UNIVERSITY OF LEEDS

This is a repository copy of *Kinematically Aligned Total Knee Arthroplasty or Mechanically Aligned Total Knee Arthroplasty*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/127527/

Version: Accepted Version

Article:

Tsuneari, T, Ansari, J and Pandit, HG orcid.org/0000-0001-7392-8561 (2018) Kinematically Aligned Total Knee Arthroplasty or Mechanically Aligned Total Knee Arthroplasty. The journal of knee surgery, 31 (10). pp. 999-1006. ISSN 1538-8506

https://doi.org/10.1055/s-0038-1632378

© 2018, Thieme Medical Publishers. This is an author produced version of a paper published in The journal of knee surgery. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Kinematically Aligned Total Knee Arthroplasty or Mechanically Aligned Total
2	Knee Arthroplasty
3	Abstract
4	Background: Kinematically aligned TKA (KATKA) was developed to more
5	anatomically align the knee prosthesis to restore the native alignment of the knee and
6	promote physiological kinematics. Even though there are concerns with implant
7	survival and follow up at 10 years or more after KATKA has not been reported, there is
8	a negligible incidence of failure of a tibial component at two to nine years. Early
9	clinical results with this technique are encouraging and demonstrate better functional
10	outcomes compared to mechanically alignment TKA (MATKA).
11	The purpose of this study is to perform a systematic review and meta-analysis of the
12	literature to determine whether there are any clinical differences between KATKA and
13	MATKA.
14	Methods: The authors conducted a systematic review of the English literature. Five
15	randomized controlled trials which compared clinical outcomes of KATKA and
16	MATKA were finally included. Four RCTs used patient specific instrument and, one

17 RCT used navigation. Data were extracted and meta-analysis was conducted.

18	Results: KATKA patients had better outcomes: Mean difference between KATKA and
19	MATKA and p value are presented in brackets after each variable: WOMAC (-12.5;
20	P<0.0001), OKS (2.3; P=0.030), C-KSS (13.1; P<0.0001), KFS (6.4; P=0.0070) and
21	postoperative ROM (4.1°; P=0.0010). There was no significant difference concerning
22	the complication rates which needed re-operations or revision surgery (Odds ratio, 1.01;
23	P=0.99). KATKA components had a more femoral valgus (-1.8°; P<0.0001), more tibial
24	varus (1.2°; P=0.0001), and more tibial slope (1.2°; P=0.0001), all being statistically
25	significantly different.
26	Conclusions: Better clinical outcomes were obtained in KATKA and component
27	placement in KATKA is significantly different from that in MATKA. There was no
28	increase of patients with poor clinical results due to implant position especially for
29	varus placement of tibial component. This systematic review of five RCTs suggests that
30	KATKA is of potential alternative method to MATKA since the risk of revision for
31	tibial loosening is negligible compared with MATKA for the same follow up period.
32	

 $\mathbf{2}$

- 33 Keywords:
- 34 knee osteoarthritis; total knee arthroplasty; kinematically alignment; mechanically
- alignment; outcomes.

38 Introduction

39 Total knee arthroplasty (TKA) has been an established procedure for end stage arthritis 40 of knee to improve function and alleviate pain. Modern designs, better surgical skills, 41 better fixation technique and rehabilitation, have all contributed to better outcomes and 42longevity of implants. Around 90,000 primary TKAs were performed in the UK last 43year and numbers continue to increase year on year¹. One of the prerequisites of a 44successful TKA is restoration of neutral knee alignment while placing the femur in 45external rotation to make the flexion gap symmetrical and match it with the extension 46 gap. It requires that an initial femoral cut must be perpendicular to the mechanical axis 47of the femur and the tibial cut must be performed perpendicular to the mechanical axis 48of the tibia. Traditionally a mechanical axis alignment passing from the centre of 49 femoral head to the centre of knee and the centre of ankle has been strived for. 50Mechanical alignment in TKA has been thought to be a functional principle because even load distribution is achieved and this is primarily to reduce wear and associated 51implant loosening²⁻⁶. However, native knee alignment, with proximal tibia is averaged 52

3° of varus and distal femur is averaged 3° of valgus with respect to its mechanical axis
is different of that after TKA.

