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Recognizing Interactions Between
People from Video Sequences
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Dept. of Computer Science, University of York, York YO10 5GH, UK
E-mail: adrian.bors@york.ac.uk

Abstract. This research study proposes a new approach to group activ-
ity recognition which is fully automatic. The approach adopted is hierar-
chical, starting with tracking and modelling local movement leading to
the segmentation of moving regions. Interactions between moving regions
are modelled using Kullback-Leibler (KL) divergence. Then the statistics
of such movement interactions or as relative positions of moving regions
is represented using kernel density estimation (KDE). The dynamics of
such movement interactions and relative locations is modelled as well
in a development of the approach. Eventually, the KDE representations
are subsampled and considered as inputs of a support vector machines
(SVM) classifier. The proposed approach does not require any interven-
tion by an operator.

Keywords: Group Activity Recognition, Streaklines, Moving Regions,
Kullback-Leibler divergence, Kernel Density Estimation, SVM.

1 Introduction

Human activity recognition has received considerable attention, by modelling
and identifying the movement of isolated individuals. Nevertheless, many human
activities take place in a social context of interaction with other people. Most hu-
man activity recognition methods start with extracting local features from video
sequences which are then modelled either syntactically or statistically and the
resulting modelling data is fed into a machine learning classifier. More recently,
this area evolved towards detecting anomalies in the videos representing human
activity, such as by using dynamic texture models [1], and Markov random fields
[2]. An observational approach, detecting new activities in the scene, by using
the Kullback-Leibler (KL) divergence from a dictionary of pre-observed events
was proposed in [3,4].

Following behaviour studies resulting from the complexity of modern life
lead to the requirement of contextual modelling of human activities instead of
that of simple movements by individual persons. Group activity requires more
complex descriptions of how people interact with each other and with their
surroundings. In the study by Ni et al. [5] group activities are recognized using
manually initialized tracklets while a heat-map based algorithm was used for
modelling human trajectories when recognising group activities in videos in [6].



A statistical approach of modelling data acquired by a multi-camera system
was used in [7] and a hierarchical semantic granularity approach was employed
for group activity in [8]. Movement trajectories have been represented as either
histograms of features extracted from tracklets [10] or as Gaussian processes
modelling time-series of movement trajectories [11]. Such approaches rely on
either the training of a pedestrian detector for each scene, or on the manual
annotation of trajectories.

This research study describes an automatic method for group activity recog-
nition by modelling the inter-dependant relationships between human activity
characteristic features over time. Features representing medium-term tracking
of moving regions are extracted using the method from [12]. leading to the seg-
mentation of compactly moving regions. The interdependency between moving
regions is represented by evaluating the relative movement and location between
pairs of segmented moving regions. Kernel Density Estimation (KDE) is then
used to model the statistics of the movement, location, as well as their evo-
lution in time, representing the dynamics of such interactions between moving
regions. The group interaction model keeps track of stationary pedestrians by
automatically marking the locations where these stop and then when they start
an activity again. Section 2 describes the features used for representing moving
regions, while the statistical modelling is provided in Section 3. Section 4 de-
scribes the classification approach. Section 5 provides the experimental results
on two group activity datasets while Section 6 draws the conclusions.

2 Modelling Human Interactions

The proposed methodology for group activity recognition has three main process-
ing stages: estimating streaklines of movement, modelling moving regions and
their dynamics and group activity recognition. Optical flow estimation leads to
tracking of regions of movement in the image [13, 14]. Streaklines [12], similarly
to the approach from [14], represent the smooth movement of particles of fluid.
Modelling streaklines relies on the Lagrangian framework for fluid dynamics,
ensuring the robustness and the continuity of movement estimation. Unlike in
the approach from [12], where streaklines are computed for each pixel, in this
research study each streakline is associated with a block of pixels of fixed size
by computing the marginal median of all streakline vectors located in a specific
region. A streakline consists of several vectors head-to-tail located along a lo-
calized trajectory of movement which is then fit by a first degree polynomial for
smoothing.

