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Abstract 9 

Water-related defects, principally in the form of protonated cation vacancies, are potentially able to 10 

weaken minerals under high-stress or low-temperature conditions by reducing the Peierls stress 11 

required to initiate dislocation glide. In this study, we use the Peierls-Nabarro (PN) model to 12 

determine the effect of protonated Mg vacancies on the 1/2<110>{110} and 1/2<110>{100} slip 13 

systems in MgO. This PN model is parameterized using generalized stacking fault energies 14 

calculated using plane-wave density functional theory, with and without protonated Mg vacancies 15 

present at the glide plane. It found that these defects increase dislocation core widths and reduce the 16 

Peierls stress over the entire pressure range 0-125 GPa. Furthermore, 1/2<110>{110} slip is found 17 

to be more sensitive to the presence of protonated vacancies which increases in the pressure at 18 

which {100} becomes the easy glide plane for 1/2<110> screw dislocations. These results 19 

demonstrate, for a simple mineral system, that water-related defects can alter the deformation 20 
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behavior of minerals in the glide-creep regime by reducing the stress required to move dislocations 21 

by glide. (Mg, Fe)O is the most anisotropic mineral in the Earth's lower mantle, so the differential 22 

sensitivity of the major slip systems in MgO to hydrous defects has potential implications for the 23 

interpretation of the seismic anisotropy in this region.  24 

Keywords 25 

MgO; dislocations; hydrous defects; Peierls stress; Peierls-Nabarro modeling 26 

1. Introduction 27 

Dislocations are linear topological defects in a crystal lattice that act as carriers of plastic strain. The 28 

stress required to move a dislocation by glide is lower than the ideal shear strength of a crystal, and 29 

glide-controlled creep can be a significant contributor to deformation, especially under conditions 30 

of moderate to high stress or low temperature. Dislocations can also act as reservoirs for point 31 

defects, as the strain fields around the core induce elastic and inelastic interactions between point 32 

defects and dislocations that cause segregation of point defects to dislocation cores. This can 33 

diminish dislocation mobility through the phenomenon of solute drag, whereby the additional 34 

energy required to either pull a solute cloud along with a translating dislocation or break free from it 35 

altogether increases the stress required for dislocation creep (Cottrell and Bilby 1949). 36 

Alternatively, in the glide-creep regime, point defects can enhance dislocation mobility, by reducing 37 

the stress required to initiate glide at 0 K (the Peierls stress, σp).  38 

Vacancies have been found to reduce stacking fault energies and lubricate dislocation glide in a 39 

variety of metals, including fcc Al (Lauzier et al. 1989; Lu and Kaxiras 2002), Ni, Cu, Fe (Asadi et 40 

al. 2014). Vacancies can also reduce the Peierls stress in non-metals, such as the superconductor 41 

MgB2 (Shen et al. 2015). Theoretical calculations show that hydrogen can lubricate dislocation 42 



 

3 

glide in fcc metals such Al (Lu et al. 2001) and Fe (Taketomi et al. 2008), which may explain the 43 

ubiquitous phenomenon of hydrogen induced local plasticity in these metals. Chemical impurities, 44 

in the form of interstitial oxygen defects, can also lubricate dislocation glide in oxides such as UO2, 45 

decreasing the critical resolved shear stress and changing the relative strength of its major slip 46 

systems (Keller et al. 1988). This is attributed to interactions between dislocation cores and the 47 

interstitial oxygen ions reducing the Peierls barrier to glide (Ashbee and Yust 1982).  48 

(Mg, Fe)O is thought to be the second most abundant mineral in the Earth’s lower mantle, after the 49 

perovskite-structured mineral (Mg, Fe)SiO3 bridgmanite, comprising slightly less than 20% of the 50 

region’s volume (eg. Lee et al. 2004). Despite being less abundant than bridgmanite, the relatively 51 

low strength of (Mg, Fe)O means that it may accommodate the majority of the strain in lower-52 

mantle rocks (Girard et al. 2016). Along a mantle geotherm, MgO deforms athermally to ~2000km 53 

depth, with dislocation-dislocation interactions governing flow rates. At greater depths, the 54 

rheology is in the thermally activated regime and the Peierls stress becomes important for 55 

determining strain rates (Cordier et al. 2012). In MgO, the dominant slip system at ambient pressure 56 

is 1/2<110>{110}, with a modest additional contribution from the 1/2<110>{100} slip system. 57 

High pressure creep experiments show that the relative activity of the 1/2<110>{100} slip system in 58 

MgO gradually increases with pressure and, above ~23 GPa, this slip system comes to dominate 59 

over the 1/2<110>{110} slip system (Girard et al. 2012). 60 

In some mantle silicates and oxides, dissolved water-related defects, in the form of chemically 61 

bound hydroxyl, may enhance strain rates by reducing the Peierls stress. For instance, under dry 62 

conditions the measured Peierls stress of olivine, the most abundant mineral in the Earth's upper 63 

mantle, is between 3.8 GPa (Idrissi et al. 2016) and ~15 GPa (Demouchy et al. 2013), although 64 

more typical values are in the range 5-10 GPa (eg. Evans and Goetze 1979; Kranjc et al. 2016; 65 
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Proietti et al. 2016). In contrast, high-stress, low-temperature deformation experiments designed to 66 

measure the Peierls stress of hydrated olivine report its value to be in the range 1.6-2.9 GPa 67 

(Katayama and Karato 2008), significantly below the range of Peierls stresses measured for dry 68 

olivine. These experiments have measured only an average Peierls stress for olivine, which does not 69 

correspond to any individual slip system. However, changes in the deformation fabric with water 70 

content suggest that some slip systems are more sensitive to water content than others (Jung and 71 

Karato 2001; Katayama et al. 2004).  72 

In pure MgO, hydrogen is incorporated via the charge-neutral substitution of an Mg2+ ion by a pair 73 

of protons, represented in the Kroger-Vink notation as {2HMg}
X  (Kroger and Vink 1956). 74 

