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The effect of human fetal heart geometry and anisotropy on anatomy induced drift

and self-termination of cardiac re-entry is studied here in MRI based 2D slice and 3D

whole heart computer simulations. Isotropic and anisotropic models of 20 weeks of

gestational age human fetal heart obtained from 100 µm voxel diffusion tensor MRI

data sets were used in the computer simulations. The fiber orientation angles of the

heart were obtained from the orientation of the DT-MRI primary eigenvectors. In a

spatially homogeneous electrophysiological monodomain model with the DT-MRI based

heart geometries, cardiac re-entry was initiated at a prescribed location in a 2D slice,

and in the 3D whole heart anatomy models. Excitation was described by simplified

FitzHugh-Nagumo kinetics. In a slice of the heart, with propagation velocity twice as

fast along the fibers than across the fibers, DT-MRI based fiber anisotropy changes the

re-entry dynamics from pinned to an anatomical re-entry. In the 3D whole heart models,

the fiber anisotropy changes cardiac re-entry dynamics from a persistent re-entry to

the re-entry self-termination. The self-termination time depends on the re-entry’s initial

position. In all the simulations with the DT-MRI based cardiac geometry, the anisotropy

of the myocardial tissue shortens the time to re-entry self-termination several folds. The

numerical simulations depend on the validity of the DT-MRI data set used. The ventricular

wall showed the characteristic transmural rotation of the helix angle of the developed

mammalian heart, while the fiber orientation in the atria was irregular.

Keywords: cardiac arrhythmias, anatomically realistic modeling, anisotropy, anatomy induced drift,

FitzHugh-Nagumo model

1. INTRODUCTION

Since the over a century ago hypothesis that cardiac re-entry underlies cardiac arrhythmias [1, 2],
and the much later confirmation of the hypothesis in cardiac tissue experiment [3, 4], the re-
entry (aka spiral wave in 2D, cardiac excitation vortex in 3D), its origin and its role in sustained
arrhythmias and fibrillation, as well as a possibility of its effective control and defibrillation,
have been an object of extensive theoretical study and modeling [5–20]. From experiment, it
is an established point of view that cardiac arrhythmias are due to a complex combination of
electrophysiological [21–23], structural [24–27], and anatomical [28, 29] factors which sustain
cardiac re-entry [30–33].
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The specific effect of the heart anisotropy and anatomy
on cardiac re-entry dynamics is well appreciated [34–37], and
has been studied in simplified mathematical and computer
models [14–16, 38, 39]. The anisotropic discontinuities in
the heart muscle have been commonly seen as a substrate
for rise of cardiac re-entry due to the abrupt change in
conduction velocity and wavefront curvature [14, 40, 41]. On the
other hand, extensive mapping of cardiac myocyte orientation
in mammalian hearts has shown that the transmural fiber
arrangement, including the range of transmural change in fiber
angle in ventricular wall, was consistent within a species, and
varied between species [42, p. 173]. So that the anisotropic
discontinuities observed in healthy hearts, and shown to be
consistent within a species, might have been suspected to
facilitate initiation of arrhythmias.

With the recent advance in DT-MRI technology and
in High Performance Computing (HPC), the DT-MRI data
sets, including anatomy and myofiber structure, can now
be directly incorporated into anatomically realistic computer
simulations [34, 43, 44], so that the anisotropy of the tissue in
the in silicomodel can be switched on and off for the comparison
between the isotropic and anisotropic conduction, in order to see
the specific anatomy effects, as well as the interplay between the
anatomy and anisotropy of an individual heart.

In this paper, we present DT-MRI based anatomically and
myofiber structure realistic computer simulation study of cardiac
re-entry dynamics in the in silicomodel of human fetal heart. The
raw DT-MRI data [45] was segmented into the tissue/non-tissue
pixels based on the MRI luminosity threshold, followed by the
calculation of the fiber angles at each voxel from the diffusion-
weighted DT-MRI images. The DT-MRI yields 3 eigenvalues,
the primary (largest) eigenvalue was used to define local fiber
orientations in the simulation study.

The main objectives are to clarify: (i) whether the anatomical
settings of the fetal heart might support a positive filament
tension re-entry, and (ii) what would it be the role of the heart
anisotropy in that case. Here we demonstrate that anisotropy
of the fetal heart rather facilitates self-termination of cardiac
re-entry. In a 2D slice of the heart, the fiber anisotropy might
change dynamics of the re-entry from pinned to anatomical re-
entry. In the full 3D DT-MRI based model, depending on the
location of re-entry initiation, the isotropic geometry of the heart
might sustain perpetual re-entry even with a positive filament
tension kinetics. While the same positive filament tension re-
entry initiated at the same location of the fetal heart with the
fiber anisotropy self-terminates within a fraction of the rotation
period. Time of re-entry self-termination depends on the re-entry
initial position. Anisotropy of the real heart speeds up re-entry
self-termination. The geometry and anisotropy of the heart
together ensure the fastest self-termination of cardiac re-entry.

