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A new methodology to obtain metallic functional materials with predefined sets of strength properties has been developed.

It has been shown that in order to accurately estimate set of material properties at the macro-level, information from the

micro-level needs to be taken into account. As a result a two-level estimation model, based on the theory of fuzzy sets, has

been proposed. To demonstrate the developed methodology, a reinforcing steel has been analysed. Using microstructural

information, derived from an available set of experimentally obtained digital images of material microsections under

different heat treatment conditions, macroscopic strength properties of reinforcing steel have been determined.
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1 Introduction

In recent years, metallic functional materials [4], with predefined set of performance characteristics such as strength, elec-

trical conductivity, thermal stability, etc., are attracting increasingly growing interest. These effective characteristics can

be obtained by using new material manufacturing technologies and/or further mechanical treatment, leading to changes in

material microstructure, and thus, desired macroscopic properties.

The main aim of this paper is to develop an effective methodology to estimate materials performance characteristics,

e.g. macroscopic properties, based on cognitive analysis of its microstructural parameters through the scrutiny of materials

microsections digital images. The main advantage of this methodology is that it does not require the development of

complex material models or elaborate empirical relations, linking effective mechanical properties with microscopic grain-

phase structure of metals.

Several different approaches to form materials (metals) with predefined mechanical properties can be distinguished in

the literature. One of these is the methodology based on the multi-factors framework of designing an experiment [7].

Successfully used to define technological manufacturing processes, allowing to form materials with predefined effective

characteristics [1],[15], this methodology, however, has a number of disadvantages. The necessity to perform a large number

of costly experiments together with the arguments to define the rationale behind the most significant factors, influencing

the forming exploitation properties of the material, are the most notable drawbacks.

Another methodology is based on the development of new constitutive relations, taking into account micro (or meso)

mechanical properties of materials in order to describe elasto-plastic or thermo-elastic macroscopic materials behaviour

[11],[20]. Note, among others, multi-scale models with evolution constitutive relations of different levels of observation

[19]. This approach assumes analyses of different material behaviour in different loading conditions, which, again, results

in the large number of experiments (and / or computational experiments).

The third approach offers the formulation of empirical relations between material mechanical properties and its mi-

crostructure, e.g. Hall-Petch [16],[8] law, linking the strength of some crystal materials and the parameters of their grains.

Further work, refining this law, is based on the increase of the micro parameters number to improve the accuracy of

the model (see [6] where an empirical relation is developed to estimate mechanical properties of steel as a result of three-

parametrical microstructural analysis). These relationships are especially useful for particular types of steels and structures,

where estimation of materials macro-characteristics can be done fairly quickly and accurately. However, in our view, the

proposed methodology [6] requires a serious justification when generalised to other classes of materials.

∗ Corresponding author E-mail: i.gitman@sheffield.ac.uk, Phone: +44 114 222 7728, Fax: +44 114 222 7890
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The methodology, proposed in this paper, does not require a specific format of approximation function, (e.g. constitu-

tive relation) and the methodology of approximating the results (e.g. least square method); instead it allows to estimate

parameters of interest by formulating fuzzy relationships between microscopic characteristics of the metals grain-phase

structure and macroscopic effective performance characteristics. Assuming that materials properties are determined by its

internal microscopic structure, it will then be possible, by controlling this microstructure, to obtain materials with required

combinations of properties. It is thus essential to develop tools to analyse the material microstructure based on microsec-

tions images and images obtained with atomic force microscopy, scanning probe microscopy, X-ray topography or other

methods [13]. This analysis is particularly relevant, since it leads to the development of novel methodologies, which can

facilitate the development of manufacturing strategies and tools for predicting aforementioned performance characteristics

of functional materials [4].

2 Methodology

In this Section the general formulation of the methodology to obtain predefined properties of a functional material (here

metallic functional material) will be formulated. This methodology will be later split in a series of steps. This theoretical

methodology will later be illustrated on a practical example.

