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Understanding the sedimentation behaviour of colloidal suspensions is crucial in determining their
stability. Since sedimentation rates are often very slow, centrifugation is used to expedite sedimen-
tation experiments. The effect of centrifugal acceleration on sedimentation behaviour is not fully
understood. Furthermore, in sedimentation models, interparticle interactions are usually omitted by
using the hard-sphere assumption. This work proposes a one-dimensional model for sedimentation
using an effective maximum volume fraction, with an extension for sedimentation under centrifu-
gal force. A numerical implementation of the model using an adaptive finite difference solver is
described. Experiments with silica suspensions are carried out using an analytical centrifuge. The
model is shown to be a good fit with experimental data for 480 nm spherical silica, with the
effects of centrifugation at 705 rpm studied. A conversion of data to Earth gravity conditions is
proposed, which is shown to recover Earth gravity sedimentation rates well. This work suggests that
the effective maximum volume fraction accurately captures interparticle interactions and provides
insights into the effect of centrifugation on sedimentation. © 2018 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5010735

I. INTRODUCTION

Suspensions of colloidal particles can be found in many
industrial applications, such as consumer products, surface
coatings, and printer inks.1,2 Examples of such consumer prod-
ucts include fabric enhancers, cosmetics, and shampoos.3 In
many of these applications, the dispersed phase has a higher
density than the continuous phase. Therefore, sedimentation
of the dispersed phase may occur due to gravity. Sedimenta-
tion leads to the separation of the continuous and dispersed
phases (phase separation), resulting in the formation of a
particle sediment bed. Similarly, phase separation can occur
when the dispersed phase is less dense than the continuous
phase, with the dispersed phase rising to the top in a pro-
cess known as creaming. A crucial requirement of colloidal
suspensions in many applications is that noticeable phase sep-
aration must not occur during the product’s shelf life.4 Some
products are formulated as a space-spanning network, or gel,
in an attempt to prolong their shelf life. However, even gels
can be mechanically unstable.5 Other products must remain
as suspensions, which motivates the study of sedimentation of
colloidal suspensions in this work.

This work considers monodisperse suspensions of
spherical colloidal particles without particle aggregation. For
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such a suspension, in which the dispersed phase is more dense
than the continuous phase, three components will form due to
gravity.6 A clear region forms above the suspension (the super-
natant) and a sediment bed with a high volume fraction forms
below the suspension. The volume fraction of the suspension
component remains constant at the initial volume fraction due
to the constant gravitational acceleration across the suspen-
sion. There is a rapid change in volume fraction between the
supernatant and suspension, called the supernatant-suspension
interface. Polydispersity in the particle size, and Brownian
motion of colloidal sized particles, may cause the thickness
of this interface to increase in time.7 Sedimentation continues
until all of the dispersed phase is contained within the sedi-
ment bed, with only clear fluid above. When this is the case,
complete phase separation has occurred.

The first mathematical treatment of sedimentation which
related batch sedimentation rates to the microscopic proper-
ties of the suspension was provided by Kynch,8 who proposed
a one-dimensional monodisperse sedimentation model based
on the particle flux through a given height of the sample. One-
dimensional models are appropriate for describing sedimen-
tation since the particle volume fraction is one-dimensional
in height.6 Kynch’s model was extended by Davis and
Russel9 to include diffusion due to Brownian motion for
colloidal particles. The addition of the diffusive term to
take account of Brownian motion allows the sediment to be
included in the model, rather than relying on a time-dependent
boundary condition at the top of the sediment. The resulting
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particle volume fraction around the supernatant-suspension
interface is a balance between diffusive front spreading and
sharpening due to hindered settling effects.10 By including the
sediment within the model, compression of the sediment can
be taken into account, using a compressive yield stress.11 Such
one-dimensional models have also been successfully extended
to account for the effects of polydispersity in particle size,12

and density stratification in the continuous phase.13

Particles in suspension do not sediment alone, and as a
result their motion is hindered by surrounding particles, where
the effect of hindrance increases as the particle volume frac-
tion increases. The effect of hindrance is taken into account
by a hindrance function, usually9,12 the Richardson-Zaki
empirical relationship.14 Other power-law expressions have
been proposed based on the Richardson-Zaki relationship15

and implemented in sedimentation models.16 However, for
monodisperse suspensions, in which the maximum volume
fraction is not one, Richardson-Zaki power-law expressions
can become inaccurate by allowing unphysical volume frac-
tions.17 Alternatively, particle hindrance can be taken into
account by using a relationship based on a suspension vis-
cosity model.18 Using a suspension viscosity model has the
advantage of reducing the sedimentation velocity to zero at
the maximum volume fraction. Such a formulation has been
successfully implemented in a two-dimensional sedimentation
model by Rao et al.6

Much of the sedimentation literature neglects interactions
between the particles in suspension, though hydrodynamic
interactions for sedimentation at moderate Reynolds num-
ber have been considered.15 A common assumption made is
the hard-sphere assumption, an idealisation which assumes
no interparticle interactions other than infinite repulsion at
contact.19,20 This means that there is no restriction on the min-
imum separation distance between two colloidal particles, so
the maximum volume fraction is determined by random sphere
packing theory in this case. Whilst this assumption may hold
for larger non-colloidal particles,21 it may not be suitable for
highly charged colloidal particles.

Genovese19 has validated the use of an effective volume
fraction to describe interparticle interactions and thus deter-
mine the shear rheology of colloidal suspensions. An effective
volume fraction is defined based on an effective particle size
which is the sum of the particle’s physical size and an exclusion
volume around the particle due to interparticle interactions.
An effective diameter has also been used to describe deple-
tion interaction.22 Metin23 has demonstrated the use of an
effective particle size for describing colloidal suspensions, but
taking into account the interparticle interactions using an effec-
tive maximum volume fraction, which has the advantage of
remaining constant for a given suspension. Metin’s approach
can be applied to account for interparticle interactions in a
sedimentation model, as demonstrated in this work.

