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Abstract—This paper introduces a method extracting features
from 3D objects characterising a robust steganalyzer such that
would mitigate the cover source mismatch (CSM) paradigm.
A steganalyzer is considered as a classifier aiming to identify
separately cover and stego objects, representing 3D objects before
and after embedding information through steganography. A
steganalyzer behaves as a classifier considering a set of features
extracted from stego-cover pairs of 3D objects as inputs during
the training stage. However, during the testing stage, the stegan-
alyzer would have to identify whether information was hidden
in a set of 3D objects which is different from that used in the
training. Addressing the CSM paradigm corresponds to testing
the generalization ability of the steganalyzer when introducing
distortions in the cover objects before hiding information through
steganography. The proposed steganalysis robustness approach is
tested when considering mesh simplification and additive noise to
the 3D objects, bringing significant distortions to their shapes, in
the context when using a high capacity steganography method.

I. INTRODUCTION

Steganography and information hiding in 3D graphics has

known a rapid expansion during the last years. Steganalysis

can be seen as a classification problem in which we aim

to identify whether information was hidden or not into a

specific media through steganography or digital watermarking.

Steganalysis in audio or image data was studied in [9], [13],

[21]. 3D steganalysis algorithms extract certain features from

a large number of cover-stego pairs, representing 3D objects

before and after hiding information [17], [26]. The parameters

characterizing the statistics of these features are then used as

inputs for machine learning algorithms aiming to discriminate

the stego-objects from cover-objects. In this study we assess

the robustness of 3D steganalyzers in the context of the cover

source mismatch (CSM) problem, which assumes that in the

testing stage we have a much larger variability in the shapes

of the objects than those used during the training.

The CSM problem is represented by the realistic scenario

that the objects used for a steganalyzer may be originated

in a cover source that is different from the one that the

steganographer used for hiding information during the training

stage [13]. A known example of CSM in the context of

image steganalysis, was addressed during the “Break Our

Steganographic System” (BOSS) contest [1]. The mismatch

of the training set and testing set caused many difficulties

to the participants in this contest [1], [8], [10]. The CSM

problem was addressed in the image domain by considering

the following aspects: the training sets, the feature set and the

machine learning methods used for steganalysis.

In the case of digital images, the cover source mismatch

problem is analyzed by testing the steganalyzers on images

that are taken by cameras with different characteristics than

those used during the training. Differences considered in those

studies include different ISO levels of noise, characterizing

various cameras, as well as different JPEG quality factors

[16], [23]. Gul and Kurugollu [10] proposed a feature se-

lection algorithm, in the BOSS context, which calculates the

correlation between a feature and the embedding rate as the

criterion for its selection. Pasquet et al. [19] proposed to

use the Ensemble Classifier with Feature Selection [4] for

the CSM problem. The feature selection is considered by

evaluating the importance of each feature in the learning

process [4]. A feature condensing method, called Calibrated

Least Squares (CLS) is proposed in [20] in order to make the

high dimensional feature sets compatible with the anomaly

detector is employed for steganalysis. A method to mitigate the

CSM due to changes in the cover feature is presented in [14].

This approach shifts all the centers of the cover features from

different steganographers towards the origin by subtracting the

centroid of each steganographer’s cover feature distribution.

Other research studies addressing the CSM problem in images

aim to find a classifier that would be robust to the variation

between training and testing data. In [18] it was shown that

simple classifiers, such as the Fisher Linear Discriminant

(FLD) ensemble and the Ensemble Average Perceptron have

better performances than other, more complex classifiers, when

faced with the cover source mismatch problem. In order

to mitigate the mismatch due to various changes in stego

features, Ker and Pevnỳ [14] used an ensemble of classifiers

which gives more weight to those classifiers that are robust to

changes in the stego features. A similar weighting strategy for

improving the FLD ensemble’s performance in CSM context

is presented in [23].