The novel significance of our findings is that we demonstrate
that the heart anisotropy might have rather anti-arrhythmic
function as it facilitates fast self-termination of cardiac re-entry.
A general role of fiber anisotropy in the genesis and sustenance
of arrhythmias could be addressed by numerics even on idealized
and simplified geometries with different spatial distributions of
anisotropy. The biomedical question addressed in themanuscript

is whether self-terminating ventricular arrhythmias can occur
in a developing fetal heart, as has inferred from fECG data in
Benson et al. [46].

2. MATERIALS AND METHODS

2.1. DT-MRI Data Sets
Tissue acquisition followed medical termination of pregnancy
with written and informed consent, and Ethical approval from
Lothian Research Ethics Committee (reference 08/S1101/1).
Temporary storage of the tissue for imaging was in premises
licensed under the UK 2004 Human Tissues Act.

The DT-MRI data set used in this study was of a 143
days gestational age (DGA) human fetal heart described in
Pervolaraki et al. [45]. It was selected as by 143 days the smooth,
transmural 120◦ transmural rotation in helix fiber angle is well
established [45, 47, 48]. The heart was immersed in formalin
shortly after dissection, and imaged in fomblin after two weeks
in formalin.

MRI acquisition was performed in a Bruker Biospin
(Ettlingen, Germany) 9.4 Tesla vertical NMR/S System with a
22 mm imaging coil for Hydrogen (1 H). A three-dimensional
diffusion weighted spin echo sequence was carried out at 20◦C
with 0.1 mm2 resolution, echo time = 15 ms, repetition time =
500 ms, with 6 averages and a b-value of 1, 000 s/mm2. In each
scan, diffusion weighted images were obtained in 12 directions.
The average scan time was 24 h.

2.2. DT-MRI Based Anatomy Model
Figure 1 shows a cross section of the 143 days of gestational
age (DGA) fetal heart, with the already formed intramural
myolaminar structure, and yet a bit irregular surface epicardial,
endocardial, and septal fibers, see also Figure 4 in Pervolaraki
et al. [45, p. 5] for the color-encoded fractional anisotropy (FA)
and all the three components of the fiber angles in the human
fetal heart. While in an adult heart, pinning of cardiac re-entry to
endocardium structures such as pectinate muscles junction with
crystae terminalis had been previously reported [31, 33, 49]. The
DT-MRI based fetal heart model offered a unique opportunity
to see whether the 20 weeks of gestation age intramural heart
structure was capable to support cardiac re-entry, because at
that fetal development stage it would not be possible yet for
the re-entry to pin to the endocardium fine features, for these
anatomical structures were yet to be developed later.

The DT-MRI data sets of the 128 × 128 × 128 voxels size,
with voxel resolution of ∼100 µm, of 143 days of gestational
age (DGA) human fetal heart [45], were converted into the
BeatBox [44] regular Cartesian mesh .bbg geometry format,
containing the DT-MRI Cartesian coordinates of the heart tissue
points together with the corresponding components of the
diffusion tensor primary eigenvectors [44]. The .bbg file is an
ASCII text file, each line in which describes a point in a regular
mesh in the following format:

x,y,z,status,fiber_x,fiber_y,fiber_z

Here x, y, z are integer Cartesian coordinates of a DT-
MRI voxel, status is a flag with a nonzero-value for a tissue
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FIGURE 1 | The 143 DGA human fetal heart [45]. BeatBox [44] geometry

.bbg format visualization with projections of the unit vectors of the local fiber

orientation onto the cross-section plane: a smooth intramural fiber distribution

has developed, with some surface irregular fibers from earlier developmental

stages, as seen in Figure 4 [45, p. 5].

point, and fiber_x, fiber_y, fiber_z are x-, y- and
z-components of the fiber orientation vector at that point. To
reduce the size of the .bbg files, only the tissue points, that is
points with non-zero status need to be specified, because the
BeatBox solver will ignore the void points with zero status in
any case. Although the original DT-MRI images data sets had
128 × 128 × 128 voxels size, the actual dimensions of the fetal
heart minimum bounding box were 67× 91× 128, with 181070
tissue points.

The raw DT-MRI anatomy data [45] were segmented into
the “tissue”/“not tissue” pixels discretion based on the MRI
luminosity threshold, with the Cartesian fiber angles at each voxel
obtained from the diffusion-weighted DT-MRI images. Only this
basic segmentaion of the raw DT-MRI anatomy data [45] was
taken into account in the computer simulation of cardiac re-
entry dynamics, so we shall refer to it as the raw DT-MRI based
anatomy model.

