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Personalised, Multi-modal, Affective State
Detection for Hybrid Brain-Computer Music

Interfacing

Ian Daly, Duncan Williams, Asad Malik, James Weaver, Alexis Kirke, Faustina Hwang, Eduardo Miranda,

and Slawomir J. Nasuto

Abstract—Brain-computer music interfaces (BCMIs) may be used to modulate affective states, with applications in music therapy,

composition, and entertainment. However, for such systems to work they need to be able to reliably detect their user’s current affective

state.

We present a method for personalised affective state detection for use in BCMI. We compare it to a population-based detection method

trained on 17 users and demonstrate that personalised affective state detection is significantly (p < 0.01) more accurate, with average

improvements in accuracy of 10.2 % for valence and 9.3 % for arousal. We also compare a hybrid BCMI (a BCMI that combines

physiological signals with neurological signals) to a conventional BCMI design (one based upon the use of only EEG features) and

demonstrate that the hybrid design results in a significant (p < 0.01) 6.2 % improvement in performance for arousal classification and a

significant (p < 0.01) 5.9 % improvement for valence classification.

Index Terms—EEG, GSR, Affective state detection, BCMI, Personalised affective state detection.

✦

1 INTRODUCTION

B RAIN-COMPUTER music interfaces (BCMIs) provide a
mechanism for their users to interact with music di-

rectly via brain activity, without the need for movement [1].
BCMIs have a number of potential applications, including
entertainment and creative expression [2]. They have also
been suggested for use in music therapy as they provide
an alternative method for individuals to express themselves
emotionally [3].

Music therapy is a psychological therapy technique
which aims to facilitate communication between patient and
therapist, and to ultimately improve the emotional state of
the patient via musical interaction with the therapist [4].
This represents the intentional use of an arts discipline to
effect therapeutic change, rather than solely for the purpose
of an artistic experience [5]. In this context, the music
becomes a means to an end; there is a shift of focus from
production to process, which includes amongst other things,
the music-making and the interaction between the client
and therapist as a source of various therapeutic interven-
tions. Practices include music improvisation, song-writing,
and guided imagery with music. There are two schools
of thought regarding the communication process: expres-
sionist/referential approaches, whereby the meaning in the
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music creation process may express or refer to something
non-musical (this sound reminds me of when I climbed
Mount Kilimanjaro), and absolutist/formalist approaches,
where the meaning is solely contained and communicated
by the musical form [6].

In either of these approaches, the patient might, for
example, perform in duet or in response to the music
of the therapist. A BCMI could work in this context by
facilitating patients who are not musically confident or
otherwise competent enough (for example due to physical
disability) to engage in these music-making processes via
traditional methods. Music has been described as the lan-
guage of emotion and the possibility of offering emotional
expression without significant training by means of BCMI
explored in [7], for example when working with sufferers
of Alexithymia (a trait which can cause a deficiency in the
ability to verbally express emotions) [8], [9], as engaging in
music creation might offer one way in which individuals
with such difficulties might be able to express themselves
[10], [11].

A related area of research is the use of sonification to
translate an individual’s physiological signals into music.
For example, in [12] methods are reported for translating
EEG activity into music, while in [13] a combination of EEG
and functional magnetic resonance imaging (fMRI) is used
to achieve a similar effect.

We extend this idea and present a BCMI designed for
use in music therapy applications as an affective state mod-
ulation tool. This BCMI aims to both detect and provide a
mechanism to assist users in modulating their own affective
state. As such it aims to provide a method for allowing
musical communication within a music therapy context.

In order for this BCMI design to work it is vital to have
an accurate method for detecting affective states. We have



1949-3045 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2018.2801811, IEEE

Transactions on Affective Computing

JOURNAL ... 2

recently developed a method to detect a user’s affective
states, while they listen to music, by classifying EEG derived
features [3].

It has been demonstrated that it is possible to recognise
emotions from the EEG via a variety of techniques [14],
[15], [16], and that this may be done in real-time for use in
music-therapy [17]. It has also been demonstrated that it is
possible to recognise emotions from the EEG during music
listening tasks [18] and from a combination of EEG and
acoustic features [19], [20]. However, these approaches use a
population based classification approach, in which the same
classification model is applied to all the study participants.

Emotional responses to stimuli such as music are also
known to involve a wide range of different physiological
processes affecting the heart, the central nervous system,
and other related processes, such as respiration [21], [22]. It
has been demonstrated that such physiological signals may
be used to recognise emotions [23]. Thus, in order to best
understand and accurately detect changes in affective states
it is also important to integrate these different physiological
processes into an affective state detection system.

Additionally, it has been shown that a combination of
EEG and other physiological signals may be used to iden-
tify an individual’s affective state when visual stimuli or
combinations of visual and auditory stimuli are used [24],
[25], [26], [27]. However, neurological responses to affective
stimuli differ according to the modality of the stimuli [28], so
affective state detection methods designed for visual stimuli
may not work as well for musical stimuli. Specifically, the
combination of visual and audio stimuli are likely to show
synergistic effects, which makes detection of affective states
a fundamentally different problem.

Furthermore, it is well-known that individuals can each
respond to the same emotional stimulus in very different
ways depending on factors such as their gender [29] and
age [30]. Furthermore, physiological signals such as the
EEG are subject to a very large amount of inter-participant
variability [31] and non-stationarity [32]. Thus, we suggest
that such population-based approaches are not optimal for
identifying an individual’s emotional response to music or
other stimuli.