Experimental data can be used to characterise the stabil-
ity of suspensions and validate sedimentation models. Many
sedimentation experiments use custom charge-coupled device
(CCD) camera arrangements with image processing soft-
ware.1,5 The aim is usually to track the supernatant-suspension
interface and obtain its velocity, known as the separation
velocity, v(t). The separation velocity characterises the rate

of phase separation. Other techniques, such as magnetic res-
onance imaging,4 nuclear magnetic resonance,6,12 and acous-
tics24 can determine the local particle volume fraction. Such
experiments tend to use a static sample, so are subject to Earth
gravity. Centrifugation may be used to accelerate sedimen-
tation, by effectively replacing the gravitational acceleration
with a centrifugal acceleration. Centrifugation is useful since
sedimentation experiments are often very lengthy, especially
for consumer products which are formulated to have long shelf
lives. The time required for complete sedimentation can be
reduced by over an order of magnitude using centrifugation.
Instruments are available to monitor transmission through the
sample in time in a centrifuge.25 The separation velocity under
centrifugal force can be determined using these transmission
profiles, and the corresponding Earth gravity separation veloc-
ity can be determined. However, recent studies have cast doubt
on the accuracy of recovering Earth gravity settling velocities
from centrifuge experiments.26 We hypothesise that the diffi-
cultly in recovering Earth gravity sedimentation rates is due
to the variation in centrifugal acceleration across a sample
in a centrifuge since the centrifugal acceleration depends on
the radial distance from the centre of rotation, which is an
effect typically not directly taken into account in Earth gravity
conversions.

In this work, a mathematical model for the sedimen-
tation of monodisperse colloidal particles has been devel-
oped. Hindered settling effects are taken into account in
a one-dimensional sedimentation model9 using the suspen-
sion viscosity,6 rather than a hindrance function like the
Richardson-Zaki relationship. By introducing an effective
maximum volume fraction, a method which has been suc-
cessfully validated for describing the shear rheology of col-
loidal suspensions in the past,23 interparticle interactions are
taken into account in the model. The numerical implementa-
tion of this model using an adaptive finite difference solver
is described. An extension to the model for sedimentation
under centrifugal acceleration is proposed which allows model
results to be directly compared to unconverted experimental
data for nearly monodisperse colloidal silica suspensions col-
lected under centrifugal force at 705 rpm, corresponding to
a centrifugal acceleration of between 59.6g and 71.8g across
the sample suspension. An investigation into the effects of
centrifugation on sedimenting suspensions is described, which
leads to the validation of a proposed method for successfully
converting centrifugal force sedimentation data to Earth grav-
ity conditions and an improved understanding of the behaviour
of colloidal suspensions under centrifugation.

II. MATERIALS AND EXPERIMENTAL METHODS
A. Materials and particle characterisation

Spherical silica nanoparticles (AngstromSphere, labeled
500 nm) were purchased as a dry powder from Fiber Optic
Center (New Bedford, USA). The particle density was mea-
sured as 1.92 g cm�3 using a Pycnomatic ATC gas pycnometer
(Thermo Electron, USA). A known mass of the silica powder
was added to a calibrated volume, with the displaced volume
determined by monitoring thepressure change of helium gas,
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and the mass measured using an analytical balance (0.1 mg
precision).

Suspensions were prepared by adding silica powder to a
0.01M Potassium Chloride (KCl) solution. This solution was
prepared using KCl crystalline powder (Fluka Chemie GmbH,
Germany) and ultrapure water, with resistivity 18.2 MΩ cm at
298.15 K (Milli-Q, Millipore, USA). Before each sedimen-
tation experiment, the suspension was magnetically stirred
for 5 min, then placed in an ultrasonic bath for 5 min, and
finally magnetically stirred for a further 25 min. The purpose
of magnetic stirring was to homogenise the suspension, thus
ensuring it was well-dispersed. The ultrasonic bath was used
to break up any particle aggregates, to ensure the suspension
was monodisperse.

A Malvern Zetasizer Nano ZS ZEN3600 (Malvern Instru-
ments Ltd., UK), with a 632.8 nm, 4 mW laser was used to mea-
sure the size of the particles in suspension using dynamic light
scattering. Approximately 1.2 ml of suspension was added
to a 12 mm square polystyrene cuvette (DTS0012, Malvern),
using a 1 ml syringe. For the silica dispersed phase, the refrac-
tive index used was 1.44, and the absorption 0.001. For the
continuous phase, the refractive index used was 1.33 and the
dynamic viscosity was 8.9 × 10�4 Pa s.27 For each sample,
3 measurements were made, with 14 sub runs (division of
each size measurement) each. The average number-mean par-
ticle size was approximately 480 nm. This value varied by
approximately 10 nm across the different samples measured.
A typical particle size distribution for a sample, showing three
separate measurements with different line types, is shown in
Fig. 1. There is a single peak at the primary particle size,
with a relatively tight distribution around the peak. Further,
the polydispersity index (PDI), a measure for the width of the
particle size distribution, was calculated using the Zetasizer.
The measured PDI of 0.069, with a standard deviation of 0.008,
confirms that the suspension is nearly monodisperse.28

The Zetasizer was also used to measure the zeta potential
of the suspension by determining the electrophoretic mobility
of the dispersed phase and then applying the Henry equation.

FIG. 1. Particle size distribution for 480 nm colloidal silica was measured
using a Malvern Zetasizer Nano ZS. Different line styles indicate different
measurements, with three shown.

1.0 ml of the suspension was added to a folded capillary cell
(DTS1070, Malvern), using a 1 ml syringe. Care was taken to
ensure bubbles did not form in the sample. Five zeta potential
measurements were made. The mean average zeta potential
was �43.5 mV, with a standard deviation of 2.3 mV.