Analogous defects, in which a divalent cation (typically Mg or Fe) is replaced with two protons are 75 

also found in (Mg, Fe)-silicates in the mantle, including olivine (Bai and Kohlstedt 1993; Kohlstedt 76 

et al. 1996). The solubility of hydrogen in MgO is very low, and under conditions of ambient 77 

pressure and water saturation, the concentration of hydrated Mg vacancies is <10 wt ppm H2O 78 

(Joachim et al. 2012). However, concentrations of hydrated vacancies may be much higher in 79 

regions of the crystal under compressional strain, as is the case directly above the glide plane of an 80 

edge dislocation. This is certainly the case for bare Mg vacancies (ie. vacancies without protons 81 

present), which in cluster-based simulations segregate strongly to 1/2<110>{110} edge dislocation 82 

cores in MgO, with a segregation energy of -1.7 eV for the tightest binding site (Zhang et al. 2010). 83 

Ab initio calculations show that {2HMg}
X defects in MgO bind to {310} tilt grain boundaries, which 84 

can be modeled as an array of dislocation, with minimum segregation energies on the order of -1 eV 85 

at 0 GPa (Karki et al 2015).  86 

A number of different methods exist for calculating Peierls stresses from atomistic simulations. 87 

While fully atomistic calculations are possible, one approach that has seen considerable use in 88 
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materials science is the Peierls-Nabarro (PN) method (Peierls 1940, Nabarro 1947). This model 89 

uses a hybrid continuum-elastic approach in which a dislocation is represented as a discrete 90 

distribution of dislocation density which interact with each other elastically, held together by 91 

inelastic restoring forces representing the shear strength of the crystal. These restoring forces can be 92 

calculated using atomistic simulations by introducing the concept of a generalized stacking fault 93 

(GSF), which is a translational discontinuity across the glide plane of the crystal, whose energy can 94 

be calculated using any one of the numerous atomic simulation techniques available (Christian and 95 

Vítek 1979).  96 

The PN approach has been applied to calculation of dislocation properties, including Peierls 97 

stresses, of dislocations in pure MgO, and is able to reproduce experimentally observed dislocation 98 

properties with some accuracy. Carrez et al. (2009) used an ab initio parameterized continuous PN 99 

model of relative slip strength in MgO, predicting that the 1/2<110>{110} slip system is 100 

approximately an order of magnitude weaker than the 1/2<110>{100} slip system, consistent with 101 

experimental observations (eg. Foitzik et al. 1989). Ab initio parameterised Peierls-Nabarro-102 

Galerkin (PNG; Denoual 2004) simulations show that Peierls stress of the 1/2<110>{110} slip 103 

system is lower than that of the 1/2<110>{100} slip system at low pressure, but that the strengths of 104 

the two slip systems converge at lower mantle pressures (Amodeo et al. 2012). This approach was 105 

used as the basis for simulations of dislocation mobility by kink-nucleation in MgO (Cordier et al. 106 

2012). 107 

In this study, we use the PN model to compare Peierls-stresses in MgO with and without dissolved 108 

{2HMg}
X defects, in order to determine whether hydrous defects can reduce the Peierls stress in 109 

mantle minerals, and to determine the possible significance of this for deformation of MgO. To do 110 

this, we use density functional theory (DFT; Hohenberg and Kohn, 1964; Kohn and Sham, 1965) to 111 
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calculate generalized stacking fault energies are calculated for slip in the 1/2<110> direction on the 112 

{100} and {110} planes, with and without {2HMg}
X defects present at the slip plane. These GSF 113 

energies, together with elastic constants calculated ab initio are used to parameterize PN models for 114 

1/2<110>{100} and 1/2<110>{100} dislocations in both hydrous and anhydrous MgO. 115 

2. Computational Details 116 

2.1 Ab initio calculations 117 

All atomistic calculations performed in this study use plane-wave density functional theory (DFT), 118 

as implemented in version 5.2.0 of Quantum Espresso (Giannozzi et al. 2009). Core and semi-core 119 

electrons were represented using the planar augmented wave (PAW) method (Blöchl 1994), while 120 

the exchange correlation (xc) energy was treated using the PBEsol xc-functional (Perdew et al. 121 

2008). This xc-functional, which was developed to correct biases in earlier parameterizations 122 

towards isolated systems, was chosen for its ability to accurately predict the structure and properties 123 

of crystalline solids (see eg. Ropo et al. 2008; Demichelis et al. 2010). The PAW data sets for Mg, 124 

H, and O atoms are from version 1.0.0 of pslibrary (Dal Corso 2014); details of their generation 125 

parameters can found therein. The kinetic energy cutoff and spacing of the Monkhorst-Pack grid 126 

used to sample reciprocal space (Monkhorst and Pack 1976) were chosen to ensure convergence of 127 

the total energy to with <5 meV/atom. This required a kinetic energy cutoff of 80 Ry (~1090 eV) 128 

and a Monkhorst-Pack grid spacing that corresponds to a 4x4x4 grid for the 8-atom rock salt unit 129 

cell. In all calculations, free parameters (atomic positions and, where applicable, cell parameters) 130 

were relaxed using the BFGS quasi-Newton scheme (Pfrommer et al. 1997). 131 

In the bulk crystal, the lowest energy configuration of {2HMg}
X defect is one in which the two 132 

hydrogen ions are bonded to opposing oxygen ions within the M-site octahedron, with the O-H 133 
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bonds in each defect parallel and pointing towards the center of the site. This is consistent with the 134 

DFT calculations of Hernández et al. (2013), who similarly found the linear hydrogen configuration 135 

to be the most stable. There are three possible arrangements and all possible configurations of this 136 

defect are symmetry equivalent in a perfect crystal. However, as discussed below, the insertion of a 137 

topological defect such as a dislocation or generalized stacking fault breaks the symmetry of the 138 

crystal, leading to multiple symmetry-inequivalent configurations of the {2HMg}
X defect. 139 

