coherence and source width. In fact, the
defocussed probe is not exactly in a Fourier relationship to the source, but the
effect is the same. These results were obtained from a beamline that we had
every reason to believe was fully coherent: the number of modes therefore came
as quite a shock. It turned out that unbeknownst to anyone, the monochromator
had a vibrational instability. The moral is: always perform a modal
decomposition on all data that has any possibility of including partial coherence.

How many modes should you include in an illumination modal decomposition?
You can declare in the computer as many modes as you like, but once they are
orthogonalised only a few should have any significant power. Of course, you
cannot solve for more modes than you have numbers in your data, so at some
point the higher-order mode structures will disintegrate. Note that when you
add up the intensity of all the modes they must be the same as the total intensity
of the probe. If the underlying complex modes are normalised, then the diagonal
terms of the density matrix represent the probabilities, or weights, of how the
state mixture has been prepared. The sum (trace) of these is always unity
because they are probabilities. The sum of the squares of the probabilities is a
tidy measure of coherence: unity corresponds to total coherence (only one
coherent state in the system); anything less is a measure of the degree of partial
coherence.

Finally, note that the patterns in Figure 61 have no actual physical meaning, they
are simply the lowest rank representation of the coherence of the experiment.
However, to conserve computing power, one would not want to run more
parallel probe estimates than are necessary in the reconstruction process, so in
this sense the orthogonal representation has practical value.

8.3) Electron modes

Matter waves can also be decomposed into modes in exactly the same way, as
shown in Figure 62. These data were collected on a TEM operating in the SAP
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mode (Section 5.3). The source profile, as seen looking up the column from the
detector plane, can be calculated by back propagating each complex mode, which
are here lying in the image plane confined by a selected area aperture, back to
the source plane via a back Fourier transform. The intensities of each mode are
then added together to produce an estimate of the source, also shown in Figure
62. Adjusting the condenser alters the source size, an effect that can be seen in
both the mode reconstructions and source shape reconstructions. Even though
the column was aligned, we note the cold field-emission source is not perfectly
round. In should be emphasised that these source intensity plots do not show the
physical shape of the source, but rather its shape as seen through the selected
area aperture. The image is diffraction limited because the total wavefunction
relating to the source is truncated outside the aperture diameter.

18.3891% 12.8495% 11.005% 9.0673% 7.7369% 6.3073% source

25.1972% 12.9428% 11.0647% 8.1629% 7.5178% 6.1617%

Figure 62: Modal decomposition of a propagating partially coherent electron wave, for
two different spot sizes (apparent source size) [49]. The diffraction limited source, as
seen backwards through the microscope, is shown on the right.

8.4) Mixed object state

Figure 63 is taken from the original Thibault and Menzel paper [48],
demonstrating that this mixed state concept also applies to the object function.
In this model calculation, each grey square represents a spin than can interact
ferromagnetically or anti-ferromagnetically with its immediate neighbours. The
system is in a temperature bath, enough to overcome the average bond energy so
that the spins flip up and down randomly. The modelled ptychography
experiment integrates data from all the oscillating spins over a longer time
interval than it takes for them to flip. A phase change is expressed in the
transmitted wave according to whether the individual spin is up or down.

After the mixed state decomposition, the principal modes can be extracted from
the data showing that, at least on the scale of the probe diameter, the relative
probabilities of the adjacent spins matches what would be expected at this
temperature. This type of analysis is not dependent on the speed of the state
changes relative to the integration time of the experiment, which means that in
theory it could applied to very high frequency phenomena, such as, in the case of
electron ptychography, coupled bonding effects in an array of atoms. This may
become a truly powerful experimental technique.
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Figure 63: A model calculation showing how an object that has mixed states can reveal
correlations in those states in a ptychographic reconstruction, despite them oscillating at
a much higher frequency than the exposure time of each diffraction pattern [48]. Energy
couplings for the red and blue bonds (top left) are in the opposite sense. The recovered
images have probability distributions for the red and blue boxes (top right), as expected
(bottom boxes).
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8.5) Upsampling

One odd implication of Equation 7 is that the sampling condition in
ptychography is not dependant on probe size. What does that mean if we have a
large probe but only a few pixels in the diffraction plane? In Section 10.4, we will
discuss direct ways of using very large pixels (sector detectors) to solve for the
object, but these techniques rely on a highly focused (very small) probe, made by
a perfect lens. The specimen must also be very weakly scattering. If the probe is
large, large detector pixels cannot sample the rapid intensity variations that arise
in the diffraction plane.

In order to exploit very dense sampling in real space, even though the detector
pixels are larger than the features caused by a large probe, we need to ‘up-
sample’ the big pixels [117]. During the reconstruction, this involves declaring an
array size in the detector plane that would indeed satisfy the sampling condition
given the size of the probe. Supposing we now have 3x3 pixels that fit into each
big detector-sized pixel. We treat each computational pixel as a separate mode,
running 9 concurrent reconstructions. The detector constraint is applied as
before: after each forward calculation the modulus is changed according to the
scaling of intensity illustrated in Figure 64. In this way, we reconstruct an
artificial detector sampling that does fulfil the probe-size constraint. Doing this
for data that is believed to be properly sampled can also be beneficial if there is a
type of partial coherence in the beam that expresses itself as a convolution of the
diffraction pattern. The method can also remove the MTF of the detector.

Although up-sampling works, it should be avoided if possible because there is
bound to be a degradation in the results. The reconstruction of all the upsampled
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pixels relies on the tiny changes of intensity in the big detector pixels that occur
as the large probe is scanned in small steps across the object: data that is easily
lost in noise or the finite bit depth of the detector. Figure 52 shows an example of
up-sampling X-ray ptychography data.

Figure 64: Example of up-sampling, taken from[117]. The diffraction patterns in the top
row have had the lower left quadrant expanded, so as to show the process more clearly.
Lower images correspond to reconstructions from the upper diffraction patterns. From
left to right we have: the original data and its reconstruction; the original data up-
sampled by 2x2; the original data binned by 3x3; the binned data to the left upsampled
by 12x12. The best reconstruction comes from upsampling the raw data, possibly
because there is some incoherence in the data.

8.6) Other uses: detector noise, diffuse scattering, continuous scan

Modal decomposition can be used for other things. A free mode (one that is not
constrained by orthogonalisation) can be used to dump any intensity from the
detector that is inconsistent over the whole data set. For example, if the detector
has a pedestal - a constant offset or background noise - the inversion will try to
put a delta function (the Fourier transform of a constant function) somewhere
into the field of view of the object reconstruction. An incoherent mode can
accommodate this. All the intensity that is inconsistent in any way with the
forward calculation will be ‘dumped’ into it. Scattering by air in a hard X-ray
ptychography experiment, or inelastic scattering in an electron experiment, will
also be expressed in the mode, but in this case unevenly distributed over the
detector. Dealing with this class of problem in a more controlled way, say by
calibration or self-calibration of the detector, is probably a better approach.

A continuous line scan, in which data collection is speeded up by constantly
taking exposures as the object is moved continuously across the probe, or vice
versa, can also be handled by modal decomposition. Each exposure occurs over a
blurred track of probe positions - i.e. a combination of several probe positions -
each of which can be treated as an illumination mode [51].
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9) Theory

In Section 3 we surveyed the wide and growing range of ptychographic
algorithms reported in the Literature, and we have examined in Sections 4-8 the
remarkable scope for exploiting the ‘redundancy’ in ptychographic data through
clever expansions of the original ptychographic phase problem. In this Section,
we will look in greater detail at how the most popular iterative ptychography
algorithms work, and how they can be implemented on a computer.

9.1 The PIE family of algorithms.

Section 3.4 introduced the PIE algorithm, and explained its operation. It turns
out that the reasoning behind that original formulation can be readily expanded
to arrive at a whole class of algorithms that work in a similar manner. Returning
to Eqg. 6, reprinted below as Equ. 8 we saw that the core of the PIE algorithm was
the object update function:

la

_ (Wnew — Pe) = q + whAq (8)

lalmax (lal?+¢€)

dnew = 4

Here, a new object estimate, qygy, is generated from the previous object
estimate, g, by adding a specially weighted proportion of the old and new exit-
waves, Y, and Y g, and dividing by the probe (with a fudge factor to avoid zero
divisions). To make our discussion here clearer, we have rewritten this update in
terms of a Aq - the exit-wave difference divided by the probe - and a weight
function, w. It turns out that this weighting in the update function is only one of a
whole host of possibilities that can be employed to reconstruct ptychographic
data, as a very recent paper by one of the Authors explains [Maiden Optica in
press].

For PIE, the weighting goes as the normalized probe modulus, w = |al/|alpax-
This works well in practice and is often used by the Fourier ptychography
community, where it has been re-derived as a second-order gradient descent
[29]. The ePIE algorithm makes a very basic change, replacing the normalized
probe modulus with the normalized probe intensity, w = |al|?/|al3;,x which has
the benefit of removing the need for the zero-division fudge factor since the |a|?
term in w cancels the probe division in Aq. The result is an alternative update
function:

dvew = q t #(U’NEW — ) = q +whq 9)

MAX
We can plot the two weightings as a function of the probe modulus as shown in
Figure 65. As is rather obvious, ePIE’s plot is a quadratic, meaning that where the
probe is intense, there will be a large weight given to the Ag term in Eq. 9, whilst
where the probe is dim, the weighting of Aq will be small and the object will
change little in these regions. Equally obvious is the linear weighting for the PIE
plot - again where the probe is intense Aq is strongly weighted, where it is dim
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the weighting of Aq is smaller. What isn’t obvious from these plots is whether
either of these weighting functions is in any sense optimum, and this is an open
question at the time of writing. What we can say is that there are further
alternatives that also reconstruct ptychographic data very well, and which offer
greater scope for tuning the reconstruction to accommodate a specific
experiment - for example using different tuning parameters when the object is
very weak or where the initial probe estimate is very poor. One weighting that
we have demonstrated very recently to work extremely well takes the form

w = |al?/(alal? 4 + (1 — @)lal?), where a is a tuning parameter. The plots in
Figure 65 give a couple of examples of how this function behaves for different a
values - notice how the curve can be adjusted to give more or less weighting to
dim parts of the probe, so the experimenter can adjust the algorithm to a lower
weighting if data is very noisy, or to a higher weighting if the data is very clean.
We have found in practice that an o value around 0.1 gives a considerable
improvement in convergence rate over both PIE and ePIE. The object update
function for this new form of weighting is:

We call this ‘TPIE’ because it can be expressed as a regularized version of the
ePIE update.