B. Sedimentation experiments

Phase separation was monitored using a LUMiSizer ana-
lytical centrifuge (LUM GmbH, Germany). The LUMiSizer
accelerates sedimentation by exposing a sample suspension to
a centrifugal acceleration greater than the Earth’s gravitational
acceleration. Up to 12 samples can be analysed simultaneously.
For each sample, approximately 430 µl of suspension was
extracted with a 500 µl autopipette and transferred into a 2 mm
rectangular polyamide cell (LUMiSizer cell type 3), resulting
in a sample height of approximately 22 mm. Each sample was
sealed and placed horizontally in the LUMiSizer, along the
radial axis, with the top of the sample nearest to the centre of
rotation. The base of the LUMiSizer sample was determined
to be at a radial distance of 129.3 mm from the centre of rota-
tion, by analysing light transmission profiles of ultrapure water.
For each suspension investigated, three repeats were made.
Samples were analysed at centrifuge rotation rates of 705 rpm
and 1000 rpm, at a temperature of 25 ◦C (298.15 K). In the
LUMiSizer, a light source pulses near-infrared (865 nm) light
through the side of each sample cell at user-specified times.
The light intensity was normalised prior to each run. A 25 mm
2048 element CCD-line detects the intensity of transmitted
light across the length of the sample, yielding transmission
profiles. A profile was collected every 10 s, until the sample had
fully sedimented. Each transmission profile was automatically
smoothed by the instrument’s software using a 9 point moving
average. The intensity of transmitted light is related to the parti-
cle volume fraction according to the Lambert-Beer law,29 with
high transmission intensity corresponding to a low local vol-
ume fraction. Since the suspensions are nearly monodisperse,
there is a large and rapid change in transmission intensity near
the supernatant-suspension interface in each transmission pro-
file. The interface height for each profile was determined in the
“front tracking” module of the LUMiSizer software (SEPView
6.2). A transmission threshold defines the transmission inten-
sity corresponding to the interface. The interface height was
found to depend weakly on the transmission threshold cho-
sen since the suspension was nearly monodisperse. Therefore,
50% transmission intensity was used to represent the interface
position. The final output from the LUMiSizer is a time series
of interface heights obtained under centrifugal acceleration for
each sample investigated. The experimental conditions for the
sedimentation experiments are summarised in Table I.

TABLE I. Experimental conditions for sedimentation experiments.

Mean particle size (nm) 480
Sample volume (µl) 430
Sample height (mm) 22
Rotation rates (rpm) 705, 1000
Temperature (◦C) 25
Light wavelength (nm) 865
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III. MATHEMATICAL MODELING
A. Sedimentation model

A sedimentation model for monodisperse, colloidal sus-
pensions is proposed, based on the model of Davis and Russel.9

The particle volume fraction, φ at a height x and time t, is
described by the advection-diffusion equation

∂φ

∂t
+
∂

∂x
[
φu(φ)

]
=

∂

∂x

[
D(φ)

∂φ

∂x

]
, (1)

where u(φ) is the hindered settling velocity of a particle in
suspension (positive in the upward direction) and D(φ) is the
diffusion coefficient. The continuous phase is assumed to be
stagnant, except for displacement due to sedimentation. This
allows the application of the zero-flux boundary conditions

φu(φ) − D(φ)
∂φ

∂x
= 0, x ∈ {0, xmax}, t ≥ 0, (2)

where x = 0 at the base of the sample and x = xmax at the menis-
cus. The suspension is assumed to be initially well-dispersed,
so the initial condition is

φ(x) = φ0, x ∈ (0, xmax), t = 0, (3)

where φ0 is constant. The hindered settling velocity of a par-
ticle in suspension differs from its terminal velocity since
surrounding particles obstruct and restrict the backflow of the
surrounding continuous phase. The hindered settling velocity
is given by

u(φ) = uT fh(φ), (4)

where f h is a function describing the hindrance and uT is the
particle terminal velocity. Since sedimentation problems are
in Stokes’ regime, the terminal velocity is given by

uT =
d2(ρd − ρc)g

18µc
, (5)

where d is the dispersed phase diameter, ρd is the dispersed
phase density, and g is the Earth gravity acceleration (a mod-
ification for centrifugal acceleration is described below).
ρc and µc are the density and viscosity of the continuous
phase, respectively. For ultrapure water, ρc = 997.1 kg m�3 and
µc = 8.9 × 10�4 Pa s.27 A commonly used hindrance function
is the Richardson-Zaki relationship,14

fh = (1 − φ)p, (6)

where p is a constant generally determined experimentally.
A significant disadvantage of using Eq. (6) in sedimentation
models for colloidal particles is that it does not reach zero
at the maximum volume fraction and so allows the volume
fraction to become unphysically large. Instead of Eq. (6), this
work uses the closed system version of the Acrivos hindered
settling function,6

fh =
µc(1 − φ0)

µ
. (7)

By using Eq. (7), the mixture viscosity of the suspension, µ
is used in the model, rather than the continuous phase viscos-
ity, µc, thus taking into account hindered settling effects. The
mixture viscosity model can be chosen such that it diverges as
the maximum volume fraction is approached, so the hindered
settling velocity becomes zero there. Further, the use of Eq. (7)

negates the need to specify p in Eq. (6) which is a parameter
that takes many different values in the literature.

Due to interparticle interactions, the maximum volume
fraction of the dispersed phase is not necessarily well described
by random sphere packing theory for colloidal particles. Elec-
trostatic repulsion provides an energy barrier which gives rise
to a non-zero minimum separation distance between particles.
An effective maximum volume fraction, φeff

max is defined based
on the effective diameter of the particles, with the minimum
separation distance taken into account. The Quemada model
with the effective volume fraction19 is used for the mixture
viscosity model in Eq. (7),

µ = µc

(
1 −

φ

φeff
max

)−2

. (8)

The Quemada model has been shown to model the mixture
viscosity of silica suspensions well.30 Equation (8) allows
the hindered settling velocity to become zero at the effective
maximum volume fraction and takes into account interparticle
interactions. This eliminates the hard-sphere assumption.

In a similar manner to advection, diffusion is hindered
by surrounding particles. Therefore, the mixture viscosity
replaces the continuous phase viscosity in the Stokes-Einstein
equation to yield the diffusion coefficient12

D(φ) =
kBT

3πµd
, (9)

where kB is Boltzmann’s constant and T is the absolute tem-
perature. Equation (9) is an approximation of the diffusion
coefficient proposed by Kholodenko and Douglas,31 in the low
volume fraction limit.

B. Determining the effective maximum volume fraction

The effective maximum volume fraction, φeff
max is given

by23

φeff
max = φmax

(
d + s̄

d

)−3

, (10)

where s̄ is the minimum separation distance between the
surfaces of two particles and φmax is the low shear maxi-
mum volume fraction for randomly packed hard-spheres. Here,
φmax = 0.639 is assumed, as determined by Qi and Tanner.32

Note that the sediment bed compresses towards the maximum
volume fraction as increased pressure is applied. Hence, the
maximum volume fraction is unlikely to be fully realized.