Any raw MRI and micro-CT image data show tiny bits of the
preparation tissue, which usually get into the image together with
the heart at the preparation stage. In the case of the raw DT-MRI
image of the fetal heart [45], there happened to be a tiny bit of
tissue at the bottom of the MRI image, adjacent to the apex of the
fetal heart, see Figure 1, and the original Figure 2(a), last panel,
in Pervolaraki et al. [45, p. 3]. In order to see whether this tiny
“leftover” piece of the heart tissue is capable to affect the outcome
of a re-entry simulation, we edited the MRI images in order to
remove the “leftover” piece, and then considered a comparison
of the re-entry simulation in the two 3D DT-MRI based heart
models: (i) raw DT-MRI based anatomy model, and (ii) “edited”

DT-MRI based anatomy model without the tiny “leftover” piece
of the heart tissue.

In case of the 2D model of a slice of the heart, in order
to construct the 2D diffusivity tensor, the fibers vectors were
projected into the plane of the slice of the heart.

2.3. Cardiac Tissue Model
To investigate the effects of anatomy on cardiac re-entry
dynamics we used monodomain tissue model with non-flux
boundary conditions

∂u

∂t
= f(u)+ ∇ · D̂∇u, (1)

En · D̂∇u

∣

∣

∣

∣

G

= 0,

where u(Er, t) = (u, υ)T , Er is the position vector, f(Er, t) = (f , g)T is
the FitzHugh-Nagumo [50] kinetics column-vector

f (u, υ) = α−1(u− u3/3− υ),

g(u, υ) = α (u+ β − γ υ), (2)

with the parameter values α = 0.3, β = 0.71, γ = 0.5, which
in an infinite excitable medium support a rigidly rotating vortex
with positive filament tension [51]. The simplified FHN model
was intentionally chosen for this study in order to fully eliminate
the possible effects of a realistic cell excitation kinetics, such as
e.g., meander [50], alternans [52], negative filament tension [51],
etc., and in order to enhance and highlight the pure effects of the
heart anatomy and anisotropy on the cardiac re-entry outcome.

D̂ = QP̂, where Q = diag(1, 0) =

[

1 0
0 0

]

is the matrix of

the relative diffusion coefficients for u and υ components, and
P̂ = [Pjk] ∈ R

3×3 is the u component diffusion tensor, which
has only two different eigenvalues: the bigger, simple eigenvalue
P‖ corresponding to the direction along the tissue fibers, and the
smaller, double eigenvalue P⊥, corresponding to the directions
across the fibers, so that

Pjk = P⊥δjk +
(

P‖ − P⊥
)

fjfk, (3)

where Ef =
(

fk
)

is the unit vector of the fiber direction;
En is the vector normal to the tissue boundary G. In the
isotropic simulation, P‖ and P⊥ values were fixed at P‖ =
P⊥ = 1 [corresponding 1D conduction velocity 1.89, in the
dimensionless units of Equations (1, 2)]. In the anisotropic
simulations, P‖ and P⊥ values were fixed at P‖ = 2, P⊥ = 0.5
(corresponding conduction velocities 2.68 and 1.34 respectively).
All the conduction velocities have been computed for the period
waves with the frequency of the free spiral wave in the model,
i.e., 11.36. With the isotropic diffusivity (P‖ = P⊥ = 1)
equal to the geometric mean between the faster and the slower
anisotropic diffusivities (P‖ = 2, P⊥ = 1/2), the isotropic
conduction velocity 1.89 was almost exactly the same as the
geometric mean ≈1.895 of the faster and slower (2.68 and 1.34
respectively) anisotropic conduction velocities, chosen in order
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tominimize themaximal relative difference between the isotropic
and anisotropic propagation speeds.

All the computer simulations presented here were done using
the BeatBox [44] software package with the explicit time-step
Euler scheme, on the Cartesian regular grid with space step
discretization 1x = 0.1, time step discretization 1t = 0.001;
5-point stencil for isotropic, and 9-point stencil for anisotropic
Laplacian approximation in 2D simulations; 7-point stencil
for isotropic, and 27-point stencil for anisotropic Laplacian
approximation in 3D simulations. The re-entry was initiated by
the phase distribution method [53]: in the 2D simulations, at a
prescribed location of the cross section of the DT-MRI based
anatomical model shown in Figure 1; in the 3D simulations,
at a prescribed location of the full DT-MRI based whole heart
anatomical model.