The elastic constants Cij determine the strength of the repulsive elastic interactions between 140 

components of the dislocation density in the PN model. These were calculated using the finite strain 141 

approach, in which a small strain is applied to the simulation cell and the internal coordinates (ie. 142 

atomic positions) are relaxed. The elastic constants can then be extracted by fitting the residual 143 

stress to the Hooke's law relation !! ! !!∀!!. Linear elasticity breaks down at large strain 144 

amplitudes whereas, if the strain amplitude is too small, the numerical error due to the use of finite 145 

convergence criteria may be of the same order as the residual stresses, leading to high uncertainties 146 

in the fitted values of the Cij. The number of distinct imposed strains depends on the symmetry of 147 

the crystal; for MgO, which has cubic symmetry, a single strain was sufficient to determine all of 148 

the Cij. In addition to the elastic constants of anhydrous MgO, we also calculated elastic constants 149 

for 1x1x1 and 2x2x2 supercells, each containing a single {2HMg}
X defect, to assess the possible 150 

influence of hydrated defects on the elastic self-interaction of a Peierls-Nabarro dislocation.   151 

2.2 Peierls-Nabarro calculations 152 

The Peierls-Nabarro (PN) model represents a planar dislocation with finite core-width as a 153 

distribution of dislocation density ρ along the glide plane. This distribution may be continuous or 154 

discrete. The core shape is determined by the balance between the repulsive elastic interactions 155 

between components of the dislocation density distribution at different points in the crystal and the 156 



 

8 

inelastic restoring forces caused by the presence of a disregistry u in the material at the glide plane. 157 

The core energy ECORE of a dislocation in the PN model is 158 

!!∀#∃ ! !!∀#∃%&∋ ! !!∀#∃∀% ! !!∀#∃        159 

   (1) 160 

where EMISFIT is the inelastic energy due to displacement of atoms across the glide plane, 161 

!!∀#∃ ! ! ! ! �� is the work done on the dislocation by an applied stress σ, and EELASTIC is   162 

!!∀#∃%&∋ ! ! ! !! ! !! ! ! �� ! ! !! ��!��       (2) 163 

which is the energy due to the elastic self-interaction of the dislocation density distribution. The 164 

static core structure of the dislocation can be determined by minimizing ECORE with σ = 0. The 165 

Peierls stress is calculated by gradually increasing σ until equation (1) no longer has a minimum 166 

energy solution, as the dislocation is able to glide freely.  167 

In the classical formulation of the Peierls-Nabarro model, a dislocation core is represented as 168 

continuous distribution of infinitesimal dislocation density. However, such a distribution is 169 

translationally invariant, meaning that there no energy barrier to glide of the dislocation. The 170 

dislocation can alternatively be represented as a distribution of dislocation density on a discrete 171 

lattice (Bulatov and Kaxiras 1997). In this approach, the dislocation density takes finite values and 172 

the inelastic misfit energy becomes a sum over the lattice points, ie.  173 

!!∀#∃∀% ! !! ! ��! !!          (3) 174 

where ap is the lattice spacing and γ(u) (called the γ-line in 1D and the γ-surface in 2D) gives the 175 

inelastic energy of a crystal lattice offset across the glide plane by u, the disregistry. In this work the 176 
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γ-line is calculated from energies recovered from generalized stacking fault calculations (Christian 177 

and Vítek, 1979) with the energies calculated using density functional theory.  178 

A GSF is a planar defect in a crystal across which the crystal is offset by some vector u, 179 

perpendicular to the normal of the GSF plane. In an atomistic simulation, a GSF is inserted by 180 

cutting an appropriately oriented simulation cell and displacing one half with respect to the other by 181 

u. The atomic coordinates are then to relaxed to their minimum energy configuration, subject to the 182 

constraint Mg2+ and O2- ions can only move in the direction of the stacking fault normal. It is 183 

common to incorporate a vacuum layer into the simulation cell, to prevent direct interactions 184 

between stacking faults along the slab axis. In all GSF calculations described here, the vacuum 185 

layer was 15 Å thick, and the coordinates of all atoms within 2.5 Å of the vacuum layer were fixed 186 

during relaxation. For  {100} and {110} oriented simulation cells, the energies of the γ-line maxima 187 

to within 10 meV/Å2 by the use of a slab cell whose thickness (in units of the fault normal vector) was n 188 

= 6. GSF cell geometries for simulating slip on {100} and {110} are shown in Fig. 1. 189 

To calculate the effect of protonated Mg vacancies on GSF energies, all γ-line calculations were 190 

repeated with simulation cells containing a single {2HMg}
X defect at the slip plane, with the cell 191 

dimensions in the x- and y-directions doubled to reduce interactions between the defect and its 192 

periodic images. Consistent with the fact that the strain field induced by a point defect decays more 193 

quickly with distance than that of an unstable stacking fault, the slab cell thickness used in 194 

calculations of GSF energies without adsorbed point defects were sufficient to ensure convergence 195 

of those with {2HMg}
X defects present at the slip plane. For the {100} GSF calculations, this 196 

corresponds to a cross-sectional area of √2ax√2a, where a is the unit cell parameter of MgO, while 197 

the cross-sectional area of the cell used in the {110} GSF calculations was √2ax2a. However, 198 

although the differently oriented simulation cells have different cross-sectional areas, the number of 199 
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defects per lattice site at the slip plane is the same for the {100} and {110} oriented simulation 200 

cells, permitting a direct comparison of the effects of protonated Mg vacancies on glide of 201 

1/2<110>{100} and 1/2<110>{110} dislocations.  202 

Parameterizing the inelastic restoring force using calculations of GSF energies in which a point 203 

defect has been inserted allows us to investigate the potential influence that point defect might have 204 

on the core structure and mobility of a particular dislocation. The dislocation properties calculated 205 

using this represent only an approximation to the true effect that the point may have, as the point 206 

defect is effectively spread out across the entire dislocation core. This is less of a problem for 207 

dislocations in MgO, which have narrow, undissociated cores, than it would be for dislocations  208 

with widely dissociated cores, for example [001] dislocations in olivine (Durinck et al. 2007) and 209 

