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ABSTRACT

Steganalysis aims to identify those changes performed in a

specific media with the intention to hide information. In this

paper we assess the efficiency, in finding hidden information,

of several local feature detectors. In the proposed 3D ste-

ganalysis approach we first smooth the cover object and its

corresponding stego-object obtained after embedding a given

message. We use various operators in order to extract lo-

cal features from both the cover and stego-objects, and their

smoothed versions. Machine learning algorithms are then

used for learning to discriminate between those 3D objects

which are used as carriers of hidden information and those

are not used. The proposed 3D steganalysis methodology is

shown to provide superior performance to other approaches

in a well known database of 3D objects.

Index Terms— Steganalysis, 3D features, Fisher Linear

Discriminant

1. INTRODUCTION

Steganalysis is a method used to identify whether a certain

media was modified with the aim to hide information. The

media considered in this study is 3D graphics, and the in-

formation can be hidden by watermarking, which produces

robust changes or by steganography, which embeds a larger

payload. Steganalysis was considered on digital images [1, 2,

3, 4], audio signals [5] and video [6].

A 3D mesh is a collection of vertices, edges and faces

that defines the shape of a polyhedral object, which can be

used in many applications including 3D signal processing

and computer graphics. As the popularity of the 3D print-

ing is rocketing, the 3D meshes are playing an increasingly

important role. Ohbuchi et al. [7] proposed two 3D infor-

mation hiding algorithms using triangle similarity quadruple

and tetrahedral volume ratio. Cayre and Macq [8] presented

a steganography approach for 3D triangle meshes whose key

idea is to consider a triangle as a two-state geometrical ob-

ject. Cho et al. [9] proposed two blind robust watermarking

algorithms based on modifying the mean or variance of the

distribution of vertex norms. Luo and Bors [10] proposed two

surface-preserving 3D watermarking algorithms by changing
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the mean or variance of of geodesic distance distributions,

while in [11] they proposed a watermarking method which

optimally displaces vertices while minimizing surface dis-

tortion. Among the information hiding methods embedding

higher payload, we mention a multi-layer 3D steganography

method [12] based on vertex projection onto the principal

axis. This steganography method can reach a high payload

given by the number of embedding layers (decided by the

user) multiplied with the number of vertices in the mesh.

However, some of the bits embedded by this method may be

lost in the retrieval stage.

The 3D steganalysis algorithm proposed in [13] uses a

feature set composed from the vertex position, the norms in

Cartesian and Laplacian coordinate system [14], the dihe-

dral angle of edges and the face normals, while the quadratic

classifier is used for identifying those 3D shapes that contain

hidden information. More recently, Yang et al. proposed a

steganalytic algorithm in [15], specifically designed for the

mean-based watermarking algorithm proposed in [9], which

estimates the number of bins through exhaustive search and

then detects the presence of the secret message by a tailor-

made normality test. The steganalysis method proposed in

this paper relies on extracting a novel feature set from the

3D mesh of the graphical object. We propose to use Fisher

Linear Discriminate (FLD) ensemble [1] for 3D steganalysis.

Before presenting the feature set, a brief introduction of the

3D steganalysis framework is given in Section 2. Then, the

local feature set that consists of a simplified variation of the

features proposed in [13], is used in the conjunction with the

proposed 3D features, consisting of statistics of vertex nor-

mals and of local shape curvature, are presented in detail in

Section 3. The experimental results are provided in Section 4,

while the conclusions of this study are outlined in Section 5.

2. 3D STEGANALYSIS FRAMEWORK

Initially, the 3D mesh is aligned with the coordinate axes and

then is scaled to the size of a unit cube centered at (0.5, 0.5,

0.5). The calibration step consists of aligning the reference

mesh representing the stego-object M̂ with the cover-object

M. In our analysis it is expected that the difference between

a mesh and its reference is larger for a stego mesh than for

a cover mesh. In most 3D information hiding algorithms,

the changes produced to the stego object, following the em-



bedding of information into its surface, can be associated to

noise variations. So the cover meshes will have fewer alter-

ations in the structure of their surface when smoothed than the

stego meshes. For a certain 3D object the differences between

its cover mesh and its smoothed version will be smaller that

the differences between the stego mesh and its correspond-

ing smoothed version. In our approach, the reference mesh is

obtained by applying one iteration of Laplacian smoothing.