The general assumption is that movement in the scene corresponds to moving
people, but interactions with other moving objects such as vehicles is accounted
for in this model as well. Firstly, we begin by segmenting the streakflow field into
distinctly moving regions. The Expectation-Maximization (EM) algorithm, as-
suming Gaussian Mixture Models (GMM) is used for segmenting and modelling
each inter-connected region. The number of clusters and the centers of the Gaus-
sian functions are initialized using the modes of the streakline flow histograms.



A two-step approach is adopted for movement segmentation in order to address
the effects of perspective projection, which are mostly observed in the case of
video sequences acquired with wide-angle lens cameras located at low heights.
The assumption is that in the upper part of the video frames, objects and their
motion is smaller than in the lower part, due to the perspective of the scene. In
the first step, the segmentation is performed in order to estimate the height of
the moving objects, which is used to derive a scaling factor. In the second step,
the segmentation is repeated by considering this scaling factor, applied to the
movements estimated from the video sequence, according to the location of its
corresponding moving region in the scene. The motion M; of region i is then
scaled by a factor s;: /

M, = siM;, (1)

where s represents the perspective projection scaling factor estimated for the
given scene from the video sequence. Each moving region is therefore represented
by a GMM, defined by its mean and variance.

3 Modelling interactions between moving regions

The key characteristics of group activities are often present in the interdependent
relationship between the people present in the scene as well as between them
and the surroundings. The general assumption is that moving regions correspond
to human activities and in the following we model the relationship between
such regions. In the first instance, we compute statistical differences between
streakflow distributions Aj) and Ay, corresponding to two moving regions
I(t) and J(t) at time ¢ by
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M(I(t),J(t)) = e m (2)

where Dsgr(Arw||Ase) is the symmetrized KL divergence between the local
statistics of streaklines corresponding to the moving regions I(t) and J(t) at
time ¢, [3] and oy, is a scaling factor for movement differences. The background is
considered as one of the regions as well. The calculation of equation (2) results in
a value within the range [0, 1] which models the inter-dependacy between regions
I(t) and J(t). For example, individuals moving in completely opposite directions
will have M (I(t), J(t)) = 0, whilst individuals moving in the same direction and
at the same speed will have M(I(t),J(t)) = 1. These are then concatenated
to form a vector representing the inter-dependant group relationships of the
streakflows at a particular time ¢.

A similar approach is adopted for the locations of the moving regions by
forming distributions of location coordinates corresponding to each moving re-
gion, including the background. The distributions of relative locations for the
people from the scene, both moving or stationary, is modelled as well. The char-
acteristic parameters of GMMs in this case correspond to the location, size and
approximative size and shape of each moving region. Similarly to equation (2),



we model the interaction between two GMMs Cj(;) and C;) representing the
moving regions I(¢) and J(t) at time ¢, as:

_ DskrrL(CryllCy())

D(I(t), J(t)) = e 7 ®3)

where o; represents the characteristic scale parameter for locations. Similarly
to the streakflow model, this provides a value in the range [0,1] representing
the spatial relationship between the two moving regions. For example, individ-
uals characterised by moving regions I(t) and J(t) at time ¢, located far apart,
will have D(I(t),J(t)) = 0, whilst individuals located closer together will have
D(I(t),J(t)) = 1. A vector, representing all the inter-relationships of locations
for the group activity at time ¢, is then formed as shown in Fig. 1(a).
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(a) Frame model (b) Dynamic model

Fig. 1. Modelling the inter-dependencies of moving regions in both space and time.