Therefore, we seek to develop a high performance af-
fective state detection system as part of a hybrid BCMI
(hBCMI) design, an extension of a conventional BCI [33],
which incorporates both EEG features and other physiolog-
ical features [34]. Additionally, we investigate personalisa-
tion of this affective state detection system. We train the
method on a per-participant basis and compare the resulting
classification accuracies to those that may be achieved when
individual participant differences are not considered by the
affective state detection system. Specifically, we compare per
participant classification accuracies to those achieved when
cross-participant training is used.

We make two hypotheses: first, the accuracy with which
we can detect affective states, while users of a BCI system
listen to music, will increase when we integrate a range
of physiological processes; second, because the neural and
physiological markers of these affective states are specific
to each participant’s felt response to music, the affective
state detection system will be more accurate when it is
personalised to the individual.

2 METHODS

2.1 hBCMI design

The proposed hBCMI design comprises four key stages.
First, EEG and other physiological signals are recorded from
the user. Second, the BCMI attempts to detect the user’s
current affective state from these signals. Third, a rule-set
is used to determine how best to move the user from their
current affective state to a new target affective state. Finally,
a music generator is used to play music corresponding
to the rule-set to achieve the goals of the BCMI system
(modulation of the user’s affective state).

This hBCMI system is illustrated in figure 1 and is more
fully described elsewhere [35].

Fig. 1. Schematic of the proposed hBCMI system for use in affective
state modulation.

2.2 Experiments

In order to train and test the proposed affective state detec-
tion system, a set of experiments were conducted as a part of
a larger study seeking to develop and test the hBCMI. This
study consisted of multiple sessions, with each participant
asked to attend five sessions, spread over a period of about
five months.

There were three types of sessions in the experiment: (1)
a single calibration session, (2) three training sessions, and
(3) a single testing session. This is illustrated in figure 2.

The calibration session was designed to identify neural
and physiological correlates of emotional responses to mu-
sic, while subsequent runs were used to identify trajectories
for moving between affective states. The details of the
complete study are described elsewhere [36], along with
a comprehensive discussion of details such as referencing
schemes. In this present study we analyse the data obtained
during the calibration session to determine whether person-
alised classification methods for each participant provide
better results than generic classifiers for all participants.

The calibration session consisted of five runs, while each
training session contained four runs. Each run contained
eighteen trials. A single trial contained a fixation cross (1-
2 s), a period of music playing (20 s) during which the music
was generated to attempt to induce a particular affective
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Fig. 2. Order of events (sessions and runs) within the experiment. The
sessions occur sequentially on separate days; within each session the
runs occur in sequence with breaks between each run.

state in the participant, a self-assessment manikin [37], and
a final distraction task (15 s). This is illustrated in figure 3.
Each participant completed one calibration session. During
the music period participants were instructed to use a
track-ball to continuously report their current affective state
via the FEELTRACE interface, which allows 2-dimensional
simultaneous reporting of both valence and arousal by the
participant [38].

Fig. 3. Trial order used in the experiment. A fixation cross was first
presented, followed by a period of music (during which participants
may also be asked to report their current emotions via FEELTRACE),
followed by a self-assessment manikin (SAM), a washout task, and then
a short inter-stimulus interval (ISI). Note, the timings of each item vary
according to the type of session.

A stimulus length of 20 s of music was chosen as this
was considered to be sufficiently long to evoke the desired
emotional responses [39], while being short enough to allow
for a large enough number of trials within each session
for sufficient statistical power. This length of stimuli was
confirmed to be appropriate in pilot work conducted with
an independent small group of participants, who reported
experiencing the desired affective states.

The training session had a very similar structure. The
only key differences were that the music was played for
40 s and the music was generated to attempt to induce two
different affective states in the participant. The first 20 s
attempted to induce one affective state and the next 20 s

attempted to induce a different state. The training session
was repeated three times over three different days for each
participant.

In each trial of the calibration session one of nine dif-
ferent affective states was targeted. Thus, each calibration
session played music generated to induce one of nine differ-
ent affective states in each participant ten times.

Each trial within the training sessions contained a unique
pairing of a different initial and final affective state from
the same set of nine discrete affective states used in the
calibration run.

The testing session was used to test the hBCMI system
during online use and is not considered here. Results on this
session type and further details on the method, as well as
further details on the differences and relationships between
the sessions, are reported in [36].

2.2.1 Participants

Twenty-two healthy participants were recruited for this
study. The participants were all right handed. Ethical ap-
proval was granted by the University of Reading research
ethics committee and participants gave informed consent.

In order to ensure some homogeneity in the participant
population in terms of musical preferences, all participants
were asked to complete a Short Test Of Musical Preferences
(STOMP) questionnaire [40]. Participants who indicated
they had a strong dislike for two or more music genres, or
who had a strong dislike for the classical music genre, were
excluded from the study.

This resulted in two participants being excluded at this
stage. The remaining twenty participants had a mean age
of 22 (range 19-30). Nine of these participants were female.
Each participant was reimbursed £10.00 GBP for each ses-
sion of the experiment they attended.

