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Abstract

Grillages are often used to form bridge decks and other constructions. However, following a period of intensive research

activity in the 1970s, comparatively little attention has been paid to optimizing the layout of grillages in recent years. In

this contribution a new numerical procedure is proposed which takes advantage of the adaptive solution scheme previously

developed for truss layout optimization problems, enabling very large scale problems to be solved. A key benefit of the

proposed numerical procedure is that it is completely general, and can therefore be applied to problems with arbitrary

loading and boundary conditions. Also, unlike some previously proposed procedures, the sizes of individual beams can

readily be discerned. To demonstrate its efficacy the numerical procedure is applied to a range of grillage layout design

problems, including load dependent problems which could not be solved using traditional methods. It is shown that important

phenomena such as “beam-weaves” can be faithfully captured and new high-precision numerical benchmark solutions are

provided.

Keywords Optimum grillage · Layout optimization · Ground structure

1 Introduction

A grillage is a planar network of intersecting beams, often

used to form bridge decks and other constructions. The

first significant research on beam and frame optimization

dates back to the 1950s and 1960s (Heyman 1959; Morley

1966), and work on grillages gathered pace in the early

1970s with the publication of papers by Rozvany (1972a,

b) and Lowe and Melchers (1972, 1973). These authors
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viewed the plastic design of grillages in a continuous

setting, considering a notional slab comprising an infinite

number of fibre-like beams. An optimum fibrous slab can

be considered as analogue to an in-plane Michell structure,

which is well known in the structural optimization research

community; further development of the theory of Michell

structures (Michell 1904) has been described by workers

such as Chan (1967), Hemp (1973) and Lewinski et al.

(1994a, b). Also, a numerical means of identifying Michell-

type structures using the “ground structure” approach was

proposed by Dorn et al. (1964) and further developed by

workers such as Gilbert and Tyas (2003), Sokol (2014), and

Zegard and Paulino (2014).

Any structural design optimization problem can be posed

in either equilibrium (primal) or kinematic (dual) form,

where for a grillage the problem variables are usually

moments and rotations in the equilibrium and kinematic

forms respectively. However, in the paper by Rozvany

(1972a) neither the equlibrium nor kinematic problem

formulations are solved directly; instead a displacement-

based, fully analytical method of finding the solution

of the kinematic problem is proposed which essentially

stems from the stress-strain optimality relation linking the

solutions of the equilibrium and kinematic forms. The

associated optimization problem is also confined to being
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applied to fully clamped slabs subject to an arbitrary, though

always downward, loading. Significantly, for this class

of problem the optimum layout is load-independent. This

remarkable feature, combined with Rozvany’s kinematic

method, provided a means of obtaining universal exact

optimum grillage layouts for problems involving downward

loads for both single and multiple load cases. It should

however be noted that this does not furnish the optimal

distribution of beam widths. For this one obviously needs to

know the magnitudes of the particular loads involved, and

to use the governing equilibrium equation to determine the

corresponding optimal bending moment field and thus the

beam widths. However, the papers by Rozvany (1972a) and

by Lowe and Melchers (1972) do not describe systematic

means of recovering the beam width distribution.

In subsequent decades Rozvany’s analytical kinematic

method was applied to slabs with a range of other

boundary conditions, including simply supported edges

and combinations of free and simply supported edges,

and also simply supported and clamped edges (Rozvany

et al. 1973; Rozvany and Hill 1976; Prager and Rozvany

1977; Rozvany and Liebermann 1994). For each of the

aforementioned cases the method proved capable only of

solving problems involving exclusively downward loading,

as it explicitly relies on the fact that the optimum layout

is load-independent. The method was then implemented by

Hill and Rozvany (1985) in a computer program which

allowed automatic generation of analytical optimum layouts

for arbitrary polygonal slabs with partially clamped and

simply supported boundaries. The authors presented exact

optimum layouts for an impressive range of complex

polygonal domain shapes.

It should be noted that although Rozvany’s method is

capable of treating interior clamped supports, it cannot

account for interior simple supports. This is because uplift

may occur if such supports are present, which in turn

means that there is no longer a universal kinematic solution,

common for all types of downward load. This is also the

case if mixed downward / upward loadings are present, or if

point moment loadings are present. Less trivially, this also

applies to slabs with partially clamped and free edges.

The load-sensitivity of many real-world problems

encouraged researchers to seek general numerical methods.

In the paper by Sigmund et al. (1993) the ground structure

method was, apparently for the first time, used to obtain

solutions to the grillage compliance minimization problem.

(A “ground structure” comprises a network of structural

members interconnecting nodes laid out on a grid from

which the subset of members defining the optimum struc-

ture is sought, after Dorn et al. 1964.) By using the DCOC

method in combination with linearly tapering beam finite

elements the authors found a number of new grillage lay-

outs, showing solutions for problems involving clamped

and free edges; later the method was applied to problems

involving mixed downward and upward loadings (Rozvany

1997). Low resolution ground structures were used, in part

because of the available computing capabilities of the time.

However because the method does not take advantage of

modern adaptive solution schemes (e.g. Gilbert and Tyas

2003), the scale of problems that can be tackled even now

appears to be limited. More recently Zhou (2009) proposed

a method which involved recovering principal moment tra-

jectories, but this is likely to be rather cumbersome in

practice.

In summary, although the analytical approach initiated

by Rozvany and co-workers had reasonably broad applica-

bility, and allowed new insights to be drawn, it left a wide

range of grillage optimization problems unsolvable, due to

their inherent load sensitivity. Moreover, even for grillage

problems which could be solved, the optimum beam width

distribution was not identified. In the present paper the

authors propose that a ground structure approach is adopted,

and that techniques now well established in the field of truss

layout optimization (e.g. see Gilbert and Tyas 2003; Sokol

2014) or limit analysis via discontinuity layout optimization

(see Smith and Gilbert 2007; Gilbert et al. 2014) are applied.