! al g

max

Figure 65: the way PIE-type ptychographic algorithms update the object estimate
depends on the probe, a: for a given probe position, they update the object strongly
where the probe is bright and only weakly where it is dim. The exact relationship
between probe modulus and update strength (w), is shown in the Figure for three
different algorithms. The new TPIE’ update can be tuned to occupy different parts of the
graph by varying its tuning parameter a.

The probe update

Although ePIE used a slightly different update function to PIE, the main advance
it offered when it was first suggested was to solves for the probe as well as the
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object. The implementation of this probe update is straightforward - simply
interchange the appearance of a and q in any of the object update functions
above to produce a probe update function, then apply this function after the
object has been updated; for rPIE it helps to have a separate tuning parameter, f,
replacing a as well.

9.2 Projection between sets methods.

Another way to think about the cCDI problem is illustrated in Figure 66. The
plane of the Figure represents all the possible solution images that can exist. In
reality, the dimensionality of the space is an enormous vector space, with each
axis corresponding to the complex values of each image pixel. There are two sets
of images lying within the coloured shapes. One set is consistent with the
diffraction pattern intensity; the other is consistent with real-space priors that
we may know about - for our discussion we can use the aperture constraint
(where the object is known to be zero outside of a known support). The loop in
Figure 5 alternately projects a current estimate of the solution onto the nearest
point of the aperture constraint and then the detector (Fourier) constraint. It is
the nearest point because the change we make in either domain is the minimum
alteration we have to make to any pixel to get it to be consistent with its set.

o Slart

w?xp‘\( A —
" , )
Y NNy \

Figure 66: Graphical illustration of projection onto sets. One set is consistent with all
possible images that satisfy the aperture constraint in real space, the other with images
that have a Fourier transform whose modulus satisfies the detector constraint. See text
for further details.

Even if there is only one unique solution image (the sets touch at one point -
marked as ‘A’), there’s no guarantee our strategy will not get stuck jumping
between the sets at the point ‘B’ in the diagram. Convergence to the correct
solution is only guaranteed (and then only for perfect, noiseless data) if the two
sets are convey, i.e. a line drawn between any two points within the set lies
entirely within that set. Unfortunately the phase problem is non-convex: the
steps B-(C, revising the modulus of the detector wave estimates in Figure 5, can
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be thought of as circles in the complex plane, and clearly a line between two
points on the perimeter of a circle does not lie entirely on that circle.

Nevertheless, this ‘projection between sets’ concept is incredibly general and can
be employed to any optimization problem - it was even used by Elser to solve
Sudoku puzzles [31]. As a result, there is a large volume of literature devoted to
set projection algorithms and analysis of their properties.

Difference

d=Y(c+p,) ; Set2
)

p,=pd+(1-B)a f,

Set1

(@)

Figure 67: Parallel update algorithms, such as DM and RAAR, can be thought of in terms
of projections between sets. Part (a) of this Figure shows schematically how the most
simple set projection approach - alternate projections (green trace) - bounces between
two constraint sets, and how more advanced methods spiral in to the intersection of the
two sets. These advanced methods consist of a series of projections and reflections
between the constraints, in the manner shown in part (b). A single iteration of DM starts
at po and steps through po-b-c-d; a single iteration of RAAR goes po-b-c-d-p.

Consider next Figure 67. Here we will restrict attention to two convex sets, set 1
and set 2, represented by the two black lines in the Figure. We have already
discussed one strategy to find the intersection between these two sets - our
required solution - which is to alternately project between the two sets. The
green trace in Figure 67a shows how this strategy bounces between the two
constraint sets and staggers its way toward the intersection. Because the two
constraints shown here are convex, this strategy is guaranteed to converge to the
right answer, but it takes quite a large number of steps to do it, and as Figure 67a
shows when the sets are non-convex this strategy can become stuck. The
Difference Map (DM) [31] is one alternative to alternating projection, and the
way it spirals towards the intersection, like water down a plug hole, is illustrated
by the blue trace in Figure 67a. (Note that DM in its most general form has a
tuning parameter, S, but this is usually held at 1 for ptychography, under which
condition DM is equivalent to several other algorithms, e.g. the Douglas-Rachford
algorithm and an algorithm called Averaged Successive Reflections (ASR).) Yet
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another method - Relaxed Averaged Alternating Reflections (RAAR) [118] - is
illustrated by the red trace. RAAR can ‘tighten’ the spiral behavior of DM with a
parameter f. The spiralling action of these two algorithms accomplishes two
things: it speeds convergence, by eliminating the zig-zagging of the alternating
projections routine, and it widens the accessible search space, which for non-
convex constraint sets means they can escape the local minima illustrated in
Figure 67a.

DM and RAAR both employ reflections as well as projections between sets.
Referring to Figure 67b, consider the point po. The projection of this point onto
set 1is (P;[po] and it lies at a, the nearest point on the line to py. The reflection of
po about set 1 is at b - it lies in the same direction as a, but is twice as far from po:
we can express this reflection as Ry = py + 2(P; [po] — po) = 2P;[po] — po-

In terms of these projections and reflections, alternating projections can be

easily summed up as P, [P, [Pz [P, [po]]]] etc...

DM follows this pattern: from the point py, reflect about set 1, then reflect about
set 2, then go halfway between po and the result of these two reflections. In
Figure 67b this is the path b to c to d. RAAR adds a final step: draw a line
between the points a and d and travel a certain proportion, f3, of the way along
this line to find p; - this is how RAAR ‘tighens’ the spiral in Figure 67a. (Clearly,
for =1 RAAR and DM are equivalent.) We can only really skim the surface of
this fascinating topic, so we refer the Reader to the extensive literature for more
details.

9.3 Implementing ptychographic algorithms on the computer

It would require a book in itself to describe implementation details for all of the
many algorithms for ptychography; instead, the following gives a framework that
the coder can extend by reference to the literature. We will first set out
processes that are common to all of the algorithms, namely initialising the object
and probe, forming the exit wave and propagating it, and updating the exit wave
at the detector to match the measured data. From these preliminaries, focus
narrows to pseudocode examples of the three algorithms discussed above - ePIE,
DM, and RAAR.

Initialisation of the reconstruction.

Some additional nomenclature, summarized in Figure 68, is needed to deal with
the discrete nature of the algorithms (i.e. the unavoidable fact that the diffraction
data, specimen and probe must all be represented by finite-sized matrices in the
computer).

* The diffraction pattern are assumed square and of pixel dimensions N XN

* The pixel pitch of the diffraction patterns (in metres), i.e. the detector pixel pitch

is dc

* The object reconstruction is of pixel dimensions K XL

* The pixel pitch of the object reconstruction is d,

* The pixel pitch of the probe is the same as the object, do

* The pixel dimensions of the probe are as for the diffraction patterns, NxXN
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* Remember, there are | diffraction patterns in total, and the specimen shift when
the jth diffraction pattern was recorded is R; = (x;, y;)

pixel [1,4 K

RixTpix Ido

N

Iz calculation box x

e object matrix

L SRUxTpix +[NV]

Figure 68: To explain how to implement ptychographic algorithms in code, we need to
define some variables, as shown in this Figure. To digitally estimate the exit wave from a
given specimen position %, a ‘calculation box’ with the same number of pixels as the
detector must be extracted from the larger object matrix.

The first step in any of the algorithms is to decide the propagator, from which the
pixel pitch of the object (do) follows. For the Fourier propagator the pixel pitch
is:

d, =22 (10)

Where z is the distance between the specimen and the detector, and A is the
illumination wavelength.

For angular spectrum and Fresnel propagation:

d =d (11)

c

Having established the pixel pitch, the object matrix can be initialised. Usually
this is chosen as a matrix of 1s, representing free-space, whose size is governed
by the extent of the specimen shifts. More exactly, K and L are chosen as:

k.py - P (R,)-min® )

+(N,N) (12)

o

Knowing the pixel pitch in the object matrix also allows conversion of the
specimen shifts from the experiment into equivalent pixel shifts in the computer.
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To do this we anchor the top left corner, pixel [1,1], as the origin and map the
specimen shifts according to:

R" = ROUND R, -min(R, ) (13)

o

Initialisation of the probe is highly dependent on the experimental geometry
used to collect diffraction data. The simplest case arises when the experiment
uses an aperture to form the probe - here a disc of 1s embedded in a matrix of
NxN Os suffices, with the disc’s diameter roughly matching that of the physical
aperture (once scaled from pixels to metres via eqn. 10). In contrast, a
convergent beam probe is easy to model, but hard to model accurately because
of the difficulty measuring the exact amount of defocus. (A defocus error in the
initial probe is one situation where many reconstruction algorithms struggle for
convergence [119].) Assuming the defocus is known, the convergent beam probe
is modelled by Fourier transforming an aperture multiplied by a quadratic phase
profile. The size of the aperture should reflect the numerical aperture of the
probe-forming optics, which itself can be determined from the brightfield disc in
the diffraction pattern. If the diameter of the brightfield disc is D pixels, and the
defocus is drmetres, the initial probe can be calculated as:

2
z

2 2
F~ [circ(D).exp(—zdfa’c2 nl/liﬂ (14)

Where n1 and nz index pixels in the diffraction pattern space (with the origin at
the centre of the detector). For a probe with a diffuser in the beam path, the
simplest strategy is to model an initial probe as above, disregarding the diffuser
completely, relying on the reconstruction algorithm to untangle the diffuser’s
effect. Alternatively, if anything about the phase can be inferred (for example, a
good approximation of the phase curvature at the detector plane), this
approximate phase can be applied to a diffraction pattern, or an average of all of
the diffraction patterns, and the result back-propagated to (hopefully) obtain a
better initial probe estimate.

Regardless of how it is modelled, a useful final step in the probe initialization, as
has been discussed, is to normalize the probe power to the diffraction data, by
ensuring that the sum of the initial probe intensity over every pixel is equal to
the pixel sum of the measured intensities in the brightest diffraction pattern.

In what has become an indispensable final initialisation step, the diffraction data
is transferred from computer memory onto a Graphics Processing Unit (GPU). To
give an idea of the speed increase offered by GPU computing, a typical?
ptychographic reconstruction carried out with the authors’ MATLAB version of
ePIE takes 90 seconds to complete 100 iterations using an NVIDIA Titan GPU; the
same reconstruction using an i7-4770 3.4GHZ CPU takes 868 seconds.
Optimisation of the code and implementation in C gives even greater speed up.

1 The data set in this case contained 400 diffraction patterns, each of 512x512 pixels.
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Modelling the exit wave at the detector

To model the exit-wave leaving the specimen, for a particular specimen shift (say
shift x), the ‘calculation box’ (see Section 3.3) must be extracted from the larger
object matrix, as illustrated in Figure 68 - this equates to cutting out a region of
pixels starting from RY “and extending to RY™ + [N, N]. The final step in
computing the exit-wave is to multiply the extracted reconstruction box, pixel for
pixel, by the probe matrix.