55In spite of implant survival in excess of 90% at 10 years, international arthroplasty registries in the United Kingdom, Canada, and New Zealand have shown that up to 25% 5657of patients with mechanically aligned TKA (MATKA) are dissatisfied, the causes of 58which remain poorly understood. Mechanical alignment can have unfavorable 59kinematic results as positioning of the components can change the level and angle of the 60 distal femoral, posterior femoral, and tibial joint lines and lower limb alignment from 61 normal⁷ even though there is a wide individual variability in what is called 'normal limb 62 alignment' and certain populations have "constitutional varus" ⁸⁻¹¹. When MATKA is 63 performed for patients with constitutional varus knee, excessive soft tissue release and 64 tibial bone resection may be required thus resulting in poor patient satisfaction. 65 Kinematically aligned TKA (KATKA) was developed in 2006 to more anatomically 66 align the knee prosthesis to promote physiological kinematics which will help patients achieve better function and less pain with the belief that this will lead to reduce the 67 68 incidence of instability, stiffness and improving the rate of recovery and kinematics thus

 $\mathbf{5}$

69	improving patient satisfaction ¹²⁻¹⁵ . KATKA strives to restore normal knee function by
70	aligning the angle and level of the distal femoral, posterior femoral, and tibial joint line
71	to those of the normal knee 12,15 . Bone cuts are made to replace and resurface the native
72	joint thus preserving the natural anatomy of the knee; this results in the alignment of the
73	components with the three kinematic axes of the knee, maintains the soft tissue
74	envelope, and minimizes the need for ligament release ^{8,13,16-18} . Early clinical results with
75	this technique are encouraging and demonstrate better functional scores and range of
76	motion compared to mechanical alignment.
77	One potential limitation of this method is the inability of the surgeons to consistently
77 78	One potential limitation of this method is the inability of the surgeons to consistently achieve the intended component position after implanting TKA. This can affect the
78	achieve the intended component position after implanting TKA. This can affect the
78 79	achieve the intended component position after implanting TKA. This can affect the operated limb significantly which may lead to poor function and place the components
78 79 80	achieve the intended component position after implanting TKA. This can affect the operated limb significantly which may lead to poor function and place the components at a higher risk for catastrophic failure. However, as shown by Nedopil et al. ¹⁹ there
78 79 80 81	achieve the intended component position after implanting TKA. This can affect the operated limb significantly which may lead to poor function and place the components at a higher risk for catastrophic failure. However, as shown by Nedopil et al. ¹⁹ there really is very little inconsistency in cutting the tibial component in more than 3 degrees

85	One explanation for the negligible risk of varus tibia loosening after KATKA is that the
86	in vivo forces in the medial and lateral hemi-joint are comparable to the native knee and
87	the mean force in the medial and lateral compartments were three to six times lower
88	than those of MATKA ²² . KATKA is growing in popularity with some randomized
89	controlled trials (RCT) showing better outcomes ^{11,17,23,24} . On the other hand, other
90	reported no particular advantage over MATKA. So there still remains controversy.
91	Currently, there is a paucity of comparative clinical data on the outcomes of KATKA to
92	MATKA. The purpose of this study is to perform a systematic review and meta-analysis
93	of the literature to determine whether there are any clinical differences in KATKA
94	compared with traditional MATKA.
95	
96	Material and methods
97	Search strategy and criteria
98	A comprehensive literature search of MEDLINE / PubMed electronic databases and
99	CENTRAL / Cochrane Library for all articles written in English language was
100	performed in October 2017. The included MESH terms were "total knee arthroplasty,"

101 "osteoarthritis," "kinematic," "kinematically or kinematic alignment".