2.1 Mathematical formulation of the general problem of manufacturing material with predefined

properties

In the framework of a general mathematical methodology to guide the manufacturing process of the metallic functional

material with predefined set of properties, it is required to identify particular material manufacturing technologies, initial

characteristics of a primary un-treated part and its further mechanical treatments, referred here as X, resulting in pre-defined

set of effective performance characteristics such as strength, ductility, heat resistance, etc., denoted here as Z. Dimensions

of these sets X and Z depend on the number of technological parameters and the number of specified performance charac-

teristics of functional metal or alloy. From various experimental data, it can be assumed that a unique relationship can be

formed between elements of these sets

z = F(x), x ∈ X, z ∈ Z (1)

Here x and z are specific values of the functional material initial parameters and values of performance characteristics

correspondingly; e.g. a particular mechanical treatment results in the unique change in performance characteristics. The

operator F can take a form of a particular functional (vector-function, differential function etc.), depending on the form of

sets X and Z.

When manufacturing a functional material, the aim is to define such initial characteristics and manufacturing technolo-

gies (x∗), which would ensure the best possible match with predefined values of effective performance characteristics (z∗).
Mathematically, the following optimization problem can be formulated:

define such parameters x∗ ∈ X, that minimize

‖ z − z∗ ‖⇒ min

subject to equality (1)

(2)

Noted that the problem (2), depending on the form of operator F, can be attributed either to the problem of optimal

control [2] or to the problem of parametric optimization [10]. The construction of the operator F is, undebatably, the

main issue in solving problem (2). Typically these operators are constructed for some particular cases, e.g. the form

of the operator connecting the materials yield surface with parameters of its thermomechanical treatment is presented in

[17]. However, for the case of multiple characteristics, especially considered simultaneously, this problem is particularly

complex, and currently there exist no specific analytical solutions or even generic approaches to solve it. Typically every

materials mechanical property on the macroscopic level is analysed separately by modeling particular thermomechanical

process, this inevitably complicates the solution of the general multi-characteristics problem (2).

As a step forward in analysing the general formulation of the problem (2), a new approach is proposed below, consisting

in decomposition of the initial formulation into several interrelated sub-stages.
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Fig. 1 Decomposition of the problem.

2.2 Problem decomposition. Two-level model

Initially, a hypothesis is introduced that the set of required mechanical characteristics of the material is uniquely determined

by its microstructure. For the case of metals and alloys, considered in this paper, the microstructure is defined by the grain-

phase structure of the material. Let us denote by Y the set of parameters describing the materials microstructure. Then the

relation (1) takes the following form:

z = F(y(x)), x ∈ X, y ∈ Y, z ∈ Z (3)

where y are specific values of parameters of the grain-phase structure of material.

Now the problem of obtaining predefined properties of functional material can be divided into two stages, shown in

Figure 1.

In Figure 1, the operator F1 establishes the relations between the manufacturing process parameters and the grain-phase

microstructural parameters of the functional material; and the operatorF2 connects the microstructural parameters with

the resulting set of performance characteristics.

Now relation (1) can be transformed to the following form:

z = F(x) = F2(F1(x)) = F2(y) (4)

Here y = F1(x), and operator F = F2F1.

Thus, the problem of obtaining the predefined properties of the functional material is reformulated as a combination of

two problems:

• recovering a grain-phase microstructure of the material as a result of a manufacturing process via F1; and

• an estimation of materials macroscopic performance properties, depending on parameters of the material microstruc-

ture via F2.

The first problem, i.e. the particular form of the operator F1, will not be considered in this paper. The only contribution

of this first part is the identification of parameters of resulting grain-phase micro-structure. It is assumed that technologies

for obtaining the required functional material are known and thus, as a result, its grain-phase structure, represented by

digital images of microsections of this material under various technological processes, are given.

It is also assumed that a sufficient number of experimental data has been collected, which allows the possibility to

establish relations between parameters of the material microstructure and technological processes.

Of particular interest here is the second problem, where an estimation of mechanical macroscopic properties is per-

formed, based on the predefined set of parameters of the grain-phase materials microstructure. Thus the general problem

reduces to the solution of the second part only:

z = F2(y) (5)

2.3 Analysis of parameters of functional materials microstructure

The analysis of microstructural properties can be further split in two stages:

• identification of all possible parameters of obtained grain-phase structure (i.e. all possible components of the vector

y) takes place; and
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• the determination of the number of significant components of the vector y (further denoted as ỹ), characterizing this

microstructure from the point of the set of macro-characteristics of the material.