In order to identify changes produced by hiding informa-

tion into 3D objects, we propose using statistics of results pro-

vided by local feature detectors, extracted from pairs of cover

and stego-objects, before and after Laplacian smoothing. The

discriminative features should capture those differences be-

tween the two meshes that have most likely been caused by

an information hiding algorithm. In the next section we intro-

duce a set of new feature detectors using the vertex normals

and local shape curvature estimators. We also consider us-

ing statistics of various combinations of outputs provided by

multiple 3D feature detectors and compare their results with

single feature detectors.

In the training step, the steganalyzer is implemented

through a machine learning method using the feature vectors

extracted from both the cover and stego meshes as the input.

The training set is formed by pairs of cover features and the

corresponding stego features, extracted as differences with

respect to their smoothed versions. This is quite important

as it has been shown that breaking the cover-stego pairs may

lead to a suboptimal performance [16]. Furthermore, training

the classifier is a crucial issue, as the steganalyzers trained

by different machine learning methods will show different

performances. In the experimental results from Section 4, we

propose to use the FLD ensemble analysis [1], as a method

for identifying the payload carrying 3D shapes. In the de-

tection procedure, the steganalyzer will determine whether a

certain mesh was embedded with a payload or not, according

to the parameters learnt during the training stage and to the

statistical properties of the features extracted from the mesh.

3. LOCAL FEATURE SET

In the following we describe some local features detectors

used for identifying the changes in the 3D meshes produced

by information hiding algorithms. They are applied to both

cover and stego-objects.

3.1. Yang’s Features

The 40-dimensional feature YANG40 is a simplified varia-

tion of the 208-dimensional feature YANG208 [13], which

uses the same principle of detecting features from the basic

graphical object structure, representing its vertices, edges and

polygons. With regard to the mesh vertices, the absolute dif-

ferences between the locations of vertices of the cover mesh

M and its smoothed version M’ on x, y and z axes in both

the Cartesian and Laplacian coordinate systems[14] are com-

puted, f1, f2 and f3 for Cartesian coordinate systems, while,

f4, f5 and f6 for the Laplacian coordinate systems. Then we

consider the vertex norms, representing the distance from ver-

tex locations to the center of the object. Moreover, the abso-

lute differences between the vertex norms of each two cor-

responding vertices in the meshes M and M’, representing

features f7 and f8 for the Cartesian and Laplacian coordinate

systems, respectively, are considered.

With respect to the edges and faces of the mesh, the ab-

solute differences between the dihedral angles of M and M’,

are considered:

f9(i) = |dihedral(e(i))− dihedral(e0(i))|, (1)

where i = 1, 2, . . . , |E|, where |E| represents the number

of edges from the object M, and dihedral(·) is the function

computing the dihedral angle for an edge e of the cover mesh

and for its corresponding smoothed version e0. The absolute

value of the angles between the face normals of M and M’ are

computed:

f10(i) = arccos
~Nf(i) · ~Nf 0(i)
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where i = 1, 2, . . . , |F | where |F | represents the number of

faces in the object M.

Finally, the 40-dimensional feature vector of YANG40

consists of the first four statistical moments of their over-

all distribution of their logarithm, representing their mean,

variance, skewness and kurtosis. The log transformation is

used in order to reduce the range of available feature values

identified in the two objects, and to assign higher weights

for smaller positive values for balancing their contribution,

[13]. Compared to the 208-dimensional feature YANG208,

YANG40 doesn’t compute the first 8 vectors {fi|i = 1, 2, . . . ,
8} on vertices with valence less, equal, or greater than six sep-

arately which would increase the dimensionality of the feature

but according to our tests it does not have any obvious im-

provement on the total performance of the 3D streganalyzer.