2.2.2 Data recording

EEG was recorded using a BrainAmp EEG amplifier (Brain-
Products, Germany) via 32 EEG channels positioned accord-
ing to the International 10/20 system and referenced to a
single electrode placed at FCz (see [36] for more details).
The specific EEG channels used are illustrated in figure 4.
Impedances were kept below 10 kΩ for each participant. Ad-
ditionally, galvanic skin response (GSR) was recorded from
the ventral medial phalanx positions of the participants’ left
hand index and middle fingers, electrocardiogram (ECG)
was recorded from the participants’ wrists, respiration was
recorded from a respiration belt placed around the base of
the rib cage, and blood oxygenation levels were recorded
via a pulse oximeter on the left thumb.

All physiological responses were recorded via a
BrainAmp ExG amplifier (BrainProducts, Germany). All
signals were recorded at a sampling rate of 1,000 Hz and co-
registered to stimuli presentation via the ‘TOBI’ standards
[41], [42].

2.2.3 Music generation

The music stimuli used in these experiments was generated
via an affective algorithmic composition (AAC) system [43].
Music was generated to target specific discrete locations
in the valence-arousal space. Specifically, 9 types of music
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Fig. 4. The EEG recording montage used throughout the experiments.

stimuli were generated to target high, neutral, and low
valence and high, neutral, and low arousal.

Multiple pieces of music were generated for each stimu-
lus type. Thus, each participant listened to several examples
of pieces of music generated to target each affective state
but never listened to the same piece more than once. This
allowed us to avoid confounding the participants’ responses
by familiarising them with specific stimuli [44]. The stimuli
were played to each participant in random order.

2.3 Analysis

2.3.1 Artefact removal

To remove artefacts and ensure some degree of homogeneity
between sessions, artefacts were removed from the EEG via
the method ‘Fully online and automated artifact removal
for brain-computer interfacing (FORCe)’ [45]. FORCe first
decomposed the EEG signal into a set of wavelet coefficients
and then further decomposed these coefficients into inde-
pendent components via Independent Component Analysis.
The components were then altered or removed via a com-
bination of soft and hard thresholding, using thresholding
previously trained on other, independent, datasets [45]. Fi-
nally, visual spot checking was then used to check signal
quality. Three participants were removed at this stage due
to large amounts of artefact contamination remaining in the
signal.

Trial rejection was then used to ensure that data from the
remaining participants was clean. Trials for which the max-
imum amplitude was greater than ± 100µV were removed
from the data from the remaining 17 participants.

2.3.2 Feature extraction

Features were extracted from the recorded signals for the
affective state detection system.

TABLE 1
Scalp regions from which features are extracted.

Scalp region EEG channels

Whole scalp All channels
Frontal FP1, FP2, F7, F3, Fz, F4, F8
Central C3, Cz, C4, CP5, CP1, CP2
Parietal P7, P3, Pz, P4, P8, POz
Occipital O1, O2
Left Temporal FT9, T7, TP9
Right Temporal FT10, T8, TP10
Midline Fz, Cz, Pz, POz
Left Hemisphere FP1, F7, F3, FT9, FC5, FC1, T7, C3, TP9,

CP5, CP1, P7, P3, O1
Right Hemisphere FP2, F4, F8, FC2, FC6, FT10, C4, T8, CP2,

CP6, TP10, P4, P8, O2

EEG features were extracted from 10 frequency bands of
interest (delta (1-4 Hz), slow theta (4-5.5 Hz), fast theta (5.5-
7 Hz), total theta (4-7 Hz), slow alpha (8-10 Hz), fast alpha
(10-12 Hz), total alpha (8-12 Hz), sigma (12-14 Hz), beta (14-
30 Hz), and gamma (30-45 Hz)) via a method adapted from
[46]. The mean band power in each frequency band was
calculated over the length of each sub-trial (see section 2.3.4)
and extracted over 10 scalp regions (all channels, frontal,
central, parietal, occipital, left temporal, right temporal,
midline, left hemisphere, and right hemisphere channels),
which are listed in table 1.

Features were also extracted to describe the other physi-
ological processes. The mean GSR amplitude was extracted
after low-pass filtering (5 Hz, 2nd order Butterworth filter).
Specifically, the mean average amplitude of the GSR was
extracted as a single feature describing the GSR within each
sub-trial. Electrocardiogram (ECG) and blood pulse sensor
(BPS) signals were first de-trended by estimating and then
subtracting a 40’th order polynomial function from these
signals and then band-pass filtering these signals (3-45 Hz,
2nd order Butterworth filter). The filter parameters were
set by visually inspecting different filters on a subset of
the data. Mean peak-to-peak intervals were then used as
the features of interest. Specifically, single features were ex-
tracted from the ECG and BPS signals describing the mean
peak-to-peak interval times in the filtered signals. Finally,
the respiration rate was band-pass filtered (0.1-0.6 Hz, 2nd
order Butterworth filter) before extracting the mean band
power centered at 0.35 Hz as the feature of interest.

Thus, a total of 104 features were extracted from the
data recorded from each participant. These formed a set of
candidate features, which were then sub-selected prior to
classification.

2.3.3 Participant reports

Musical emotions can be both felt and perceived. A felt emo-
tion refers to the emotion (affective state) that an individual
feels as they listen to music. In contrast, perceived emotions
refer to the emotions a listener thinks a piece of music is
attempting to convey. For example, a piece of music can be
perceived to be sad but enjoyable to listen to [47].