102 Inclusion criteria

- 103 Inclusion criteria for this systematic review were as follows; (1) English written articles,
- 104 (2) full text of the article was available, (3) studies using human study, (4) studies about
- 105 comparison between KATKA and MATKA, (5) articles about clinical and radiological
- 106 outcomes. Exclusion criteria were; (1) articles not written in English, (2) full text was
- 107 unavailable, (3) experimental study using animal or cadaveric specimen, (4) clinical
- 108 study without clinical and radiological outcomes".
- 109 The citations were screened by all authors, titles and abstract were screened for
- 110 relevance. After that, full texts of the selected articles were reviewed whether to be
- 111 included in this systematic review. All extracted data were cross checked by all authors.
- 112 Studies satisfying inclusion and exclusion criteria were independently reviewed by all
- 113 authors. The search process to determine which studies were selected is detailed as a
- 114 flow diagram (Fig. 1). The primary outcome measure of our interest was clinical
- 115 outcome and secondary one was radiological evaluation. Six articles of RCT were
- 116 included in the initial analysis ^{11,17,23-26}. One RCT was subsequently excluded because

117 follow up period was only six months¹⁷. There were two level $I^{23,26}$, and three level

118 II^{11,24,25} studies in this systematic review to compare clinical outcome and radiological

evaluations.

120 Analysis of data

121 Bias within studies was quantified using 'Preferred Reporting Items for Systematic

- 122 reviews and Meta-Analyses (PRISMA) guidelines²⁷. All analyses were performed and
- 123 figures produced using Review Manager 5.3.3 (The Cochrane Collaboration, Oxford,

124 UK).

125 **Outcomes of search**

- 126 Five studies were included in the systematic review and all were randomized,
- 127 single-center, prospective cohort studies (Table. 1.). There are total of 518 cases of
- 128 TKA: KATKA (n=259) and MATKA (n=259). Follow up periods were one year in
- 129 three studies, and two years in two studies. KATKA and MATKA groups were well
- 130 matched for age (mean difference, -0.8 years; 95% confidence interval, -2.4 to 0.7
- 131 years; P=0.29), and gender (Odds ratio, 1.21; 95% confidence interval, 0.80 to 1.85;
- 132 P=0.36). Implanted prostheses were Vanguard (Zimmer Biomet, Inc, Warsaw, Indiana,

133	USA) in one study, (e-motion, B. Braun Aesculap, Tuttlingen, Germany or Persona,
134	Zimmer Biomet, Inc, Warsaw, Indiana, USA) in one study and Triathlon (Stryker, Inc,
135	Mahwah, New Jersey, USA) in the other three studies. All prostheses were cemented
136	and posterior cruciate ligament was retained in all the cases. Surgical approaches were
137	medial para-patellar in three studies ^{11,25,26} and not described in the other two studies.
138	Patella resurfacing was performed in two studies ^{23,25} , selectively performed in one
139	study ²⁶ and not described in two studies ^{11,24} . Four procedures in KATKA group were
140	performed using patient-specific guides made from MRI data and one using
141	navigation ¹¹ positioning in kinematic alignment. Pre and postoperative ROM were
142	measured in all five studies.
143	
144	Results
145	Clinical results
146	Were there any differences concerning preoperative conditions between KATKA and
147	MATKA?

149following criteris: 150Range of motion (ROM) in both flexion (mean difference, 1.3°; 95% confidence interval, -2.0 to 4.5°; P=0.45) and extension (mean difference, 0.7°; 95% confidence 151152interval, -0.5 to 1.8°; P=0.24), The Western Ontario and McMaster Universities 153Osteoarthritis Index (WOMAC) scale (mean difference, -3.1 points; 95% confidence 154interval, -6.6 to 0.5 points; P=0.093), Oxford Knee Score (OKS) (mean difference, 0.4 155points; 95% confidence interval, -1.5 to 2.2 points; P=0.70), combined Knee Society 156Score (C-KSS) (mean difference, 5.2 points; 95% confidence interval, -3.4 to 13.7 157points; P=0.23), Knee Society Score (KSS) (mean difference, 1.6 points; 95% 158confidence interval, -2.8 to 6.0 points; P=0.49), Knee Function Score (KFS) (mean 159difference, 1.1 points; 95% confidence interval, -3.5 to 5.8 points; P=0.63) and BMI 160 (mean difference, -0.58 kg/m² points; 95% confidence interval, -1.38 to 0.23 kg/m² 161 points; P = 0.16).