[010] dislocations in wadsleyite (Metsue et al. 2010). Additionally, because the PN model does not 210 

simulate an individual point defect, it is impossible to calculate the binding energy between the 211 

point defect and a dislocation. However, the PN model has some advantages over fully atomistic 212 

calculations, the most important of which is that GSF simulation cells contain fewer atoms than 213 

those used in fully atomistic simulations of dislocations, so that it is possible to use DFT instead of 214 

empirical potentials, which may be inaccurate for highly deformed regions of a crystal, such as in 215 

the vicinity of a dislocation core. 216 

3. Results and Discussion 217 

3.1 Elastic constants 218 

The shape and mobility of a Peierls-Nabarro dislocation are controlled by the balance between the 219 

repulsive elastic interactions between components of the dislocation density and the inelastic 220 

restoring parameterized using GSF calculations. Before addressing the effects of adsorbed {2HMg}
X 221 
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defects on GSF energies, we will address the question of how sensitive the elastic constants Cij - 222 

and through them the elastic prefactor K in equation (2) - are to the concentration of these defects. 223 

Compared with the experimental measurements (taken from Singokeikin and Bass, 1999), the 224 

PBEsol xc-functional predicts modestly lower elastic stiffness, with the calculated 0 GPa elastic 225 

constants less than their experimental values by 1.6% (C11) and 6.9% (C44). To determine the effect 226 

of water on the elastic constants of MgO, we compare the Cij calculated for anhydrous MgO above 227 

with those calculated using 1x1x1 and 2x2x2 supercells, each containing a single {2HMg}
X  defect 228 

(Table 1). In the 1x1x1 supercell, one quarter of the Mg sites are replaced with {2HMg}
X, while  the 229 

2x2x2 supercell contains one {2HMg}
X per 32 Mg sites. The Voigt-Reuss-Hill average of the 230 

isotropic shear modulus, GVRH, for the 1x1x1 cell is ~18% softer than the dry shear modulus at 0 231 

GPa, compared with a ~4% shear modulus relaxation of the shear modulus for the 2x2x2 simulation 232 

cell. Pressure increases the relative shear modulus deficit of the 1x1x1 simulation cell slightly, to 233 

~19.5%, while that of the 2x2x2 simulation cell is essentially pressure invariant. However, while 234 

the effect of water on the isotropic shear modulus is relatively pressure insensitive, this is not the 235 

case for the individual elastic constants. For instance, the value of C12 for the 1x1x1 simulation cell 236 

is ~34.7% lower than that of dry MgO at 0 GPa, but only 18.7% lower at 100 GPa. 237 

For a more rigorous quantification of the effect of defect chemistry on the elasticity of a material, 238 

we can compute the Euclidean distance between the elasticity tensors of the pure material and the  239 

supercells containing protonated vacancies. To do this, the elasticity tensor is represented as a 21-240 

dimensional vector, corresponding to the number of linearly independent elastic constants Cij for a 241 

triclinic crystal, with appropriate prefactors to maintain invariance under coordinate transformations 242 

(Browaeys and Chevrot 2004). The distance between two elasticity tensors is then ||C1-C2||, where 243 

C1 and C2 are the vector representations of the two tensors, and the relative deviation of C1 from C2 244 
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is ||C1-C2||/||C2||. For MgO, which has cubic symmetry, only the first 9 components of the vectorial 245 

representation of the elasticity tensor are non-zero, with components 1-3 equal to C11, components 246 

4-6 equal to √2C12, and components 7-9 equal to 2C44. This technique has been used to calculate the 247 

effect of chemistry and order on the elasticity of metal alloys (eg. Xie et al. 2012; Zhou et al. 2013). 248 

Using the elastic constants reported in Table 1, we calculate the normalized distance between the 249 

elasticity tensor of dry MgO and a 1x1x1 supercell to be 0.239 at 0 GPa, decreasing to 0.15 at 125 250 

GPa. The elasticity tensor of the 2x2x2 supercell is even closer to that of dry MgO, reflecting the 8-251 

fold reduction in the defect concentration, with a normalized distance between the dry and wet C of 252 

just 0.046 at ambient pressure, decreasing only slightly with pressure to 0.043 at 125 GPa.  253 

Crystal elasticity affects the core properties of a dislocation through the elastic energy coefficient K 254 

in equation (2), which depends both on the elastic constants Cij and the dislocation geometry.  255 

Elastic energy coefficients for the 1/2<110>{100} and 1/2<110>{110} edge dislocations, and for 256 

the 1/2<110> screw dislocation (whose coefficient is the same for glide on {100} and {110}) 257 

calculated from the elastic constants of dry and protonated vacancy-containing MgO. As expected, 258 

the elastic energy coefficients calculated from the elastic constants of supercells containing a 259 

{2HMg}
X defect are systematically lower than those calculated for dislocations in dry MgO (Table 260 

1). At 0 GPa, Ke for the 1/2<110>{100} slip system is 22.2 % lower when calculated using the 261 

elastic constants for the 1x1x1 supercell. However, the Ke for this slip system computed using the 262 

elastic constants of the 2x2x2 supercell differs form the dry value by only -4.6 %, comparable to the 263 

difference between the DFT and experimental values. The value of Ke calculated for the 264 

1/2<110>{110} slip system at ambient pressure is even less sensitive to the concentration of 265 

{2HMg}
X defects, with the values calculated using the elastic constants of the 1x1x1 and 2x2x2 266 

supercells differing from the dry Ke by -13.2 % and -3.9 %, respectively. However, the deficit 267 

increases modestly with pressure, reaching -18.1 % and -4.3 % at 125 GPa. The effect of {2HMg}
X 268 
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concentration on Ks, the elastic energy coefficient of the 1/2<110> screw dislocation, is similar to 269 

that reported for Ke.  270 

For MgO, as for magnesian silicates such as forsterite (Liu et al. 2009) and wadsleyite (Mao et al. 271 

2008; Chang et al. 2015), the incorporation of water as protonated vacancies softens the elasticity 272 

tensor. However, this effect decreases rapidly with decreasing water content. Consequently, since 273 

the simulation cells used for GSF calculations in this study have relatively large cross-sections and 274 

bulk water solubilities are extremely low in both MgO (<10 ppmw; Joachim et al. 2012) and (Mg, 275 

