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Abstract 

Dispersed spores interpreted as deriving from the earliest land plants have complex 

configurations (e.g. permanent dyads and permanent tetrads) and are readily distinguished 

from the more familiar trilete spores that often dominate post-late Silurian dispersed spore 

assemblages. These forms occur mainly from the Middle Ordovician to Early Devonian. 

They were first recognised in 1971, but it was not until 1979 that the process of formal 

description commenced. In 1984 they were included in a newly created higher taxonomic 

grouping called “cryptospores”, the term reflecting their complex morphology and then the 

ongoing debate regarding their affinities. Subsequently the exact definition of the term 

cryptospore has been debated, with some preferring a wide definition encompassing all non-
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marine palynomorphs produced by algae and early land plants, but others confining inclusion 

to spores deriving from early embryophytes. Since their recognition, numerous ‘cryptospore’ 

taxa have been described. However, their complex morphologies are difficult to interpret and 

numerous taxonomic debates have confused the delineation of genera and their classification 

into higher ranks. Here we present a key for the identification of ‘cryptospore’ taxa with the 

aim of clarifying some of this confusion. 

 

Keywords: Ordovician; Silurian; Devonian; taxonomy; cryptospores 
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1. Introduction 

Research into the dispersed spores produced by the earliest known land plants has been 

controversial because of: (i) debates concerning their biological affinities; (ii) since they were 

first discovered in 1971 numerous publications have documented their spatial and temporal 

distribution, spore/pollen morphologists have wrestled with understanding their complex 

morphologies, and taxonomists have attempted to adequately classify them. In this 

contribution we review the history of their research and then attempt to clarify their 

taxonomy by presenting a utilitarian hierarchal species determination key. 

 

2. A brief history of cryptospore research 

In a ground-breaking paper Gray & Boucot (1971) described permanent spore tetrads that 

they interpreted as the dispersed spores of early land plants from strata then considered to be 

of early Silurian age from New York State, USA. Such palynomorphs had previously been 

reported in the literature, but only rarely as they had often been over looked and when 

identified they had usually been interpreted as marine green algal remains (e.g. Cramer & 

Diez 1972). By the early 1970s the benchmark for the earliest land plants had been 

established as late Silurian (Pridoli) based on the first occurrence of plant megafossils 

(reviewed in Wellman 2010). However, dispersed trilete spores, considered most probably to 

be derived from land plants, were known from the early Silurian of Libya (Hoffmeister 

1959). A fierce debate ensued over the course of the 1970s and early 1980s as Jane Gray and 

her supporters argued for an early land plant origin based on the occurrence of dispersed 

permanent spore tetrads but her detractors arguing against such an interpretation of these 

palynomorphs (Banks 1975a, 1975b; Chaloner 1985, 1988; Edwards et al. 1979; Gray & 

Boucot 1977, 1980). At the time much of the debate focussed on the origin of vascular plants. 
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Strother & Traverse (1979) added considerably to the debate when they described an 

assemblage of spore-like palynomorphs, which included permanent dyads, from the Silurian 

of Pennsylvania, USA. It soon became apparent that such permanent dyads were an important 

element of these palynomorph assemblages. Richardson et al. (1984) introduced the term 

‘cryptospore’ to distinguish these spore-like palynomorphs from dispersed trilete spores. 

They (p.116) proposed the following definition for cryptospores: “Non-marine sporomorphs 

(non-pollen grains) with no visible haptotypic features such as contact areas or tetrad marks. 

Single grains or monads, “permanent” dyads and tetrads are included.” Subsequently 

Richardson (1988) extended this definition to include single spores, naturally separated from 

dyads, which possess a circular contact area. 