Computer implementation of the propagators

Propagation of the exit wave to the detector plane can be via Fourier transform,
the angular spectrum or Fresnel transform. MATLAB code that the Reader may
use to implement these propagators digitally is given in Box (Fig 69). This code
ignores multiplicative amplitude and phase constants, which do not have an
effect on the ptychographic reconstruction; a more complete discussion of
modelling wave propagation in MATLAB can be found in the book by Voelz
[120].
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Figure 69: Matlab Code for propagators:

function output = Propagate (input,propagator,dx,wavelength, z)
% Propagate a wavefront using a variety of methods

oe
oe
oe
o°
o°
oe
o°
oe
o°
o°
o°
oe
oe
oe
o°
o°
oe
oe
oe
o°
oe
o°
oe
oe
oe
oe
o°
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oe
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% input: the wavefront to propagate

% propagator: one of 'fourier', 'fresnel' or 'angular
spectrum'

% dx: the pixel spacing of the input wavefront
% wavelength: the wavelength of the illumination

% z: the distance to propagate

% output: the propagated wavefront

% Setup matrices representing reciprocal space coordinates
[ysize,xsize] = size(input);

x = -xsize/2:xsize/2 - 1;

y = -ysize/2:ysize/2 - 1;

fx = x./(dx*xsize);

fy = y./(ysize*dx);
[fx,fy] = meshgrid(fx, fy);

switch propagator
case 'fourier'

if z>0

output = fftshift (fft2 (fftshift (input)));
else

output = ifftshift(ifft2 (ifftshift (input)));
end

case 'angular spectrum’
% Calculate phase distribution for each plane wave
component
w = sqgrt(l/wavelength”2 - fx.”2 - fy."2);

)

% exclude evanescent waves
notEvanescent = imag(w)==0;

o

Compute FFT of input
= fftshift (fft2 (fftshift (input)));

0|

% multiply FFT by phase-shift and inverse transform
output =
ifftshift (ifft2 (ifftshift(F.*exp(2i*pi*z*w).*notEvanescent)))

7

case 'fresnel'
% Calculate approx phase distribution for each plane
wave component
w = fx."2 + fy."2;

% Compute FFT
= fftshift (fft2 (fftshift (input)));

0|

% multiply by phase-shift and inverse transform
output = ifftshift (ifft2 (ifftshift (F.*exp (-
li*pi*z*wavelength*w))));
end

Revision of the exit wave

Replacing the modulus of the wavefront at the detector with the measured data
is most efficiently achieved by dividing the propagated wavefront by its own
modulus and multiplying by the square-root of the measured intensity. Care
should be taken to avoid division by zero if this approach is adopted - for
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example by adding a small number to the modulus before the division as in Box
Fig 70 (eps is the smallest number MATLAB can represent).

Figure 70: MATLAB code for propagators:

Function: exitWaveNew = UpdateExitWave (exitWave,measurement,z)
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Propagate (correctedWave, -z) ;

PIE-type algorithms

After the preliminaries given above, the PIE-type algorithms can be written in
just a few lines of code. As an example, we give in Figure 71 pseudo-code for
implementation of rPIE; changing the update function to realise ePIE or PIE is
straightforward. One caveat: the code in Box (Fig 71) assumes a sequential
order in which to address the diffraction patterns, in practice it is better to
randomise this order, and re-randomise it after every iteration.

Fig 71: MATLAB code for rPIE:

Loop
For j from 1 to J

reconBox =

|
H
(1]
0
(o]
5
to
(o]
o
*
o
2]
[¢]
on
(0]

e)"2) (1-beta) *abs (1

End

Until (converged)

Set projection algorithms

Looking back to Figure 67, in order to implement the set projection methods we
need to define the two sets that represent the ptychographic problem, as well as
the two projections onto these sets. The first set, set 1, represents the detector

constraint we have already discussed: it is the set of all exit waves that have the
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correct (measured) modulus at the plane of the detector. We project onto this set
by taking the current estimates of the object and probe, and for each specimen
shift forming the exit wave (a.q), propagating, correcting the modulus and
propagating back. This is accomplished as shown in the pseudo-code of Box Fig
72.

Fig 72: Pseudo code: parallel Fourier constraint:

For j from 1 to J

e

The second set, set 2 in Figure 67, represents the set of exit waves for which the
probe and object are consistent. We illustrated this concept in Figure 8: the
overlap between the regions of the object illuminated by the probe during the
experiment links together the exit waves, because we know they must have been
formed in the experiment by an unchanging object and a static probe. (Of course,
we’ve seen that these assumptions can be somewhat relaxed in practice.)
Projection onto this consistency set is via the probe and object update functions,
which for the set projection methods take on a slightly different form to those of
the PIE-type versions. Box (fig 73) and Box (fig 74) present pseudocode outlines
of these updates, which are applied one after the other to implement the
projection, with the updated object feeding into the probe update.

Figure 73: Pseudo code description of the object update used by DM, RAAR
and other ‘batch’ update algorithms:

Function: object = BatchObiectUpdate (exitWaves.probe)

probeSum = zeros(K,L);
waveSum = zeros(K,L);
probelnt = abs(probe)"2;
coniProbe = coni (probe);
For j from 1 to J
probeSum (rPix (j) :xPix(j) +[N,N]) = probeSum(zrPix(j) :xPix(j)+[N,N]) +
probelnt;

waveSum (xPix (j) :xPix (j)+[N,N]) waveSum(rPix (j) :xPix(j)+[N,N]) +

End

object = waveSum/ (probeSumteps);
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Figure 74: Pseudo code description of the probe update used by DM, RAAR
and other ‘batch’ update algorithms

Function: probe = BatchProbeUpdate (exitWaves,obiect)

objectSum = zeros(M,N);
waveSum = zeros (M,N);
objectInt = abs(object)"2;

coniObiect = coni(object);

For j from 1 to J

obijectSum = objectSum + objectInt (rPix(]j) :xPix(j)+I([N,N]);
waveSum = waveSum + coniCbiect (xPix(j) :xPix(j)+[N,N]) *exitWaves (]j):

End

probe = waveSum/ (objectSum+eps) ;

Alternating projections

Having defined the two projections, the most basic algorithm applies them
alternately: project onto set 1, project onto set 2, project onto set 1... This is
achieved in the fashion shown in Box (Fig 75).

Fig 75: Pseudo code description of the simplest batch update method -
alternating projections:

For j from 1 to J
reconBox = object (xPix(j) :xPix(j)+[N,N]);

End

Loop

For j from 1 to J SR
) Projection onto

object (rPix (3) :rPix(3)+[N,N]); | detector constraint set

probe*re

End

Pellen xitWavesNew,object) ; Projection onto

object = xitWavesNew,probe) ; consistency
constraint set

Until (converged)
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DM and RAAR

Implementation of DM and RAAR proceeds in a similar manner, the only
complication being the slightly more involved way that the exit waves are
updated when the detector constraint is applied. Both methods can be coded
along the lines of Box (fig 76); setting 3 to 1 in this code gives the standard
version of DM.

Figure 76: Pseudo code description of the RAAR algorithm - the standard
implementation of DM is obtained by setting beta=1:

For j from 1 to J
reconBox = object (rPix(3j) :xPix(j) +[N,N]);
exitWaves (j) = probe*reconBox;

End

Loop
For j from 1 to J
reconBox = object (xPix(j) :xRix(j)+[N,N]);

waveToPropagate = 2*probe*reconBox-exitWaves(j):
exitWaveNew = UpdateExitWave (waveToPropagate.diffPatterns(j),z);

exitWaves (j) = beta* (exitWaves(j) + exitWaveNew) +

(1-2*beta) *probe*reconBox;

End
probe = BatchProbelUpdate (exitWaves,object)
object = BatchObjectUpdate (exitWaves,probe);

Until (converged)

Implementation tips and tricks

Some general points that can be helpful:

e Algorithms can be accelerated by pre-computing the exponential phase terms in
the propagators and by pre-square-rooting the diffraction patterns.

* Commonly implementation is via MATLAB - to avoid repeated use of “fftshift” in
the reconstruction, the diffraction data can be fftshifted instead, as can the pre-
computed exponents in the propagators - this can give a significant speed boost.

* Generally, single precision numbers are sufficient for excellent reconstruction
accuracy - and offer another significant speed boost.
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9.4 A basic comparison of algorithms

There has yet to be a comprehensive comparison of the different ptychographic
algorithms with either real-world or simulated data, although Yang et al. have
evaluated many of the batch-type algorithms (DM, RAAR, conjugate gradient)
[35], and work by Waller and colleagues assessed a range of batch and serial
approaches for Fourier ptychography [36]. The difficulty in performing such an
evaluation comes from the huge range of real-world scenarios to which
ptychography may be applied - even tests restricted to the X-ray regime would
need to cover situations ranging from very weak phase objects illuminated with
a high energy convergent probe to strong, optically thick samples illuminated by
a diffused soft X-ray probe. Here, a brief comparison between the algorithms
detailed in the previous section is provided - more as an example of their
various traits than as any sort of assessment of their performance. It should also
be said that the Authors have a great deal of experience with the ePIE-type
algorithms, and much less knowledge of the tricks and short-cuts that might
improve operation of the batch-type alternatives.

Our first comparison is by simulation. We used as a specimen a photograph of
one of the Authors’ daughters (Lucy), converted into a phase-only object with a
phase range of 0-2r (so that the darkest parts of the photograph mapped to zero
phase, and the brightest to a phase of 2x). As a probe, we simulated a convergent
beam with a small defocus. After every iteration of each algorithm, we calculated
the sum of the differences between the evolving object reconstructions and the
true photograph - these error values are plotted in Figure 77. We also paused
the algorithms at various points to take a snapshot of the phase reconstruction -
these snapshots are shown in Figure 78.

Reconstruction error

10-5 L Il 1 L 1
0 100 200

[terations

Figure 77: Progress of reconstructions using different algorithms in a simulated
experiment. The graph plots an error metric that is the sum of the difference between
the intensity of the exit-waves that the algorithms estimate and the measured intensities
captured by the detector: note the link between the spiralling action of DM and RAAR in
Figure 82 and this Figure.
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Figure 78: Progress of reconstructions using different algorithms in a simulated
experiment. Here we have taken snapshots of the object estimate at various points
during the reconstructions. Notice how the batch/parallel update algorithms, DM and
RAAR, handle the centre and edges of the object quite equally, whilst the serial update
algorithms, ePIE and rPIE, obtain the centre parts much more quickly but take time to
reconstruct the edges.