Fe)O (<100 ppmw; Bolfan-Casanova et al. 2003), the elastic energy coefficients for all PN 276 

simulations in this study were calculated using the elastic constants of dry MgO.  277 

3.2 Generalized stacking fault energies 278 

To determine the effect of {2HMg}
X defects on inelastic stacking faults in MgO, it is first necessary 279 

to calculate the energies of these stacking faults in the absence of adsorbed point defects (shown in 280 

Fig. 2). At 0 GPa, the maximum energy computed along the 1/2<110> γ-line is associated with the 281 

1/4<110> stacking fault vector for slip on both the {110} and {100} families of of planes, with 282 

values of 0.0691 eV/Å2 and 0.1434 eV/Å2, comparable to the values of 0.0655 and 0.1361 eV/Å2  283 

calculated for these GSFs using the PBE xc-functional in a previous study (Carrez et al. 2009). 284 

However, {110} GSF energies are more pressure sensitive than {100} GSF energies. Comparing 285 

the energies of the 1/4<110> stacking fault vector on {110} and {100} as functions of pressure 286 

(Fig. 3), it can be seen that, in the former case, the calculated GSF energy increases almost six-fold 287 

over the pressure range 0-125 GPa, reaching 0.3907 eV/Å2 at the highest pressure, whereas the 288 

energy of the 1/4<110> stacking vector on {100} is roughly doubled, reaching 0.2605 eV/Å2 at 125 289 

GPa. This causes a reversal of the relative heights of the 1/2<110>{110} and 1/2<110>{100} γ-290 

lines, which occurs at ~54 GPa. Since the γ-line functions influence the dislocation energy 291 
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(equation 1) through the inelastic misfit energy (equation 3), this means that the relative strengths 292 

for dislocation glide on {110} and {100} will invert at high pressure.  293 

Due to the high symmetry of MgO, there are three possible symmetry equivalent – and thus energy 294 

degenerate – configurations of the {2HMg}
X defect in the bulk crystal. However, this energy 295 

degeneracy is lifted by the insertion of a stacking fault. There are two distinct configurations of the 296 

{2HMg}
X defect for GSFs on {110}. In one, the O-H bonds lie within the stacking fault plane, but 297 

are normal to the stacking fault vector (Fig. 4a). For the other, the O-H bonds intersect the glide 298 

plane with an angle of 45° (Fig. 4b). There are likewise two symmetrically distinct configurations 299 

for a protonated vacancy located near the {100} plane: one with the O-H bonds in the fault plane 300 

and inclined 45° with respect to the GSF vector (Fig. 4c), and the other with O-H bonds normal to 301 

the fault plane (Fig. 4d). For both {100} and {110} oriented fault planes, the configuration whose 302 

O-H bonds are make an angle of 45° with respect to 1/2<110> is doubly degenerate. 303 

The orientation of the O-H bonds in the {2HMg}
x defect, relative to the slip plane, influences the 304 

calculated GSF energy, as can be seen by comparing the wet and dry γ-lines (Fig. 2). For slip on 305 

{110}, the defect configuration in which the O-H bonds cross the slip plane has a γ-line maximum 306 

of 0.0923 eV/Å2, higher than the calculated γ-line maximum for dry MgO. In contrast, the γ-line 307 

maximum is reduced by the presence of the defect with the O-H bonds within the {110} plane, to 308 

just 0.0529 eV/Å2. At 125 GPa applied pressure, the corresponding values for the two defect 309 

configurations are 0.3572 and 0.3423 eV/Å2. For slip on {100}, meanwhile, the γ-line maximum at 310 

0 GPa is 0.1447 eV/Å2 when O-H bonds are aligned normal to the glide plane compared with 311 

0.1214 eV/Å2 when the O-H bonds are parallel to it. At 125 GPa, the corresponding energies are 312 

0.2378 eV/Å2 and 0.2194 eV/Å2 so that, while the absolute and relative differences in energy are 313 

reduced, the defect with O-H bonds in the slip plane remains lower in energy. In summary, for slip 314 
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along 1/2<110> on {110} and {100}, it is clear that the orientation of the O-H bonds relative to the 315 

slip plane influences the degree of water weakening, with lower energies when the configuration of 316 

the adsorbed {2HMg}
X defect has O-H bonds parallel to the slip plane. In the following section, 317 

where we calculate Peierls stresses for dislocations in hydrous MgO, we will use the γ-lines 318 

calculated for these {2HMg}
X defects.  319 

One way to quantify the impact of a protonated vacancy on a generalized stacking fault is to 320 

consider the relative reduction of the γ-line maximum by the addition of a single defect at the 321 

stacking fault plane. For the 1/2<110>{110} γ-line, the energy maximum  at 0 GPa is reduced by 322 

23% by the addition of a {2HMg}
X defect, the deficit decreasing steadily with pressure to 12% at 323 

125 GPa. In contrast, the 1/2<110>{100} γ-line is less affected by the presence of a protonated 324 

defect at 0 GPa, and the maximum energy decreases by 15%. However, the relative magnitude of 325 

the γ-line relaxation increases slightly with pressure, to 16% at 125 GPa.  326 

As mentioned at the end of section 2.2, it is impossible to calculate the binding energy between a 327 

point defect and a dislocation with the PN formalism. However, by taking the difference between 328 

dry and wet GSF energies with the same stacking fault vector u, it possible to determine the 329 

segregation energy Eseg of a protonated vacancy from the bulk to a generalized stacking fault. For 330 

the 1/4<110>{100} GSF, the segregation energy at 0 GPa is -0.78 eV, rising to -1.14 eV at 125 331 