During the debate regarding cryptospore affinities Gray and colleagues had argued for 

a land plant origin based on: (i) the occurrence in tetrads suggesting meiotic origins; (ii) the 

dimensions of the tetrads being of a similar size to land plant spores; (iii) the presence of a 

resistant (presumably sporopollenin) wall; (iv) the occurrence of the tetrads in non-marine 

deposits and with declining abundances offshore, interpreted as an indication of transport into 

marine depositional settings. In another ground-breaking paper Gray (1985) recognized that 

permanent cryptospore tetrads are similar to the spores of certain extant liverworts and 

suggested they derived from basal bryophyte-like plants that evolved before the advent of 

vascular plants. This was an important observation as it coincided with some of the first 

cladistic analyses of land plants that, based on analysis of morphological characters, 

identified the liverworts as the most basal land plants and sister group to all other plants 

including vascular plants (Mishler & Churchill 1984, 1985). This directed the argument away 

from the origin of vascular plants with the realization that land plant origins involved stem-

group embryophytes that may have been related to the most basal of the extant 
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embryophytes: the liverworts. Later Gray (1991) consolidated her arguments for cryptospores 

deriving from land plants at a bryophyte-like grade of organisation. 

There followed a number of debates regarding the structure of different type of cryptospores. 

Two different types of permanent tetrads had been recognised: tetrahedral tetrads and cross-

tetrads (Strother & Traverse 1979). Gray (1991) argued that the latter were simply 

taphonomical (compressional) variants of tetrahedral tetrads. Johnson (1985) recognised that 

some dyads constituted two discrete units (true dyads) but other shared a common crosswall 

(pseudodyads). Richardson (1988) recognised that single spores with a circular contact area 

(termed a hilum) were the dispersed products of the dissociation of true dyads (in a similar 

manner that trilete spores are the dispersed product of the dissociation of meiotically 

produced spore tetrads). Wellman & Richardson (1993) clarified the distinction between both 

tetrads and dyads that were ‘fused’ or ‘unfused.’ A number of workers also emphasized the 

distinction between true trilete and hilate spores, which were naturally dissociated from 

tetrads and dyads respectively, and similar forms that were artificially produced by 

mechanical removal from permanent tetrads and dyads (e.g. Richardson 1988; Steemans et al. 

2000).  For more details on the morphology of the cryptospores see Richardson (1996a) and 

Steemans et al. (2012). 

 

During this time and subsequently cryptospore assemblages from the Middle 

Ordovician to Early Devonian were documented from around the world: Australia (Foster & 

Williams 1991); Avalonia (Beck & Strother 2001; Burgess 1991; Burgess & Richardson 

1991, 1995; Steemans 2001; Wellman 1996); Baltica (Smelror 1987; Hagström 1997; 

Mehlqvist et al. 2012; Vecoli et al. 2011); Gondwana (e.g. Breuer & Steemans 2013; Breuer 

et al. 2007, Kermandji 2007; Mizusaki et al. 2002; Richardson 1988; Rubinstein & Steemans 
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2002; Rubinstein & Vaccari 2004; Spina 2015; Spina & Vecoli 2009; Steemans et al. 2000; 

Strother et al. 1996;  Tekbali & Wood 1991; Vavrdová 1988; Wellman et al. 2000); Laurentia 

(Beck & Strother 2008; Gray & Boucot 1971; Johnson 1985; Miller & Eames 1982; Pratt et 

al. 1978; Strother & Traverse 1979); Siberia (Raevskaya et al. 2016); North China (Wang et 

al. 1997); Peri-Gondwana (Dufka 1995); South China (Wang et al. 1996). The wealth of data 

generated enabled establishment of biostratigraphical schemes (e.g. Richardson 1996b; 

Steemans et al. 2000) and analysis of paleogeographical distribution (e.g. Wellman et al. 

2013). Of particular significance here was the work of Richardson and his students on various 

cryptospore-yielding type sections of the Ordovician and Silurian (e.g. Burgess 1991; 

Burgess & Richardson 1991; Wellman 1996). Paleobiological analyses of cryptospore 

diversity and other evolutionary patterns were also undertaken (e.g. Richardson & Burgess 

1999; Wellman & Gray 2000; Richardson 2007; Steemans 1999, 2000; Strother 2000; 

Wellman et al. 2013). 