We can note a couple of salient points here. First that the centre of the ePIE
reconstruction evolves quite quickly, in the early iterations, whilst the outside
part takes much longer to appear; second, that rPIE converges very quickly - at
the centre and the edges - given this ideal, noise-free data set. The batch
algorithms are much more balanced in the way they update the object, with the
edges and the centre of the reconstructions evolving at an equal pace. DM
converges quite quickly but tends to oscillate around the solution (like the
spiralling action seen in Figure 67), whilst RAAR, although slightly slower
initially, gives a very good convergence rate once it arrives near the solution.

For a second comparison, we collected data from an optical bench experiment.
Our experiment used the simplest geometry of a probe formed by an aperture
and a CCD camera placed in the far-field. As a specimen, this time we used a
prepared microscope slide holding a section taken from a clam’s gill (chosen only
because it looks quite beautiful at high magnification).

After 100 iterations of each algorithm, the images in Figure 79 emerged (the
amplitude part is shown). In this instance, DM does not fully converge and the
result is a slightly speckled image. RAAR performs very well, with the resulting
image displaying a good level of detail and good noise suppression. ePIE and
rPIE also both produced good results (although perhaps RAAR just wins out).
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Figure 79: These amplitude images of a clam’s gill were reconstructed using data
gathered in an optical bench experiment. All of the algorithms work pretty well for this
real-world data; the ptychographer must choose their own poison!

These simple comparisons mirror what is quite clear from the literature: that,
given a carefully conducted experiment and reasonably clean data, the inversion
problem at the heart of ptychography is well-conditioned, and amenable to
solution by any optimisation technique - from simple gradient descent right
through to the cutting-edge non-linear heavyweights.

10 Wigner distribution deconvolution (WDD) and its approximations

We are now going to discuss a class of direct, non-iterative solution methods for
the ptychographic phase problem that can be used when the sampling in real
space (i.e. the distance moved by the probe) also occurs at the Nyquist sampling
frequency: this is determined by the rate at which intensity in the diffraction
pattern changes as a function of probe position. The methods we will describe
have their most practical implementation in the focused probe configuration
(Section 5.1and Figure 21). In this case, there is an aperture in the probe-forming
lens so that, in the absence of aberrations, the probe is of the form of a
bandwidth limited Airy disc function. The highest frequency in the illumination
is determined by the diameter of the lens aperture, which means that as this
probe is moved laterally, there is also a maximum spatial frequency at which the
far-field intensity can alter. We can think of this via reciprocity, in the case of
Fourier ptychography. The maximum spatial frequency that can arrive in a
conventional image is also determined by the size of the aperture in the back
focal plane of the lens employed, according to Abbe’s theory. Clearly, there is no
point in measuring the image (or moving the probe in real-space ptychography)
at a higher spatial frequency (step size) than the maximum Fourier component
of intensity in the image.

There are a couple of qualifications to this last statement. First, if we record the
conventional image on a pixelated detector, say when undertaking Fourier
ptychography, it is often advisable to sample at a higher frequency than Nyquist
to avoid effects from the roll off of the spatial transfer function of the detector
itself. Second, it must be remembered that the Nyquist frequency of the image is
determined by the interference of beams passing by opposite sides of the lens
aperture, i.e. separated by its diameter. This is twice the frequency of Fourier
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components in the conventional coherent bright-field image obtained from a
weakly scattering object, where the interference phenomenon is between a
central unscattered beam on the optic axis and beams scattered up to the radius
of the aperture. Later, we will see how this ‘double frequency/resolution’ issue
manifests itself in ptychography.

Given equation 7, we might suppose that having maximal sampling in real space
means that we can tolerate very low sampling in reciprocal space: we will find
out below (section 10.4) that this is true, but only if the object is (i) weakly
scattering, (ii) we are prepared to sacrifice our ability to remove even the most
minor aberrations in the lens we are using to form the probe (including defocus),
(iii) we accept that we cannot improve upon the resolution of the lens, as defined
by its aperture, i.e. we cannot make use of dark-field scattering. Under these
conditions we can nevertheless find the phase of the image more accurately than
via the bright-field image.

To begin with we are going to start by thinking about the absolutely maximally
sampled data set in both real and reciprocal space. We will define ‘maximal
sampling’ in reciprocal space as the detector having a pixel size that is smaller
than the reciprocal size of the whole field of view of the reconstructed image. This
is much more demanding than simply being the inverse of the size of the probe
(as is usual in ptychography), since the probe is invariably much smaller than the
field of view. Matching reciprocal coordinates deriving from the field of view of
the scan in real space and the total field of view as seen by the detector is only
necessary if we want to use WDD to image strongly scattering specimens. Of
course, these stringent conditions do not apply to iterative methods.

The experimental demands made by such a vast quantity of data are phenomenal
- for a modest 512x512 pixel field of view, with a 512x512 diffraction pattern
collected at every image pixel, we have nearly 69 billion measurements. If the bit
depth of the detector is 16, you could only fit 8 of these data sets onto a Terabyte
drive - and all this to solve for eight 512x512 pixel images! What is the
advantage of all of this? One answer is that these extreme, very densely sampled
data are the most we could ever hope to measure from a ptychography
experiment, and so it must axiomatically be a ‘good thing’. Another answer is
that very densely sampled data can be used to solve the ptychographic phase
problem using a linear, closed form of inversion called Wigner Distribution
Deconvolution (WDD). This was developed in the early 1990s [66, 108, 121-
124], more than ten years before the modern iterative solutions for
ptychography (for a review, see[5]). Given the agonising history of the phase
problem during the 20t century, it is quite extraordinary that WDD solves an
apparently non-linear and intractable inverse problem with a handful of Fourier
transforms. It can also do almost everything else modern iterative methods can
achieve: solve for the illumination, remove partial coherence effects and extract
volumetric information from the object. Balanced against the absurd quantities
of data it requires is the fact that it is computationally very fast. And anyway, in
an age of ‘big data’ is this a problem? A domestic consumer can buy a terabyte
disk for less than $100; when the original work on WDD was done in the 1990s,
the same money could buy 100Mbytes.
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10.1 Notes on nomenclature

In this section we will be talking about four 4D data sets, each a function of two-
dimensional variables, illustrated in Figure 80. Those in mixed real and
reciprocal dimensions are called I(u, R) and H(r, U), where U is the reciprocal
coordinates of R, and u is the reciprocal coordinate of r. We also have a function
G(u,U), which is a function of two reciprocal coordinates, and L(r, R) which is a
function of two real coordinates. Other conventions could be chosen (say that
capital coordinates are the reciprocal of real coordinates). An advantage of the
present scheme is that G (u, U) is our most important function, and it is
important to stress that it lies entirely in reciprocal space.

R is the probe position. r lies in the object space, and I(u, R) is our detector
intensity such that

I(w,R) = [§la(r — R)q(™)]|? (15)

where, as before, a(r) is the probe and q(r) is the specimen transmission
function; it is important here that we keep track of coordinates, so we have now
included the dependency on r explicitly for these functions. We will use A(u) to
denote the Fourier transform of the probe and Q (u) to represent the Fourier
transform of the specimen.

With reference to Figure 80, where each two-dimensional vector is represented
by just one coordinate (so that the 4D data set is shown as a 2D function), the
Fourier relationships between the data sets are as follows. Horizontal pointers
represent a Fourier transform over just one variable, from u transformed to r, or
vice versa. Vertical pointers are transforms also over one variable, R to U or vice
versa. Diagonals represent Fourier transforms over all coordinates, (u, R) to
(r,U) or vice versa, and (u, U) to (r, R) and vice versa.

(N.B: It has been realised that an earlier review that also adopted this convention
included some mistakes [5]: Equ.s 94 of that reference, L(r, U) should read
L(r,R), and in Equ.95, D(u, r) should read D (u, U), with the variables on the RHS
substituted similarly. The same error is propagated through Equ.s 96-102, as
well as in the text on p.122.)
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Figure 80: Schematic of the Fourier relationships between the recorded intensity, I, which is
measured as a function of probe position, R, and detector coordinate, u, and the G- and H-sets. We
do not discuss L, which is not relevant in the context of the main text.

10.2 Phase recovery from data sampled densely in real space

Rather than launching straight into the mathematics of WDD, we think it is
important to give the reader a physical insight into the most important and
mysterious aspect of the technique: how is phase information extracted from
raw data which has only been recorded in intensity? A Fourier transform of a
single diffraction pattern’s intensity gives the autocorrelation function. Although
this can be useful, especially if there is a strong reference signal in the original
wave field, the object function is far from self-evident. Conversely, WDD relies on
the principal strength of ptychography: probe movement. Let us see how this
works.

Consider a focused probe that reaches its crossover some distance in front of a
periodic grating, as shown in Figure 2 (we discussed this interference in relation
to Hoppe’s definition of ptychography). In the far field we would expect to see a
shadow image of the object. (If you have an optical bench at your disposal, and
you want to understand ptychography, this is an exceedingly informative
experiment.) Figure 2b shows an example result. In this case, the object is a TEM
grid illuminated by a laser beam focused by a single lens that has a variable
aperture. In Figure 2c the aperture has been closed down. We now see discrete
diffracted orders that are interfering with one another, giving fringes
perpendicular to the scattering vector of the diffracted reflection, but with the
same periodicity of the features that were cast in the shadow image of the object
function. If the aperture is shut right down, the illumination is effectively
parallel, so the disks become the usual diffraction spots and cannot interfere
with one another. We see rather directly how interfering diffraction orders
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evolve into a shadow image. Incidentally, if there are isolated features on the
grating, like pieces of dust, they are not at all easily visible in the coherent
shadow image because the interference of the diffraction orders dominate. If the
source is partially coherent, resolution is lost but so are these very strong
diffraction effects and so the isolated features become visible.

If we move the object (or probe) at a continuous speed, the shadow image
and/or the interference fringes move across the diffraction plane at a rate that
depends on the defocus of the probe. Greater defocus leads to less magnification
in the shadow image, but this image appears to move laterally more slowly. The
two effects cancel each other, so that at any one point in the shadow image, the
variation of bright-dark-bright is determined only by the pitch of the grating,
irrespective of defocus. This is exactly what would be expected given that the
only change in the experiment is the object shift, so any change in intensity
anywhere in the optical system must oscillate in synchrony with the periodic
structure in the object. The degree of overlap between the diffracted disks is also
directly related to the periodicity of the object, according to the usual diffraction
grating equation.

Remember:

(i) The position of the diffracted beam, and its overlap with other
diffracted beams, is determined precisely by a specific periodicity in the
sample.