The minimum separation distance can be calculated using
the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory.33,34

DLVO theory provides a quantitative framework to determine
the interaction potential of two particles based on attractive
(van der Waals) and repulsive (electrostatic) intermolecular
forces. The gravitational potential is assumed to be negligible
in the calculation of the interaction potential. For suspensions
with a large interaction potential relative to the thermal energy,
random collisions between particles due to Brownian motion
are unlikely to result in aggregation,35 giving rise to a non-
zero separation distance between the particles. In this case, the
minimum separation distance may correspond to the location
of the second minimum in the interaction potential, for the
interacting particles to achieve the minimum energy state. The
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separation distance corresponding to the secondary minimum
is taken to be the minimum separation distance, s̄ in this work.

To identify the minimum separation distance, DLVO the-
ory is used to determine the interaction potential of the parti-
cles, from which the secondary minimum separation distance
can be identified. The total interaction potential, U is given
by30

U(s) = UVDW + UEDL, (11)

where UVDW is the attractive (van der Waals) component
and UEDL is the repulsive (electrostatic) component of the
interaction potential.

The attractive (van der Waals) component of the interac-
tion potential for two spherical particles of diameter d is given
by36,37

UVDW = −
AH

6

[
d2

2s(s + 2d)
+

d2

2(s + d)2
+ log

(
s(s + 2d)

(s + d)2

)]
,

(12)

where AH is the Hamaker constant for the colloidal particle
interacting through the given medium. For the silica-water-
silica system studied, the Hamaker constant is taken to be
AH = 2.5 × 10�20 J. This choice is discussed in Sec. V A.

The repulsive (electrostatic) component of the interaction
potential is given by37,38

UEDL =
32πdkBTNAIγ2

κ2
exp

(
−κs

)
, (13)

where kB is the Boltzmann constant, T is the absolute tempera-
ture, NA is the Avagadro constant, I is the ionic strength of the
electrolyte (mol m�3), γ is the reduced surface potential, and κ
is the inverse Debye length. Equation (13) is constructed on the
basis of Derjaguin’s approximation, which has been shown to
be valid for spherical colloidal particles.39 Derjaguin’s approx-
imation requires s� 0.5d, which is satisfied here since DLVO
theory is only used to identify the minimum separation distance
of colloidal particles. γ is given by38

γ = tanh

(
eζ

4kBT

)
, (14)

where e is the elementary charge. Rather than the surface
potential, ζ is the zeta potential, which is closely related to
the surface potential and easily measurable.30 For monovalent
electrolytes (like KCl), the inverse Debye length is given by40

κ =

√
2NAIe2

ε0εrkBT
, (15)

where ε0 = 8.85 × 10�12 F m�1 is the permittivity of free
space30 and εr is the relative permittivity of the medium. In
the case of ultrapure water at 298.15 K, εr = 78.304.41

Numerically, the location of the secondary minimum is
found by using a linear difference scheme with picometer
resolution to identify the second sign change in the gradi-
ent of the DLVO-computed interaction potential (the first sign
change corresponds to the primary maximum). The secondary
minimum is identified as the node between the differences
exhibiting the sign change.

Instead of DLVO, Genovese19 uses the Debye length
κ�1 to approximate the minimum separation distance, taking

s̄ ≈ 2κ−1. This approximation may lead to an underprediction
of the minimum separation distance, as κ�1 is dependent only
on the electrolyte concentration.

Experimental validation of the numerical value of the
effective maximum volume fraction was attempted. Whilst
it is theoretically possible to determine the effective max-
imum volume fraction directly by experiment, the size of
colloidal particles and the resulting small height of the sed-
iment gives rise to a large experimental error. Therefore, the
DLVO-based method described in this section is the recom-
mended way of determining the effective maximum volume
fraction in sedimentation modeling.

C. Centrifugal force

The sedimentation model can be adapted for centrifu-
gal force conditions. This allows direct model comparisons
to LUMiSizer experiments. To do this, the gravitation acceler-
ation, g in Eq. (5), is replaced by the centrifugal acceleration,
a, to give

uT =
d2(ρd − ρc)a

18µc
, (16)

which is used in Eq. (4), in place of Eq. (5), to define the
hindered settling velocity. The centrifugal acceleration, a, is
given by

a =
(
2πn

)2r, (17)

where n is the number of centrifuge revolutions per second and
r is the radial position in the centrifuge, with r = 0 at the centre
of rotation. Due to the position of the sample in the centrifuge,
r is given by

r = rmax − x, (18)

where rmax is the radial position at the base of the sample.
Equation (18) shows that the centrifugal acceleration varies
with height in the sample. Therefore, by Eq. (16), the terminal
velocity of a given particle decreases with height in the sample.
Due to the LUMiSizer dimensions, the centrifugal acceleration
varies by approximately 19% across the sample cell in the
centrifuge used for the reported experiments.

D. Summary of the model

To summarise the model, the form of Eq. (1) proposed is

∂φ

∂t
+
∂

∂x



φd2(ρd − ρc)Γ(1 − φ0)
18µc

(
1 −

φ

φeff
max

)2

=
∂

∂x



kBT
3πµcd

(
1 −

φ

φeff
max

)2
∂φ

∂x


, (19)

where Γ is g in Earth gravity conditions and (2πn)2 (rmax � x) in
centrifugal force conditions. The effective maximum volume
fraction is given by

φeff
max = φmax

(
d + s̄

d

)−3

, (20)

where s̄ is taken to be the separation distance corresponding
to the secondary minimum in the DLVO-computed interaction
potential between two colloidal particles.
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E. Numerical implementation

The model is implemented in MATLAB42 (version 2016a)
using a finite difference method, motivated by the code of
Beeckmans et al.43 Due to the rapid change in volume fraction
at the supernatant-suspension interface, there is a travelling
front in the solution. A very fine spatial mesh is therefore
required near the front and in the sediment to accurately
capture the solution behaviour and prevent numerical insta-
bilities.44 For regions where the volume fraction is relatively
uniform, a coarser spatial mesh is sufficient. An adaptive spa-
tial mesh is therefore used to follow the time-dependent nature
of the solution, which increases efficiency by reducing the
number of spatial mesh points required.

The NAG Library is a collection of general-purpose sub-
routines, which are callable in MATLAB via the NAG Tool-
box for MATLAB (Mark 25).45 The d03pp subroutine, a
finite difference based solver which integrates a system of
advection-diffusion equations with scope to use an adaptive
spatial mesh, is chosen to solve the initial boundary value
problem. This subroutine reduces Eq. (1) to a coupled sys-
tem of stiff ordinary differential equations using the method
of lines, replacing the spatial derivatives by finite difference
approximations.46 Time integration is then carried out using a
backward differentiation formula,47 with a variable time step,
determined automatically using a user-specified local error tol-
erance.48 This is taken to be 5 × 10�5 based on the maximum
norm.