In an important development Taylor (1995) reported on the first Transmission 

Electron Microscope (TEM) analysis of wall ultrastructure of dispersed cryptospores. He 

discovered a layer of multiple continuous laminae in the walls of a dyad. Such a situation is 

only known among extant plants in certain liverworts, and thus his findings supported Gray’s 

interpretation of cryptospores representing basal land plants at a bryophyte-like grade of 

organization. Subsequently Taylor undertook in depth analysis of wall ultrastructure in the 

various cryptospore morphotypes (e.g. Taylor 1995, 1996, 1997, 2000, 2001, 2002) helping 

to clarify their structure and shed light on their wall ultrastructure. This led Taylor (2001) to 

suggest that cryptospores possessed two types of wall ultrastructure. 

Following the discovery of the late Silurian (Pridoli) Ludford Lane and Early 

Devonian (Lochkovian) Hudwick Dingle early land plant Lagerstätte Dianne Edwards and 

colleagues began a comprehensive analysis of in situ spores of late Silurian-Early Devonian 
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land plants (Wellman 2014). Mostly these were trilete spores from (in the main) early 

vascular plants (e.g. Fanning et al. 1988). However, rare cryptospore morphotypes were also 

discovered in situ including permanent tetrads (Edwards et al. 1999, 2012; Habgood 2000), 

permanent dyads (Habgood 2000; Morris et al. 2012; Wellman et al. 1998a) and hilate spores 

(Edwards et al. 2012b; Morris et al. 2011; Wellman et al. 1998b). Rather frustratingly it is 

often difficult to ascertain the affinities of the parent plants and they seemed to possess a 

combination of bryophyte-like and tracheophyte-like characters (e.g. some cryptospores 

derived from plants that had bifurcating sporophytic axes). Ultimately the concept of 

cryptophyte plants was proposed (Edwards et al. 2014) that “encompass a pool of diversity 

from which modern bryophytes and vascular plants emerged”. 

Starting in 2000 Strother and colleagues began reporting on some highly unusual 

palynomorphs of Cambrian age, characterised by irregularly configurated polyads, that they 

interpreted as the reproductive propagules of a pre-vascular terrestrial flora (Baldwin et al. 

2004; Strother & Beck 2000; Strother et al. 2004; Taylor and Strother 2008, 2009). However, 

others considered that they more likely represented remains of multicellular algae (resting 

cysts or even actual body cells) rather than subaerially dispersed spores of land plants (e.g. 

Wellman 2003, 2010; Wellman et al. 2013). These Cambrian findings led Strother & Beck 

(2000) to suggest that the definition of the term cryptospore be expanded to accommodate 

these forms, “…to include all spore-like remains of non-marine origin from the Lower 

Paleozoic.” At the same time Steemans (2000) proposed a very different emendation to the 

term cryptospore as, “Alete miospores (non-pollen grains) produced by primitive 

embryophytes. Single grains or monads, “permanent” dyads and tetrads, and sporomorphs 

from polyads which may or may not preserve contact area, are included.” In essence Strother 

and colleagues expanded the definition to include any non-marine spore-like remains, 

including those deriving from algae and potentially including green algal embryophyte 
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ancestors, whereas Steemans confined the definition to encompass only subaerially dispersed 

spores derived from embryophyte land plants. The definition of cryptospores remains 

controversial as does the classification of these spores with at least two very different ‘turma’ 

classification systems proposed (Strother 1991; Richardson 1996a). 

Further evidence regarding cryptospore affinities was provided by Wellman et al. 

(2003) who reported sporangial contents, containing cryptospores, recovered from Late 

Ordovician (Katian) non-marine rocks from Oman. More than a dozen spore masses, many 

enclosed within a sac believed to represent the sporangial wall or lining, were described. The 

in situ spores included specimens with permanent dyads and others with permanent tetrads. 

Analysis of spore wall ultrastructure revealed a laminated wall for the dyads and a 

homogeneous wall for the tetrads. This finding of in situ cryptospores was important as it 

demonstrated that older Ordovician cryptospores were also formed in vast numbers within 

sporangia. 