(ii) As the probe is moved, the intensity within the overlap areas changes
periodically, at exactly the same periodicity within the specimen that
defines the position of the diffracted beam. This intimate relation defines
the structure of what we will call the ‘Fat-H’, as well as other
characteristics of WDD. This principle is not confined to crystalline or
periodic objects.

It is impossible to picture the full densely sampled 4D data set. We are therefore
going to use one-dimensional lines, where a line represents a 2D image or a 2D
diffraction pattern. The raw data set can then be represented as a 2D function,
plotted as a function of probe position and diffraction pattern intensity, as shown
in Figure 81. Horizontal lines correspond to diffraction patterns. Vertical lines
are images (the signal detected at a diffraction pixel as a function of probe
position). The data are the same as in a Fourier ptychography experiment, where
vertical lines are images collected at a particular angle of illumination. We will
also sometimes plot 2D functions that represent other slices through the 4D
function. All these are not plots of one variable against another, but of a function
of two-variables, where each point in the 2D plane will have a value that is not
shown, although we could in principle show this using variable shading. Except
for the raw data, all the functions are complex-valued.

107



The comprehensive
diffraction/imaging 4D
data set

R — probe position/
image coordinate

Diffraction
pattern collected
at a particular
probe position

u — diffraction/
illumination coordinate

Image recorded from a particular detector pixel

Figure 81: The maximally sampled data set. Along horizontal lines we have diffraction
patterns, each from one probe position. Along vertical lines we have images, each
recorded as a function of probe position using the signal collected from one diffraction
pattern pixel. In Fourier ptychography, vertical lines are also images, collected from one
illumination angle in u.

We are going to start by considering ptychographic phase retrieval for a periodic
object, as in Figure 2. First we look at the raw intensity data, plotted as a function
of R and u, namely I(u, R) (shown top left in Figure 80), where R is the probe
position coordinate and u is the diffraction pixel coordinate. If we have a
periodic object, we have multiple strips, as shown in Figure 82: in this example,
the strips (1D representations of the 2D diffracted disks in the full 4D data set)
are not overlapping. When they do overlap (Figure 83), we now see interference,
which periodically changes as a function of probe position. For simplicity the
interference is shown as if the probe is perfectly focused. If it were defocused the
interference fringes in this plane would be diagonal. As the probe is moved, the
interference then shifts laterally across the overlap in the diffraction plane. For
the focused probe, there is then no structure in the overlap of the disks, but the
interference signal still changes as a function of probe position. The position of
these fringes relative to one another will deliver the solution of the phase
problem.
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R = probe position

u = diffraction
coordinate

Figure 82: Shaded regions show where there is intensity in the recorded data when

there are non-overlapping diffraction discs arising from a crystalline specimen. The discs
at the bottom of the diagram show a perspective view of the two-dimensional diffraction
pattern. In the main diagram, each diffraction pattern is a horizontal line, as in Figure 80.

R = probe position

u = diffraction
coordinate

Figure 83: Raw data when discs from a crystalline specimen (as in Figure 2) overlap. The
interference within overlap changes periodically. If there was defocus in the probe
(Figure 2), these interference effects would be diagonal: think of a horizontal line
moving down the Figure. Each pattern has fringes in the overlap region, which move
laterally as the probe is moved. The position of these fringes solve the phase problem.
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We now take a Fourier transform with respect to the probe shift coordinate, but
not across the horizontal 1D diffraction pattern coordinate. This means we take
out a vertical strip of pixels in our 2D data set, do a 1D Fourier transform on it,
and then replace it in the same strip where we took it from, and so on for all such
vertical lines. The result is shown in Figure 84, where now the vertical
coordinate is a reciprocal coordinate of the probe position R labelled by U. We
call this function the ‘G-set’ [122, 123]. The u coordinate remains unchanged,
spanning the detector. Except at U = 0 (the zeroth component of the Fourier
transform), there is no amplitude in the G-set in the vertical direction wherever
the diffracted disks did not overlap - because these regions did not change as a
function of R. However, we have lines of amplitude, each with the width of the
aperture overlap, and positioned at the frequency of the structural element in
the object that gave rise to the interference. When we do the mathematics, we
will find that the phase of these features correspond directly to the phase
difference between each pair of the diffracted discs, although we may have to
deconvolve the influences of an aberrated or defocused probe. Once we have all
such phase differences, we can construct the whole Fourier transform of the
object: the phase problem is solved, once again by exploiting ptychographical
probe-movement translational diversity.

U = Fourier transform of
probe position

Figure 84: Once the Fourier transform is taken with respect to the probe position, the
periodic features in Figure 83 appear at specific frequencies.

This particular focused probe experimental geometry was how Hoppe first
formulated the concept of ptychography, at least as a gedanken experiment [2].
Instead of using all the probe positions, he proposed using just two positions,
which just about provides adequate information to ‘unlock’ the phase problem if
the object is indeed a perfect crystal and the diameter of the interfering discs are
such that there is only one overlap occurring at any one point in the diffraction
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pattern [5]. Moving over towards a general non-crystalline object there is a
continuous spectrum of diffracted intensity, and so many diffraction disks, and
their interferences, all overlap with one another inseparably. The advantage of
collecting a whole field of view of probe positions, and Fourier transforming with
respect to probe position coordinate, is that the interferences in the regions of
overlap are teased apart.

But this is not the end of the story. It turns out (see below) we can quite easily
form an image from a weakly scattering object using the G-set directly. More
generally, if the probe is aberrated the lines (i.e. the aperture overlaps) in Figure
84 are complex variables with fine structure. In the case of defocus, the fringes
cause any particular point in the diffraction pattern to come bright and dark at
different times (the variation of intensity has different phases) as the probe
position is scanned. Worse, if the object is strong, diffracted disks do not only
interfere with the central disk, but with other, possibly strong, diffracted disks.
This means that there can be multiple overlap areas at any one value of U, which
can themselves overlap with one another! Our single Fourier transform has not
perfectly separated all the ptychographic interferences. We will see that these
more complicated effects can be deconvolved via the WDD method; in the
meantime, we will explore more fully the weak phase object approximation in
the case when the probe-forming optics are perfect.

10.3 Weak phase object approximation: the ‘Fat H’
Before we can go further, we have to derive a mathematical definition of the G-

set. We recall that the exit wave from our object function q(r), with incident
probe a(r), can usually be approximated as a simple point-by-point product,

Y(r) =a(r - R)g(r). (16)

The complex amplitude arriving at the detector is then

M(u) = [y (r)e™™ dr = Sy(r). (17)
The intensity at the detector is now

[, R) =M, R)|" = |a(r - R)-q(r)lz_ (18)

which can alternatively be written as a convolution of the Fourier transforms of
a and g, namely A and Q:

1(u, R) = [((A@)e™ )@ 0| - (19)

The exponential derives from the Fourier shift theorem, and can be thought of a
phase ramp added to the aperture transfer function, which, like a thin prism, has
the effect of shifting the probe in real space [5].
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What we aim to do is to form G, namely

G(u,U) = [1(u, R)e*™ R (20)

the Fourier transform of our data with respect to just the R (probe position
coordinate) - but not with respect to the detector coordinate, u. Equation 20 is

not very helpful for doing this, so we have to rewrite it, making the convolution
explicit so that

1, R) = ([ A, )O(u -~ u,) A" (1,0 (e~ w, )™~ s, (21)

where u, and u_, are dummy variables: the result of the integral does not

depend upon them, although they are needed to compute the integral. Now we
substitute into Equ 20, to get

G(,U) = [[[ A, )00 =1, 4" ()0 (=10, )e ™™V du,dR

Note that A and Q have no dependence on R, in the above. After all, in
ptychography the illumination and the specimen stay the same, wherever the
probe is moved. We can therefore integrate over R to give

G(u,U) = [[A(u, )0~ u,) A (u,)0" (u~u,)d(u, —u, + Udu,du,,
(23)

where we have used the fact that the integral over the complex exponential
function is zero everywhere except at R=0. This is only strictly true if we
integrate over infinite limits - a fact that does have consequences when our field
of view is finite, as will be discussed in Section 10.6.2. We integrate over u, (the
choice of ua or us. is not essential) in which case the delta function in Equation
23 only hasvalueat u, =u, +U, so

G(u,U) =fA(ua YOu-u)A (u, +U)Q (u-u, -U)du,, (24)
or more conveniently for our discussion, we substituteu, = u — u, to give

G(u,U) = f Ow)Q (u, —-U)A (u—u, +U)A(u—u,)du,, (25)
i.e the convolution

CwU)=Qw)Q " (u—-U)®,Aw)A"(u+ U). (26)
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The subscript u on the convolution is critically important: it denotes that we are
only convolving the two functions in the u direction, which we will try to
illustrate diagrammatically later.

Now let’s try to pick this apart. The first thing to note is that when U =0, i.e. along
the horizontal axis in Figure 84, we just have |Q(u)|? convolved with |A(u)|?.
This is happening at the zero component of the Fourier transform over R, so it is
equivalent to the integral of the intensity of all our diffraction patterns.
Physically, this is equivalent to an incoherent convergent beam electron
diffraction (CBED) pattern collected using a wholly incoherent tungsten electron
source (or an incoherent X-ray source). Each point in the (large) source gives
rise to a displaced probe, and all the resulting diffraction patterns add together
in the diffraction plane.

The next most important feature arises when we consider a weakly scattering
object function. The Fourier transform of a weak specimen has a large spike at
u=0, corresponding to the largely unscattered transmitted beam. At all other
values of u, Q (u) has very small amplitude. In Figure 85a we plot Q (1) and

Q*(u — U) on top of one another. The reader is asked to imagine what the
product of these two functions will look like. Clearly, there is a massive spike at
u=U=0, because this is where the two bright central features of Q(0) meet up: the
intensity of the transmitted beam.

Direction of U =
reciprocal of R

Figure 85: On the left, Q(u)Q*(u — U) in the G-set for a weakly scattering object. (The
same function for a strong object is shown in Figure 94.) On the right we have
A(u)A*(u + U) for a simple ‘top hat’ aperture function. Each point in the plane has a
complex-valued function associated. The lines and shaded regions denote areas where
amplitude can exist, though each point will have a complex value associated with it.

Now suppose Q(0), the centre of the diffraction pattern, has an amplitude of
unity. Along the vertical axis, u=0, we have

Q(0)Q*(=U) = Q" (=U). (27)
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That'’s easy: we can just take the data along this line, reverse it, take the complex
conjugate, and Fourier transform to give the complex image! There is another
line of high amplitude lying along the locus u-v = 0, where we have

Q(w)Q"(0) = Q(w), (28)

giving us another, even more direct estimate of Q. Everywhere else in this 2D G-
set, at points not on these two lines, only very weakly scattered values of Q and
Q* meet up to form a product. In the weak object approximation, we ignore this
second order amplitude. We cannot ignore it when the object is strong.