Here a plastic design formulation is used by posing two

mutually dual linear programming forms: equilibrium and

kinematic. The goal is to minimize the volume of material

for specified applied loading. This leads to a simple linear

formulation which can be used in conjunction with an adap-

tive solution scheme to solve problems involving ground

structures consisting of many million beams, thus generat-

ing optimum layouts closely approximating the analytical

solutions found by Rozvany et al., though with a far greater

range of applicability.

2 Formulation

2.1 Equilibrium formulation

Consider a ground structure (Dorn et al. 1964) consisting of

a design domain discretized using n nodes and b beams, as

shown on Fig. 1. For beam i, assume its cross sectional area

varies linearly from ai1 to ai2. The total volume V of the

structure can be written as:

V = lTa, (1)

where l = [
l1

2
,
l1

2
,
l2

2
,
l2

2
, ...,

lb

2
,
lb

2
]T and a =

[a11, a12, a21, a22, ..., ab1, ab2]T are, respectively, vectors of

beam lengths and areas.

For each node, moment equilibrium needs to be enforced

in the x and y directions and force equilibrium in the z

direction. Denoting mi1 and mi2 as the moments at the
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Fig. 1 Ground structure for a design domain, in this case a simple

square domain discretized using n = 9 nodes and b = 36

interconnecting beams (including overlaps)

two ends of beam i, the local equilibrium matrix can be

expressed as:

Bi =

⎡

⎢

⎢

⎢

⎢

⎢
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− sin θi 0

cos θi 0
1

li
−

1

li
0 − sin θi

0 cos θi

−
1

li

1

li

⎤
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⎥

⎥

⎥

⎥

⎥

⎦

, (2)

where θi is the angle of beam i to the x+ axis, and li is its

length.

Also, assuming that the beam cross-sections are of

uniform depth, let m+
p and m−

p denote the limiting moments

per unit area. The yield condition of beam i can thus be

written as:

−m−
p ai ≤ mi1, mi2 ≤ m+

p ai . (3)

The grillage layout optimization problem can therefore

be written as:

min
a,q

V = lTa (4a)

s.t. Bq = f (4b)

−m−
p a ≤ q ≤ m+

p a (4c)

a ≥ 0, (4d)

where q = [m11, m12, m21, m22, ..., mb1, mb2]T is a

vector containing the moments at the two ends of each

beam. B is the global equilibrium matrix, assembled

from the local matrices Bi given in (2) and f =
[mx

1, m
y

1, f z
1 , mx

2, m
y

2, f z
2 , ..., mx

n, m
y
n, f

z
n ]T is the external

loading applied at each node. Problem (4) is a linear

programming (LP) problem which can be solved using

well-developed algorithms.

2.2 Adaptive solution scheme

When a fully-connected ground structure is used the number

of beams b grows rapidly with the number of nodes n,

limiting the size of problem that can be solved (since in this

case b = n(n − 1)/2). This issue was addressed for truss

layout optimization problems by Gilbert and Tyas (2003)

who proposed an adaptive solution scheme, later further

developed by Sokol (2014). This scheme employs an initial

sparsely connected ground structure and uses constraints

from the dual problem to check whether the solution could

potentially be improved by adding additional members, as

part of an iterative process. As problem formulation (4) is

very similar to the truss formulation used by e.g. Gilbert and

Tyas (2003), the same basic technique can be applied in this

case, where the dual formulation of (4) involves maximizing

virtual work:

max W = fTu, (5)

where, W is the virtual work and u collects the virtual

rotations in the x and y directions and out-of-plane displace-

ment in the z direction. Also the following constraint must

be satisfied:

−
l

m−
p

≤ BTu ≤
l

m+
p

, (6)

which imposes limits on the maximum and minimum virtual

rotation that can occur in each beam. Note that u is obtained

automatically after solving (4), and (6) is only guaranteed to

be satisfied in beams that are present in (4). This means that

potential beams, not currently represented in the problem,

may violate (6); in this case the beams most in violation

should be added to problem (4) to prevent this violation in

the next iteration. The process repeats until no violation is

found in (6); for further details of the algorithm readers are

referred to Gilbert and Tyas (2003) and Sokol (2014).

2.3 Commentary

The grillages considered herein are assumed to be rigid-

jointed, but with torsional resistance neglected. This

assumption, also made by Sigmund et al. (1993), is justified

by the fact that for most cross-sections used in practice

the torsional resistance is low compared with the bending

resistance. This is particularly true for open cross-sections,

such as I-beams. In the latter case by varying only the flange

width the linearity of the formulation is preserved.
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Now consider beam i such that mi1 · mi2 < 0, i.e. the

bending moment changes sign across the length of the beam.

Notice that restricting the cross sectional area function to

vary linearly from ai1 = |mi1| /mp to ai2 = |mi2| /mp

will not lead to an optimal beam being generated in this

case, since each intermediate point along the length of

the beam is overdesigned (e.g. consider the intermediate

point where the bending moment vanishes). This can

potentially be addressed in two ways: (i) via use of a non-

linear relation for the grillage volume (1) (see Bolbotowski

2018); (ii) ensuring that a large number of nodes and

interconnecting beams are employed in the problem, such

that any inaccuracy is small. A drawback with (i) is that

it requires the use of computationally expensive non-linear

optimizers and thus (ii) is adopted here. However, note

that the single load case plastic design problem considered

here is only equivalent to the corresponding compliance

minimization problem when (i) is adopted; the same holds

for the grillage-like continuum addressed by Rozvany et al.