More recently, other new techniques have been utilised in the study of cryptospores. 

Steemans et al. (2010) undertook micro-FTIR spectroscopy analysis of the chemical 

composition of the walls of Silurian trilete spores and cryptospores. They demonstrated 

similar spectra for the walls of trilete spores and cryptospores providing further evidence for 

embryophyte affinities for cryptospores. Guizar-Sicairos et al. (2015) reported on the first 

synchrotron analysis of individually picked dispersed cryptospores which provides another 

technique for analysing structure and wall ultrastructure. 

 

3. Characters used in the classification of cryptospores 
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Initial attempts to erect cryptospore taxa defined genera based primarily on the number of 

constituent units (i.e. monad, dyad or tetrad) and polyad configuration (e.g. tetrahedral- or 

cross-tetrads) (Strother & Traverse 1979). The presence/absence of an enclosing envelope 

was mentioned but not specifically used to differentiate genera. Ornament (largely of the 

envelope) and wall thickness was used to define species. Subsequently, Johnson (1985) 

recognised the difference between fused (pseudodyads) and unfused (true dyads) and 

separated the genera Pseudodyadospora and Dyadospora. Richardson (1988) recognised that 

single spores with a circular contact area (hilum) were the dispersed products of the 

dissociation of true dyads and Burgess (1991) and Burgess & Richardson (1991) began to 

assemble a taxonomy for these hilate cryptospores based largely on ornament. As discussed 

above, Gray (1991) demonstrated that tetrahedral- and cross-tetrads were simply 

taphonomical (compressional) variants of tetrahedral tetrads. Wellman & Richardson (1993) 

clarified the distinction between both tetrads and dyads that were ‘fused’ or ‘unfused’ and 

distinguished between the fused tetrad taxon Cheilotetras and unfused tetrad genus 

Tetrahedraletes. A number of workers also emphasized the distinction between true trilete 

and hilate spores, which were naturally dissociated from tetrads and dyads respectively, and 

similar forms that were artefacts formed by physical removal from permanent tetrads and 

dyads (e.g. Richardson 1988; Steemans et al. 2000). 

 Strother (1991) was the first attempt to establish an artificial morphology-based 

classification scheme for cryptospores. The highest level (Turma) classification was based on 

number of units (tetrads, dyads, monads). The next tier down (Subturma) divided the tetrads 

based on configuration (tetrahedral or cross) and the dyads depending on whether they were 

fused (pseudodyads) or unfused (true dyads and spores separated from these that we now call 

hilate cryptospores). Richardson (1996a) proposed an entirely different scheme. In this 

classification the highest tier (Turma) divided cryptospores into naked and envelope-enclosed 
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forms. The next tier down (Suprasubturma) subdivided these categories into monads, hilate 

cryptospores, unfused polyads (dyads and tetrads) and fused polyads. A third tier (Infraturma) 

utilised ornament.  Strother (2000) provides a comprehensive account of the development of 

these two schemes and includes a key to the polyad genera assigned to cryptospores. 

 The stark differences between these two classification schemes proposed for 

cryptospores serves to emphasize just how difficult it is to ascertain which morphological 

characters of cryptospores are biologically informative. Clearly related to the fundamental 

process of sporogenesis is: (i) the number of units present in polyad cryptospores; (ii) 

whether they are dispersed as permanent polyads or dissociated prior to dispersal (e.g. true 

dyads versus hilate cryptospores). The nature of the junction between polyad cryptospores 

(fused versus unfused) also relates to the process of sporogenesis and spore wall 

development. More perplexing is the biological relationships of envelopes. Do they represent 

remnant spore mother cell or products of a tapetum? These biological interpretations have 

been long debated with little consensus (details of the debates may be found in the papers 

referenced herein). The consequence of these uncertainties is that the vital question of which 

characters should have most weighting in cryptospore classification remains unresolved. 