We also model the dynamic changes of relative differences between moving
regions over subsequent frames by computing the differences between all streak-
flow models M (I(t),J(t)) = 1 at time ¢ and those identified at other times
t + n. These are computed as in equation (2), except that the models are now
calculated across subsequent sets of frames. A vector of streakflow differences
representing all the inter-dependant relationships of streakflow models between
the time instances ¢t and t + n is then formed. The same modelling of dynamic
changes is applied for changes in the relative distances between the locations,
sizes and shapes of the moving regions by using inter-distances D(I(t), J(t)) =1
from (3) at times ¢ and ¢ + n. Another issue addressed in this research study is
the modelling of people who become stationary after they have moved through
the scene. If there is no movement detected in a particular area and its neigh-
bouring surroundings of the scene where motion was previously detected, during
p consecutive frames, this indicates that a previously moving region ceased to
move. Such stationary regions are characterised by their location and by zero
motion. Finally, when movement occurs again in the region of a stationary per-
son, then such regions are considered to be moving again as components of the
group activity model. The dynamic model is illustrated in Fig. 1(b).



4 Classifying types of interactions between people

Kernel Density Estimation (KDE) is a non-parametric representation which pro-
vides a good model for complex data such as those defining human interactions.
On the other hand KDE smoothes the data representation reducing the uncer-
tainty when compared to assuming a certain parametric statistical model. The
bandwidth parameters of the bi-variate Gaussian kernel are used to help control
the smoothing effects of the kernel density estimator. In this study, we use the
bivariate KDE method employing diffusions on data representations, proposed
in [16], which considers a Gaussian kernel, and uses an automatic bandwidth
selection method.

A discrete representation of the resulting KDE’s for each set of features
is represented on a grid of fixed size K x K. By using a fixed grid size for
representing the movement in the scene, the locations of the regions of movement,
dynamics of movement and their region locations, we implicitly apply a data
normalization, because such data representations do not depend on the frame
size or on the actual number of frames. Such KDE’s are then sampled and used
as a feature vector representing the characteristics of the group activity taking
place in the given video sequence. The feature vectors are then used to train a
Support Vector Machine (SVM) algorithm, having K? inputs, while the outputs
separate each group activity.

5 Experimental results

In the following we provide the experiments when considering two databases
containing group interaction videos: NUS-HGA [5], and Colective [9] datasets.
This first data set consists of six different group activities collected in five dif-
ferent sessions containing 476 video sequences, each session representing staged
actions. Initially, streaklines are extracted for blocks of size 14 x 14 over 10
consecutive frames. The motion is segmented and each moving region is repre-
sented by the Gaussian Mixture Model (GMM) of streakflows vectors and their
locations GMM. Fig. 2 shows an example of the estimated streakflows, motion
histograms, and the moving region segmentation for the fight activity from the
NUS-HGA dataset. In this particular activity, movement is intense and chaotic.
In Fig. 2b the solid green bars correspond to peaks of the histogram, while the
solid red bars are entries with the height below 15% of the maximum bar height
which are eventually removed for not being significant enough in the context of
the scene’ movement. The moving regions are well segmented and the small re-
gions obtained in region 1 of Fig. 2c help characterize the smaller atomic events
performed in the group, for example pushing or kicking which usually happens
during the fighting activity.

We account for the perspective projection effects, where smaller movements in
smaller segmented regions would correspond to movements detected from farther
away in the scene. The segmentation is done in two stages, where during the first
segmentation stage a scaling factor is calculated and then the motion is scaled



(a) Streakflows (b) Histograms of flow (¢) Moving regions

Fig. 2. Example of streakflows, histograms of flow and the moving regions before and
after segmentation on a fight sequence from the NUS-HGA dataset. In b) ”n” refers
to the number of histogram peaks.

accordingly and the scene resegmented. The detection of the stationary regions
detector is applied considering the number consecutive frames for estimating
the streaklines as p = 25. Two examples of detecting stationary pedestrians are
shown in Fig. 3 for the Talking and Gathering activities. In Figs. 3a and 3c the
pedestrians are still moving and therefore their corresponding moving regions
are properly detected. In Figs. 3b and 3d the individuals have stopped and their
stationary regions are properly detected.