In the preoperative evaluations, we found no significant differences in any of the

162

148

163 Does KATKA achieve better clinical outcome compared with MATKA?

164	KATKA had a better WOMAC scale (mean difference, -12.5 points; 95% confidence
165	interval, -16.1 to -9.0 points; P<0.0001), OKS (mean difference, 2.3 points; 95%
166	confidence interval, 0.2 to 4.4 points; P=0.030), C-KSS (mean difference, 13.1 points;
167	95% confidence interval, 8.5 to 17.7 points; P<0.0001), KFS (mean difference, 6.4
168	points; 95% confidence interval, 1.7 to 11.0 points; P=0.0070) and postoperative ROM
169	(mean difference, 4.1° ; 95% confidence interval, 1.7 to 6.5° ; P=0.0010). On the other
170	hand, we found no significant difference concerning KSS (mean difference, 1.1 points;
171	95% confidence interval, -1.0 to 3.3 points; P=0.29), EuroQol five dimensions
172	questionnaire (EQ-5D) (mean difference, -1.4 points; 95% confidence interval, -6.3 to
173	3.4 points; P=0.57), and length of hospital stay (mean difference, 1.0 days; 95%
174	confidence interval, -0.2 to 2.2 days; P=0.092) between KATKA and MATKA (Fig.
175	2-6).
176	Does complication rate which needed multiple re-operations or revision surgery after

177 KATKA differ from that after MATKA?

178 There was no significant difference in the reported complication rates including

179 re-operations or revision surgery (Odds ratio, 1.01; 95% confidence interval, 0.25 to

180 4.09; P=0.99) between KATKA and MATKA (Fig. 7).

181

182 **Radiological evaluations**

183 Are there any differences concerning knee and component alignment KATKA and

184 MATKA?

185 All five studies reported the radiological evaluations after KATKA and MATKA.

186 KATKA had a more valgus angle between femoral component and femoral axis (mean

187 difference, -1.8°; 95% confidence interval, -2.4 to -1.1°; P<0.0001), more varus angle

188 between tibial component and tibial axis (mean difference, 1.2°; 95% confidence

189 interval, 0.9 to -1.4°; P=0.0001), more tibial component slope to sagittal tibial axis

- 190 (mean difference, 1.2°; 95% confidence interval, 0.6 to -1.7°; P=0.0001) (Fig. 8-10). On
- 191 the other hand, we found no significant difference concerning valgus Hip Knee Angle
- 192 (HKA) (mean difference, -0.4° ; 95% confidence interval, -0.8 to 0.1° ; P=0.087)

101	D '	•
194	Discu	ccinn
101	Discu	001011

195 The main findings of this systematic review were: (1) the clinical outcomes of KATKA 196 were superior to those of MATKA in many clinical assessment questionnaires. (2) Limb 197 alignment after KATKA was similar to that after MATKA however, component 198 alignment was different between KA and MATKA. Femoral component was placed in 199 more valgus and tibial component was placed in more varus in KATKA as compared to 200 MATKA. (3) Complication rates were not significantly different between KA and 201MATKA. 202KATKA was developed to reproduce normal knee kinematics after TKA. The concept 203 of kinematic alignment has gained interest among knee surgeons^{12,15,28,29}. Kinematic 204alignment has been popularised by Howell in the United States. The idea of kinematic 205alignment is not totally new. It is inspired indeed from the concept of anatomical alignment of Hungerford and Krackow³⁰. It challenges the traditional alignment 206 207 principles of restoring a 'normal' mechanical axis; using the transepicondylar axis as the 208 flexion / extension axis, which in one report has been recognised to actually lie

proximal and anterior to the transepicondylar axis³¹; externally rotating the femoral component and soft tissue balancing.