There is only one problem. To make this function manifest, we must have taken a
Fourier transform with respect to R - but this weak phase object, with its central
spike in reciprocal space, is, by inference, illuminated by a plane wave, so there
has been no probe, no effects of probe movement and thus no ptychographical
interference. The phase retrieval only works when we consider equation 26. It is
the effect of the convolution of the aperture, leading to the sort of fringes we saw
in Figure 2, that gives us the phase. Ironically, once we have done the
experiment, we will deconvolve (via the WDD method) the aperture function,
and hence obtain the function in equation 36 and Figure 85a in splendid isolation
as we show below.

Our G-set is in fact given by equation 26. We first explore where data can arrive
in the G-set for a weak object. Now we consider the aperture term in equation
26:

AWA* (u+ U) (29)

In one dimension, the simplest aperture is just a top hat function of unity
modulus, with no phase components. A little thought will show that in u, U space,
equation 29 then describes a skewed parallelogram, as shown in Figure 85b.

Now consider the consequence of the convolution in Equation 26 for a weak
specimen. Remember that we are not convolving Figure 85a with Figure 85b in
the two dimensions like the blurring of a two-dimensional image; we are
convolving only along the u direction. At some value of U, we have to take out
two rows of pixels along horizontal lines from Figures 85a and 85b, convolve
these two one-dimensional functions, and then put the resulting one-
dimensional row of pixels back into the G-set at the same value of U. We then do
this for all such 1D functions at all values of U.

One way to picture this is as follows. A one-dimensional convolution, say

g(x) ® h(x) can be achieved by ‘flipping’ one of the functions, say g(x) becomes
g(-x), and then forming the correlation of the two by moving one past the other
and observing the integral of the product of the two functions as a function of
displacement. For our functions, we can flip the aperture parallelogram (as a
function of u), and shift it laterally across Figure 85a, as shown in Figure 86. With
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some further thought, it can be seen that we end up with a function that looks
like Figure 87, which we will call ‘the Fat-H’. Note that under all circumstances,
G(u,U) = G*(u,-U). This is a property of all Fourier transforms of real functions:
here we have the Fourier transform of the raw (real, intensity) data along the
original R coordinate. In all that follows we can ignore either the top or bottom
half of the G-set. When we are dealing with real data sets (which for this
technique are enormous), this is an important thing to remember - you can
throw away half of it.

U = reciprocal

| /

Figure 86: A way of picturing the convolution in Equation 26. For each separate value of
U, we must form the integral of the two functions multiplied by one another as the
parallelogram (a horizontally flipped version of A(u)A*(u + U)) is scanned across

Q(w)Q"(u— V).

Direction of U =
reciprocal of R

U = reciprocal

u =reciprocal

Figure 87: The result of the correlation in Figure 71 for a weak object function. We call
this the ‘Fat-H’. Lines drawn between the extreme tips of the structure represent
symmetric scattering conditions (see section 10.6.5); in reality these are two-
dimensional planes extracted from the 4D data set.
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So far in this analysis all our 2D diffraction patterns have been represented as 1D
lines, the other axis on our diagrams being reserved for the probe position or its
Fourier transform. Next we consider what is happening in the 2D diffraction
plane (which we label by coordinates u, and u, ), but picked out at particular
values of U, as shown in Figure 88. The five horizontal lines correspond to the
five shapes shown in the 2D diffraction pattern plane shown on the right. As we
go to higher and higher frequencies in U, which is the rate of change of intensity
in the diffraction pattern as a function of probe position, the disks separate
further and further - remember that the position of the diffracted disc in u is
itself determined by the periodicity in the object that gave rise to it - recall our
discussion concerning Figure 2 and the movement of the shadow image fringes
across it.

u u,

..
. 90®

Figure 88: The Fat-H is drawn as a function of U and u, assuming both object and
aperture are one-dimensional functions. In fact, every horizontal line in the Fat-H is a 2D
plane plotted as u, and u,, shown on the right. At higher U (higher Fourier frequencies
in the probe position coordinate), we see occluded aperture functions called the
‘trotters’. See Figure 92 for an experimental example.

It is exceedingly important to understand that the presence of the occluded
aperture shapes in Figure 88 (which below we will see are generally called ‘the
trotters’) does not depend on the object being crystalline or periodic. Our
experiment in Figure 2 used a periodic object as a simple demonstration. Any
non-crystalline object is still made up of a set of Fourier components. Each one of
these components lies at a particular value of U, and therefore can still only be
expressed in the overlap areas defined by the aperture functions in the Fat-H. It
is also important to appreciate that when we are dealing with the full 4D data
set, we must take the Fourier transform with respect to the probe position over
both its 2D coordinates in order to reveal the occluded aperture shapes (trotters)
in Figure 88. Note that the multiply shaded areas are where there can be
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amplitude for a weakly scattering object, but that does not mean there is
amplitude at every such position. The presence of amplitude depends on
structure in the specimen and the effects of phase aberrations in the aperture
function.

As an aside, we will explain why those working in the field often call the occluded
aperture functions ‘trotters’. During the 1990s, when this data set was first
explored experimentally [122], Rodenburg built a cardboard 3D model of the 2D
overlap regions as a function of just one of the coordinates in U. It looked
somewhat like Figure 89. Cutting this object horizontally (i.e. at one value of U)
gives the shape of the overlaps (Figure 88) in 2D, plotted as a function of u, and
u,. Slicing vertically down the middle between the two pointed features (the
points of smallest disc overlap), gives the Fat H (Figure 87), a function of u and U.
This 3D object had an uncanny resemblance to an upside down pig’s trotter.
Alternative names for the aperture overlap areas (e.g. the ‘aperture offset
functions’) do not have the friendly and compact resonance of ‘trotters’. The
name, always used in the plural even though the two occluded apertures are part
of one 3D trotter, has stuck amongst the cognoscenti; in what follows we will use
it in parentheses. In fact the pig’s trotter is a genuinely useful insight into the
nature of the ptychographic data set, even if its name is flippant.

Figure 89: The pig’s trotter in 3D. One coordinate in U is plotted in the vertical direction.
The other two coordinates are u, and u,, This is an alternative representation of Figure

88.
10.4 Sector detectors

In Section 5.1, we alluded to the fact that when the illumination is a perfectly
focused probe, a ptychographic data set arising from a dense (Nyquist) sampling
in real space can give us a phase sensitive reconstruction even if we only have
four pixels in the detector plane. In fact, there are some very straightforward and
direct ways of doing this. Indeed, so direct that the reader may become irritated
that we have gone through all the shenanigans of constructing the G-set in order

117



to describe these techniques, although the G-set will become very important in
later sections, when the probe is aberrated and/or of small numerical aperture
and/or the specimen is strong.

Equations 27 and 28 tell us that when the object is weak, its Fourier transform is
expressed directly into the G-set as a function of U. To get to here, i.e. to effect the
ptychographic interference, we need a convergent probe, which consequently
gives us the fat-H. If there are no phase components in the aperture, then
because the convolution in equation 26 is taken only in the u coordinate, Q is
unaffected in all the shaded areas in Figure 90. Q(U) is expressed in every
vertical line in the fat-H, lying at any u position within the central undiffracted
disk. There is a problem in that the double overlap area, shown shaded in Figure
90, will have little or no amplitude if the object is weak phase. We will not labour
through the theory here, but it derives from the fact that the image of a weak
phase object has no contrast, and so its Fourier transform is zero. Where there is
only one sideband present (unshaded regions in Fig 90) there is contrast in the
image.

Figure 90: Amplitude in the shaded area of the Fat-H depends on the contrast transfer
function of the lens. Unshaded areas are single sidebands, which always express contrast
from the specimen, but are still affected by the complex transfer function of the lens.
Sector detectors integrate vertical lines of these Fourier components.

So, thinking of the Fat-H, all we have to do is put two 1D detectors at u>0 and
u<0. We do not even need to take the Fourier transform to form the G-set and
then back transform; as the probe is scanned, the detectors pick up the original
q(R) as a complex number. In the two-dimensional detector plane, we have
something that looks like the sector detector shown in Figure 23.

However there is a problem with the transfer characteristics of the images that
come out of these detectors. At the centre of the detector we get no transfer at
all. This is equivalent to a central bright-field detector in STE/XM: we see
nothing if the object is weak phase except uniform brightness over the field of
view. Both high frequencies and low frequency pass through the very edge of the
detector - i.e. on the outer extremes of the Fat-H. In between we have partial
transfer of different frequencies. However, this can be filtered out, at least
approximately. Each sector gives an image. The Fourier transforms of these
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images give diffractograms (the Fourier transform of the image intensity) - an
integral over the area in u spanned by the detector, plotted as a function of U. It
is possible to weight each point in each of the four diffractograms by dividing by
the line length in the u-direction that intersects the shaded area in Figure 90. For
the 4D data set, the division is by the area of the occluded apertures (trotters) at
that particular value of U, see [125, 126]. In discussing sector detector transfer
properties, the trotters are sometimes super-imposed on the sector detector, as
shown in Figure 91. It then becomes clear that there can be benefits in using
different diameters and annular divisions of the detector to improve the transfer
characteristics of sector detectors.

Figure 91: Sections through the trotters (Figure 88) superimposed on sector detectors
[127]. This is a way of understanding the frequency transfer properties of sector
detectors.

Sector detectors are nowadays commercially available in electron microscopes,
although the processing done on the data is usually more approximate than what
we have described above. For example, we can get an approximate estimate of
the phase gradient in the object simply by taking the difference in the intensities
measured at opposite sectors. This signal must then be integrated to give the
absolute phase change induced by the specimen.

Note that at the extreme edge of the Fat-H, we get twice the resolution of the
bright-field image, whose diffratogram lies along u=0: hence the title of the paper
where the trotters were first observed [122]. This is nothing mysterious. The
coherent bright-field image uses an incident plane wave that has a single
incident k-vector. The maximum angle to which this can scatter is half the
diameter of the aperture, which occurs at u=0 in the Fat-H. When we have a
convergent probe, scattering can occur from one side of the aperture to the
other, i.e. across its whole diameter. (Note that we are not talking about dark-
field intensity, which is scattered outside the aperture disk in the focused probe
configuration.) As we have said before, it is well known that conventional
microscope resolution is defined by the inverse of the addition of the numerical
apertures of both the condenser lens - the range of incident vectors illuminating
the specimen - and the objective lens. The same applies here, except our
‘objective’ is the bright-field disk in our diffraction pattern, which we process
computationally, not via another lens.