The above argument suggests that, when m+
p = m−

p =
mp, the volume V in (4a) approximates to the scaled (by

mp) integral of the absolute value of the bending moment

diagram taken over the grillage. Thus when a high resolution

ground structure is adopted the equilibrium form (4) can

be viewed as a discrete version of the continuous problem

addressed in Rozvany (1972a), Save and Prager (1985) and

others.

In the field of truss optimization it is well-established

that when a single load case is involved there must always

exist a statically determinate optimum truss solution; see

for example Achtziger (1997). The simplest proof of this

statement revolves around existence of a basic solution to

the underlying LP problem. As this also applies to the

grillage optimization problem (4), it follows that there must

always exist a statically determinate optimum grillage.

Finally, although thus far attention has focussed on single

load case problems, it is well known that the plastic truss

layout optimization can be extended to treat multiple load

case problems (e.g. see Hemp 1973), and, though beyond

the scope of the present contribution, it is worth pointing out

that the grillage layout optimization formulation described

herein can be similarly extended.

3 Numerical examples

The proposed numerical method was programmed indepen-

dently in both Mathematica 11.1.0.0 and Matlab 2015a,

respectively using the default Mathematica solver and

Mosek 7 to obtain solutions to the LP problems involved.

In all cases tried the results obtained from the two programs

were identical for all quoted significant figures, though for

the larger problems the Matlab / Mosek combination was

favoured due to lower associated run times. All quoted CPU

times are single core values obtained using a workstation

equipped with Intel Xeon E5-2680v2 processors running

64-bit CENTOS Linux.

The efficacy of the method is demonstrated through

application to a range of numerical example problems. For

sake of simplicity beam moment capacities were in all cases

taken to be equal for sagging and hogging, i.e. m+
p =

m−
p = mp, and nodes were evenly distributed over each

problem domain, with pressure loads approximated using

point loads applied at these nodes. In this case the mag-

nitude of each point load was calculated by taking into

account the area of the surrounding domain, taking the load

applied at an intermediate node along an edge to be half

that applied at an interior node, and the load applied at a

corner node as one quarter. For example, considering the

domain shown in Fig. 1, and assuming a uniform pressure

load of total magnitude pL2 is applied, the loads applied

to nodes A, B and I would be pL2/16, pL2/8 and pL2/4

respectively. Note that because of the presence of supports

the grillage designed would in this case only need to carry

a load of pL2/4, leading to an underestimate in the vol-

ume of material required. To address this load discretization

error, and also the nodal discretization error that limits the

range of layouts that can be identified, and hence tends to

overestimate the required volume of material, most prob-

lems described were solved using a sequence of increasing

nodal divisions, enabling approximations of the exact val-

ues to be obtained via extrapolation (see Appendix A for

details); these latter approximations are quoted in the main

text, whilst tabulated results are presented in Tables 1–3

of Appendix A. However, in the interests of visual clarity

the graphical results presented correspond to problems with

a moderate number of nodal divisions. Beams are drawn in

blue and red to indicate sagging and hogging respectively in

the graphical solutions, with line widths proportional to beam

cross-sectional areas. In the interests of visual clarity, beams

with very small cross-sectional areas have been filtered out.

Symbols used in the paper are illustrated in Fig. 2. The

symbols used by e.g. Rozvany (1972a) for region type are

used herein to describe the analytical optimum layouts; see

for example Fig. 3a. Specifically, a design domain can be

divided into regions where each region is labelled to indicate

the optimum directions of beams of possibly non-zero cross

section, whether sagging (“+” symbol) or hogging (“−”

symbol) moments are involved. The circle symbols denote

so called “indeterminate regions”, where the optimum beam

direction is arbitrary.

Due to the presence of indeterminate regions it was

found that the numerical layouts obtained often became

complex in form. This is because the interior point method

used to solve the underlying LP problem (4) will normally

identify a solution that combines all possible designs in
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Fig. 2 Symbols used in the

paper

such regions, e.g. see Fig. 4b. To address this, the length

vector l can be modified by adding a constant joint cost /

length (j = ±10−6 unit length), i.e. l̃i = li + j . Joint

costs were first introduced by Parkes (1978) as a simple means

of rationalizing optimum trusses. Here a very small joint cost is

used to ensure the numerical layout is pushed towards a basic

LP solution to increase visual clarity. Furthermore, numerical

tests showed that the clearest visual results could be obtained

when j is taken as a small positive value for hogging

beams and a small negative value for sagging beams.

Notwithstanding this, all optimum volumes presented

herein were computed without employing a joint cost.

3.1 Benchmark examples

A range of example problems are presented, starting

with problems for which closed-form analytical solutions

are available. It should however be noted that although

countless analytical optimum layouts were presented in

the papers by Rozvany et al., optimum volume values

were rarely quoted. This is due to the fact that loads

were generally not specified, since the layouts derived

had universal applicability for arbitrary (downward) load.

However, since the optimum displacement field can be

recovered from an analytical layout, the optimum volume

V can be computed from the virtual work done by given

load W , although the process can be laborious and hence

analytical volumes will only be provided for selected

example problems.

3.1.1 Square domain with simple supports

The first example considered herein involves a square

design domain with simple supports, as shown on Fig.

3a. This problem is one of the oldest and simplest to

derive analytically, e.g. see Morley (1966). The solution

is optimum for arbitrary downward load; one square R++

region is present along with four triangular R+− regions.