211	Knee kinematics after conventional MATKA is supposed to be different from normal
212	because mechanical alignment can have unfavorable kinematic results as positioning of
213	the components may change the level and angle of the distal femoral, posterior femoral,
214	and tibial joint lines and lower limb alignment from normal. Joint line changes from
215	normal alter the knee kinematics because the normal joint lines are either parallel or
216	perpendicular to the three axes that describe tibiofemoral and patella femoral
217	kinematics ^{8-11,29,32} . And there are many patients whose knees are in "constitutional
218	varus". Substantial number of native limbs do not have a neutral HKA angle prior to the
219	onset of osteoarthritis ^{28,33-35} . There is a 7° to 12° range of maximum varus and the -4° to
220	-16° range of maximum valgus reported for subjects in Korea, India, and Belgium. 17%
221	to 35% of adults have constitutional varus and the 0% to 12% have constitutional valgus
222	reported for subjects from Korea, India, and Belgium. Hence, patients from different
223	countries often have a pre-arthritic HKA angle outside $0^{\circ} \pm 3^{\circ}$, and constitutional varus
224	is more frequent than constitutional valgus. So KATKA may be beneficial alternative to

225	MATKA was for the patients with constitutional varus to avoid excessive soft tissue
226	release and bone resection to obtain symmetrical extension and flexion gap. There still
227	remains concern about longevity of component placement which is not placed
228	perpendicular to mechanical axis of femur and tibia, especially for tibial component
229	placement, varus placement more than 3° may increase the risk of early loosening.
230	However, there are two to nine year follow up studies from several authors showing
231	negligible risk of varus loosening, five times lower than that reported for mechanically
232	aligned TKA ^{21} . The etiology of this is proposed to be due to the lower medial and
233	lateral forces compared to mechanically aligned TKA ²² . Parratte et al. showed that
234	postoperative mechanical axis of $0^0 \pm 3^0$ did not improve the fifteen-year implant
235	survival rate. Eckhoff et al.28 have shown that 98% of normal limbs do not have a
236	neutral mechanical axis, and that 76% of normal limbs have a deviation of $>3^{\circ}$ from
237	neutral. Bellemans et al. ²⁹ have shown that 32% of men and 17% of women had
238	constitutional varus knees with a natural mechanical alignment of more than $3^{\circ 30}$.
239	Because of the great variations in limb alignment and the fact that 98% of normal limbs

240	do not have a neutral limb alignment, the correction of the arthritic knee to a neutral
241	mechanical axis does not represent a correction to normal ^{28,29} .
242	There are some limitations to this study. Firstly, surgical technique such as approach
243	technique and implant selection was not consistent in five RCTs. However, all
244	procedures in KATKA group were performed using patient-specific guides made from
245	MRI data or navigation positioning in kinematic alignment to minimize the technical
246	variations and inaccurate component placement. Secondly, the follow up periods of
247	included RCTs were one year or two years. Ideally, multicenter RCT with longer follow
248	up period are needed to clarify the definitive difference between two procedures in
249	particular the issue of increased wear. Thirdly, we could not clarify the relationship
250	between preoperative patient conditions and postoperative clinical outcomes from this
251	study. Further studies are required to clarify the effect of preoperative limb deformity to
252	the postoperative outcomes both after KATKA and MATKA.
253	It is important that future studies provide these answers, have adequate sample size and
254	a meaningful follow up to understand the actual potential of KATKA.
255	