GPa. At 0 GPa, the segregation energy to a 1/4<110>{110} GSF is -0.81 eV, but rises more quickly 332 

with pressure, reaching -1.90 eV at 125 GPa. While a direct quantitative comparison with the results 333 

of Karki et al (2015) for {2HMg}
X segregation to {310} tilt boundaries is not possible, the 334 

magnitudes of the segregation energies reported at 0 GPa in that study are comparable to those 335 

found here (approximately -1 eV), and increase with pressure.  336 

3.3 Peierls-Nabarro dislocations 337 
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Using the γ-lines calculated in section 3.2, Peierls-Nabarro dislocation core structures can be 338 

obtained by minimizing equation (1) with applied stress σ = 0. A static dislocation can be 339 

characterized by its core width ξ, which is defined to be the width of the region within which |b|/4 < 340 

|u(x)| < 3|b|/4, and its maximum dislocation density, ρmax. In anhydrous MgO, both of these 341 

parameters are nearly constant for the 1/2<110>{100} edge dislocation and the 1/2<110> screw 342 

dislocation spreading on {100}, whereas ξ and ρmax respectively decrease and increase for the 343 

1/2<110>{110} edge dislocation and the 1/2<110> screw dislocation spreading on {110} (Fig. 5). 344 

Relaxing the static dislocation core structure using the wet γ-lines increases core spreading, 345 

particularly on the {110} plane, with a corresponding decrease in the value ρmax. However, this 346 

hydrogen-induced dislocation core spreading has no significant effect on the pressure derivatives of 347 

either ξ or ρmax.  348 

From these static dislocation core structures, Peierls stresses for the different slip systems can be 349 

obtained by minimizing equation (1) with |σ| > 0, using the static disregistry profile u(x) as input. 350 

Within the 1/2<110>{110} slip system, the Peierls stress of the 1/2<110>{110} edge dislocation is 351 

lower than that of the 1/2<110> screw dislocation gliding on {100}, which controls mobility in this 352 

slip system. The Peierls stress of the edge dislocation at ambient pressure is 0.06 GPa, similar to the 353 

0.02 GPa (Carrez et al. 2009) and 0.04 GPa (Liu et al. 2012) calculated for this dislocation in 354 

previous studies. For the 1/2<110> screw dislocation, σp for glide on {110} is 0.26 GPa at ambient 355 

pressure. Previous computational studies have found values for this slip system ranging from 0.04 356 

GPa (Carrez et al. 2009) to 0.16 GPa (Liu et al. 2012). For the 1/2<110>{100} slip system we find 357 

that, across the entire pressure range 0-125 GPa, a 1/2<110> screw dislocation gliding on {100} has 358 

lower Peierls stress than  1/2<110>{100} edge dislocation. At 0 GPa, the screw dislocation has σp = 359 

1.7 GPa for the screw dislocation, comparable to the value of 1.53 GPa calculated by Carrez et al. 360 
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(2009) using a continuous 1D PN model. Carrez et al. determined the Peierls stress of the 361 

1/2<110>{100} edge dislocation at ambient pressure to be 1.16 GPa, markedly lower than the 2.8 362 

GPa computed in this study.  363 

The 0 GPa Peierls stresses are thus comparable with those found in previous studies, albeit 364 

modestly higher for all dislocations studied. This difference can be attributed to the choice of xc-365 

functional as Carrez et al. (2009) and Liu et al. (2012) used the PBE-GGA xc-functional (Perdew et 366 

al. 1996), which is known to significantly overestimate the cell volume, due to under-binding of the 367 

exchange-correlation energy. For MgO, the elastic constants Cij increase with decreasing cell 368 

volume (ie. increasing pressure) which means that, at a given pressure the PBE xc-functional 369 

underestimates the elastic constants. Consequently, PN simulations parameterized using the results 370 

of DFT calculations performed using the PBE xc-functional should consistently predict lower 371 

Peierls stresses than those parameterized using the PBEsol xc-functional, as is the case here.  372 

In section 3.2, it was shown that adsorption of {2HMg}
X defects to the fault plane lowers GSF 373 

energies along the 1/2<110>{110} γ-line. When these γ-lines are used to parameterize PN 374 

calculations of dislocation glide, this translates into lower Peierls stresses for glide on the 375 

1/2<110>{110} slip system. Although the edge and screw dislocations in this slip have comparable 376 

Peierls stresses at ambient pressure, above 0 GPa the Peierls stress of the 1/2<110> screw 377 

dislocation gliding on {110} is greater than that of the 1/2<110>{110} edge dislocation, and screw 378 

dislocation controls the mobility of this slip system. At 0 GPa, the Peierls stress of a 379 

1/2<110>{110} edge dislocation is 0.06 GPa, indistinguishable from the Peierls stress for this slip 380 

system in dry MgO. However, as can be seen in Fig. 6(a), the pressure derivative dσp/dP is lowered 381 

by {2HMg}
X defects and, at 125 GPa pressure, the σp calculated using the wet γ-line is 1.7 GPa, 382 

<50% of the value for this dislocation in dry MgO (3.6 GPa). For glide of 1/2<110> screw 383 
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dislocations on {110}, the Peierls stress is 0.06 GPa when the wet γ-line is used, compared with 384 

0.26 GPa under dry conditions; at 125 GPa the corresponding wet and dry values are 10.6  and 23.0 385 

GPa.  386 

The effect of protonated vacancies on the qualitative pressure dependence of dislocations gliding on 387 

{100} is more pronounced. Whereas, in dry MgO, the Peierls stress of 1/2<110>{100} edge 388 

dislocations increases monotonically with pressure, the addition of water leads to a pronounced 389 

negative curvature of σp(P). This effect is sufficiently great that σp actually decreases above 75 390 

GPa. The Peierls stress for glide of 1/2<110> screw dislocations on {100} is similar for anhydrous 391 

and hydrous MgO at ambient pressure (~1.7 GPa). However, the adsorption of protonated vacancies 392 

to the glide plane greatly reduces the pressure dependence of σp, which in hydrous MgO is just 2.7 393 