For comparison an optimum layout for a uniform pressure

load was generated via the new layout optimization method,

see Fig. 3b. Since the R++ region is indeterminate the

numerical solution presented is in fact one of an infinite

number of possibilities, where here the pressure load

is transferred to two beams of significantly larger cross

section. The four triangular regions appear to be R+ type

rather than R+− as proposed analytically since only sagging

beams are present, with the orthogonal hogging beams

vanishing. This apparent discrepancy, along with other

subtle issues associated with numerical layout optimization

of grillages, will be considered in the next section.

3.1.2 Square domain with clamped supports at corners

The second example involves a square design domain with

clamped supports at the corners, as shown in Fig. 4. This

serves to illustrate the effect of the joint cost used to

rationalize the solution. The analytical layout shown in Fig.

4a is proposed based on the approach described by Rozvany

(1972b) for arbitrary downward load. Aside from four R+−

Fig. 3 Square domain with

simple supports: a optimum

layout derived analytically by

e.g. Morley (1966), Vexact =
5

96
pL4/mp ≈ 0.05208pL4/mp;

b result obtained by numerical

layout optimization,

Vnum = 0.05208pL4/mp

(a) (b)
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Fig. 4 Square domain with

clamped supports at corners: a

analytical optimum layout

according to Rozvany (1972b);

new result obtained by

numerical layout optimization

for uniform pressure load; b

without joint cost

(Vnum = 0.06250pL4/mp); c

with joint cost

(a)

(b) (c)

regions the optimum grillage comprises five indeterminate

regions, four R−− regions and a single R++ region. For

comparison an optimum layout for a uniform pressure

load was generated by layout optimization, initially without

using a joint cost, as shown on Fig. 4b. The numerical

representation of the R+− regions coincides perfectly

with the analytical design, whereas the indeterminate

regions involve numerous overlapping beams in different

orientations, thus rendering the numerical solution of little

practical value. However, by re-running the problem with

joint costs the solution is greatly simplified, as shown on

Fig. 4c. The R++ region is now transformed to a regular grid

and the R−− regions to cantilever fans radiating out from

each of the four point supports; similar fans will be observed

in the vicinities of clamped point supports (or concave

corners of supported boundaries) in subsequent examples.

However, it is evident that the introduction of a joint cost

has appeared to transform the R+− regions into R+ regions,

as occurred in the previous example. This is because the

optimum beam width distribution is not necessarily unique

for a given applied load. Thus in the example shown in Fig.

4 the particular representation of the indeterminate square

R++ region influences whether or not hogging beams are

present in the adjoining R+− region. However, the lack of

a unique beam width distribution can also be demonstrated

in simpler problems, without R++ or R−− regions. For

example, consider the case of two opposing cantilever

beams of equal length subjected to a shared load at their

tips; also Fig. 12 serves as a further example. Although

a statically determinate optimum grillage is guaranteed to

exist, the structure shown in Fig. 4b is clearly not statically

determinate, due to the non-uniqueness of the solution. The

use of a joint cost does not necessarily fully remedy this,

e.g. see Fig. 4c.

3.1.3 Square domain with external clamped and interior

point supports

The next example involves a square design domain with

clamped external supports and four interior clamped point
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supports. In the paper by Rozvany et al. (1973) the

problem was deemed load-independent and consequently

an analytical layout was given for all downward loads; see

Fig. 5a where sagging or hogging indeterminate regions are

depicted in solid ink. Figure 5b shows the new numerical

solution obtained, assuming a uniform pressure load is

(a)

(b)

Fig. 5 Square domain with external clamped and interior point

supports: a optimum layout derived analytically by Rozvany et al.

(1973); b new result obtained by numerical layout optimization,

Vnum = 0.004966pL4/mp

applied. Indeterminate R++ and R−− regions appear in

the same form as those in the previous example; see Fig.

4c. Sagging R+-type fans are approximately represented by

the given nodal discretization. For this example numerical

results are presented in Table 1 of Appendix A, with the

number of adaptive member adding iterations required to

obtain a solution for a given nodal discretization shown

together with associated CPU times.

3.1.4 Square domain with four column supports

The next example involves a square design domain with

free external boundaries and four supporting columns in the

interior, represented by square clamped supports. Assuming

arbitrary downward load, Fig. 6a shows the optimum layout

derived analytically by Rozvany (1972a) for this particular

problem. An analytical solution u of the kinematic form

can be uniquely derived based solely on the layout from

Fig. 6a which is independent of the load, provided this is

always downwards. For example, if a uniform pressure load

of magnitude p is applied then, based on duality arguments,

the exact volume Vexact of the optimum grillage can be

computed from the virtual work done by the load as follows:

Vexact = Wexact =
∫

�

pu dx =
10237

768

pb4

mp

≈ 13.3294
pb4

mp

(7)

where � denotes the design domain. Both the function u

and the integral are computed in Appendix B.

The numerical solution for this case is shown in Fig. 6b;

the optimum volume Vnum = 13.33pb4/mp is derived from

the values tabulated in Table 2 of Appendix A. The close

correlation between the numerical and analytical solutions

is clearly evident, both in terms of computed volume and

grillage layout. Note that for this example only two adaptive

member adding iterations are required to obtain a solution

(see Table 2 in Appendix A) because the initial ground

structure already contains most critical members; this also

leads to relatively low associated CPU times.

3.1.5 Domains with free and simply supported edges

Problems involving domains with both free and simply sup-

ported edges were investigated by Rozvany and Liebermann

(1994). The associated optimization problems were chal-

lenging mathematically, with the formulas describing the

optimum directions of the beams given in implicit integral

form which had to be solved numerically.