The subroutine generates a new spatial mesh every ten
time steps, based on the current solution profile, as described
by a monitor function, m(x, t). The routine equally distributes
the integral of the monitor function over the domain.45 The
monitor function must therefore be large in the sediment and
near the front. In this work,

m(x, t) =



K(x, t)0.9 if φ < 1.01φ0,

φ′ otherwise
(21)

is used as the monitor function, where K(x, t) is the smooth
function curvature estimator

K(x, t) =
|φ′′ |(

1 + φ′2
)3/2

, (22)

given and discretised by Sfakianakis,49 where φ′ denotes the
first spatial derivative of φ. This monitor function uses the
first spatial derivative of φ in the sediment (since curvature is
low there) and the curvature everywhere else. The exponent in
Eq. (21) is used to improve numerical stability. A maximum
adjacent cell ratio of 1.1 is set, allowing this monitor function
to be used.

The effect of spatial mesh on the solution was investigated
by comparing solutions computed using various numbers of
spatial mesh points, in both Earth gravity and centrifugal
force conditions. Based on the maximum resolution of the
LUMiSizer, 2400 and 3600 spatial mesh points were deemed
sufficient for simulations in Earth gravity and centrifugal force
conditions, respectively.

The local error tolerance was varied with a fixed spa-
tial mesh to understand its effect on the solution. Varying it
between 1 × 10�3 and 1 × 10�7 changed the solution by less

than 0.01%, suggesting that the choice of 5 × 10�5 does not
affect the solution obtained.

All numerical simulations described are made to be com-
parable with experimental data. The sample height in each
case, xmax, is taken to correspond to experimental data. The
sample height is not completely consistent across samples
due to experimental variation in filling the experimental cells.
Refer to the supplementary material for the MATLAB code
used for the numerical simulations.

IV. EARTH GRAVITY CONVERSION

The experimental results obtained are a time series of
interface heights, measured in centrifugal force conditions.
Each time series needs to be converted to Earth gravity con-
ditions, so that the separation velocity, v(t) in Earth gravity
conditions can be determined, which is often the quantity of
interest. A key challenge of using centrifugation in suspension
stability analysis is to reliably convert data collected under
centrifugal force to Earth gravity conditions.

Several such conversions have been proposed in the liter-
ature. For example, Lerche and Sobisch25 propose a method
based on the initial separation velocity and the relative centrifu-
gal force (RCF) at the meniscus, xmax. The RCF is defined as
the ratio of centrifugal acceleration to the gravitational accel-
eration. A significant disadvantage of their method is that light
transmission profiles near the interface are generally subject
to noise, which makes the initial separation velocity difficult
to determine reliably. Furthermore, Tehrani-Bagha26 demon-
strated that extrapolation from experiments using multiple
RCF values does not accurately recover the separation velocity
at Earth gravity.

A conversion to Earth gravity conditions, based on the
space-averaged RCF experienced by the interface, is proposed
here. Consider an interface height hc achieved at a time tc

under centrifugal force. The space-averaged RCF experienced
by the interface until the time tc is the mean of the RCF at the
meniscus and the RCF at the radial position corresponding to
the interface, and so it is given by

τ =
(2πn)2

2g
{(rmax − hc) + (rmax − xmax)} , (23)

for a given n (number of centrifuge revolutions per second),
with one term arising from the meniscus and the other from the
interface. Since a depends linearly on r, an interface height hc

(achieved at time tc in centrifugal force conditions) is achieved
at a time

te = τtc, (24)

in Earth gravity conditions. Both the interface position and sus-
pension concentration affect the time, tc which ensures these
effects are taken into account by the proposed conversion. For
each interface height obtained under centrifugal force, the cor-
responding time can be converted to an equivalent time in
Earth gravity conditions using Eq. (24). Performing this con-
version for each available data point, a times series of interface
heights in Earth gravity conditions can be recovered from data
collected under centrifugal force. As explained in Sec. I, the
separation velocity in Earth gravity conditions, v(t) is expected
to be constant. Therefore, the constant Earth gravity separation

ftp://ftp.aip.org/epaps/phys_fluids/E-PHFLE6-30-006892
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velocity can be determined by fitting a straight line to a graph
of interface height against time (in Earth gravity conditions)
using linear regression, thereby recovering the Earth gravity
result which is often desired.

Note that the proposed conversion can be used to generate
Earth gravity settling velocities from data that can be directly
extracted from an analytical centrifuge. The validity of this
conversion process will be assessed in Sec. V D.

V. RESULTS AND DISCUSSION
A. Effective maximum volume fraction

Figure 2 shows the DLVO-computed interaction potential
for silica dispersed in 0.01M KCl, consistent with the exper-
imental conditions. The location of the secondary minimum
is marked, corresponding to a separation distance of 18.7 nm.
This separation distance is taken as the minimum separation
distance for the evaluation of the effective maximum volume
fraction. The minimum separation distance is well-determined
by the location of the secondary minimum in the interaction
potential due to energy considerations since closer contact
would increase the energy of the interaction. Nevertheless,
Fig. 2 shows that this secondary minimum in the interaction
potential is fairly broad and shallow, so some variation in the
minimum separation distance may be expected. However, it is
likely that any variation will average out over the number of
particles and therefore that the minimum separation distance is
well estimated by the separation distance corresponding to the
secondary minimum in the interaction potential, as proposed.

Using the calculated minimum separation distance for the
0.01M KCl suspension, the effective maximum volume frac-
tion is determined to be φeff

max = 0.570 using Eq. (20). The
effective maximum volume fraction is approximately 10% less
than the classical maximum volume fraction in this case. This
variation leads to a significant difference in predicted sepa-
ration rates using the effective maximum volume fraction as
opposed to the theoretical one, as demonstrated in Sec. V E.