Participants were instructed to report their current felt
emotions on a continuous scale via the FEELTRACE inter-
face [38], which they operated with their right hand using a
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trackball. The FEELTRACE responses were discretised into
9 discrete affective states by segmenting the valence-arousal
space into 9 equal sized regions and identifying which
region the FEELTRACE report occupied at each moment in
time.

2.3.4 Trials

In order to produce an affective state detection method with
high temporal resolution, trials were then segmented into
1 s long, non-overlapping, sub-trial sections. Mean features
and participant reports of their felt affective states were
calculated over each of these new 1 s long sub-trials.

2.3.5 Feature selection

A subset of features was selected for use in the classifica-
tion method via an Eigen-decomposition based automated
supervised feature selection method [48]. Features were
first z-scored and then decomposed into Eigen-vectors. An
adapted spectral clustering method was then used to select
the sets of features that clustered with the class labels (the
participant’s reports of their felt affective states). Specifically,
an automated clustering method (spectral clustering) was
applied to the set of candidate features and class labels. The
cluster that was identified as containing the class labels was
retained and the other features that were grouped into this
clustered were selected as the features of interest.

Further detail on this method, as well as validation
on synthetic and real EEG datasets and a comparison
with other state-of-the-art feature selection methods, can be
found in [48].

2.3.6 Classification

Classification was attempted via a support vector machine
(SVM) employing a polynomial kernel and a least squares
estimation method. Classifier training and validation was
attempted within a cross-fold train and validation scheme.
Specifically, the Integrating Homologous Samples (IHS)
method was used to split the data into 10 training and
testing set tuples [49], with 10 % of the trials placed in
the testing set in each fold. This method of constructing
a cross-validation training and testing procedure assigns
homologous samples to the same testing set. Consequently,
this allows accurate estimates to be taken of the classifica-
tion accuracy of a particular method without homologous
samples in the testing set artificially inflating the accuracy.
Note that the IHS method to separate the data into training
and testing sets was applied before application of the feature
selection method described in section 2.3.5. Thus, training
and testing data were kept separate at all stages from feature
selection through to classification.

The classification problems that were attempted were
differentiating trials in which participants reported high vs.
low affective states on either the valence or arousal axes,
which were considered independently. Specifically, the dis-
cretised valence-arousal space may be further segmented via
either valence or arousal independently. We considered two
binary classification problems within this space, specifically
high vs. low valence and high vs. low arousal. Sub-trials
were extracted in which participants’ mean FFELTRACE
reports of their current affective state (either valence or

arousal) were labelled as high or low. Two binary classifi-
cation problems were then tackled with the SVM classifier:
high vs. low valence and high vs. low arousal.

2.3.7 Comparisons

In order to evaluate the difference between the personalised
affective state detection method and an affective state detec-
tion method that does not consider individual participant
differences, classification was performed in two different
ways. In the first approach a leave-one-participant-out train
and validation scheme was used, in which data from all but
one participant was used to train a detection method to be
applied to the left out participant. In the second approach
trials from each participant were treated separately and
the 10x10 train and validation scheme was re-run for each
participant.

Additionally, the influence of the use of physiological
and EEG based features on the performance of the person-
alised affective state detection method was evaluated. Clas-
sification, on each individual participant, was attempted
with three different candidate feature sets: physiological
features only, EEG features only, and a hybrid feature set
combining both physiological and EEG based features.

3 RESULTS

3.1 Artefacts

Amplitude thresholding of the EEG on a sub-trial by sub-
trial basis resulted in a total of 782 sub-trials being removed
(22.9 % of the total number of 3,408 sub-trials). Thus, the
final dataset contained 2,626 sub-trials.

3.2 Affective state generation

We first compared the FEELTRACE responses given by
participants to the affective states targeted by the music
generation system within each trial for each participant.
Specifically, we asked whether the participants reported the
same felt emotions during the experiment as the affective
states targeted by the generated music.

Table 2 lists the correlations between the affective states
the generated music was targeting for each participant and
the mean FEELTRACE responses reported by each partic-
ipant while they listened to the music. It may be noted
that there are significant correlations between the targeted
affective states and the reported affective states for all par-
ticipants, confirming that the music generator was able to
produce the desired responses in all participants.

This may be observed in more detail by inspecting the
mean confusion matrices of targeted and reported valence
and arousal over all participants, as listed in table 3. It
may be noted that there is a high degree of correspondence
between the targeted and reported affective states when the
targets were either high or low valence or arousal. However,
participants often confused neutral targeted affective states
with either high or low affective states.

3.3 Classification

The first classification approach used a leave-one-
participant-out train and validation scheme. Thus, the clas-
sifier was trained on data from a group of participants
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TABLE 2
Correlations between mean FEELTRACE responses to the music

reported by each participant and the affective state the music stimuli
was targeting.

Valence Arousal
Participant r p r p

1 0.656 <0.01 0.564 <0.01
2 0.409 <0.01 0.524 <0.01
3 0.609 <0.01 0.433 <0.01
4 0.608 <0.01 0.516 <0.01
5 0.638 <0.01 0.675 <0.01
6 0.499 <0.01 0.408 <0.01
7 0.628 <0.01 0.612 <0.01
8 0.540 <0.01 0.488 <0.01
9 0.663 <0.01 0.479 <0.01
10 0.606 <0.01 0.426 <0.01
11 0.657 <0.01 0.694 <0.01
12 0.678 <0.01 0.711 <0.01
13 0.613 <0.01 0.664 <0.01
14 0.613 <0.01 0.509 <0.01
15 0.581 <0.01 0.379 <0.01
16 0.594 <0.01 0.661 <0.01
17 0.454 <0.01 0.429 <0.01

Avg. 0.591 - 0.539 -

TABLE 3
Confusion matrices comparing targeted and reported affective states

for each piece of music over all participants (p-values have been
corrected for multiple comparisons via Bonferroni correction.