Here a right-angled isosceles triangle domain with a

simply supported base edge and a simple point support in

the right-angle corner is considered, as shown in Fig. 7. The

optimum grillage layout for this problem found by Rozvany
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Fig. 6 Square domain with four

column supports: a optimum

layout derived analytically by

Rozvany (1972a),

Vexact = 13.3294pb4/mp; b

new result obtained by

numerical layout optimization,

Vnum = 13.33pb4/mp

(a)

(b)
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and Liebermann (1994) for arbitrary downward loading is

given in Fig. 7a. Note that the layout is not trivial as the beams

do not radiate from the simple point support. A numerical

solution was obtained for the uniform downward pressure

load case and is presented in Fig. 7b. The close resemblance

between the analytical and numerical solutions is clear.

3.2 Problems with clamped and free edges

3.2.1 Square domain problem

The next example involves a square domain comprising two

clamped and two free edges, as shown in Fig. 8a. This pro-

blem was previously considered by Rozvany (1972b), though

an exact analytical solution was not derived (even then the

class of optimum grillage problems for clamped / free boun-

dary conditions was recognized as being difficult). The

same problem was revisited by Sigmund et al. (1993),

who presented numerical solutions obtained using a ground

structure-based approach combined with FEM. Despite the

insights these generated a general analytical method for

grillages with clamped and free edges has still not been

(a)

(b)

Fig. 7 Triangular domain with free and simply supported edges: a

optimum layout derived analytically by Rozvany and Liebermann

(1994); b new result obtained by numerical layout optimization for a

uniform pressure load, Vnum = 0.09505ph4/mp

found, highlighting a clear gap in the grillage optimization

theory developed by Rozvany et al. In Fig. 8 a range of

problems are solved, for cases involving point and pressure

loads.

3.2.2 Domain with hole problem

The next example involves a domain with a hole and free

and clamped edges, as shown in Fig. 9a. Solutions were

obtained for three different loading scenarios, involving

either point or pressure loads. The optimum layouts for the

problems involving point loads, presented in Fig. 9b,c, are

perhaps of particular interest since they clearly indicate how

the load finds its way through an optimum grillage around

the hole back to the supports.

3.3 Uplift effect

One of limitations of the computer software tool produced

by Hill and Rozvany (1985) was that it could not model

internal simple supports because of the potential for uplift,

rendering the optimum grillage layout dependent on the

position of the load(s) involved. An example is shown in

Fig. 10. In this case the internal support divides the design

domain into two parts: one subjected to pressure load p1,

and the other p2. When p1 and p2 are both applied, the

optimum grillage layout is shown in Fig. 10b. If only one of

them is applied, different results are obtained, as shown in

Fig. 10c and d, indicating the load dependant nature of the

problem. Uplift effects are present in the problems shown in

Fig. 10b and d, where in (b) the load p1 effectively cancels

out some of the bending effects caused by p2, leading to a

lower volume than in (d).

3.4 Partially downward and partially upward load

Applying mixed downward and upward loads yields yet

another class of problem for which load-independent

optimal layouts cannot be found. Analytical results for

a modest range of such problems were published in a

short paper by Rozvany (1997); however a general method

of treating such problems analytically has not yet been

developed. The example presented in Fig. 11 gives a good

insight into the nature of such problems; here two point

loads are to be transferred to four simple point supports.

Figure 11a shows the solution for all-downward load; in this

case two separate simply supported beams of total volume

Vdd = 0.25PL2/mp prove to be optimal. However the

optimum layout shown in Fig. 11b for the case when one

of the loads is upward clearly involves interaction between

the two forces, thus considerably reducing the optimum

volume, to Vdu = 0.1875PL2/mp.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Square domain with two free and two clamped edges: a prob-

lem definition (domain has dimensions L×L, with point loads applied

on the diagonal); b P1 = P , P2 = 0, V1 = 0.1408PL2/mp (which

can be shown to coincide with the exact solution); c P1 = 0, P2 = P ,

V2 = 0.4093PL2/mp; d P1 = P , P2 = P , V1+2 = 0.5315PL2/mp;

e uniform pressure load p = P/L2, V = 0.07067PL2/mp; f

“beam-weave” phenomenon
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3.5 Point moment load

Formulation (4) permits point moments to be applied

directly, thus yielding another class of load-dependent

problem. An illustrative example involving a rectangular

domain with a point moment load remote from a support is

shown in Fig. 12; domains of constant width and varying

height are considered. The key observation is that, despite

filling the entire height of the domain with an optimum

layout, the optimum volume remains constant, at V =
M L/mp. This indicates the indeterminacy of the layout in

each case (since e.g. design (c) is also a viable solution to

problems (a) and (b)).

4 Discussion

4.1 Non-optimal design of beamswith endmoments
of different signs

As mentioned in section 2.3 the solutions obtained via the

proposed numerical method will overestimate the true solu-

tion in cases where the bending moment function changes

in sign along the length of one or more beams. However,

none of the optimum layouts presented in section 3 con-

tained any beams where this was the case. Numerical

experiments involving other problems showed that when

such beams were present, use of a higher nodal refinement

Fig. 9 Domain with hole

problem, including both free and

clamped edges: a problem

definition; b point load applied

to the interior boundary; c point

load applied to the exterior

boundary; d uniform pressure

load

(a) (b)

(c) (d)
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Fig. 10 Square domain

supported internally along its

diagonal: a problem definition;

b p1 = p, p2 = p,

V1+2 = 0.03754pL4/mp; c

p1 = p, p2 = 0,

V1 = 0.007889pL4/mp; d

p1 = 0, p2 = p,

V2 = 0.04217pL4/mp

(a) (b)

(c) (d)

remedied this. This is to be expected, since two shorter

beams can always be chosen to meet at the point of con-

traflexure in a long beam, at least approximately.