Below the logical sequence of these stages will be discussed, starting with the second stage.

Following the proposed hypothesis that the macroscopic properties of a material unambiguously follow from its mi-

crostructure, it is necessary to determine which microstructural parameters, and their minimum number, are uniquely

determined by the required set of macro-characteristics of the functional material. In other words, it is required to find such

ỹ ∈ Y where:

∃F2, such that ‖ z̃ − F2(ỹ) ‖< ε (6)

where z̃ contains available experimental data on required set of macro characteristics, and ε is the required accuracy.

To ensure the completeness of ỹ, it is necessary to determine the maximum possible number of microstructural parame-

ters. This can be determined by the identification of these parameters from the available set of microsections in the analysed

material.

Typically, in order to analyse a microstructure, parameters of interest are related to grains structures, e.g. grain area,

perimeter of boundaries, lengths (mean and deviation) of small and large grain axes, aspect ratio, elongation, compactness,

etc. Automation of image segmentation procedure allows obtaining these parameters in a direct way, i.e. avoiding manual

processing.

It should also be noted that thermomechanical properties of the material depend not only on parameters of the grain

structure, but also on the phase composition, as well as the presence of dislocation substructures within the grain. In the

case of intense plastic deformations, a stable fragmented substructure can be formed, stabilized by particles of secondary

carbides [12]. Attention should also be given to the wall-effect and influence of triple junctions [16]. Note that the

automation of identification of the aforementioned features from images could significantly improve the prediction of

material properties.

In this paper, an automated system [18], allowing to estimate, with the user specified accuracy, parameters of grain-

phase structure from a digital image of microsections, was used to determine phase classification and segmentation of

grains. Note that automating the microstructural parameters identification leads to significant increase in the number of

these parameters, potentially impacting macro-characteristics of the material.

Having determined the parameters of the microstructure ỹ, the problem of macro-properties estimation in functional

material can be approached, i.e. the next step is the determination of the operator F2 in the general problem (4).

2.4 Estimation of macro-properties as a function microstructural parameters

Analysing the microstructure of metal or alloys, the main parameters of the grain-phase structure can be distinguished,

including phase state parameters, e.g. volume fraction of phases, parameters of the grain structure, e.g. the mean grain

size, the grain size variation coefficient, the degree of grain anisotropy, the volume fraction of grains, etc. Following the

analysis of aforementioned parameters, it is thus required to estimate materials performance characteristics (here strength),

i.e. define the form of the operator F2 in

z̃ = F2(ỹ) (7)

At this stage, an unambiguous conformity between parameters of the grain-phase structure and parameters characterizing

the performance characteristics of functional material cannot be guaranteed, thus in order to define the operator F2 , fuzzy

relations Si [14],[21] between parameters can be built.

Assuming the number of available experiments (microsections and measurements of performance characteristics corre-

sponding to each of them) is n, then

Si = Ai ×Bi, i = 1..n (8)

where Ai is a special fuzzy set containing parameters of the grain-phase micro-structure for the i-th experiment; Bi

is a special fuzzy set containing macroscopic performance characteristics for the i-th experiment; × represents Cartesian

product of fuzzy sets [21]. Thus, for each i-th experiment, the relation of Si between fuzzy sets Ai and Bi is defined.

The mathematical objects Ai and Bi introduced above are structurally represented as a multiple of couples, formed

by an element (carrier) and a membership function quantifying the grade of membership of this element to the particular

mathematical object. Note that the membership function may vary from 0 (fully ”non-belong”) and 1 (fully ”belong”). A

similar structure can be found in fuzzy sets [21]. However, unlike conventional fuzzy sets, elements of which belong to the

same physical space and are of same type with the same dimensions, elements of sets Ai and Bi can have a different nature
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ZAMM header will be provided by the publisher 5

and, as a result, different dimensions. To underline these differences between sets Ai and Bi from the conventional fuzzy

sets, they are defined as special fussy sets. Further details will be discussed below in the worked example.