(a) Talk activity (moving)
— _ P W

~ (b) Talk activity (stopped)

(c¢) Gather activity (moving) (d) Gather activity (stopped)

Fig. 3. Identifying when pedestrians stop during the video frames showing gathering
and talking activities from the NUS-HGA dataset.
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Fig. 4. KDEs and histograms representing motion dynamics in (a)-(f) and for location
in (g)-(1) for the NUS-HGA dataset.



The streakflow movement model, streakflow dynamics, location and location
dynamics relationship differences are computed as described in Section 3, con-
sidering the scaling parameters o, = 15, o; = 550 for motion and location
differences respectively, and o,, = 17.5, oy = 650 for the motion and location
dynamics. The number of frames, considered for the dynamic window from Sec-
tion 3, is set to n = 13. The bivariate kernel density estimation from [16] is
computed over a fixed grid size of 16 x 16. Representations of the KDEs using
Gaussian kernels for various human interaction activities are shown in Figs. 4a-4f
when considering motion estimation and segmentation, and in Figs. 4g-41 when
modelling the locations of moving regions. The gathering motion shown in Fig. 4f
displays a diversity of differences in movement, which is expected as some in-
dividuals are gathering coming from different directions. The Walking activity
location differences, shown in Fig. 4e, are all close to 1. This implies that the
individuals are tightly grouped, which is expected in the Walk in Group activity.
The Gather activity location differences shown in Fig. 41 display clear transitions
between locations situated far apart leading to closer-together locations. This is
expected, as the gathering activity involves individuals coming from far away
towards gathering in a tight group at the end of the activity.

For classification purposes, the density estimations are subsampled and fed
into the classifier. The motion and location features represent complimentary
information and can be combined for the final activity classification. We use
SVM with the RBF kernel as a classifier, considering the parameters C' = 2.83
and v = 0.00195 for the SVM margin and kernel bandwidth. For all experiments,
we follow the evaluation protocol described in [5], where the NUS-HGA dataset
is split into 5-fold training and testing.

The Collective dataset [9] consists of 6 different activities: Gathering, Talk-
ing, Dismissal, Walking Together, Chasing and Queueing. The dataset consists
of 32 video sequences, where each video sequence contains multiple examples
of each activity. The video sequences are recorded using a hand-held camera,
and therefore the perspective distortion is quite strong in the scenes from this
dataset. The spatio-temporal segmentation of these video sequences takes place
into blocks of 20 x 20 pixels by 10 frames, where the streaklines are extracted for
each block of 10 frames. Examples of the streakflows and movement segmenta-
tion are shown in Fig. 5 for the Chasing and Gather activities. In both cases, the
moving regions are well segmented, particularly in the chasing example where
the chaser and chasee are segmented separately despite forming one connected
region moving in the same direction. The next step involves applying the sta-
tionary pedestrian detector as in Section 2, assuming the number of prior frames
used as p = 25. The videos from the Collective dataset show different activities,
displaying transitions from one activity to another, including times when peo-
ple are stationary. Such situations are identified and an example of transitions
through activities is shown in Fig. 6. Initially, as in Fig. 6a, the pedestrians are
moving towards each other performing the gathering activity. People are even-
tually gathered together towards the end of this activity, and the transition to
the talking activity is evident in Fig. 6b. The stationary people detection has



(a) Streakflow (Chasing) (b) Segmentation (Chasing)

(c) Streakflow (Gather) (d) Segmentation (Gather)

Fig. 5. Examples of streakflow and segmentation from the Collective dataset.

successfully recorded the locations of the individuals when stopping, as seen in
Fig. 6b. Finally, after a period of time, the individuals begin to move again per-
forming the dispersing activity shown in Fig. 6¢. In Fig. 6¢, the new moving
regions are detected replacing the previously identified stopped regions which
are no longer present.

a) Gathering b) Talking b) Dispersing

Fig. 6. Pedestrians transitioning through various activities in the Collective dataset.