4.2 Load dependent layouts in grillage optimization

The class of grillage optimization problems solved fully and

analytically by Rozvany et al. share an essential property:

independence of the layout from load, providing the latter

is always applied in a downward direction. This means that

there is a displacement vector u that solves dual problem (5)

for every downward load, or alternatively, that there exists a

displacement vector u that maximizes the out-of-plane dis-

placement of every point (node) simultaneously. In contrast the

optimal layouts for the problems considered in Sections 3.2

to 3.5 are load dependent, and there are currently no

analytical methods that can be applied to such problems.

In this context it is worth revisiting the triangular domain

problem initially investigated in Section 3.1.5. According

to Rozvany and Liebermann (1994) the analytical layout

shown in Fig. 7a should be universal for all downward

loads. However, this can be checked by using the numeri-

cal method developed herein to explore a range of different

loading scenarios. Thus consider for example the case of

Fig. 11 Partially downward and

upward load problem: a both

loads P applied downwards,

Vdd = 0.25PL2/mp (exact

solution); b one load P applied

downwards and the other

upwards,

Vdu = 0.1875PL2/mp

(a) (b)
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(a)

(b)

(c)

Fig. 12 Rectangular domain with a point moment load M and simple

line support: a H/L = 1/2; b H/L = 1/4; c H ≪ L; the optimum

volume V = M L/mp (exact value) is independent of the height of

the domain

a single point load applied midway along one of the free

edges, leading to the numerical optimum layout shown in

Fig. 13a. Comparing Fig. 13a with Fig. 7a it is evident that

the beam directions differ, suggesting that this problem is

not load independent after all. To verify this finding the the-

ory of grillage-like slabs can be invoked; see e.g. Rozvany

(1972a). With the given point load P duality theorems can be

used to show that the analytically derived layout of Fig. 7a

yields a lower bound volume V ≈ 0.18Ph2/mp. Conversely

the numerical solution of Fig. 13a is associated with a one-

line bending moment field M that furnishes an upper bound

volume V = 0.25Ph2/mp. In order to prove that the exact

volume Vexact = V , and the associated exact moment field

Mexact = M , it is sufficient to guess a displacement function

u such that curvature constraints are met and the optimality

relation between M and u holds, i.e.

– the principal curvatures κI, κII produced by u satisfy the

point-wise inequalities: −1/mp ≤ κI, κII ≤ +1/mp

and

– the left free edge is one of the principal trajectories of

curvature field κ and the principal curvature κI is equal

to +1/mp along this edge

respectively. Naturally the function u must also satisfy the

support conditions. It can easily be verified that the function

in question can be given by an extremely simple closed-

form expression (where x, y are Cartesian coordinates, as

indicated in Fig. 13a):

u(x, y) =
1

mp

x(h − y), (8)

which implies Mexact = M , uexact = u and Vexact = V =
0.25Ph2/mp, and further that the numerical solution given

in Fig. 13a is in fact the exact solution for the grillage-like

slab problem with a single point load. The u field resembles

a slab being twisted around the y axis, as shown in Fig.

13b. In fact, the same field u is also found when a point

moment is applied at the point support; Fig. 13c shows the

corresponding layout. (It now becomes clear that a function

of the form of (8) also furnishes a solution to the problem

described in Section 3.5.)

It is also of interest to now consider the case of two

point loads applied symmetrically midway along each the

free edges; this yields a volume V = 0.354Ph2/mp and

the layout shown in Fig. 13d. Here the optimum layout

appears to be inscribed within the analytical layout proposed

by Rozvany and Liebermann (1994); see Fig. 7a. Note that

the optimum volume is considerably smaller than double the

volume of the one-beam solution. However, if the magni-

tudes of the applied loads are changed, a non-symmetrical

numerical layout is obtained; see Fig. 13e. Here the ori-

entation of the sagging beams forming the fans noticeably

diverge from the analytical layout shown on Fig. 7a.

These numerical experiments, together with the ana-

lytically proposed function u ultimately show the load-

dependence of the triangular domain problem initially

investigated in Section 3.1.5. The load-dependence appears

to be due to the same uplift effect that occurs in the prob-

lems considered in Section 3.3, where in that case the axis

of uplift was an internal line of simple support. In the tri-

angular domain problem every straight line passing through

the point support and the interior of the domain is a poten-

tial uplift axis. From this argument it can be concluded

that the presence of a simple point support, either placed

on the boundary or in the interior of the design domain, is

likely to lead to load-dependence in the grillage optimiza-

tion problem. Note that the triangular domain problem was

the only example given in Rozvany and Liebermann (1994)

that considered a simple point support; the authors’ focus

was originally a class of problems with free and simply

supported edges only, so all other optimum layouts derived

therein can be assumed to be truly load-independent and

hence correct.

Finally, suppose that the triangular domain of this

problem is transformed into a trapezium to allow the point

support to be replaced with a very short simply supported

edge. The solution when a single point load applied midway

along the free edge is shown in Fig. 13f. It is evident that the

new optimum layout now appears to be in agreement with

the analytical layout derived by Rozvany and Liebermann

(1994). This suggests that the anomaly in this case stemmed

from an assumption that an infinitely short line of simple

support could be taken to be equivalent to a point support.

However, the former prevents rotation about the y axis,



K. Bolbotowski et al.

Fig. 13 a Numerical optimum

layout when a mid-edge point

load applied,

V = 0.250Ph2/mp (exact

solution); b associated exact

displacement field; c numerical

optimum layout for a point

moment problem, which shares

the displacement field shown in

b; d numerical optimum layout

for two symmetrically

positioned point loads of equal

magnitude,

V = 0.3549Ph2/mp; e

numerical optimum layout for

two symmetrically positioned

point loads of unequal

magnitude,

V = 0.7633Ph2/mp; f

numerical optimum layout for

the mid-edge point load problem

with the simple point support

replaced by a short simply

supported edge,

V = 0.1812Ph2/mp

(b)(a)

(c)

(d) (e)

(f)

and allows a reaction moment about the same axis to

be generated. This appears to be crucial in order for the

optimum grillage to comprise beams which coincide with

the analytical solution shown in Fig. 7a.