GPa at 125 GPa, compared with 4.2 GPa for dry MgO. As was found for dry MgO, the Peierls 394 

stress of the 1/2<110>{100} dislocation is greater than that of the 1/2<110> screw dislocation 395 

gliding on {100} at all pressures, although in wet MgO the Peierls stress for the edge and screw 396 

dislocation begin to converge at high pressure.  397 

For 1/2<110> screw dislocations in dry MgO, the relatively rapid increase in σp for glide on {110} 398 

with pressure means that glide on {100} becomes easier at high pressure. This results in a cross-399 

over of the relative strengths of the two glide planes at high pressure. Using the Peierls stresses 400 

calculated for dry MgO, we that this occurs at a pressure of 24.8 GPa, comparable to the ~23 GPa 401 

measured in creep experiments (Girard et al. 2012). However, glide of 1/2<110> screw dislocations 402 

on {110} is preferentially enhanced by the presence of protonated vacancies over glide on {100}. 403 

While this effect is not sufficient to prevent the preferred glide plane from changing at mantle 404 

pressures, the slip system cross-over is shifted to higher pressures (Fig. 7b). For the {2HMg}
X defect 405 

concentrations used in this study, the cross-over pressure at which glide of 1/2<110> screw 406 
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dislocation on {110} increases to 32.1 GPa. Assuming linear dependence of the Peierls stress on 407 

{2HMg}
X defect, this implies that the cross-over pressure is shifted by ~29 GPa multiplied by the 408 

fraction of protonated cation sites at the glide plane.  In anhydrous MgO, the 1/2<110>{110} edge 409 

dislocation slip system is weaker than the 1/2<110>{100} edge dislocation slip system at all 410 

mantle-relevant pressures (Fig. 7a), and this is not changed by the incorporation of {2HMg}
X defects 411 

at the glide plane. However, the pressure at which the Peierls stress of 1/2<110> screw dislocation 412 

on {110} exceeds that of the 1/2<110>{100} edge dislocation increases from 30.6 GPa in dry MgO 413 

to 46.2 GPa for hydrous MgO with {2HMg}
X present at the concentrations used in this study, giving 414 

a dependence of the cross-over pressure on {2HMg}
X concentration of ~62 GPa times the fraction of 415 

occupied sites. 416 

The hydrolytic weakening of the Peierls stress found here is a direct result of the reduction of the γ-417 

line maximum by the insertion of suitably oriented {2HMg}
X defects at the slip plane. This reduces 418 

the inelastic restoring force that balances the repulsive elastic interaction between components of 419 

the dislocation density distribution ρ at different lattice planes. What cannot be determined, 420 

however, is whether the reduction of the γ-line energies is due to the presence of hydrogen, or the 421 

vacancy generated when creating a {2HMg}
X  defect. Given that the 1/2<110> γ-line maxima on 422 

both {110} and {100} correspond to the points of closest approach between Mg atoms on either 423 

side of the stacking fault plane, it is likely that the mechanism by which protonated vacancies 424 

reduce the Peierls stress is by minimizing the repulsive interactions between adjacent Mg ions 425 

across the glide plane. In this case, the role of the H atoms is solely to charge-balance the creation 426 

of an Mg vacancy.  427 

Creation of protonated defects is not the only mechanism by which vacancies can be generated in 428 

MgO or its iron-bearing analogue (Mg, Fe)O. Insertion of trivalent cations, such as Al3+ and Fe3+ 429 
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into MgO/(Mg, Fe)O leads to the creation of M-site vacancies to maintain overall charge neutrality. 430 

Extrinsic vacancies associated with trivalent cations can vastly outnumber intrinsic vacancies, such 431 

as those associated with Schottky defects (Van Orman et al. 2009). In the case of MgO, doping with 432 

trivalent cations at the 100-200 ppm level decreases dislocation mobility and increases its critical 433 

resolved shear stress (Singh and Coble 1974ab). The increase in yield strength is nearly identical for 434 

Cr3+, Al3+, and Fe3+, despite their different ionic radii, which suggests that this pinning is not caused  435 

by attractive elastic interactions between the trivalent cation and the dislocation core but the 436 

substantial change in the electrostatic energy of this complex when it is sheared by a passing 437 

dislocation (Ahlquist 1975). However, Otsuka et al. (2010) have suggested that under lower mantle 438 

conditions, ferric iron and {□M}″ vacancies dissociate. It is thus possible that, under oxidized 439 

conditions, there will be free vacancies, capable of inducing Peierls stress reductions comparable to 440 

those predicted here for protonated vacancies to dislocation cores, with similar geophysical 441 

implications. More work needs to be done to investigate the effects of Fe3+ on the deformation of 442 

(Mg, Fe)O with realistic Fe contents. 443 

Iron-bearing (Mg, Fe)O is the weakest major phase in the Earth's lower mantle. In both numerical 444 

simulations of two-phase creep (Madi et al. 2005) and high-pressure deformation experiments on 445 

magnesiowustite + bridgmanite aggregates (Girard et al. 2016) the bulk of the strain in multi-phase 446 

lower mantle materials is accommodated by (Mg, Fe)O. When deformed under moderate stress 447 

conditions, (Mg, Fe)O polycrystals develop pronounced lattice preferred orientation (LPO) 448 

(Yamazaki and Karato 2002), although a recent deformation experiment of a magnesiowustite + 449 

bridgmanite at 61 GPa found no evidence for the development of a coherent deformation fabric 450 

(Miyagi and Wenk 2016). MgO is highly elastically anisotropic over the entire pressure range of the 451 

Earth's mantle (Karki et al. 1999). (Mg, Fe)O is even more anisotropic than pure MgO and probably 452 

accounts for the majority of the observed seismic wave anisotropy in the Earth’s lower mantle 453 



 

21 

(Marquardt et al. 2009), especially as (Mg, Fe)SiO3 bridgmanite, the other major component of the 454 

lower mantle, does not develop any significant LPO when deformed under mantle-relevant 455 

conditions (Merkel et al. 2003). At high pressure, the 1/2<110> screw dislocations experience more 456 

lattice friction for glide on {110} than on {100}, which results in a change in the LPO for a give 457 

pattern of mantle strain. Lattice preferred orientation of (Mg, Fe)O has also been invoked to explain 458 

seismic anisotropy in the D″ region of the lowermost mantle, on the assumption that the dominant 459 

slip system is 1/2<110>{100} (Karato 2014). In hydrous MgO, the greatest Peierls stress reduction 460 

was found for the 1/2<110>{110} slip system, so that the pressure at which {100} becomes the 461 

dominant slip for the 1/2<110> screw dislocations is displaced to higher pressures under hydrous 462 

conditions. At pressures representative of the deep lower mantle, the preferred slip system is the 463 

same for both hydrous and anhydrous MgO. However, {2HMg}
X defects preferentially enhance 464 