In this paper we propose the Robustness and Relevance

based Feature Selection (RRFS) algorithm for addressing the

CSM problem in 3D steganalysis. While we consider that the

training of the 3D steganalyzer is performed on a given set of

objects, for the testing we apply certain transformations on the

cover objects before embedding information into the resulting

distorted objects though steganography. We propose to use the

Pearson correlation coefficient (PCC) in order to evaluate the

relevance of each feature. PCC is then used for estimating the

consistency of using 3D features in distinguishing the cover

and stego-objects, before and after applying certain transfor-



mations, such as mesh simplification or additive noise. We

hide information into these distorted 3D shapes which and then

used for testingthe steganalyzer. The proposed methodology is

tested on the Princeton Mesh Segmentation project database

[5], when considering the 3D steganography algorithm pro-

posed in [3]. 3D steganalysis is briefly described in Section II,

while the proposed method addressing the CSM problem in

the context of 3D steganalysis is explained in Section III.

The experimental results are provided in Section IV and the

conclusions of this study in Section V.

II. 3D STEGANALYSIS

3D steganalysis consists of training and testing stages as

in a supervized pattern recognition approach. While during

the first stage, the steganalyzer learns a set of parameters

characterizing the differences between sets of 3D stego and

cover objects, during the second stage these parameters are

used for distinguishing a different set of stego and cover-

objects. The set of features extracted from the 3D objects is

modelled statistically in both the training and testing stages.

The first four statistical moments of their features are con-

sidered as inputs to a machine learning algorithm. The 3D

steganalysis approach proposed in [26] uses the feature set

YANG208, which includes the norms in the Cartesian and

Laplacian coordinate system [25], the dihedral angles of faces

and the face normals, among other features. These features

are then used as inputs for a quadratic classifier. Yang et

al. [27] proposed a new steganalysis algorithm, specifically

designed for the mean-based watermarking algorithm proposed

in [6]. Li and Bors propose the feature set LFS52 in [17],

which includes the local curvature and vertex normals as

steganography features, while dropping some of the other

features used in [26], which are not found as being that

important in 3D steganalysis. The quadratic discriminant [25]

and the FLD ensemble [17], use such features as inputs in

order to discriminate the stego-objects from cover-objects.

The cover source mismatch (CSM) problem in 3D steganal-

ysis addresses the robustness of steganalyzers to be trained

using a set of cover and stego 3D objects characterized by

certain properties and then being tested on a set of stego and

cover objects with different surface properties. The ability

of the steganalyzer to perform well in different data during

the testing stage is consistent to the ability of computational

intelligence algorithms to generalize. This corresponds to the

application of steganalyzers in practice, because in a general

case the 3D objects are characterized by various resolutions

and have a wide variation of surface smoothness among other

changing factors. In this study we consider mesh simplification

and noise addition as transformation factors of the cover

objects for addressing the CSM problem. Such transformations

would change significantly the geometrical and statistical

characteristics of cover sources. Under these conditions, in

order to deal properly with the CSM problem, 3D features

should be consistent with characterizing stego and cover

objects when considering such transformations. Moreover, the

machine learning algorithms should be robust to the changes

caused by such transformations in the statistical distributions

of 3D object features.

III. ROBUSTNESS AND RELEVANCE BASED FEATURE

SELECTION ALGORITHM

In the following we consider that we have a set of 3D

objects O, used as the cover source for training a steganalyzer.

A set of features is extracted from these objects and the

parameters characterizing their statistics are then used as

inputs in a machine learning classifier in order to distinguish

between stego and cover objects. Several 3D features have

been found as useful for 3D steganalysis by various studies.

The relevance of 3D features used in this study is performed by

using the Pearson correlation coefficient between each feature

and their object’ corresponding class. Nevertheless, not all

of these features contribute equally to the performance of

the steganalyzer and not all of them are robust enough to

variations in the cover source during the testing stage. In this

section we describe a selection mechanism for deciding which

features would be robust enough to be used when addressing

the CSM problem. The proposed algorithm, called Robustness

and Relevance based Feature Selection (RRFS), defines a

criterion for choosing those features which will guarantee

the steganalysis performance. The key idea of the proposed

algorithm is to find those features that are more robust to the

variation of the cover source, while preserving a relatively

strong relevance to the class label as well. Two criteria are

considered during the selection: the relevance of the features

to the class label, and the robustness of the selected feature

set to the variation of the cover source.

The feature selection algorithm proposed in this study

belongs to the filter methods [2], shown to be efficient when

used for selecting input features in various machine learning

algorithms and its pseudocode is provided on the next page.