In the following, the human activity features, representing the streakflow
differences, streakflow dynamics, location differences and location dynamics are
computed for each moving region as described in Section 3. The scaling pa-
rameters are o, = 15 and o; = 450 for motion features and location features,
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Fig. 7. Confusion matrices for the recognition results of the proposed method when
combining all features modelling movement, location distribution and their dynamics
as well on (a) NUS-HGA, resulting in 90 % classification accuracy and (b) Collective
dataset, resulting in 79.7 % accuracy. (c) The confusion matrix for Colective dataset
when using [11], resulting in 80.3% classification accuracy.

respectively, while the size of the dynamic window for the motion dynamics and
location dynamics is n = 5. Then, the data is represented over time using KDE,
as described in Section 4, over a grid size of 8 x 8, using the 2-column feature
matrices as input data. The grid-based representation of the KDE is then used
as input to the SVM classifier with the RBF kernel.

Table 1. Group activity recognition results on the NUS-HGA and Collective datasets

Method NUS-HGA | Collective
dataset (%)|dataset (%)
Localized Causalities [5] 74.2 -
Group interaction zone [17] 96.0 -
Multiple-layered model [11] 96.2 80.3
Monte Carlo Tree Search [18] - 7T
Collective activities [8] - 79.2
Motion 86.2 75.4
Location 87.1 64.3
Motion dynamics 91.6 76.8
Location dynamics 92.6 71.6
Motion+Location 94.5 76.5
Motion Dynamics+Location Dynamics 97.1 78.4
Motion+Location+Motion Dynamics+Location Dynamics 98.0 79.7

For the tests on the Collective dataset we divide the dataset into 3 subsets for
3-fold training and testing according to the tests in [9]. We split the sequences
during training and testing into short sequences of 60 frames for the evaluation
and then calculate the average recognition accuracy across all classes. Confusion
matrices for all features combined are compared to the approach from [11] as
shown in Fig. 7. The results for the Queuing activity are not that good because



that stationary pedestrians forming queues are not moving at all for the duration
of the sequence, and therefore are not detected. However, it can be observed from
Fig. 7 that the results of the proposed methods show a greater consistency across
all the other activities then other approaches.

Comparative results are provided in Table 1 for NUS-HGA and Collective
datasets. The location features provide a better recognition result than the mo-
tion features while the results for the dynamics models for motion and location
emphasise their importance for the Group activity recognition. The combina-
tion of all features account for movement, location, as well as the dynamics of
both movement and location, and gives the best result of 98% for the NUS-HGA
dataset. The group interaction method from [17] does not evaluate the results us-
ing the 5-fold training and testing as suggested in [5] for the NUS-HGA dataset.
The proposed methodology, which is fully automated, provides a clear improve-
ment of about 2% over the best other approach for the NUS-HGA dataset. For
the Collective dataset, the proposed method is comparative to the state-of-the-
art and superior to the other methods when not considering the queuing activity.
The motion and movement dynamics outperform the location inter-dependency
features, while the dynamic features outperform their equivalent frame-by-frame
features. Similarly to the results on the NUS-HGA database, the best results for
the Collective dataset are achieved when combining all features. However, all the
other comparative methods are not fully automatic and use some form of human
intervention during the experiments. Meanwhile, the proposed methodology is
completely automatic and does not require any human intervention.

6 Conclusion

A completely automatic approach for modelling interactions between people is
proposed in this paper. Streakflows of localized movement along several frames
are estimated from the video sequence. Statistical distributions of vectors form-
ing streakflows, as well as their locations are represented using kernel density
estimation (KDE) and are used in order to identify compactly moving regions.
We also consider the dynamics of change in the streakflows and in the locations
of the moving regions. The relative movement of each moving region with all
the other moving regions, including the background, is then represented statis-
tically. Scaling is used in order to mitigate the effects of perspective projection
in the scene, while the dynamics of change in the moving regions considers the
timing when people are stationary. Eventually, SVM with RBF kernels, consid-
ering sampled KDE representations of movement, location, and their dynamics,
as inputs, is used as a classifier.
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