 

4. A key for the identification of cryptospores (fig. 1) 

4.1. Definition of the term cryptospore 

We prefer the Steemans (2000) definition of cryptospores that explicitly considers them to be 

the dispersed spores of the earliest land plants (embryophytes).  Since they were first 

described numerous lines of evidence have demonstrated that most cryptospore taxa are land 

plant dispersed spores (reviewed above). We believe that those that cannot be linked with 
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land plant dispersed spores should be excluded from the cryptospores to prevent forming a 

‘dustbin’ group that includes various protists, some of which may not even be meiotically 

produced dispersed spores that are unrelated to the earliest land plants. For example, 

Tetraletes/Quadrisporites was for a long time considered as a cryptospore by many workers. 

However, Bock et al (2013), Le Hérissé (2002) and Wellman et al. (2015) demonstrated that 

it has escape structures and is almost certainly an algal resting cyst rather than a dispersed 

spore. We suspect that other forms such as Qualisaspora may represent euglenids but this is 

as yet unproven. We interpret the Cambrian forms described by Strother and colleagues as 

resting cysts or desiccation-resistant body cells of some form of green alga. However, we do 

appreciate that recognition of the earliest stages of early land plant spore evolution may be 

challenging (see Wellman 2003, 2004): obviously the origin of the land plants 

(embryophytes) from a green algal ancestor involved the origin of numerous sporopollenin-

coated, meiotically produced spores, presumably from a sporopollenin coated zygote or algal 

resting cyst, and recognition of transitional forms may not be easy. We have included all of 

the above taxa in the key but indicate those taxa we suspect may not represent subaerially 

dispersed spores of land plants (cryptospores sensu Steemans 2000) with an asterisk. 

4.2. Comment on fused versus unfused polyads 

In permanent polyad cryptospores the individual spores may be fused or unfused (see 

discussion in Wellman & Richardson 1993 who introduced this terminology). As discussed in 

detail by Wellman (1996) it may be difficult to distinguish between the two, particularly in 

material that is poorly preserved or of high thermal maturity, and indeed the exact structure of 

these cryptospores is difficult to ascertain. TEM analysis has gone some way toward 

clarifying the precise nature of the junctions between spores in polyads and it is clear that 

some appear to share a common wall (i.e. fused) and others possess their own separate walls 
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(i.e. unfused) (e.g. Taylor 1995).  Unfortunately, however, even using TEM it is often 

difficult to distinguish whether some polyads are fused or unfused. 

4.3. Comment on the nature of envelopes 

Many cryptospores are enclosed with an envelope that may be loose or tight fitting and may 

be laevigate or variously ornamented. These envelopes can obscure the cryptospore beneath, 

particularly in material that is poorly preserved or of high thermal maturity, making it 

difficult to observe the nature of the junctions in polyad cryptospores (i.e. fused or unfused) 

and the nature of any ornament on the spores (see discussion in Wellman 1996). It is also 

possible that loose fitting envelopes may be stripped from some specimens during transport 

and diagenesis. Thus envelope absence/presence may be an unreliable character for 

taxonomic designation. 

4.4. The Key 

Table 1 below represents a key for the identification of cryptospore taxa. It has been 

subdivided in three main parts according the principal morphological characters: Firstly, 

number of constituent units (monad, dyad, tetrad); Secondly, naked or envelope-enclosed; 

thirdly, several different criteria are taken in account including type of ornament and wall 

thickness and folding. Only validly described species are included in Table 1; species in open 

nomenclature are excluded.  

 

5. Conclusions 

We have presented a key designed to facilitate the identification of early land plant spores 

(Cryptospores sensu Steemans 2000). However, we recognise that controversy exists 

regarding: (i) what should be included in the cryptospores; (ii) which characters should have 
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highest weighting in cryptospore taxonomy. Regarding the former, we take a very 

conservative view and include only forms where we believe the weight of evidence points to 

the palynomorph representing the dispersed spore of an early land plants (embryophyte). 

Regarding the latter, we accept that only further evidence will allow us to agree on polarity 

and weighting of characters used in cryptospore taxonomy. 
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