As mentioned in Sec. III B, the value of the Hamaker con-
stant for the silica-water-silica system used was 2.5 × 10�20 J.
The Hamaker constant for a given system is notoriously dif-
ficult to obtain experimentally.50 However, many different
values for the Hamaker constant of silica-water-silica systems

FIG. 2. DLVO-computed interaction potential normalised by thermal energy
for silica in 0.01M and 0.1M KCl suspensions, using a Hamaker constant of
2.5 × 10�20 J for the silica-water-silica system.

are indicated in the literature, for example, 0.7 × 10�20 J and
3.8×10�20 J.30,51 As a result, the Hamaker constant used in this
work was chosen instead on the basis of a qualitative analysis of
the experimental silica suspensions. When silica was dispersed
in 0.1M KCl, aggregation was observed within several minutes
of preparing the suspension. With a primary maximum in the
interaction potential of 10kBT, rapid aggregation is expected,
but with a primary maximum of 50kBT, relatively slow aggre-
gation is expected instead. A primary maximum of 40kBT was
therefore chosen to appropriately describe the experimentally
observed aggregation behaviour of the 0.1M KCl suspension.
To achieve this condition, the value of the Hamaker constant
was calculated as 2.5 × 10�20 J. Figure 2 shows the cor-
responding interaction potential for silica dispersed in both
0.01M KCl and 0.1M KCl, using the calculated value of the
Hamaker constant. The 0.1M KCl suspension has the cho-
sen primary maximum of 40kBT, whereas the primary maxi-
mum of the 0.01M KCl suspension is much larger, indicating
almost no aggregation during the experimental period. The
choice for the value of the Hamaker constant of 2.5 × 10�20 J
is therefore physically realistic. Note also that if the actual
value of the Hamaker constant were less than what is used
here, then the minimum separation distance would increase,
thereby increasing the difference between the effective and
standard maximum volume fractions, adding further support
to the proposal of using an effective maximum volume fraction
in sedimentation models.

B. Volume fraction profile

The sedimentation of a suspension with φ0 = 0.09 was sim-
ulated in Earth gravity conditions. A volume fraction profile
is shown in Fig. 3 after a time of 30 h, which is approximately
half the time required for complete sedimentation. The vol-
ume fraction is large in the sediment (near x/xmax = 0), where
it approaches the effective maximum volume fraction. In the
supernatant, the volume fraction is zero, as the particles have
sedimented towards the base of the sample. In the suspension
component, the volume fraction is constant. A constant vol-
ume fraction in the suspension component is expected since
the hindrance function remains constant there, so the settling
velocity remains constant. This behaviour is also noted in the
literature.6,12

In Fig. 3, the data are plotted as points, located at the
spatial positions where the solution is calculated for the given
time step. The spatial mesh points cluster in the sediment and
around the travelling front (the supernatant-suspension inter-
face). Fewer spatial mesh points are used in the regions where
the volume fraction is relatively uniform, enabling the sim-
ulation to be numerically stable whilst improving numerical
efficiency.

The travelling front represents the supernatant-suspension
interface, with the interface position marked in Fig. 3. The
volume fraction which defines the interface is half the ini-
tial volume fraction, which is consistent with the transmission
threshold used for the experimental data. The volume fraction
profile around the interface takes the form of a narrow S-shape
curve, rather than the interface being defined by a single dis-
crete value, due to the diffusive effect of Brownian motion
for colloidal particles. In contrast, there is a sharp change
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FIG. 3. A model volume fraction profile for a suspension
with φ0 = 0.09 in Earth gravity conditions, after 30 h. The
data are plotted at the spatial points where the solution is
calculated, thus showing the spatial mesh.

in volume fraction at the top of the sediment. The sediment
height grows in time, and the volume fraction of the sediment
bed increases towards the effective maximum volume fraction.
The volume fraction in the simulation is bounded above by the
effective maximum volume fraction according to Eq. (8), with
further compression negligible due to the height of the primary
maximum in the interparticle interaction potential (Fig. 2).

C. Implications of centrifugal force

Figure 4 shows the model volume fraction profiles at
various times for a suspension simulated with φ0 = 0.03.
Figure 4(a) displays the results under Earth gravity conditions.
The volume fraction of the suspension component remains
both constant and uniform, maintaining the initial volume frac-
tion, φ = φ0. This is because the suspension is monodisperse,
so the hindered settling velocity for all particles is constant at
a given volume fraction according to Eq. (4).

Figure 4(b) displays the corresponding volume fraction
profiles subject to a centrifugal force consistent with a rota-
tion rate of 705 rpm in the LUMiSizer, with a spatially varying
range of centrifugal acceleration from 59.6g at the meniscus
to 71.8g at the base (assuming a 22 mm sample height). The
percentage difference in the centrifugal acceleration between
the base and meniscus is 18.6%. In contrast to the Earth
gravity simulation, the volume fraction of the suspension com-
ponent decreases with time. However, the volume fraction
remains uniform across the suspension component. The vol-
ume fraction decreases from φ = 0.03 initially to φ = 0.026 at
t = 39 min, a reduction of approximately 13%. Indeed, the cen-
trifugal acceleration decreases with height in the sample, so the
terminal velocity of a given particle is higher near the base of
the sample. This effect results in acceleration of the separation
velocity in time, which can be seen from Fig. 4(b) by the spa-
tial distance between each profile front at 0.5φ0 increasing in
time, notwithstanding the constant time period between each

profile. The double-headed arrows in Fig. 4 illustrate the nor-
malised distances between the profiles, with the normalised
distance between subsequent profiles increasing in time under
centrifugal acceleration [Fig. 4(b)], but remaining constant in
Earth gravity conditions [Fig. 4(a)].

Due to the radially varying acceleration in the experimen-
tal set-up, particles in the suspension closer to the sediment
bed have a higher sedimentation velocity than those above. As
a result, particles are evacuated into the sediment bed faster
than they are replaced from above, which results in a decreas-
ing volume fraction across the suspension. As the height of the
sediment bed increases in time, the centrifugal acceleration at
the top of the bed decreases. Therefore, particles are evacu-
ated into the bed less efficiently as time goes on, so the rate of
decrease of the volume fraction of the suspension decreases in
time.

However, the volume fraction of the suspension remains
uniform. This is because the particles entering the sediment
bed make way for those settling behind them. Locally this
will result in a reduction in volume fraction and a subsequent
decrease in hindrance. From the formulation of the mixture
viscosity in Eq. (7), the hindrance experienced by the parti-
cles immediately above is reduced, which, by Eq. (4), leads
to an increase in the hindered settling velocity of the par-
ticles. Therefore, throughout the suspension component, the
increase in acceleration towards the sediment bed is balanced
by the reduction in the hindrance, resulting in a uniform vol-
ume fraction in the suspension component, despite its reducing
value.