10.5 Dense sampling in real space and reciprocal space
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Why bother to have an expensive 2D detector in the diffraction plane when a
data cube that is densely sampled in real space can give an adequate phase image
from a few sector detectors? After all, collecting a 2D diffraction pattern at every
densely-sampled probe position massively increases the data we have to handle.
The answer is that we can cope with aberrations in the optics, we can handle
strong specimens, we can exploit dark-field intensity lying outside the central
unscattered beam that contains higher-resolution information than the probe-
forming optics, we can remove partial coherence effects, and we can choose to
image specific layers in a three-dimensional specimen. The contrast in the final
reconstruction is also much better [10]. Of course, iterative algorithms can do all
of these things, and without having to have dense sampling in real space. But this
section is about maximally sampled data - let us call it the ‘complete data set’ -
and why we can invert it with a linear set of transforms. It would seem logical
that if we have the data-handling capabilities necessary, the complete data set
must be the most informative. Once we have the data, WDD is bound to give a
faster reconstruction, but whether it is better than iterative methods remains to
be seen.

Several workers have recently been obtaining this complete data set from the
electron microscope using an ultra-fast (4,000 fps), single electron counting
diffraction camera. Watching the data come out of this in real time as the probe is
scanned is extraordinary. The central disc in the diffraction plane fills the entire
camera. All that can be seen appears to be pure noise. But when a plane taken
out of the G-set is displayed, the occluded apertures (trotters) are astonishingly
clear, as shown in the example in Figure 92. This very powerfully demonstrates
the dose fractionation property of ptychography. The noise statistics from all the
many diffraction patterns has been re-assembled exactly as we expect, in this
case by the Fourier transform integration over all probe positions.

Phas

Phase (radians)

Figure 92: Experimental trotters in phase (top) and modulus (bottom), from [128]. Any
aberrations in the lens are very sensitively expressed in the phase. These data were
collected on a high-performance aberration-corrected machine, so the presence of phase
distortions is surprising.

As we’ve hinted, we can do several things using this data to improve the fidelity
of the reconstruction over and above that possible with sector detectors. Most
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simply, we can avoid those parts of the Fat-H (shaded in Figure 90) where the
sidebands of @ overlap with one another, say by integrating each slice in U only
over the relevant trotter shapes. When there is any defocus or aberration in the
probe, the shaded areas can have unwanted amplitude. After all, that is how we
get contrast into a conventional bright-field image. By defocusing we pump
amplitude into the diffractogram, which in the G-set lies along the vertical line,
u=0. A sector detector unavoidably captures this unwanted region of data.

However, much more effective is to deconvolve the trotters from the data. We do
this as usual by taking the Fourier transform across the plane of the trotters (i.e.
over u, but not over U). In other words, we Fourier transform equation 26 with
respect to u. By the convolution theorem this will give us the product of the
Fourier transform of the functions depending of A and Q. The coordinate u was
the reciprocal of the exit wave variable, r (equ 18). So we say this function
depends on U and r, and we call it H(U, r), where

HWU,r) = (fQwQ*(u— U)e2™xdu)x(f AW)A*(u + U )e?™%du) (30)
or,

HWU, ) = xoW, 7). xa(=U,7), (31)
where for some general reciprocal function, F, we have

xr(U,7) = [F(WF*(u — U)e'* 4 dy, (32)

which is our definition of a Wigner distribution, although in signal processing
theory it is usually called an ambiguity function.

With reference to Figure 65, let us try to clarify all the steps we have taken, and
also to describe the final steps we have to take in order to produce an image
using the WDD method. At the top left we have our recorded data, I. This is a real
function (intensity) recorded as a function of the diffraction plane coordinate u,
and the probe shift coordinate, R. Below it is the G-set: a Fourier transform has
been taken vertically over the probe position coordinate, R, transforming it to U;
the u coordinate remains untouched. When the specimen is weak, this is where
we see the trotters and the Fat-H. However, the information relating to the
specimen is still bound up in the G-set via the convolution in Equation 26. To
remove the effects of the aperture, we now transform horizontally along the
coordinate of the convolution, u, to the coordinate r, this time leaving the
position of the rows of pixels in the G-set unchanged. We can alternatively take
the obvious short-cut, which was how this theory was originally formulated
[108, 121], by taking Fourier transforms over all the coordinates at once,
jumping straight from I to H, as illustrated by the diagonal line. However, we
then lose the ability to employ or understand the weak object approximations.

As we have described it, the model depends on reciprocal functions Q and A. The

Reader is advised that most of the theoretical development of the WWD method
in the literature used the real-space functions q and a in the definition of H and
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xr- This has no impact on the key ideas, but we now think that understanding the
convolution of 4 and Q in the G-set - and their deconvolution — might be an
easier way to understand what are otherwise rather impenetrable equations.
However, for the record, the equivalent definition of y for a real space function,

f,is
xr(WU,m) = [ f*(R)f(R +r)e 2™RUqy, (33)

To proceed with the deconvolution we remove the aperture function (which for
the time being we presume we know), so that we get

H(U,R)
XA(U!R)

XoW,T) = (34)

Like all deconvolutions, this division is highly unstable wherever y, is small or
zero. Like the iterative update (Section 3.4), we use a Wiener filter, so that

XaH(U,R)
Xo(U,7) = TR (35)
Then all we have to do is back Fourier transform y, with respecttor, to a
function only dependent on Q. This is usually called the D-set. It exists in the
same coordinate system as the G-set but now the aperture function has been
removed. As we pointed out before, we need the aperture function to get the
interference data in the first place, but it also places an important restriction on
the D-set: there is no information beyond the extreme ends of the fat-H in the
vertical direction.

The final step is to decide how we are going to handle the D-set, given by

D(w,U) = Q)Q"(u—-U) (36)

It is bad enough thinking what this represents in a 2D plot, even worse to think
about it in 4D! In Figure 93 we show our original interfering disk experiment
next to the intensity of a diffraction pattern from a non-periodic object. For a
simple periodic object, the disks give us the phase between the unscattered
beam and the scattered diffraction orders, i.e. between two points in the
diffraction pattern indicated by the white arrows. However, in general, when the
object is non-periodic, the D-set gives us the phase difference between every
single pixel in the diffraction pattern and every other single pixel. So for our
512x512 scan with 512x512 detector pixels, we have 69 billion pairs of relative
phases: 6 are illustrated on Figure 78.

We should remember that there is a cut-off in the U-direction of D because of the
finite width of the aperture, hence the finite height of the Fat-H, so only the
relative phases between points separated by less than this distance in reciprocal
space can be measured. Nevertheless, all pixels, over the whole diffraction plane
(including all the dark-field data lying outside the central disk) can be reached by
taking multiple steps from one pixel to the next, where each step is smaller than
the cut off. In our optical crystalline example (Figure 93), this is like hopping
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from one disk to the next. An experiment doing exactly this has been shown to
work using electrons scattered from a silicon sample, thus obtaining an image
(albeit only of a periodic crystal) at several times the intrinsic resolution of the
lens used to from the focused probe [129]. An optical crystalline experiment,
stepping much further out into reciprocal space, has also been demonstrated
[130].

Figure 93: After deconvolution, the D-set (Q (w)Q*(u — U)) expresses phase difference
between every pixel in the Fourier transform of the object and every other pixel. A single
phase difference in a crystalline object (left) is easy to understand. All such differences in
a non-crystalline object involves billions of phase differences, even for the Fourier
transform of a modest field of view.

This process of ‘stepping out’ does not work well with non-periodic objects. The
steps must be taken via features of high modulus to reduce the accumulation of
phase errors, and thus the method can only use a fraction of the available data. A
much more effective solution is to use a projection method [71], which
repeatedly sums together phase differences in the 4D cube lying in planes of U, at
the same time working out along the u-direction. This makes full use of the data,
but is beyond the scope of this chapter. For more details, see [71].

Finally we remark - perhaps the most important observation of all - that when
we fully deconvolve the data, there is no restriction on @, and hence the object g,
being weak. From the point of view of the mathematics it can be as radically
strong as we like, incorporating massive and abrupt phase changes and wild
variations in modulus. Of course, real specimens that are very strong tend also to
have finite thickness. Sections 10.6.4 and 10.6.5 describe 3D imaging from the
bright-field data, but there has been no work done on the influence of 3D
scattering processes on dark-field WDD data, or whether 3D structure can be
recovered using it. Q can extend as far out into reciprocal space as we like.
Indeed, that was the original motive of WDD: to overcome the resolution
limitation of the electron microscope lens. Figure 94 shows schematically how a
strong object spans the D-set, and the associated cut-off due to the height of the
Fat-H.
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U = reciprocal

u =reciprocal

Figure 79: The D-set for a strong object. The reader is encouraged to imagine the product
of the two functions Q (u)Q*(u — U).

The WWD method was demonstrated with visible light during the 1990s [66,

123, 124]. There has also one proof-of-principle at soft X-ray wavelengths [8].
There is now some renewed interest at electron wavelengths [9, 10].

10.6 WDD: Miscellaneous

10.6.1 Partial coherence

The Wigner distribution, which includes a correlation-type relation, is known as
a powerful tool for quantifying and understanding partial coherence, which is
about statistical correlation. The same applies to WDD. Perhaps one of its most
important characteristics is that, like modal decomposition in the iterative
reconstruction methods (Section 8.2), it can remove the effects of partial
coherence. This is not surprising - the data are the same, so the same
information should exist within it. Many solutions of the phase problem start
with the premise that the source and the interference processes are perfectly
coherent. This is never quite true for short wavelength sources (X-rays or
electrons), and so we must pay close attention to any retrieval strategy that can
remove partial coherence.

When the source is of finite size, and every point of emission on it is incoherent
with respect to every other point on it, then the mutual complex degree of

coherence lying over the lens aperture (which lies in the Fourier plane relative to
the source) can be derived via the Van Cittert-Zernike theorem, and is given by

I'(u) = 3s(r), (37)
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where s(7) is the intensity distribution of the source. Incorporating this into our
WDD schema is mathematically tedious [108], so we simply state the result. Now
our final D-set is given by

D(U,u) =T(U) Q)" (u—-1), (38)

a surprisingly simple equation. If we think of the image obtained from any one
detector pixel at position u as the probe is scanned, then a finite source will blur
the coherent image, thus attenuating its high frequency components. The
amplitude of the D-set is then attenuated by I'(U) in the U (and only the U)
direction, because U is the Fourier transform coordinate of the probe position. In
principle we can therefore divide D (U, u) by gamma and restore a coherent data
set. Other sources of incoherence like chromatic spread or detector pixel size
and, in the case of electron microscopy, instability in the lens power supplies, can
also be mapped in the G-set [131].