Note that (8) defines fuzzy relations that can be represented in a matrix form [21], where l,m-th term s(l,m), defined for

the element (al, bm) is determined by the rules of vector product for fuzzy sets [21]; here l = 1..d and m = 1..w, i.e. d
is the total number of couples (elements with corresponding membership functions) in the fuzzy set Ai, and w is the total

number of couples in the fuzzy set Bi defined as follows:

d = k × n;w = r × n (9)

Here r is the number of parameters characterizing the required set of macroscopic performance properties of the func-

tional material in each experiment, k is the total number of selected parameters of the grain-phase microstructure in each

experiment, and n is the number of experiments. Note here, that although desired, it is not strictly necessary to have all

microstructural parameters measured in all experiments. The methodology is still robust in the absence of some elements.

The user should assume zero for the missing component. However, in order to improve accuracy as many parameters as

possible should be collected.

The relation between arbitrary sets Ai (containing parameters of the grain-phase micro-structure) and Bi (containing

known parameters characterizing the macroscopic performance characteristics), or, in other words, the form of the operator

F2, can be determined in the following way:

F2 = ∪l
i=1S

i (10)

here the operator ∪l
i=1S

i refers to the standard fuzzy union of membership matrices: f i
2 = max(si) [14]. This leads to the

set B̃ (set of unknown macroscopic parameters) be being determined as

B̃ = Ã ◦ F2 (11)

where Ã refers to the set of microscopic parameters, corresponding to the set of unknown macrostructural character-

istics, and ◦ is the sign of maximin product (e.g. an ordinary product of matrices [21], where min is substituted for the

multiplication operation, and max is used instead of the addition operation).

It should be noted that, as a result of (11), B̃ will be obtained as a fuzzy set. If the requirement is to obtain B̃ in the

form of an ordinary set (i.e. any performance characteristic must be represented as a uniquely determined scalar quantity),

it will be necessary to define the ordinary representative of the fuzzy element [21] for each characteristic. For example, if

an element of the fuzzy set is a discrete value, then the determination of an ordinary representative b̃∗j of this fuzzy element

can be carried out as the determination of the mean [3] for discrete random variables.

b̃∗j =

r
∑

j=1

(

m(b̃j)
∑r

i=1 m(b̃i)
b̃j

)

(12)

Here b̃j is the j-th element of a fuzzy set B̃, m(b̃j) is a membership function of the j-th element and r is the number of

element couples in the fuzzy set B̃.

Following the determination of the operator F2, the problem of identifying such microstructure that ensures a predefined

set of macroscopic materials characteristics, i.e. the solution of the optimization problem (1-2), can be approached.

3 An example of estimation of strength properties of steel subjected to heat treatment

As an illustration of the above methodology, the manufacturing of reinforcing steel with predefined strength characteristics,

obtained through heat treatment (see for details the work of the Nanosteel R&D at the Magnitogorsk State Technical

University [5], [9]), was considered. In order to obtain the qualitative and quantitative characteristics of the forming

structure, the GLEEBLE 3500 research complex was used with Meiji Techno optical microscope using Thixomet PRO

computer image analysis system and scanning electron microscope JSM 6490 LV. In analysed heat treatment modes, 3

phases are formed (see [9]): ferritic-carbide mixture (FCM), martensite (M) and bainite (B), volume fractions of which

determine the strength of a material. In addition to the phase composition, the performance characteristics of analysed steel

are strongly influenced by the parameters of the grain structure. The shape and size of grains can vary significantly (see

[9]), which undoubtedly affects the strength of steel.

The main parameters of the grain-phase structure were identified as: volume fractions of phases - FCM, B, M; as well

as the average grain size, coefficient of grain size variation, degree of grain anisotropy and volume proportion of grains.

Copyright line will be provided by the publisher
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Thus, the total number of microstructure parameters in this case is k = 7. The parameters of the grain-phase structure were

calculated using the automated system [18].