256 Conclusions

- 257 Better clinical outcomes were obtained in KATKA and component placement in
- 258 KATKA is significantly different from that in MATKA. Even though follow up periods
- 259 were short, there was no increase of patients with poor clinical results due to implant
- 260 position especially for varus placement of tibial component.
- 261 This systematic review of five RCTs suggests that KATKA is of potential alternative
- 262 method to MATKA. However, RCT with longer follow up period will be required to
- 263 clarify its longevity.
- 264

265 List of abbreviations:

- 266 C-KSS: Combined Knee Society Score
- 267 EQ-5D: EuroQol five dimensions questionnaire
- 268 KA: Kinematically Aligned
- 269 KFS: Knee Function Score
- 270 KSS: Knee Society Score
- 271 MA: Mechanically Aligned

272	PRISMA: Preferred Reporting Items for Systematic reviews and Meta-Analyses
273	RCT: Randomized Controlled Trial
274	ROM: Range Of Motion
275	TKA: Total Knee Arthroplasty
276	WOMAC: The Western Ontario and McMaster Universities Osteoarthritis Index
277	
278	Conflict of interest
279	The authors have no financial conflict of interest in this study.
280	
281	Funding
282	None.
283	
284	Ethical approval
285	This is a systematic review so ethical approval was waived.
286	
287	Written informed consent

288	Not ap	plicable.	
289			
290	Contri	bution of authors	
291	TT, JA, and HP designed the study, conducted literature search, systematic review of the		
292	literature, and statistical analysis. All authors read and approved the final manuscript.		
293			
294	Refer	ences	
295	1.	National Joint Registry for England Wales Northern Ireland and Isle of Man.	
296		Annual report. In. Hemel Hempstead: National Joint Registry; 2015:volumes.	
297	2.	Lotke PA, Ecker ML. Influence of positioning of prosthesis in total knee	
298		replacement. J Bone Joint Surg Am. 1977;59(1):77-79.	
299	3.	Bargren JH, Blaha JD, Freeman MA. Alignment in total knee arthroplasty.	
300		Correlated biomechanical and clinical observations. Clin Orthop Relat Res.	
301		1983(173):178-183.	
302	4.	Insall JN, Binazzi R, Soudry M, Mestriner LA. Total knee arthroplasty. Clin	
303		Orthop Relat Res. 1985(192):13-22.	

5. Tew M, Waugh W. Tibiofemoral alignment and the results of knee replacement.

- 305 J Bone Joint Surg Br. 1985;67(4):551-556.
- 306 6. Aglietti P, Buzzi R. Posteriorly stabilised total-condylar knee replacement. Three
- 307 to eight years' follow-up of 85 knees. J Bone Joint Surg Br. 1988;70(2):211-216.
- 308 7. Oussedik S, Abdel MP, Cross MB, Haddad FS. Alignment and fixation in total
- 309 knee arthroplasty: changing paradigms. Bone Joint J. 2015;97-B(10 Suppl
- 310 A):16-19.
- 311 8. Gu Y, Roth JD, Howell SM, Hull ML. How Frequently Do Four Methods for
- 312 Mechanically Aligning a Total Knee Arthroplasty Cause Collateral Ligament
- 313 Imbalance and Change Alignment from Normal in White Patients? AAOS
- Exhibit Selection. J Bone Joint Surg Am. 2014;96(12):e101.
- 315 9. Luyckx T, Vanhoorebeeck F, Bellemans J. Should we aim at undercorrection
- 316 when doing a total knee arthroplasty? Knee Surg Sports Traumatol Arthrosc.
- 317 2015;23(6):1706-1712.
- 318 10. Gu Y, Howell SM, Hull ML. Simulation of total knee arthroplasty in 5 degrees
- 319 or 7 degrees valgus: A study of gap imbalances and changes in limb and knee