Target

Low Neutral High

R
ep

o
rt

ed Low 0.856 0.385 0.031

Neutral 0.038 0.352 0.455

High 0.106 0.263 0.514

(a) Valence
Target

Low Neutral High

R
ep

o
rt

ed Low 0.496 0.400 0.143

Neutral 0.437 0.420 0.174

High 0.066 0.179 0.683

(b) Arousal

and applied on a different, left-out, participant, without
any attempt made to personalise the detection method to
individual participants. Leave-one-participant-out train and
test classification approaches such as this allow us to train
a classifier from a population and test its applicability to a
new individual who was not a part of the training popu-
lation. Thus, this approach represents the best way to eval-
uate the performance of the non-personalized classification
approach.

This resulted in a mean valence classification accuracy
of 0.586 (standard deviation across folds 0.053). This result
was statistically significant when compared to the null
hypothesis of random classification (i.e. that each class has
equal chance of being selected by the classifier) (p < 0.01).
Arousal was also classified with a similar mean accuracy of

0.593 (standard deviation of 0.038) and was also statistically
significant (p < 0.01) when compared to random chance
level classification.

The second classification approach (feature selection and
SVM-based classification) was trained and applied on indi-
vidual participants. Data from each participant was trained
and classified within a 10x10 cross-fold train and validation
scheme. The classification results for the individual partici-
pants are listed in table 4.

TABLE 4
Accuracy (Acc.) of the performance of the personalised affective state

detection method for high vs. low valence trials and high vs. low arousal
trials.

Valence Arousal
Participant Acc. p Acc. p

1 0.734 <0.01 0.727 <0.01
2 0.657 <0.01 0.677 <0.01
3 0.786 <0.01 0.751 <0.01
4 0.840 <0.01 0.801 <0.01
5 0.667 <0.01 0.657 <0.01
6 0.570 <0.01 0.638 <0.01
7 0.677 <0.01 0.653 <0.01
8 0.672 <0.01 0.569 <0.01
9 0.791 <0.01 0.753 <0.01
10 0.653 <0.01 0.665 <0.01
11 0.749 <0.01 0.795 <0.01
12 0.642 <0.01 0.654 <0.01
13 0.686 <0.01 0.629 <0.01
14 0.673 <0.01 0.715 <0.01
15 0.661 <0.01 0.697 <0.01
16 0.672 <0.01 0.660 <0.01
17 0.569 <0.01 0.612 <0.01

Avg. 0.688 - 0.686 -

This second approach (personalized detection for each
participant) resulted in a mean classification accuracy for va-
lence of 0.688 and a mean classification accuracy of 0.686 for
arousal. Both results are statistically significant, compared
to chance level classification, for all participants (p < 0.01).

The results from this personalized classification ap-
proach were also compared to the results achieved using the
leave-one-participant-out train and validation scheme via a
paired t-test. These results are listed in table 5.

It may be observed that the personalised affective state
classification approach was found to be significantly more
accurate than the population-based classification approach
(p < 0.01) in 10 out of 17 participants for valence and 13 out
of 17 participants for arousal classification.

The features that were selected for classification are
compared between groups of participants for whom the
personalised classification approach performed significantly
better than the population-based approach against those
participants for whom personalised classification did not
perform better than the population-based approach. The
results are illustrated in figure 5.

It may be observed that, for participants for whom
affective state classification is significantly better when clas-
sification is performed on a per-participant basis than on a
population basis, EEG band-power based features are much
more frequently selected. This suggests that EEG-based
features are useful for classification but that inter-participant
variability in the EEG is a key factor in determining the
classification success of this approach.
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(a) Valence: better than the population-based approach

(b) Valence: not better than the population-based approach

(c) Arousal: better than the population-based approach

(d) Arousal: not better than the population-based approach

Fig. 5. Features selected for classifying affective states (valence and arousal) for participants for whom classification was significantly better on a per
participant basis than the population-based approach and for participants for whom individual classification was not better than the population-based
approach.
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TABLE 5
Accuracy (Acc.) of participant (P.) wise classification compared to

population based classification (t-tests). The p-values indicate whether
the personalised classifier performed significantly better than the

population-based classification approach.

Valence Arousal
Participant Acc. p Acc. p

1 0.734 0.008 0.727 <0.001
2 0.657 0.037 0.677 0.016
3 0.786 0.003 0.751 <0.001
4 0.840 <0.001 0.801 <0.001
5 0.667 0.001 0.657 0.002
6 0.570 0.503 0.638 0.031
7 0.677 0.089 0.653 0.062
8 0.672 0.024 0.569 0.120
9 0.791 <0.001 0.753 0.001
10 0.653 0.069 0.666 0.009
11 0.749 0.004 0.795 <0.001
12 0.642 0.056 0.654 0.013
13 0.686 0.044 0.629 0.097
14 0.673 0.029 0.715 0.002
15 0.661 0.061 0.697 0.006
16 0.672 0.141 0.660 0.037
17 0.569 0.438 0.612 0.119

Avg. 0.688 - 0.686 -

3.4 Feature types

The performance of the classification approach was com-
pared between different feature sets. Specifically, feature
selection and classification were performed on a per par-
ticipant basis with three different sets of candidate features:
(1) just EEG features, (2) just physiological features, and (3)
a hybrid feature set combining both EEG and physiological
features.