3.2. Vertex Normal Features

A vertex normal is the weighted sum of the normals of the

faces that contain that vertex [17]. It can be computed using

the formula below

~Nv(i) =
X

f(j)2Fv(i)

Area(f(j)) · ~Nf(j)
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where Fv(i) is the set of faces that contain the vertex v(i),
v00
f(j) and v0

f(j) are the two vertices adjacent to vertex v(i) in

the face f(j), e(v1,v2) represents the edge connecting vertices

v1 and v2. Area(f(j)) represents the area of the face f(j).
For the 11th feature, we calculate the angle between the

vertex normals of each two corresponding vertices v(i) and

v0(i) from meshes M and M’, namely

f11 = arccos
~Nv(i) · ~Nv0(i)
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Fig. 1: 3D feature detection on stego-objects. (a) and (d) are the stego-objects obtained after hiding information by the steganog-

raphy method from [12] and the watermarking from [9], respectively; (b) and (e) show the differences of vertex normals f11
between (a), (d) and their corresponding cover-object, respectively; (c) and (f) show the differences of the curvature ratios f13
between (a), (d) and their corresponding cover-object, respectively.

where i = 1, 2, . . . , |V |, where |V | represents the total num-

ber of vertices from the mesh M.

3.3. Curvature Features

The surface curvature was used for characterizing 3D shapes

for recognition and object retrieval. In this research study we

propose to use the surface curvature for 3D steganalysis. The

Gaussian curvature and curvature ratio are known to model

well surface variation [18]. In differential geometry, the two

principal curvatures at a given point of a surface measure how

the surface bends by different amounts in different directions

and is given by the eigenvalues of the shape operator at that

point. We use the method from [19] in order to obtain the

two principal curvatures at the location of each vertex. The

Gaussian curvature is given by:

K(i) = 1(i)2(i) (5)

where 1(i) is the minimum curvature and 2(i) is the max-

imum curvature at a given location on the surface and i =
1, 2, . . . , |V | . In our study we found the curvature ratio pro-

posed in [18], defined as

3(i) =
min(|1(i)|, |2(i)|)

max(|1(i)|, |2(i)|)
, (6)

is effective for 3D steganalysis as well. These two properties,

the Gaussian curvature and the curvature ratio, can describe

locally well the shape of 3D meshes while being sensitive to

any small changes.

We compute the absolute difference of the Gaussian cur-

vatures and of the curvature ratios at the location of each

pair of vertices {(v(i), v0(i)|v(i) ∈ M, v0(i) ∈ M0, i =
1, 2, . . . , |V |} in the given objects:

f12 = |K(v(i))−K(v0(i))|, (7)

f13 = |3(v(i))− 3(v
0(i))|. (8)

Finally, the four statistical moments, representing the mean,

variance, skewness and kurtosis, are calculated for the loga-

rithm of the vectors f12 and f13.

We now have a local feature set of 52 dimensions,

called LFS52, which consists of three components: the

40-dimensional feature YANG40, the 4-dimensional ver-

tex normal feature VNF4 and the 8-dimensional curvature

feature vector CF8. Combinations of various 3D features

are considered during the experiments provided in the next

section.

4. EXPERIMENTAL RESULTS

In the following we provide the results where we apply the

feature operators described in the previous section for 3D

steganalysis. We consider the Princeton Mesh Segmentation

project [20] database, which consists of 354 meshes of 3D

objects. We consider two different steganography approaches

for hiding information in the 3D objects. The first method is

a steganography method proposed in [12], while the second

is the mean-based watermarking method proposed in [9]. For

the former method we set the number of layers at 10, which

corresponds to a high capacity while the number of intervals

is set as 10000. During the embedding, all the vertices in the

mesh are carrying payloads, except for three vertices which

are considered as the bases for the extraction process. Mean-

while, for the watermarking method proposed in [9], we con-

sider the incremental step size as ∆k = 0.001 , the strength

factor ↵ = 0.04 and the payload message as 64 bits. We

consider 260 objects for training, while the other 94 are used

for testing. An example of the stego-object “Head Statue” is

shown in Fig. 1a by [12], while in Fig. 1d we show the same

object watermarked by [9]. For the statistical significance of

the results and for removing the chance factor, we consider 30

different splits of the given 3D object database, into training

and testing data sets. The final results are indicated by the me-

dian of the average of probability of false negatives (missed

detections) and false positives (false alarms) from all 30 trials.