The Vickers hardness (HV30) and impact strength (KC) were selected as macroscopic performance characteristics of

the functional material (reinforcing steel). The measurement of Vickers hardness were taken at 30 kg load using the third

generation Emco Test M4C075G3 universal hardness tester with high-resolution camera and automatic measurements using

Brinell, Rockwell, Vickers methods. Thus, the number of performance characteristics in this case is r = 2.

Results of the experimental study, i.e. parameters of the grain-phase structures and performance characteristics of steel

for 7 samples (n = 7), obtained under different heat treatment modes (here cooling rates), are presented in Table 1.

Table 1 Microscopic parameters and macroscopic characteristics.

Expe- Cooling Phase Grain structure parameters Material Impact

riments rate, composition, Mean Grain size Aniso- Volume hardness strength
◦C/s % FCM/B/M grain size, variation tropy fraction HV30 KC, J/cm2

µm coefficient degree of grains

1 10 100/0/0 0.10 0.11 0.98 0.87 400 54.3

2 20 60/10/30 0.10 0.07 1.14 0.26 412 55.7

3 25 80/10/10 0.16 0.06 1.09 0.44 436 58.5

4 30 70/20/10 0.26 0.17 1.18 0.98 469 64.0

5 40 50/30/20 0.25 0.03 1.25 0.37 554∗ 55.7∗

6 50 40/30/30 0.21 0.06 1.1 0.79 617 50.1

7 60 10/0/90 0.13 0.07 1.08 0.91 800 44.6

As it can be seen, the number of micro-structural grain-phase parameters for 7 experiments, following equation (9), is

d = 49, leading to the vector Ai having dimensions 49 × 1, and the vector Bi having dimensions 1 × 14 (as the number

of macroscopic properties after 7 experiments is w = 14). We will return to this full description at the end of this Section,

and now for a clearer and more visual illustration of the above methodology, a much simplified example will be considered

first.

In this simplified case (see Table 2) only three experiments (cooling rates 20, 30 and 40 ◦C/s, i.e. experiments 2, 4
and 5) were analysed with only measured microscopic mean grain size and grain size variation coefficients. Also, for

simplicity, only the macroscopic material hardness was chosen to represent the macroscopic characteristic. It is assumed

that for the tests 2 and 4 all information is known, and for the final 5th test microstructural information was collected, but

one macrostructural characteristic is unknown and to be found.

Table 2 Microscopic parameters and macroscopic characteristics (reduced test).

Mean Grain size Material

grain variation hardness

size coefficient HV30

0.10 0.07 412

0.26 0.17 469

0.25 0.03 unknown

As a first step matrices Ai with microstructural parameters and Bi with macroscopic characteristics were constructed.

The membership functions of an arbitrary element cj in fuzzy sets A or B can be found from the following relation:

m(cj) = 1− |
(cj − c̄j)

max(cj , c̄j)
| (13)

where c̄j is a value of corresponding element with the membership function equal to 1. Following equation (13),

elements of matrices Ai can be constructed as

A2 = [1.0/0.1 0.39/0.26 0.4/0.25 1.0/0.07 0.41/0.17 0.43/0.03]

A4 = [0.39/0.1 1.0/0.26 0.96/0.25 0.41/0.07 1.0/0.17 0.18/0.03]

A5 = [0.4/0.1 0.96/0.26 1.0/0.25 0.43/0.07 0.18/0.17 1.0/0.03]

(14)

Here superscript denotes the experiment under the consideration experiments (i.e. experiments 2, 4 and 5 for cooling rates

20, 30 and 40 ◦C/s). Note that elements of the matrix Ai contain the couple of the membership function, following by the
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value of the actual microstructural parameter itself (denoted as ”membership function/parameter value). Similarly, matrices

Bi, corresponding to the known macrostructural characteristics, can be constructed as

B2 = [1.0/412 0.88/469]

B4 = [0.88/412 1.0/469]
(15)

In the next step, following equations (8) and (10), an operator F2 can be built as follows:

F2 =

















1.0 0.88
0.88 1.0
0.88 0.96
1.0 0.88
0.88 1.0
0.43 0.43

















(16)