The filter methods are suitable to be applied in the cover source

mismatch situations, because they can avoid the overfitting

of the training data whilst being characterised by a better

generalization during the testing stage [11]. In the proposed

algorithm, the relevance of the features to the class label

is estimated by using the Pearson correlation coefficient,

calculated between the distribution of each feature and the

steganalyzer’s classes:

ρ(Xi,Y) =
cov(Xi,Y)

σXi
σY

, (1)

where Xi is the i-th feature of a given feature set, X =
{Xi|i = 1, 2, . . . , N}, where N is the dimensionality of the

input feature, Y is the class label indicating whether the class

corresponds to a cover or a stego object, cov represents the

covariance and σXi
is the standard deviation of Xi. The Pear-

son correlation coefficient can capture the linear dependencies

between features and the label, and it is widely used in science

as a measure of the degree of linear dependence between two

variables, with |ρ(Xi,Y)| = 1 indicating a high degree of

linearity while ρ(Xi,Y) = 0 indicates a scattered dependency.

The former value indicates a stronger relevance to the class



label [12]. All features are ranked according to their relevance

to the class label, calculated using equation (1), in descending

order as:

|ρ(XI1 ,Y)| > |ρ(XI2 ,Y)| > . . . > |ρ(XIN ,Y)|, (2)

where I = {I1, I2, ...IN} is the feature index.

Algorithm 1: RRFS algorithm

Input:

Features extracted from the cover objects used for

training X0 = {X0,i|i = 1, 2, ..., N}
features extracted from other cover sources

Xj = {Xj,i|i = 1, 2, ..., N, j = 1, 2, ...,M}
class label Y

dimension of the selected feature N ′

Output: Index of the selected feature subset F ′

1 Compute the relevance of the features to the class label,

ρ(Xi,Y) = cov(Xi,Y)
σXi

σY

;

2 Compute the features’ robustness to the variation of the

cover source, ρi(Xi,Xj,i) =
cov(Xi,Xj,i)
σXi

σXj,i

;

3 Normalize the |ρi(Xi,Xj,i)| to [0,1];

4 Compute the robustness of the features to the variation of

the cover source, ri =
1
M

∑M

j=1 |ρi(Xi,Xj,i)|;

5 Sort the features by relevance |ρ(Xi,Y)| in the

descending order and get the index I = {I1, I2, ...IN};

6 Initialize p ← 90 and

θp ← percentile({ri|i = 1, 2, ...N}, p),;
7 while |F ′| < N ′ do

8 for k ← I1 to IN do

9 if (k /∈ F ′) ∧ (rk > θp) then

10 Add k to F ′;

11 end

12 p ← p− 10;

θp = percentile({ri|i = 1, 2, ...N}, p);
13 end

14 end

15 return F ′;

Features’ robustness to the variation of the cover source is

related to solving the CSM problem. If objects’ features do

not change much after applying transformations to the cover

objects, they would be expected to provide similar steganalysis

results to those achieved with the original cover and stego

objects. Such features would have a strong robustness in the

context of steganalyzers. In the following we consider two

different feature sets for a given set of 3D objects: the first one

is extracted from the original objects used as the cover sources

for training the steganalyzers while the other is extracted after

applying certain transformations to the same objects. Then the

Pearson correlation coefficient of two feature sets is calculated

as:

ρi(Xi,Xj,i) =
cov(Xi,Xj,i)

σXi
σXj,i

, (3)

where Xi and Xj,i represent the vector of the feature i
extracted from the original set of cover objects O, used for

training the steganalyzer, and from the objects obtained by

applying specific transformations to the same cover source,

j = 1, 2, . . . ,M , where M represents the number of trans-

formations applied to the original set of cover objects O.

This formula indicates how well correlated are the initial 3D

features with those that are extracted after certain transforma-

tions. We normalize |ρi(Xi,Xj,i)| to the interval [0, 1]. Ideally,

robust features should model the statistical characterstics that

distinguish cover and stego objects even after certain distor-

tions are considered on the cover objects. The robustness is

indicated by the average of the absolute values of the Person

correlation coefficients, calculated for a specific feature i, for

all M transformations:

ri =
1

M

M∑

j=1

|ρi(Xi,Xj,i)|, (4)

where i = 1, 2, . . . , N .