4.3 Beam-weave phenomenon and including torsion

In the solutions shown in e.g. Fig. 8e,f a thin region

of orthogonally intersecting sagging and hogging beams

occurs along each free edge. This phenomenon has

previously been identified in the optimum grillage layouts

found analytically for problems involving mixed free and

simply supported edges (Rozvany and Liebermann 1994);

the result from Fig. 7 with R+−-type free edges serves as

an example. This “beam-weave”, as it was called therein,

is particularly difficult to approximate using the ground

structure approach since, theoretically, it is supposed to

be infinitely thin. Similarly, a beam-weave turns out to be

an optimum means of transferring load along free edges;

e.g., see Fig. 9. Here the role of the beam-weave becomes

more apparent; essentially it attempts to mimic a single

beam capable of transferring torsion. Consequently, one can

observe that limiting the height of the domain in the problem

shown in Fig. 12 would provide an infinitely thin, beam-

weave-like design which is essentially equivalent to a single

member in pure torsion.
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The above suggests that it may be worthwhile to include

torsion in the problem formulation after all, since the beam-

weave regions degrade the quality of the numerical layouts.

However, the underlying problem formulation then becomes

nonlinear, and means of obtaining a suitable linearized approxi-

mation of the problem will be the subject of future research.

5 Conclusions

A new numerical layout optimization method capable of

identifying the minimum volume and associated optimal

layout of a grillage has been proposed. Beam members

which are tapered along their lengths between nodes have

been employed to maintain the linear character of the prob-

lem. This means that highly efficient linear programming

algorithms can be used to obtain solutions, with the adap-

tive “member adding” technique previously applied to truss

layout problems enabling solution of large-scale problems,

containing large numbers of nodes and interconnecting

members. A key feature of the new method is its gen-

erality; it can be applied to problems involving arbitrary

domain geometries and loading and support configurations,

and can faithfully capture important phenomena such as

“beam-weaves”, which provide resistance to torsion when

individual beams have negligible torsional resistance.

When applied to problems for which exact analytical

solutions exist it has been found that close approxima-

tions of these solutions can be found. However, analytical

methods developed to date by workers such as Rozvany et al.

can only be applied to problems for which the optimal

layout is independent of loading. Thus the proposed method

has also been applied to a range of load dependent problems,

for which analytical solutions are currently not available.

Interestingly the new method revealed that one problem in

the literature which had been thought to be load independent

(providing the load was always applied in a downward direc-

tion), is in fact load dependent, rendering the proposed analy-

tical solution less generally applicable than previously thought.
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Appendix A: Computing extrapolated
volumes

As described in Darwich et al. (2010), numerical solutions

obtained from numerical layout optimization runs appear to

follow a relation of the form:

Vn = V∞ + kn−α, (9)

where Vn is the numerically computed volume for n equally

spaced nodal divisions, V∞ is the volume when n → ∞,

and k and α are constants. Using (9), a weighted least-square

approach can be used to find the best-fit values for V∞, k

and α, with the weighting coefficient taken as n. Numerical

solutions are given in Tables 1–3.

Table 1 Numerical solutions and extrapolated volume for example given in Fig. 5 (A quarter domain was used due to symmetry)

Ndiv.† 32 64 96 128 176 208 240 ∞
Volume 0.0049795 0.0049690 0.0049670 0.0049665 0.0049663 0.0049660 0.0049660 0.004966

Iterations 11 17 18 16 20 19 16

CPU cost ‡ (sec.) 4 36 135 369 1391 2560 4329

†: Nodal divisions chosen to ensure an evenly spaced nodal grid

‡: Total CPU time expended on linear programming

Table 2 Numerical solutions and extrapolated volume for the four-column example given in Fig. 6 (A quarter domain was used due to symmetry)

Ndiv.† 48 96 144 192 240 288 ∞ Exact

Volume 13.345 13.333 13.331 13.330 13.330 13.330 13.33 13.3294

Iterations 2 2 2 2 2 2

CPU cost ‡ (sec.) 1 8 34 92 224 860

†: Nodal divisions chosen to ensure an evenly spaced nodal grid

‡: Total CPU time expended on linear programming
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Table 3 Numerical solutions and extrapolated volumes for other examples

Ndiv. Figure 3† Figure 4† Figure 7‡ Figure 8c‡ Figure 8d‡ Figure 8e‡ Figure 10b‡ Figure 10c‡ Figure 10d‡ Figure 11b‡ Figure 13d‡ Figure 13e Figure 13f

10 0.051875 0.062500 0.097912 0.43276 0.54250 0.071800 0.038560 0.0079005 0.043255 0.19000 0.38467 0.81704 0.20809

20 0.052031 0.062500 0.096592 0.42410 0.53851 0.071019 0.037840 0.0078960 0.042472 0.18750 0.37062 0.79307 0.19633

40 0.052070 0.062500 0.095916 0.41868 0.53573 0.070808 0.037632 0.0078925 0.042238 0.18750 0.36351 0.77969 0.19008

60 0.052078 0.062500 0.095674 0.41656 0.53474 0.070754 0.037586 0.0078915 0.042209 0.18750 0.36100 0.77477 0.18753

80 0.052080 0.062500 0.095544 0.41529 0.53417 0.070728 0.037568 0.0078905 0.042195 0.18750 0.35968 0.77231 0.18622