For simplicity of the presentation, the actual formalism of the operator F2 has not been kept. Below the schematic presen-

tation is given to guide the reader through elements of this operator:

F2 =























Bi →

1.0 0.88

0.88 1.0

Ai 0.88 0.96

↓ 1.0 0.88

0.88 1.0

0.43 0.43























0.88/(0.1; 412)

1.0/(0.07; 469)

0.43/(0.03; 412)

Here elements are represented as membership functions with corresponding couples of microscopic parameters and

macroscopic characteristics, following equations (8) and (10). Finally, following equation (11), the unknown macroscopic

characteristics, missing in Table 2, can be found:

B5 = A5 ◦ F2 = [0.88/412 0.96/469] (17)

If it is required to obtain B̃ in the form of an ordinary value (i.e. as a uniquely determined scalar quantity, representing fuzzy

set), following equation (12), unknown macroscopic material hardness can be determined as b̃∗3 = 441.8. Comparing the

estimated number with the experimentally obtained HV e
30 = 554 (see Vickers hardness with a star in table 1, corresponding

to the 5th experiment) the error of the proposed methodology is

δHV = |
HV r

30 −HV e
30

HV e
30

| × 100% = 20% (18)

A relatively large 20% error can be observed here. In order to improve the accuracy, more parameters need to be taken

into consideration, as will be discussed further.

As the next test, the full set of data (presented in Table 1) has been analysed. To demonstrate the proposed methodology,

now samples No. 1, 2, 3, 4, 6, 7 (six samples in total) are taken as the initial data, and sample No. 5 as the test sample.

Macroscopic characteristics of the 5th test sample are assumed unknown and are denoted with stars (∗).

Recall that in the new, complete, case the vector Ai has dimensions 49×1 (as the number of micro-structural grain-phase

parameters for 7 experiments is d = 49) and the vector Bi has dimensions 1×14 (as the number of macroscopic properties

after 7 experiments is w = 14). However as it was assumed that macroscopic material hardness and impact strength in the

fifth experiment are unknown, the dimension of the vector Bi is 1× 12.

As a result, see equation (8), matrixes Si (i = 1, 2, 3, 4, 6, 7) and thus operator F2, has dimensions 49× 12 (due to the

complexity of the presentation the full forms of the operator F2 and matrices Ai and Bi, with i = 1, 2, 3, 4, 6, 7, are not

presented here).

Following equations (8), (10), (11) and (13) a fuzzy set, containing unknown macroscopic characteristics for the fifth

experiment, B5 has been found; and eventually, following equation (12), an ordinary representative of the fuzzy set B5
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for each separate characteristic (Vickers hardness (HV30) and impact strength (KC)), following relation (12) has been

obtained as

HV r
30 = 525KCr = 54.6 (19)

Note that, experimental measurements (see elements with a star in Table 1) were taken as

HV e
30 = 554KCe = 55.7 (20)

Thus errors of the proposed methodology can be estimated as

δHV = |
HV r

30 −HV e
30

HV e
30

| × 100% = 5%;

δKC = |
KCr −KCe

KCe
| × 100% = 2%

(21)

The justification of a sufficient number of experiments and parameters, to obtain a required accuracy of predictive

estimation of macroscopic materials properties, can be of further study. However analyzing the obtained results, it can be

concluded that even with a relatively small number of experiments and parameters, the accuracy of estimation is rather

high. An increase in the number of experimental data will lead to a further increase in the accuracy of the predicted results.

4 Conclusion

A new methodology has been formulated that allows, using the analysis of the grain-phase micro-structural parameters of

the functional material, to estimate its macroscopic performance characteristics. A hypothesis has been formulated on the

unique correspondence between macroscopic properties of the material and its microstructure. Following this hypothesis,

it is sufficient to determine a certain minimum number of corresponding microstructural parameters, which will uniquely

determine the required set of macro-characteristics of the functional material. A particular novelty of the proposed method-

ology is the application of fuzzy sets theory while establishing relations between predefined strength characteristics and

parameters of the phase state and grain structure, obtained from the image of microsections of the analysed material.
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