10.6.2 More about sampling and probe size

If the specimen is weak phase, we are by definition not interested in any
scattered data lying outside the central undiffracted disk. The fat-H derives from
the assumption that the second order cross terms between the scattered
amplitude of Q and Q* are negligible: only Q(0) times Q(u) has significant value.
Equivalently, the D-set only has amplitude along the two lines u=0 and u=U. This
means there is no opportunity for ‘stepping out’ or the projection strategy
mentioned in Section 10.5. Under these circumstances the sampling in u only has
to be sufficient to adequately deconvolve the occluded aperture function, equ 29
(the trotters). What is that sampling? It clearly must sample the trotters at a
higher frequency than any modulus or phase structure within them. That is
roughly the inverse of the probe size - i.e. the same sampling condition that
applies to all other forms of ptychography. Actually, near the top of the fat-H,
where the trotters are tending towards delta functions, their Fourier transform
is somewhat wider. However, the deconvolution is only taking out aberrations
and having the effect of performing an integration over the trotters, and so it
does not need to be perfect.

Contrariwise, when we have a strong specimen, the whole plane of the D-set has
significant amplitude. To cleanly undertake the deconvolution and then make
use of all the phase differences in the D-set (at least when the object is non-
periodic), the sampling in u must be the same as the sampling in U. The final
result of the whole process, e.g. obtained via the projection method [71], is a
single complex-valued diffraction pattern, plotted over u. Of course, the pitch of
pixels in u must therefore be the inverse of the whole field of view (not just the
size of the probe). Meanwhile, the weak phase object methods take all the
reciprocal information from the U direction. This also has a pixel size that is the
inverse of the field of view (as spanned by the probe), but having the flexibility to
have so much lower sampling in u vastly reduces the demands on the size of the
data set. There are possible solutions to this problem, say be tiling small fields of
view, but at the time of writing we are not aware that such alternatives have
been explored.
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Finally we mention that the theory of WDD, at least for strong objects, depends
on undertaking Fourier transforms over infinite limits, or periodically repeating
objects. For a continuous image, the data must be attenuated at the edge of the
field of view by a soft window function, and even more space must be left within
the unit cell to accurately account for the probe function as it scans up to the
edge of the field of view. All this is tractable, but a reader who wants to try to do
WDD must be aware of this. If the probe is a focused cross-over it is very small,
so this is not a significant problem.

10.6.3 Probe solution

The redundancy in the densely-sampled data set is extreme, and so it would be
surprising if it were not possible to solve for the probe as well as the object
function, as is routine when using iterative methods. Indeed there is such a
solution [66] (there must be many others awaiting discovery). It combines
elements of blind deconvolution techniques with WDD. In short, whenever we
have an estimate of A, we can form the corresponding Wigner Distribution (equ
30) in the H-set. We divide as usual to solve for Q, and then transform, along the
u coordinate to the G-set. We then estimate Q from data lying along the U
coordinate. This is then used to form its Wigner Distribution. Now the data in the
H-set is divided by this estimate, to give an estimate of A’s Wigner Distribution,
and hence, after transforming back to the G-set, a new estimate of 4; and so on
and so forth. The principle is that the convolution in the u-direction must be
consistent with the function estimates taken along the U coordinate.

The method was demonstrated with an optical bench experiment, but given the
dismal size of the data that could be gathered in 1993, the results were

unimpressive.

10.6.4 3D Imaging

Nellist and co-workers have recently shown that applying WDD with probe
functions constructed at different levels of defocus, slices can be selectively
imaged from multiple layers of a thick, weak object [10]. This is not the same as
solving for the image and then propagating to different defocii, in which case
there would be Fresnel effects from out of focus layers. The method seems to
pick out an actual plane within the object function. At the time of writing, the
work is at a very early stage.

10.6.5 The Bragg-Brentano plane

[t was recognised in the work that first described the weak object approximation
of the G-set [122], that there exists two lines in it (two planes in the 4D data set)
that have unique properties. They lie along U=2u and U=-2u. They contain
identical information because one is just the complex conjugate of the other. No
matter what the aberrations in the aperture may be, if they are symmetric
(which they often are), then the central value of the trotters, which lie along
these line as illustrated in Figure 87 is always real and unity, because the
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complex conjugate components of the symmetric aperture functions cancel each
other. This is also true for defocus, which implies that an image formed from this
data alone will have, in theory, infinite depth of field. It will be a projection of the
object.

Another way of understanding this is that the centre of the trotters arise from
interference between an incident beam at, say, kz and a scattered beam at —kj.
In conventional X-ray diffraction the specimen is often rotated at half the angular
speed of the detector, so that the normal direction of Bragg planes remain
parallel to a fixed direction within the specimen. In this way, a flat slice is taken
out of 3D reciprocal space, instead of scattering over the curved Ewald sphere,
which makes the analysis of the results much easier. A plane in 3D reciprocal
space corresponds to a 2D projection in real space. The information along these
special planes in the Fat-H is similarly symmetric, and so can also pick out a
projection of the object. This projection phenomenon has been experimentally
demonstrated on the optical bench [132]. Calculations using Bloch waves for
crystalline specimens also indicated that this plane of data is relatively immune
to dynamical (multiple) scattering effects, at least compared with the bright-field
image [133].

10.6.6 Probe complexity and noise suppression

As mentioned in Section 5.6, the Wigner deconvolution can be used to explore
optimal probes in ptychography. It would seem logical that if the y, function has
few low modulus areas, then the deconvolution should be more stable. This
would appear to be the case. Other noise suppression strategies can be employed
to avoid low values of y, by using redundancy in the data. For more information
on these issues, see [71].

11) Conclusions

This chapter has been intended as an elementary introduction to the subject of
ptychography. We have also tried to give a flavour of recent developments in
each of the many diverse areas of the subject. It is not complete: since the subject
took off in 2007, there have been more than 600 papers published on the
technique. We have necessarily been selective, reporting on what we think are
the most significant aspects of the technique. Other authors would certainly take
a different perspective. A previous review chapter was written only a few
months after the first iterative phase retrieval ptychography images were
published [5]. By the time it was in print it was already out of date. Ten years
later the developments in ptychography, some astonishing, continue to pour out
of research groups around the world. The literature is expanding exponentially.

Fourier ptychography is undoubtedly under-represented here. Since its
appearance in its modern form in 2013, it quickly covered all the ground
previously addressed in real-space ptychography, and is pushing ahead, creating
an independent field. Several groups are very active as we write, publishing new
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algorithms and new variants of the technique. We have also not had space to
cover optical encryption with ptychography [134], non-linear ptychographical
imaging [135], important developments in incoherent ptychography [90], and
the many other refinements of experimental configuration and associated
inverse algorithms.

Enabling technologies like microscopy usually follow a common development
pattern. First the technology is invented and shown to work for simple test
specimens; ptychography is well past this stage in visible light, EUV, X-ray and
electron imaging. Next, the method is applied to solve a scientific problem that is
ideally suited to the technique; this has been achieved in X-ray and electron
ptychography. The method is then applied to answer scientific problems that can
only be solved by the particular method; this is probably true in the cases of
high-resolution X-ray ptycho-tomography, Bragg ptychography, and spectro-
ptychography. Finally, the method becomes widely adopted as a standard part of
wider scientific investigations, to the extent that its use is regarded a normal
component of scientific investigation, fully exploiting its niche capabilities.

As yet, ptychography is not quite at that final stage of maturity. It is most
advanced in X-ray imaging. However, so long as it remains confined to the
synchrotrons, it can never be very widely used; there just isn’t enough beamtime
in the world, even though fourth generation synchrotrons will greatly speed up
ptycho-tomography. The rapid advance of ‘table-top’ sources, some of which are
very coherent, may bring about a step change in its usage at EUV or X-ray
wavelengths in the ordinary laboratory. This may allow it to make a very big
impact in all sorts of material and biological studies.

We can make one very reliable prediction. No one is going to throw away their
aberration-corrected electron lenses, X-ray Fresnel lenses, KB mirrors or high-
resolution optical lenses. There are many indispensible sources of image
contrast that will never be delivered by even the cleverest computational optics.
The most compelling use of a STEM aberration corrector is the ability to capture
material specific signals, like X-ray spectra and electron energy loss spectra (see
Chapter **EDITOR**). Modern machines can detect the elemental type of every
single atom, at least in a two-dimensional, atomically thin structure [136]. The
same applies in X-ray optics, where scanning focused probes can also resolve
material-specific X-ray fluorescence, e.g. [137]. Material scientists crave for
elemental and bonding information. They regard a scanning electron microscope
(SEM) as virtually useless if it does not have an X-ray detector installed on it,
despite the fact that modern SEMs can achieve sub-nanometer resolution with
ease. Who wants just an image of a specimen when it is possible to know what
element every bit of it is made from? Similarly, confocal visible-light microscopy
is nowadays indispensible to vast areas of biological research, again relying on
excellent lenses to focus a beam onto fluorescent dyes that can spatially resolve
the active sites of specific proteins and other molecules. Lenses are here to stay.

But ptychography will find its niche, probably at all wavelengths, and it has many

new things to look forward to. The ability to image state mixtures must have
huge potential application, although where this will emerge most effectively is
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hard to predict. 3D imaging of the refractive index of unstained biological objects
must also be ripe for exploitation. We know also that many electron
microscopists dream of a very simple electron ptychography microscope. This
would comprise a source, one lens, a detector and a computer. However, there
are difficulties. Electron ptychography is hard to do quantitatively without a
good detector - preferably with single event counting. (The existence of such
detectors at hard X-ray energies partly accounts for its success in that field.) But
such electrons detectors are expensive ($700Kk or so), which rather negates the
idea of a low cost, high-resolution table-top TEM. But who knows - there may
well be a market for such a machine as detector technology gets less expensive,
which it inevitably will. Some X-ray ptychographers assert that it will eventually
enable atomic resolution, at the same time overcoming the penetration limits of
electron microscopy. We are sceptical: the information per damage event for X-
rays is much lower than for electrons [138], but we would not discourage anyone
from trying!

Finally we remark, again, that there remains one very fat and large elephant in
the room. It has so far been impossible to prove mathematically that
ptychography works. Despite its ability to skip over the phase problem with such
nonchalant ease, it still relies on inverting a highly non-linear set of
measurements. So yes, even the simplest heuristic algorithms give good pictures
quickly and easily, but proving definitively why they do so is difficult. Even the
most advanced algorithms have to make some assumptions. Luckily the applied
mathematicians are slowly having their attention drawn to this rich and
interesting field: ptychography needs them!

What next? Ptychography with neutrons? Surely the source size is far too

incoherent and the interaction cross-section is far too small? But given the
advances in the last ten years we have learnt not to discount anything...
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