The classification results for high vs. low valence classi-
fication for each of these three feature sets are listed in table
6.

TABLE 6
Performance (classification accuracies) of the affective state detection
method for high vs. low valence trials for different feature types (EEG

features, physiological features, and hybrid features), for each
participant (P.). Asterisks indicate classification accuracies that are

significantly better than chance (p < 0.05).

Accuracy
P. EEG features Phys. features Hybrid features

1 0.637∗ 371 0.734∗

2 0.629∗ 0.473 0.657∗

3 0.721∗ 0.505 0.786∗

4 0.809∗ 0.615 0.840∗

5 0.606∗ 0.385 0.667∗

6 0.500∗ 0.477 0.570∗

7 0.603∗ 0.609∗ 0.677∗

8 0.627∗ 0.470 0.672∗

9 0.733∗ 0.601∗ 0.791∗

10 0.586∗ 0.532∗ 0.653∗

11 0.682∗ 0.576∗ 0.749∗

12 0.586∗ 0.531∗ 0.642∗

13 0.592∗ 0.519∗ 0.686∗

14 0.631∗ 0.589∗ 0.673∗

15 0.613∗ 0.611∗ 0.661∗

16 0.609∗ 0.546∗ 0.672∗

17 0.524∗ 0.521∗ 0.569∗

Avg. 0.629 0.525 0.688

These may be compared with the classification results for

high vs. low arousal when each of the different candidate
feature types are used. These results are listed in table 7.

TABLE 7
Performance of the affective state detection method for high vs. low
arousal trials for different feature types (EEG features, physiological

features, and hybrid features), for each participant (P.). Asterisks
indicate classification accuracies that are significantly better than

chance (p < 0.05).

Accuracy
P. EEG features Phys. features Hybrid features

1 0.629∗ 0.586∗ 0.727∗

2 0.614∗ 0.539∗ 0.677∗

3 0.737∗ 0.608∗ 0.786∗

4 0.834∗ 0.625 0.801∗

5 0.602∗ 0.587∗ 0.657∗

6 0.558∗ 0.551∗ 0.638∗

7 0.601∗ 0.528 0.653∗

8 0.555∗ 0.517∗ 0.569∗

9 0.633∗ 0.556∗ 0.791∗

10 0.574∗ 0.587∗ 0.666∗

11 0.689∗ 0.658∗ 0.795∗

12 0.580∗ 0.551∗ 0.654∗

13 0.571∗ 0.476∗ 0.629∗

14 0.657∗ 0.578∗ 0.715∗

15 0.616∗ 0.637∗ 0.697∗

16 0.627∗ 0.591∗ 0.672∗

17 0.522∗ 0.541∗ 0.612∗

Avg. 0.624 0.572 0.686

The classification accuracies achieved with each type of
feature were compared via an ANOVA with factor ‘feature
type’ and levels ‘EEG’, ‘Physiological’, and ‘Hybrid’. A
χ2 test demonstrates that the data is normally distributed
(p < 0.05) and Bartlett’s test demonstrates that the accu-
racies have statistically insignificantly different variances
(p = 0.108), thus the assumptions of the ANOVA hold.
A significant effect of ‘feature type’ was observed when
attempting to classify valence (F(2,48) = 21.38, p < 0.001)
and when attempting to classify arousal (F(2,48) = 14,
p < 0.001).

Post-hoc t-tests were used to compare the differences
between individual pairs of feature types. Figure 6 illus-
trates the mean and standard deviation of the classification
accuracies achieved with each feature type when attempting
valence and arousal classification. Significant differences, as
identified via the paired t-tests, are also indicated on the
figure.

It may be observed, from figure 6, that EEG and Hybrid
features produce significantly higher classification accura-
cies (p < 0.01) than physiological features for both valence
and arousal classification. The use of hybrid features also
results in significantly higher classification accuracies than
EEG features alone for arousal classification.

3.5 Selected features

An illustration of the features selected, from the hybrid
candidate feature set, to differentiate high and low valence
for a single, randomly selected, participant is shown in
figure 7. Figure 7 also illustrates the features selected for
differentiating high vs. low valence over all participants.
It may be observed that EEG band-power features in the
delta, alpha, and beta frequency bands are most frequently
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Fig. 6. Mean classification accuracies achieved for high vs. low valence (A) and arousal (B) classification for each feature type. Error bars indicate
± 1 standard deviation and the p-values indicate feature types that produce significantly different classification accuracies (paired t-test).

selected and that all four physiological features are very
frequently selected.

This may be contrasted with features selected to solve
the other classification problem (high vs. low arousal) for a
different randomly selected participant and all participants.
These features are illustrated in figure 8. Note that EEG
band-power features in the alpha band are less frequently
selected than in the case of valence classification.

4 DISCUSSION

Brain-computer music interfaces (BCMIs) may be used as
affective state modulation systems and have potential appli-
cations in music therapy. Specifically, our proposed BCMI
design aims to provide a tool for allowing interaction be-
tween an individual undergoing music therapy and ongoing
music generation. Thus, providing a method for musical
communication that aims to help individuals with regulate
their emotions. However, in order for the proposed BCMI
to be effective it needs to be able to accurately and quickly
estimate a user’s current affective state.