(a)

Cover object.

(b)

Stego object after mesh

simplification with λ = 0.6.

Fig. 1. Applying surface simplication on the cover object in order to test
cover-source mismatch paradigm in 3D steganalyzers.

The Robustness and Relevance based Feature Selection

(RRFS) algorithm starts with a preset number of N features as

input. The algorithm aims to find the most N ′ relevant features

which have relatively strong robustness to be used for a

steganalyzer that addresses the CSM problem. The N ′ features

are selected by multiple passes through the features ranked

according to their relevance, calculated using equation (1).

During each pass, a subset of features is selected successively

such that:

ri > θp (5)

where θp represents the threshold for the correlation corre-

sponding to the p-th percentile of all ri’s, characterising the

robustness of the steganalyzer. Initially, p is set at 90. If the

number of selected features n < N ′, then we reduce the

threshold to the value corresponding to p − 10, and consider

a new threshold θp−10 instead of θp. In this way with each

iteration we add additional features to the set of selected

features such that whilst increasing the feature set we preserve



the classification capability of the algorithm. The threshold

is reduced, considering lower percentiles p, until the total

number of selected features becomes equal to N ′. Eventually,

we would have N ′ selected features that are robust enough to

the variation of cover source whilst having a high relevance

to the class label, according to (1), at the same time.

IV. EXPERIMENTAL RESULTS

In the following we firstly apply the RRFS algorithm to

select a feature subset from a given larger feature set. Then

we test the performance of the selected feature subset by

using it in a cover source mismatch scenario. For the exper-

imental framework we consider 354 3D objects represented

as meshes which are part of the Princeton Mesh Segmen-

tation project [5] database. In order to test the robustness

of the steganalyzer we distort the original objects of the

database by considering two different transformations: mesh

simplification and corruption by noise. These transformations

significantly degrade the properties of 3D objects. While the

former changes the actual topology of the mesh, the latter

alters its geometry. The simplification algorithm from [22]

reduces the number of the faces while preserving the overall

shape of the 3D object, according to a simplification factor

λ = {0.98, 0.95, 0.9, 0.8, 0.6}. When considering corruption

by noise, its amplitude of the noise is modulated by the

parameter βD, with β ∈ {10−5, 10−4, 10−3}, and D is the

maximum distance between the projections of any two vertices

on the first principal axis, obtained by applying the Principal

Component Analysis (PCA) on the original 3D object.
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Fig. 2. ROC curves for the results of the steganalyzers based on LFS52 and
YANG208 [24] for the Quadratic Learning classifier.

The stego objects are generated by applying the 3D

steganography algorithm proposed in [3] to the given set

of cover sources. The number of steganographic embedding

layers is considered as 10 and the number of intervals is

chosen as 10000 in the algorithm proposed in [3]. The relative

payload ratio is nearly 1, except for three vertices used for
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Fig. 3. ROC curves for the results of the steganalyzers based on LFS52 and
YANG208 [24] for the FLD ensemble classifier.

extracting the code, which are not modified at all. Similarly to

the approach from [17] we consider FLD ensembles [7], [15]

as the machine learning based steganalyzer. The parameters for

the FLD ensembles, such as the number of the base learner

and the subspace dimensionality, are chosen as in [15]. The

close-up detail of one of the original 3D objects used in the

experiments is shown in Figure 1a, while its corresponding

stego object obtained by embedding information after mesh

simplification with the factor λ = 0.6, is shown in Figure 1b.

In the following we test the efficiency of using various

feature sets for 3D steganalysis. In Figures 2 and 3 we show

the Receiver Operating Curves (ROC) results when consider-

ing the LFS52, proposed in [17], and YANG208 feature sets

proposed in [26], for training the Quadratic Learning classifier

and the FLD ensemble classifier, respectively, in the context

when detecting the changes produces by the steganographic

algorithm from [3], considering ten layers of embedding.

According to the ROC curves from both plots we can observe

that the feature set LFS52 provides the best results in the case

of both classifiers.