1/2<110>{110} slip by {2HMg}
X defects, thereby altering the relative activities of the two major 465 

slip systems in MgO and changing its LPO, and potentially the observed pattern of seismic 466 

anisotropy. 467 

Conclusions 468 

In this study, we have used the PN model, parameterized using ab initio calculated GSF energies to 469 

determine the effect of a common variety of protonated vacancy, {2HMg}
X, on the Peierls stress of 470 

MgO. Using DFT, 1/2<110> γ-lines were calculated for slip on the {110} and {100} families of 471 

planes, representing the most important slip systems in MgO, and these were used to parameterize 472 

Peierls-Nabarro calculations of edge and screw dislocation core structures and Peierls stresses. 473 

Calculations were performed using stoichiometric MgO simulation cells, in addition to simulation 474 

cells containing {2HMg}
X defects, and it was found that the latter produced wider dislocation cores 475 

and lower Peierls stresses over the entire pressure range of the Earth's mantle. Although σp is 476 
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decreased by the presence of protonated vacancies at the glide plane for slip on both {100} and 477 

{110}, we find that the Peierls stress reduction is greatest for 1/2<110>{110} slip (for both edge 478 

and screw dislocations). In the case of 1/2<110> screw dislocations, this leads to an increase in the 479 

pressure at which glide on {100} becomes easiest, meaning that the presence of water may 480 

influence the deformation fabric.  481 

These calculations show that the presence of protonated defects near a dislocation core in MgO can 482 

reduce its Peierls stress. However, although we have considered only MgO, the results have 483 

implications for the glide controlled creep of other mantle minerals such as olivine or pyroxene. The 484 

easy glide planes of the dominant slip systems for dislocation are parallel to sheets of MO6 485 

octahedra (where M is typically Mg or Fe), for which MgO may be considered a structurally simple 486 

analogue. Glide lubrication by protonated defects may provide an explanation for the lower yield 487 

strength and different LPO of hydrous versus anhydrous olivine, and this possibility warrants 488 

further exploration using atomistic simulations. 489 
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 667 

Tables 668 

Table 1. Calculated elastic constants (in GPa) of anhydrous MgO, compared with those of 1x1x1 669 

and 2x2x2 supercells containing a single {2HMg}
X defect. Measured elastic constants of dry MgO at 670 

ambient pressure given for reference. For each set of elastic constants, we have computed the elastic 671 

energy coefficients for 1/2<110>{100} and 1/2<110>{110} dislocations. While the edge 672 

coefficients (Ke) differ between the two slip systems, the screw energy coefficient (Ks) does not. 673 

  C11 C12 C44 G
VRH 

Ke 

Ks 

1/2<110>{100} 1/2<110>{110} 

anhydrous  

(DFT) 

0 GPa 293.2 89.8 143.8 125.1 160.7 147.7 120.9 

125 GPa 1281.5 253.1 204.7 299.0 381.2 446.1 324.4 

anhydrous  

(expt.)a 
0 GPa 297.9(15) 95.8(10) 154.4(20) 130.2(1) 168.8 152.0 124.9 

1x1x1  

supercell 

0 GPa 277.8 58.6 98.1 102.6 125.0 128.2 103.7 

125 GPa 1112.3 205.8 153.1 240.7 306.1 365.3 263.4 

2x2x2  

supercell 

0 GPa 283.6 85.3 135.8 119.7 153.3 142.0 116.0 

125 GPa 1224.7 246.6 196.3 285.8 365.2 426.7 309.8 

a Sinogeikin and Bass (1999) 674 

Figure Captions 675 



 

29 

 676 

Fig. 1 Simulation cells containing 1/4<110> generalized stacking faults on the (a) {100} and (b) 677 

{110} planes.  678 
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 679 

Fig. 2 Pressure evolution of wet and dry 1/2<110>{110} (top) and 1/2<110>{100} (bottom) γ-lines 680 

in MgO. 681 

 682 
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Fig. 3 Pressure dependence of the γ-line maximum for slip along 1/2<110> on the {100} 683 

(diamonds) and {110} (squares) planes, with dry and wet values plotted with full and empty 684 

symbols, respectively. For wet γ-lines, values are shown only for the lowest energy {2HMg}
X 685 

configuration for each slip plane. 686 

 687 

Fig. 4 The symmetrically distinct configurations of the {2HMg}
X defect relative to the {110} 688 

stacking fault plane correspond to the cases when the O-H bonds are either (a) in the slip plane and 689 

parallel to b, or (b) crossing the slip plane. For a {2HMg}
X defect on a {100} stacking fault, the two 690 

symmetrically distinct configurations are those with (c) the O-H bond in the slip plane and (d) 691 

normal to the slip plane.  692 
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 693 

Fig. 5 Pressure dependence of the dislocation core width, as a fraction of the Burger's vector 694 

magnitude |b| (top) and maximum dislocation density along the glide plane (bottom).  Results for 695 

the 1/2<110>{110} and 1/2<110>{100} slip systems are shown with square and diamond symbols, 696 

respectively,  while values for hydrous MgO are indicated with hollow symbols. 697 

 698 
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Fig. 6 Pressure dependence of the Peierls stresses calculated for (a) glide of edge dislocation, and 699 

(b) screw dislocations. Square and diamond symbols correspond to the {110} and {100} glide 700 

planes, while filled and hollow symbols are used to represent σp in anhydrous and hydrous MgO. 701 

 702 

Fig. 7 Ratio of σp for glide on {100} and {110} for (a) edge and (b) screw dislocations, with (filled 703 

symbols) and without (hollow symbols) {2HMg}
X  defects present. The horizontal dashed line for the 704 

screw dislocations represents a Peierls stress ratio of 1.   705 