Our proposed affective state detection system for use in
BCMI systems and music therapy is able to significantly ac-
curately (p < 0.05) detect affective states in each participant
in our study. The performance of the system is significantly
better (p < 0.01) when the classifier is trained on a per-
sonalised basis for each participant. This is most likely a
result of the large, well-known inter-personal differences in
physiological processes, EEG, and emotional responses to
music [50].

The features selected for use by our affective state detec-
tion system cluster into several key frequency bands and, in
some cases, key spatial regions, while in others appearing
to be more broadly spread across the scalp. The spreading
of features across the scalp is not uniform, although the
colour scaling gives this appearance in a small number of
occasions. However, the relatively high specificity of the
frequency bands involved in affective processing reflects
results reported elsewhere which suggests a high degree of
specificity in the frequency bands involved in affective state
processing [14], [46], [51].

Physiological features are selected with very high fre-
quency. This suggests that they are highly informative about
an individual’s affective state and this reflects the well-

known close relationship between these sorts of signals and
the emotions [3], [23], [52], [53].

We can conclude that personalised affective state detec-
tion is more effective for use in BCMI systems than affective
state detectors trained on population averages.

This reflects other results observed and reported else-
where with other affective state detection systems. For ex-
ample, in [54] higher EEG and physiological signal based
classification of affective states are reported when the clas-
sifier is trained on a smaller group of participants, sug-
gesting inter-participant differences result in lower clas-
sification accuracies. Additionally, in work presented in
[55], [56] participant-dependent classification is compared to
participant independent classification of EEG during music-
video watching tasks, with the observation that participant-
dependent classifiers result in higher accuracies.

Others have attempted affective state classification based
on the EEG [57] or physiological signals [58]. Some re-
searchers have also attempted to build hybrid affective
state classification systems combining both EEG and other
physiological signals [24], [25], [26], [27].

However, these hybrid classification methods were de-
signed for use with affective stimuli using a visual modal-
ity and may not translate well to a music based stimuli
modality [28]. Furthermore, our proposed approach makes
use of a supervised machine learning method to select an
optimal subset of features for affective state classification,
representing an advancement on these previous approaches.
Finally, our proposed approach is explicitly developed for
use within a Brain-computer music interface and are in-
tended to be used on a single trial basis during online use
of a BCMI.

Others have reported good, participant independent,
affective state classification accuracies. For example, in [59]
participant independent EEG-based classification of valence
and arousal was achieved with accuracies of up to 81.3 %,
while in [60] participant independent classification accura-
cies of up to 85.17 % were achieved.

One possible explanation for this observed discrepancy
could be the different stimulation modalities used in these
studies to evoke emotions. Specifically, [59] uses images
taken from the international affective picture system (IAPS)
[61], while [60] uses images of facial expressions of emotions
as its stimuli. Specifically, both studies use stimuli that
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(a) Participant 7

(b) All participants

Fig. 7. Selected features from the hybrid candidate feature set to classify high vs. low music induced valence for participant 7 and for all participants.
The colour bar indicates the frequency (%) with which each feature was selected.

employ a visual modality (a wide range of images or images
of faces), while our study uses acoustic stimuli.

It may be suggested that music-induced emotions exhibit
greater inter-participant differences than emotions evoked
by stimuli of other modalities. For example, emotional
responses to music can depend on culture [62], [63], per-
sonality [64], and musical training [65], while emotional
responses to faces have been reported to be more consistent
across different peoples [66].

We did not attempt to classify neutral emotions within
this study. This is motivated by the observation that partici-
pants frequently confused ’neutral’ targeted affective states
with either high or low valence/arousal affective states. This
may in part be due to the artificiality of the concept of a
’neutral’ emotion. In reality very few experiences are truly
emotionally neutral for every person, due to individual
memories and tastes, and this is highly likely to also be

the case for music. Thus, when participants label a piece of
music, that is intended to be ’neutral’ as something else it is
likely that piece of music is triggering genuine emotional
responses, which vary significantly between participants,
and an attempt to apply a rigorous classification rule to it is
less likely to succeed than the more consistently rated high
or low affective responses.

There are some potential correlations between neigh-
boring sub-trials in the analysis and it may be suggested
that this represents a potential confound to the study. How-
ever, the considerable non-stationarity of the EEG [32], [67],
and the randomization of trial orders prior to validation,
minimizes the effect of these relatively low inter-trial cor-
relations. Additionally, the Integrated Homologous Sam-
ples (IHS) cross-validation method was used to train and
validate the classifiers as an additional precaution against
inflating the classification accuracies [49].
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(a) Participant 7

(b) All participants

Fig. 8. Selected features from the hybrid candidate feature set to classify high vs. low music induced arousal for participant 7. The colour bar
indicates the frequency (%) with which each feature was selected.

An additional limitation of the method presented in this
study is the low signal to noise ratio of the EEG and other
physiological signals used for the personalised affective
state detection system. This poor signal to noise ratio is well
known [31] and represents a challenge for all attempts to
identify cognitive states from physiological signals. Addi-
tionally, the relatively small number of participants in this
study may be interpreted as a potential weakness. However,
as the aims of this study are to identify a method for
personalised affective state detection, rather than a general
method that would work with everyone, this relatively
small number of participants provides a sufficiently robust
test case for the method. Future work will explore the
suitability of the method for affective state detection with
larger numbers of participants.