In the following we combine two feature sets used for 3D

steganalysis, LFS52 [17] and YANG208 [26], respectively,

eliminating the eight features that are common to both feature

sets, and we obtain a total of N = 252 features, called

LAY252. This feature set is initially extracted from the cover-

objects from the original set of objects. The same objects are

then transformed by mesh simplification or by adding noise

and their corresponding stego-objects are obtained by embed-

ding information into the transformed objects. Then we use the

RRFS algorithm to select the appropriate feature subset from

LAY252 in order to mitigate the CSM problem due to either

simplification or noise addition, respectively. In the case of

mesh simplification, we firstly calculate the relevance of all the

features from LAY252, {ρ(Xi,Y)|i = 1, 2, . . . 252}, based



on the 354 cover-stego pairs obtained from the original cover

source. Meanwhile, we compute the robustness of the feature

set {ri|i = 1, 2, . . . 252} based on the experiments using the

cover-stego pairs from the simplified cover sources, assuming

M = 5 different simplification factors as specified above.

The N ′-dimensional feature subset is selected as explained

in Section III. The selection of the feature subset for the CSM

due to noise addition is similar to that when assuming mesh

simplification in the CSM paradigm. During the experiments

we select various features, assuming N ′ ≤ N . If N ′
= 252 it

would mean that no feature selection process is conducted at

all. In order to test the performance of the selected features

in the cover source mismatch (CSM) scenario, we randomly

select 260 cover objects from the original cover source and the

corresponding stego-objects for training the steganalyzer. Then

we test the steganalyzer on 94 pairs of cover and stego-objects

originated from different cover sources from the database, after

they had been simplified or distorted by additive noise. We

repeat the steganalysis experiments, using FLD ensembles for

30 times and consider the final test results as the median of

the resulting errors.
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Fig. 4. Test results, under the CSM paradigm, when selecting features for
steganalysis where the distortion to the original cover objects is due to mesh
simplification.

Figures 4 and 5 show the test results when using features

selected by the proposed RRFS method from the initial feature

set LAY252 for steganalysis under the CSM assumption, by

considering the distortions caused by mesh simplification and

by additive noise, respectively. As it can be observed from

these two plots, as the dimensionality of the selected features

increases, the error rates first decline and then rises up. There

are several local fluctuations in the plots, but generally these

plots display clear minima, except for the case when the noise

level of the testing set corresponds to β = 10
−3, when the

level of the error does not change much for N > 60. When

testing the CSM problem for mesh simplification, the results

from Figure 4 show that the steganalyzer achieves the best

detection accuracy for N = 40, while when considering the
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Fig. 5. Test results, under the CSM paradigm, when selecting features for
steganalysis where the distortion to the original cover objects is due to noise
addition to the mesh surface.

CSM problem for additive noise, the results from Figure 5,

indicate that the best results are obtained for N = 90. The

bar plots from Figure 6 show clearly that the steganalyzers

trained with a lower dimensional data set, when considering

the features selected by the proposed RRFS method, achieve

better performance when compared to the results produced

by training the steganalysed with the entire dataset LAY252,

under the CSM paradigm.
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Fig. 6. Test results when using the entire feature set compared to the results
provided by a selected set of robust features for training the steganalyzers
under the CSM paradigm. The blue bars represent the test results of using all
the 252-dimensional features in LAY252, while the yellow bars represent the
test results of using the features selected by the proposed RRFS algorithm.

V. CONCLUSION

This research study proposes a solution for the cover

source mismatch problem in the context of 3D steganalyzers.

According to the CSM paradigm, we consider that the objects

considered during the testing stage are significantly different

from those used during the training. In this study we consider

mesh simplification and additive noise for transforming the

cover objects when testing the steganalyzer under the CSM

paradigm. In the experimental results we consider a high

capacity 3D steganography method for hiding information in



the transformed objects. A robust feature selection algorithm,

called the Robustness and Relevance based Feature Selection,

is proposed in this paper. This algorithm employs the Pearson

correlation coefficient to define the relevance and robustness

for each feature leading to the selection of a relevant feature

subset . The proposed methodology is shown to choose a

better feature set, than those considered by other studies, when

addressing the CSM problem. A limitation of this study is

that for selecting the robust features we consider a limited set

of transformations for addressing the CSM problem. A more

general study should compare the set of cover objects with a

set of transformed objects originated from completely different

cover sources than those initially used in the training stage.
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