Note that the profile of the travelling front is more abrupt
in the centrifugal force simulation. This is because there is less
time for diffusion to act compared to sedimentation at Earth
gravity. The Earth gravity conversions in the literature (see
Sec. IV) do not account for this nor do they directly address
the variation in the centrifugal acceleration across the sample,

FIG. 4. Model volume fraction profiles for a suspension
with φ0 = 0.03, focusing on the suspension and super-
natant components. (a) In Earth gravity conditions. (b)
Under centrifugal force, with a rotation rate of 705 rpm,
matching experimental conditions. Normalised distances
between profiles are depicted by double-headed arrows.
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which may introduce a loss of accuracy into the derived Earth
gravity separation velocities. Centrifugation has altered the
sedimentation behaviour since the centrifugal acceleration
varies across the suspension. As a result, linear conversion
to Earth gravity using a single RCF value may be an unrealis-
tic expectation. The conversion proposed in Sec. IV does not
assume linearity and is therefore expected to be more reliable.

D. Earth gravity conversion

In Fig. 5, experimental and model normalised interface
height (h/xmax) profiles are compared for two suspensions of
initial volume fraction φ0 = 0.03 and φ0 = 0.05. For each sus-
pension, profiles under both Earth gravity and centrifugal force
(705 rpm) are shown. The experimental data were collected
under centrifugal force and converted to Earth gravity condi-
tions using the method proposed in Sec. IV. The model data
were obtained in the appropriate condition, using the appropri-
ate acceleration. Notice that under centrifugal force conditions,
complete sedimentation is achieved in less than 1 h, whereas
approximately 50 h is required in Earth gravity conditions.

Figures 5(a) and 5(b) show the profiles in centrifugal force
conditions, for the φ0 = 0.03 and φ0 = 0.05 suspension, respec-
tively. For both suspensions, the model and experimental pro-
files agree very well, suggesting that the model is capturing
the behaviour of the experimental system correctly. Indeed,
the percentage difference in the time required for complete
sedimentation between the model and experiment is 3.6% for
the φ0 = 0.03 suspension, and 1.0% for the φ0 = 0.05 sus-
pension, with an overprediction in the separation rate by the
model in both cases. This small overprediction may be due
to uncertainty in the location of the base of the cell in the

experimental centrifuge (prescribed in the model) or the exper-
imental silica not being truly monodisperse. The effect of
polydispersity would be more apparent in lower volume frac-
tions due to the lower number of particles, which may explain
why the overprediction is lower for the φ0 = 0.05 suspension
than the φ0 = 0.03 suspension. For both suspensions, the pro-
files are curved due to the increase in centrifugal acceleration
as the interface height decreases. The model correctly captures
the curve in the experimental data, providing confidence in the
centrifugal force extension to the model.

Having demonstrated the model’s ability to capture the
unconverted experimental data in centrifugal force condi-
tions, the proposed Earth gravity conversion can be analysed.
Figures 5(c) and 5(d) show the experimental data converted to
Earth gravity conditions using the proposed conversion. The
model results are from the corresponding simulations in Earth
gravity conditions, so no conversion is required. The uncon-
verted model follows the converted experimental data very
closely, and with similar small overpredictions as seen in the
unconverted centrifugal force graphs. The percentage differ-
ence in the time required for complete sedimentation between
the model and experiment is now 2.3% for the φ0 = 0.03 sus-
pension and less than 0.1% for the φ0 = 0.05 suspension.
Further, the curve in the experimental data profile has been
almost completely removed, yielding a nominally constant
separation velocity in Earth gravity conditions, as would be
expected for low volume fraction, monodisperse suspensions.
These observations suggest that the proposed Earth gravity
conversion is able to convert the experimental data accurately.
Therefore, the converted experimental data can be confidently
used to further assess the accuracy of the model’s predictions.

FIG. 5. Interface height profiles for two
suspensions, of initial volume frac-
tion φ0 = 0.03 and φ0 = 0.05. (a)
and (b) display centrifugal force con-
ditions (unconverted experimental data;
centrifugal force model). (c) and (d)
display Earth gravity conditions (con-
verted experimental data; Earth gravity
model).
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E. Earth gravity separation rates

In Sec. V D, it was shown that the proposed Earth grav-
ity conversion can correctly recover Earth gravity settling data
from experiments conducted in centrifugal force conditions.
From the linear interface height profiles of the converted exper-
imental data, separation velocities can be extracted to compare
those predicted by the model in Earth gravity conditions.

Figure 6 shows separation velocities for suspensions with
an initial volume fraction from φ0 = 0.01 to φ0 = 0.09. For
each volume fraction studied experimentally, data from differ-
ent experiments are shown explicitly, with three data points
plotted, except φ0 = 0.04, where two are plotted (due to exper-
imental irregularities). The results of the proposed model (see
Sec. III D) are shown (φeff

max model). In addition, the results
of a model with the hard-sphere assumption reintroduced, by
replacing φeff

max with φmax in Eq. (8), are shown (φmax model)
for comparison. The φeff

max model follows the experimental data
very closely, showing that the individual settling velocities are
well predicted by the proposed model. Further, this observation
indicates that estimation of hindered settling effects by alter-
ing the fluid viscosity in line with a mixture model [Eq. (8)]
closely approximates the fluid dynamics in the suspension,
resulting in an appropriate reduction in the separation velocity
on increasing the initial volume fraction. Moreover, the φmax

model deviates from the experimental data for the larger vol-
ume fraction suspensions studied, especially compared to the
φeff

max model. Initial volume fractions higher than φ0 = 0.09
were not investigated due to practical limitations on the ini-
tial volume fraction in the experimental suspensions. Larger
deviations between the two models would be expected for
higher volume fractions, where the proportion of the suspen-
sion accounted for by the effective maximum volume fraction
increases. The improved fit to the experimental data of the
proposed model compared to the equivalent hard-sphere model
suggests that the elimination of the hard-sphere assumption has
had a positive effect on the model. Hence, interparticle inter-
actions are shown to have a significant effect on sedimentation
behaviour of suspensions of colloidal particles.

FIG. 6. Earth gravity separation velocities for initial volume fractions from
φ0 = 0.01 to φ0 = 0.09. The φeff

max model is the proposed model; the φmax
model is the hard-sphere modification to the model. Experimental data are
converted to Earth gravity conditions.