320		alignments from native. J Orthop Res. 2017;35(9):2031-2039.
321	11.	Matsumoto T, Takayama K, Ishida K, Hayashi S, Hashimoto S, Kuroda R.
322		Radiological and clinical comparison of kinematically versus mechanically
323		aligned total knee arthroplasty. Bone Joint J. 2017;99-B(5):640-646.
324	12.	Howell SM, Kuznik K, Hull ML, Siston RA. Results of an initial experience
325		with custom-fit positioning total knee arthroplasty in a series of 48 patients.
326		Orthopedics. 2008;31(9):857-863.
327	13.	Howell SM, Howell SJ, Kuznik KT, Cohen J, Hull ML. Does a kinematically
328		aligned total knee arthroplasty restore function without failure regardless of
329		alignment category? Clin Orthop Relat Res. 2013;471(3):1000-1007.
330	14.	Howell SM, Papadopoulos S, Kuznik K, Ghaly LR, Hull ML. Does varus
331		alignment adversely affect implant survival and function six years after
332		kinematically aligned total knee arthroplasty? Int Orthop.
333		2015;39(11):2117-2124.
334	15.	Howell SM, Howell SJ, Hull ML. Assessment of the radii of the medial and
335		lateral femoral condyles in varus and valgus knees with osteoarthritis. J Bone

336	Joint Surg	Am. 2010;	92(1):98-104.

337 1	6.	Parratte S, Pagnano MW, Trousdale RT, Berry DJ. Effect of postoperative
338		mechanical axis alignment on the fifteen-year survival of modern, cemented
339		total knee replacements. J Bone Joint Surg Am. 2010;92(12):2143-2149.
340 1	7.	Dossett HG, Swartz GJ, Estrada NA, LeFevre GW, Kwasman BG Kinematically
341		versus mechanically aligned total knee arthroplasty. Orthopedics.
342		2012;35(2):e160-169.
343 1	8.	Cherian JJ, Kapadia BH, Banerjee S, Jauregui JJ, Issa K, Mont MA. Mechanical,
344		Anatomical, and Kinematic Axis in TKA: Concepts and Practical Applications.
345		Curr Rev Musculoskelet Med. 2014;7(2):89-95.
346 1	9.	Nedopil AJ, Singh AK, Howell SM, Hull ML. Does Kinematically Aligned TKA
347		Align the Limb and Joint Lines Within \pm 3° From Native and Achieve High
348		Function? J Arthroplasty. 2017;In Press.
349 2	20.	Ritter MA, Davis KE, Meding JB, Pierson JL, Berend ME, Malinzak RA. The
350		effect of alignment and BMI on failure of total knee replacement. J Bone Joint
351		Surg Am. 2011;93(17):1588-1596.

352	21.	Nedopil AJ, Howell SM, Hull ML. What mechanisms are associated with tibial
353		component failure after kinematically-aligned total knee arthroplasty? Int
354		Orthop. 2017.
355	22.	Shelton TJ, Nedopil AJ, Howell SM, Hull ML. Do varus or valgus outliers have
356		higher forces in the medial or lateral compartments than those which are
357		in-range after a kinematically aligned total knee arthroplasty? limb and joint line
358		alignment after kinematically aligned total knee arthroplasty. Bone Joint J.
359		2017;99-B(10):1319-1328.
360	23.	Dossett HG, Estrada NA, Swartz GJ, LeFevre GW, Kwasman BG. A randomised
361		controlled trial of kinematically and mechanically aligned total knee
362		replacements: two-year clinical results. Bone Joint J. 2014;96-B(7):907-913.
363	24.	Calliess T, Bauer K, Stukenborg-Colsman C, Windhagen H, Budde S, Ettinger
364		M. PSI kinematic versus non-PSI mechanical alignment in total knee
365		arthroplasty: a prospective, randomized study. Knee Surg Sports Traumatol
366		Arthrosc. 2016.