The incorporation of other physiological features in ad-
dition to EEG (i.e. a hybrid BCMI design) also significantly

improves the detection performance. This demonstrates that
to understand emotions it is important to observe not only
the brain, but also to examine the wider physiology associ-
ated with emotional responses. It also suggests that a hybrid
BCI approach [42] may be most successful in constructing
affective BCMIs.
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M. Reiser, T. Meindl, and E. Gutyrchik, “Personality traits
modulate neural responses to emotions expressed in music.”
Brain research, vol. 1523, pp. 68–76, jul 2013.

[65] A. Kawakami, K. Furukawa, K. Katahira, K. Kamiyama, and
K. Okanoya, “Relations Between Musical Structures and Perceived
and Felt Emotions on JSTOR,” pp. 407–417, 2013.

[66] P. Ekman and W. V. Friesen, “Constants across cultures in the face
and emotion.” Journal of Personality and Social Psychology, vol. 17,
no. 2, pp. 124–129, 1971.

[67] L. Schomer and F. Lopes de Silva, Eds., Niedermeyer’s electroen-
cephalography: Basic principles, clinical applications, and related fields,
6th ed. Lippincott Williams & Wilkins, 2011.

Ian Daly received the M.Eng. degree in Com-
puter science and the Ph.D. degree in Cyber-
netics from the University of Reading, Reading,
U.K. Between May 2011 2013 he was a post-
doctoral researcher in the Laboratory of Brain-
Computer Interfaces, Graz University of Technol-
ogy, Graz, Austria, where he researched Brain-
computer interfaces (BCIs) for individuals with
stroke and cerebral palsy. He then worked as
a post-doctoral researcher in the University of
Reading from 2013 to 2016 before joining the

department of Computer Science and Electronic Engineering, University
of Essex in 2016 as a lecturer within the Brain-computer interface and
Neural Engineering group.

His research interests focus on BCIs, nonlinear dynamics, machine
learning, signal processing, bio-signal analysis, meta-heuristic search
techniques, and connectivity analysis in the EEG and fMRI. He is also
interested in the neurophysiological correlates of motor control, emotion,
and stimuli perception and how they differ between healthy individuals
and individuals with neurological and physiological impairments.

Duncan Williams holds a PhD in Psychoacous-
tics and Digital Signal Processing from the Uni-
versity of Surrey, UK. From 2012-2017 he was a
Research Fellow in the Interdisciplinary Centre
for Computer Music Research, Plymouth Univer-
sity, UK, and from October 2017 a researcher
in the Digital Creativity Labs, University of York,
UK. He is a member of the Audio Engineering
Society and a fellow of the Higher Education
Academy.

Asad Malik is currently working on in his PhD in
Cybernetics at the University of Reading, UK. He
received the BSc (Hons) degree with a double
major in Mathematics and Computer Science
from the Lahore University of Management Sci-
ences, Pakistan, and the MRes degree in Com-
puter Music from the University of Plymouth,
UK.



1949-3045 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2018.2801811, IEEE

Transactions on Affective Computing

JOURNAL ... 14

James Weaver received his BSc in Biomedical
Engineering and Cybernetics in 2012. His the-
sis focused on predicting epileptic seizures by
analysing EEG data and applying a variety sig-
nal processing techniques. His PhD in Computer
Science focused on developing a brain computer
interface (BCI) that can estimate the emotional
state of an individual whilst they listen to emo-
tionally charged music. Through analysis of joint
EEG/fMRI recordings, this research attempted to
model these emotions so that the BCI system

can successfully alter the emotional state by changing the parameters
of the musical stimuli presented.

Alexis Kirke is senior research fellow at the
Interdisciplinary Centre for Computer Music Re-
search at the University of Plymouth, UK. He
received a BSc in Mathematics from University
of Plymouth, a PhD in Computing and a PhD in
Arts at the University of Plymouth. His research
areas focus on applications of the arts to AI /
HCI, and applications of multimedia to mental
health.

Faustina Hwang received the BEng and MEng
degrees from Memorial University of Newfound-
land, Canada and the PhD from the Engineer-
ing Design Centre, University of Cambridge, UK.
She is Associate Professor of Digital Health in
the Biomedical Engineering Section at the Uni-
versity of Reading, UK and Associate Editor of
the ACM Transactions on Accessible Computing.
She is a member of the IEEE.

Eduardo Miranda is composer and AI scientist
working in the fields of Brain-Computer Music
Interfacing, Evolutionary Computing and Uncon-
ventional Computation. He received a PhD from
University of Edinburgh and served as a re-
search scientist at Sony in France before moving
to Plymouth University in 2003, where is Pro-
fessor in Computer Music and director of the
Interdisciplinary Centre for Computer Music Re-
search.

Slawomir J. Nasuto is the Lead of Biomedical
Engineering Section, School of Biological Sci-
ences at the University of Reading, UK. He is the
Director of the Brain Embodiment Laboratory. He
received the MSc degree in Pure Mathematics
from the University of Maria Curie-Sklodowska in
Lublin, Poland and the PhD in Cybernetics from
the School of Systems Engineering, University
of Reading, UK. He is Professor of Cybernetics
and the Associate Editor of the Research on
Biomedical Engineering Journal.