As mentioned in Sec. II A, the silica nanoparticles used
in the experiments were labeled 500 nm. Dynamic light scat-
tering experiments were used to measure the hydrodynamic
particle diameter, with a mean value of 480 nm (see Sec. II A).
An approximate variation of ±10 nm in the mean value was
observed across different measurements. To understand the
effect of varying the particle size according to this tolerance on
the sedimentation results, model simulations assuming three
different particle sizes (470 nm, 480 nm and 490 nm) are shown
in Fig. 7. The variation in particle size has some effect on
the separation velocity for each initial volume fraction, due
to Eq. (5). However, the variation in particle size only has
a minimal effect on the reduction of separation velocity on
increasing the initial volume fraction, which is evidenced by
the model curves in Fig. 7 being almost parallel. This minimal
effect is due to the ratio of the minimum separation distance
to the particle size changing only slightly with a 20 nm vari-
ation in particle size. The separation velocity is sensitive to
the particle size but does not change the conclusion regarding
the effectiveness of the hindered settling function proposed,
within the measured tolerance. From Fig. 6, it is determined
that the particle size of 480 nm is the best fit to the experimental
data, corroborating the results of the dynamic light scattering
experiments and justifying the use of this particle size in the
model.

Another factor which could affect a given experimen-
tal suspension’s separation velocity, when converted to Earth
gravity conditions, is the centrifuge rotation rate. Figure 8
shows experimental separation velocities collected using two
different rotation rates (705 rpm and 1000 rpm) and converted
to Earth gravity conditions. For each volume fraction studied
experimentally, three data points are plotted for each rotation
rate, except φ0 = 0.04 at 705 rpm and φ0 = 0.03 at 1000 rpm,
where two are plotted (due to experimental irregularities). For
all volume fractions, the experimental separation velocities
are similar for both rotation rates, suggesting that the choice
of rotation rate does not significantly alter the converted Earth
gravity separation velocity, which provides further support to
the proposed Earth gravity conversion method. In practice, the

FIG. 7. Earth gravity separation velocities for different initial volume frac-
tions. All three curves are model data, with a different particle size assumed
in each case.
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FIG. 8. Earth gravity separation velocities for different initial volume frac-
tions. Experimental data are converted from 705 rpm to 1000 rpm. A curve is
fitted to the 705 rpm experimental data using the Richardson-Zaki relationship
and is compared to the model results in Earth gravity conditions.

rotation rate used should be sufficient to provide a centrifugal
acceleration which dominates the Earth gravity acceleration,
minimising slumping in the sample when in the centrifuge.

Combining Eq. (4) with Eq. (6) and taking the logarithm
yields the equation for a straight line in the variables log(u)
and log(1 � φ),

log(u) = log(uT ) + p log(1 − φ). (25)

This line can be fitted to experimental data using linear regres-
sion to obtain the parameters uT and p. For the 705 rpm
experimental data, uT = 0.4703 mm h�1 and p = 4.70. Note
that the value of p is close to the common literature value of
4.65 which is often used for experiments in laminar flow con-
ditions.12,14 The ability to recover this value provides further
confidence in the Earth gravity conversion and experimental
procedure.

Using the fitted value of uT , the particle diameter, d can
be extracted from the sedimentation data using Eq. (5), as a
verification to the dynamic light scattering experiments for
particle size. Only uT and well-characterised parameters
µc, ρd , ρc, and g are required. By substitution in Eq. (5), the
particle size is determined to be 481 nm, which is remarkably
close to the dynamic light scattering experiment value. Again,
the ability to recover this value provides further confidence
in the Earth gravity conversion and the choice of particle size
used in the model (480 nm).

Further to the experiment-fitted line, the model curve in
Earth gravity conditions is plotted in Fig. 8 for comparison.
This model line lies almost entirely on top of the experiment-
fitted line, which serves to provide further verification to the
proposed model, and in particular the use of an effective
maximum volume fraction to take into account interparticle
interactions.

VI. CONCLUSIONS

A one-dimensional sedimentation model for monodis-
perse, colloidal suspensions is proposed, which uses a sus-
pension viscosity model to take into account the effect

of hindered settling. The model avoids the hard-sphere
assumption by using an effective maximum volume frac-
tion, which is computed using DLVO theory. The proposed
model is shown to fit the experimental data well, indicat-
ing that interparticle interactions are an important aspect in
determining the sedimentation velocities of colloidal sus-
pensions. The inclusion of interparticle interactions is a
significant addition to sedimentation models in the litera-
ture and will be especially applicable at high volume frac-
tions where the additional proportion of the suspension
accounted for by the effective maximum volume fraction is
larger.

The use of an adaptive spatial mesh in a finite difference
solver has been shown to be an efficient way to numerically
implement the sedimentation model, allowing the simulation
to be numerically stable, whilst using a relatively low number
of spatial mesh points.

Using the proposed model’s extension to centrifugal force
conditions, the effects of centrifugal acceleration on a sedi-
menting suspension were investigated. It was found that the
volume fraction of the suspension component reduced in
time, whereas it remained constant at Earth gravity. Never-
theless, the volume fraction of the suspension remains uni-
form for all times, an effect which can be explained due to
hindrance. The separation velocity was shown to increase
in time under centrifugal force, due to the decrease in cen-
trifugal acceleration with height in a sample in a centrifuge.
On the basis of these observations, a method to convert cen-
trifugal acceleration sedimentation data to Earth gravity con-
ditions, which uses the space-averaged centrifugal accelera-
tion experienced by the supernatant-suspension interface to
account for the variation in centrifugal acceleration across the
sample, was proposed. The conversion was shown to accu-
rately recover Earth gravity sedimentation data and could be
extremely useful in consumer product stability testing since
experiments that usually take months can be accurately car-
ried out in hours, with confidence in the derived Earth gravity
results.

Further experimental data, particularly in Earth gravity
conditions, could be used to provide additional validation for
the conversion method. It would be particularly insightful to
investigate larger volume fractions using a suitable experimen-
tal suspension, where the effect of using an effective maximum
volume fraction is likely to be more pronounced. The proposed
model could be extended to account for polydispersity in par-
ticle size following Abeynaike et al.,12 which would increase
the number of physical systems it is applicable to.

SUPPLEMENTARY MATERIAL

See supplementary material for the MATLAB code
(implementing the sedimentation model) described in
Sec. III E.
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