The 3D features described in Section 3 are extracted from

each of the cover-objects from the database, their correspond-

ing stego-object as well as from their smoothed versions. The

differences in the stego and cover-objects identified by the dif-

ferences in vertex normals are shown in Fig. 1b and e, while

those identified by the curvature ratios are shown in Fig. 1c

and f, when detecting the messages embedded by [12] and [9],

respectively. In the training stage we propose to use the FLD
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(a) Quadratic classifier for [12]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate
T

ru
e
 p

o
s
it
iv

e
 r

a
te

 

 

YANG208

LFS52

(b) FLD ensemble for [12]
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(c) Quadratic classifier for [9]
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(d) FLD ensemble for [9]

Fig. 2: ROC curves of the steganalyzers.

ensemble [1] analyzer for identifying the 3D stego-objects,

and we compare its results with those of the quadratic dis-

criminant. The quadratic discriminant fits multivariate nor-

mal distribution to the given statistics [21] extracted from the

cover-objects and was used for 3D steganalysis in [13]. FLD

ensemble is the most used classifier in image steganalysis

because of its powerful ability to find non-linear separation

boundaries in a reasonably short time [1]. The random sub-

space dimensionality and the number of base learners for the

FLD ensemble method are found by minimizing the out-of-

bag (OOB) estimate of the testing error. The FLD ensem-

ble method used in this research study represents a version

adapted from that proposed in [22].

Receiver Operating Curves (ROC) curves for the steganal-

ysis results when using quadratic classifiers in Fig. 3a and c,

while the results for the FLD ensembles are shown in Fig. 3b

and d, when considering the objects embedded by the meth-

ods from [12] and [9], respectively. The results provided the

proposed LFS52 feature sets are compared to those of the

YANG208 feature sets used in [13]. From these ROC curves

it is clear that the area under the ROC curves for steganalyzers

using LFS52 are larger than those when using the feature set

YANG208 in the case of both information hiding algorithms.

We compare the proposed local feature set LFS52 with the

features set YANG208, its simplified variation (YANG40),

the combination of YANG40 and vertex normal feature

VNF4, and the combination of YANG40 and curvature fea-

ture CF8. Fig. 3 shows the distributions of detection errors

for the steganalyzers trained as quadratic classifiers and FLD
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Fig. 3: Steganalysis detection errors for two information hid-

ing algorithms when using quadratic classifiers and FLD en-

sembles as steganalyzers. Labels 1 to 5 represent the results

for the feature sets YANG208, YANG40, YANG40+VNF4,

YANG40+CF8 and LFS52.

ensembles using the five feature combinations mentioned

above, when detecting the messages embedded by either [12]

or [9]. It can be observed from Fig.3 that LFS52 has the best

performance among all these five combinations of features.

Although YANG40 is simplified from YANG208, it provides

better results than YANG208. Usually, by combining either

VNF4 or CF8 with YANG40 the results are better than by

just using the YANG40 feature set, but the improvement of

adding CF8 is smaller than that of adding VNF4.

5. CONCLUSION

In this research study we propose to use a new local feature

set for 3D mesh steganalysis, which includes the vertex nor-

mals and the local curvature. The first four statistical mo-

ments, representing the mean, variance, skewness and kurto-

sis, are used for defining distributions of local features in 3D

objects, which aim to identify small changes between pairs of

meshes. The paired meshes correspond to cover- and stego-

objects and their smoothed counterparts. Machine learning

based classifiers are then used to distinguish statistical dif-

ferences between cover-objects and their smoothed versions

from those occur between stego-objects and their smoothed

versions. The quadratic discriminant and the FLD ensembles

are used for identifying the 3D objects where information was

hidden. The proposed methodology is shown to provide bet-

ter results than other 3D steganalysis approaches.

Adrian Bors
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