367 25. Waterson HB, Clement ND, Eyres KS, Mandalia VI, Toms AD. The early

368		outcome of kinematic versus mechanical alignment in total knee arthroplasty: a
369		prospective randomised control trial. Bone Joint J. 2016;98-B(10):1360-1368.
370	26.	Young SW, Walker ML, Bayan A, Briant-Evans T, Pavlou P, Farrington B. The
371		Chitranjan S. Ranawat Award : No Difference in 2-year Functional Outcomes
372		Using Kinematic versus Mechanical Alignment in TKA: A Randomized
373		Controlled Clinical Trial. Clin Orthop Relat Res. 2017;475(1):9-20.
374	27.	Tao KM, Li XQ, Zhou QH, Moher D, Ling CQ, Yu WF. From QUOROM to
375		PRISMA: a survey of high-impact medical journals' instructions to authors and a
376		review of systematic reviews in anesthesia literature. PLoS One.
377		2011;6(11):e27611.
378	28.	Eckhoff DG, Bach JM, Spitzer VM, et al. Three-dimensional mechanics,
379		kinematics, and morphology of the knee viewed in virtual reality. J Bone Joint
380		Surg Am. 2005;87 Suppl 2:71-80.
380 381	29.	Surg Am. 2005;87 Suppl 2:71-80. Bellemans J, Colyn W, Vandenneucker H, Victor J. The Chitranjan Ranawat
	29.	

384	30.	Hungerford DS, Krackow KA. Total joint arthroplasty of the knee. Clin Orthop
385		Relat Res. 1985(192):23-33.
386	31.	Coughlin KM, Incavo SJ, Churchill DL, Beynnon BD. Tibial axis and patellar
387		position relative to the femoral epicondylar axis during squatting. J Arthroplasty.
388		2003;18(8):1048-1055.
389	32.	Niki Y, Sassa T, Nagai K, Harato K, Kobayashi S, Yamashita T. Mechanically
390		aligned total knee arthroplasty carries a risk of bony gap changes and
391		flexion-extension axis displacement. Knee Surg Sports Traumatol Arthrosc.
392		2017.
393	33.	Bellemans J, Vandenneucker H, Van Lauwe J, Victor J. A new surgical technique
394		for medial collateral ligament balancing: multiple needle puncturing. J
395		Arthroplasty. 2010;25(7):1151-1156.
396	34.	Shetty GM, Mullaji A, Bhayde S, Nha KW, Oh HK. Factors contributing to
397		inherent varus alignment of lower limb in normal Asian adults: role of tibial
398		plateau inclination. Knee. 2014;21(2):544-548.
399	35.	Song MH, Yoo SH, Kang SW, Kim YJ, Park GT, Pyeun YS. Errata to "Coronal

- 400 Alignment of the Lower Limb and the Incidence of Constitutional Varus Knee in
- 401 Korean Females". Knee Surg Relat Res. 2015;27(3):197.
- 402

403 Figure captions

- 404 Figure 1. PRISMA flow diagram
- 405 Figure 2. Forest plot for postoperative WOMAC between KA (Experimental) and MA
- 406 (Control) TKA
- 407 Figure 3. Forest plot for postoperative OKS between KA (Experimental) and MA
- 408 (Control) TKA
- 409 Figure 4. Forest plot for postoperative Combined KSS between KA (Experimental) and
- 410 MA (Control) TKA
- 411 Figure 5. Forest plot for postoperative KFS between KA (Experimental) and MA
- 412 (Control) TKA
- 413 Figure 6. Forest plot for postoperative ROM between KA (Experimental) and MA
- 414 (Control) TKA
- 415 Figure 7. Forest plot for major complications between KA (Experimental) and MA

- 416 (Control) TKA
- 417 Figure 8. Forest plot for angle of femoral component between KA (Experimental) and
- 418 MA (Control) TKA
- 419 Figure 9. Forest plot for angle of tibial component between KA (Experimental) and MA
- 420 (Control) TKA
- 421 Figure 10. Forest plot for tibial component slope between KA (Experimental) and MA
- 422 (Control) TKA
- 423