100 0.052081 0.062500 0.095458 0.41444 0.53382 0.070713 0.037561 0.0078895 0.042186 0.18750 0.35883 0.77082 0.18542

120 0.052082 0.062500 0.095400 0.41383 0.53356 0.070703 0.037557 0.0078895 0.042183 0.18750 0.35823 0.76976 0.18486

140 0.052082 0.062500 0.095358 0.41336 0.53337 0.070696 0.037553 0.0078895 0.042180 0.18750 0.35780 0.76894 0.18444

160 0.052083 0.062500 0.095324 0.41300 0.53320 0.070691 0.037550 0.0078895 0.042178 0.18750 0.35747 0.76832 0.18411

180 0.052083 0.062500 0.095296 0.41271 0.53306 0.070686 0.037549 0.0078895 0.042177 0.18750 0.35720 0.76783 0.18384

200 0.052083 0.062500 0.095274 0.41248 0.53294 0.070683 0.037547 0.0078895 0.042176 0.18750 0.35699 0.76743 0.18362

220 0.052083 0.062500 0.095256 0.41228 0.53284 0.070680 0.037546 0.0078895 0.042175 0.18750 0.35681 0.76710 0.18344

240 0.052083 0.062500 0.095240 0.41211 0.53276 0.070678 0.037545 0.0078890 0.042174 0.18750 0.35666 0.76683 0.18329

∞ 0.05208 0.06250 0.09505 0.4093⋆ 0.5315 0.07067 0.03754 0.007889 0.04217 0.1875 0.3549 0.7633 0.1812

†: Solved using quarter design domain due to symmetry, though volume of the whole structure is quoted

‡: Solved using half design domain due to symmetry, though volume of the whole structure is quoted

⋆: Additional data used in extrapolation (Ndiv): 0.41197 (260), 0.41184 (280), 0.41173 (300), 0.41163 (320), 0.41154 (340), 0.41146 (360), 0.41139 (380), 0.41132 (400)
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The function u is of identical form for R− regions no.

1,2,3 and is

u1,2,3(x, y) =
1

2
y2 (11)

which gives κxx = 0, κyy = −1, κxy = 0 as desired. The

volumes below follow:

V1 =
∫ b

2

0

∫ b
2

0

p u1(x, y) dy dx =
1

96
pb4, (12)

V2 =
∫ b

2

0

∫ b
2 + x

2

0

p u2(x, y) dy dx =
65

3072
pb4, (13)

V3 =
∫ b

0

∫ b
2 + x

2

0

p u3(x, y) dy dx =
5

64
pb4. (14)

Moving on to two R−− regions no. 4, 5 adjacent to the

corners of the columns, the following functions

u4,5(x, y) =
1

2
x2 +

1

2
y2 (15)

result in κxx = −1, κyy = −1, κxy = 0. Hence

V4 =
∫ b

2

0

∫ b
2 −x

0

p u4(x, y) dy dx =
1

192
pb4, (16)

V5 =
∫ b

2

0

∫ b+x

0

p u5(x, y) dy dx =
19

96
pb4. (17)

The bisymmetry of the layout imposes the form of

displacement function in R++ region no. 6 as follows

u6(x, y) = −
1

2
x2 −

1

2
y2 + C6 (18)

where constant C6 is chosen such that u is continuous at

points where regions no. 2 and 6 touch, i.e.

u2(b/2, a/4) = u6(a/4, 0) (19)

which gives C6 = 9/16 b2. It can be verified that slope

continuity also holds. Eventually

V6 =
∫ a

4

0

∫ a
4 −x

0

p u6(x, y) dy dx =
135

1024
pb4. (20)

Regions no. 7, 8, 9, 10 lie on the diagonal axis of

symmetry, since κxx = 1 for all these regions a universal

formulae follows

ui(x, y) = −
1

2
x2 + fi(y) i = 7, 8, 9, 10 (21)

where functions f7, f8, f9, f10 are such that continuity of

u holds on the interfaces of regions no. 2-7, 4-8, 3-9, 5-10

respectively, thus

f7(y) =
1

6
y2 +

b

2
√

2
y +

3b2

16
, (22)

f8(y) =
1

2
y2 −

b

2
√

2
y +

3b2

16
, (23)

f9(y) =
1

6
y2 +

b

2
√

2
y +

3b2

16
, (24)

f10(y) =
1

2
y2 +

b
√

2
y +

3b2

4
. (25)

Note that κyy;7,9 = −1/3 > −1 and κyy;8,10 = −1 which

agrees with the optimum layout. The volume of the last four

regions can now be readily computed:

V7 =
∫ 3b

4
√

2

0

∫ b

2
√

2
+ y

3

−( b

2
√

2
+ y

3 )

p u7(x, y) dx dy =
65

512
pb4, (26)

V8 =
∫ b√

2

0

∫ b

2
√

2

− b

2
√

2

p u8(x, y) dx dy =
1

16
pb4, (27)

V9 =
∫ 3b

2
√

2

0

∫ b

2
√

2
+ y

3

−( b

2
√

2
+ y

3 )

p u9(x, y) dx dy =
15

32
pb4 (28)

and, splitting region no. 10 into two symmetrical parts,

V10 = 2

∫ b√
2

0

∫

√
2b−x

0

p u10(x, y) dy dx =
23

12
pb4. (29)

The volume of 1/4 of optimum grillage reads

V/4 =
5

∑

i=1

2Vi +
10
∑

i=6

Vi =
10237

3072
pb4 (30)

and finally, again allowing arbitrary mp, one arrives at

V =
10237

768

pb4

mp

. (31)
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