The FHN model Equations (1, 2) is not biophysically detailed
and is formulated in dimensionless units. So, for illustrative
purposes only, if we took the FHN time unit to be 1 t.u. =
40ms this would give the APD90 of 125.6ms which is within
the range reported e.g., by Zhu et al. [54]. The spiral wave
period is then 454ms: at our chosen kinetics parameters, the
spirals in FHN model have a big core. With the space step
discretization 1x = 0.1 in FHN simulations, whereas the real
grid resolution is 100 µm = 0.1mm, hence we would have
the FHN space unit 1 s.u. = 1mm. The (geometric mean)
diffusivity of 1 s.u.2/t.u. therefore works out as 0.025mm2/ms,
and the corresponding conduction velocity of 1.89 s.u./t.u. is
0.04725mm/ms. That gives a spiral wavelength of ≈21.45 mm.
The conduction velocity thus obtained is within the range
reported in Pervolaraki et al. [45], whereas the diffusivity is about
four times smaller than the one used in Pervolaraki et al. [55]. We
must stress here that, since the FHN kinetics is not biophysically
detailed, one should not expect anything more than an order-of-
magnitude correspondence with reality.

3. RESULTS

3.1. 2D MRI-Based “Slice” Simulations
In the 2D simulations, Figure 2, a counter-clockwise re-entry was
initiated by the phase distribution method [53], with the initial
center of rotation placed at the prescribed location x0 = 40, y0 =
60 in the 2D cross section of the DT-MRI based anatomical model
shown in Figure 1.

In the Figures 2A,B, it can be seen that in both isotropic and
anisotropic 2D simulations, at t = 0, there was identical location
of the initial re-entry rotation center: roughly in the middle of the
slice, in the vicinity of the septum cuneiform opening.

Figure 2A shows isotropic dynamics of the re-entry, that is
with the fiber orientation data “turned OFF,” so that only the
geometry of the isotropic homogeneous slice affects the re-entry.
While in an infinite medium the chosen FHN parameter values
α = 0.3, β = 0.71, γ = 0.5 produce rigidly rotating spiral [50],
the boundaries of the fetal heart slice model cause the drift of
the re-entry. The re-entry does not terminate because of the
reflection from the inexcitable boundaries [12], but after the
transient first rotation around the septum cuneiform opening,

the tip of the re-entry firmly pins (at t = 35) to the sharp lower
end of the cuneiform opening, see Figure 2A.

Figure 2B shows anisotropic dynamics of the re-entry, that
is with the fiber orientation data “turned ON,” so that both the
geometry and the anisotropy of the otherwise homogeneous slice
of the heart affect the dynamics of the re-entry, causing its drift.
In the anisotropic slice, the re-entry also does not terminate at
the inexcitable boundaries, but after a faster than in the previous
isotropic case transient, compare the time units labels in the
Figures 2A,B, the anisotropy of the medium turns the initial
spiral wave into the fast anatomical re-entry around the septum
cuneiform opening, see Figure 2B.

3.2. 3D Whole Heart MRI-Based
Simulations
3.2.1. Raw DT-MRI Anatomy Model

In the 3D whole heart raw DT-MRI based simulations shown
in the Figures 3, 4, a counter-clockwise excitation vortex was
initiated by the phase distribution method [53], with the initial
position of the transmural vortex filament (yellow line) at the
prescribed location along the x axis at y0 = 40, z0 = 60. It
can be seen in Figure 3 isotropic, and Figure 4 anisotropic 3D
simulations that, at t = 0, there was identical initial location of
the filament of the excitation vortex: that is transmurally, roughly
in the middle through the ventricles of the heart.

Figure 3 shows the isotropic dynamics of the excitation vortex,
that is with the fiber orientation data “turned OFF,” so that
only the geometry of the otherwise isotropic homogeneous fetal
heart affects dynamics of the vortex. At the chosen parameter
values α = 0.3, β = 0.71, γ = 0.5, the FHN vortex has
positive filament tension [51], and, depending on topology of an
isotropic homogeneous medium, either collapses or straightens
up between parallel boundaries. In the isotropic simulations
of the fetal heart, boundaries of the heart cause the vortex to
drift and collapse. However, there exist initial locations of the
excitation vortex, which although result in the drift of the vortex,
still do not lead to the expected collapse of the vortex with
positive filament tension. One of such outcomes is shown in
the Figure 3. Here, following the geometry of the heart, after
a very short transient, the initial vortex filament breaks into
the two major pieces, each of which finds its own synchronous
pathway in the “isotropic” fetal heart, resulting in the seemingly
perpetual cardiac re-entry, which failed to self-terminate within
the extended simulation time t = 30. Figure 11 gives the
summary of the simulation detail, where the maximum instant
number of the filaments in the simulation was 9 at t = 1.0,
the maximum instant total length of the filaments was 127.1 at
t = 1.6; while the time average number of the filaments in
the simulation was 3.4, and the time average total length of the
filaments was 29.3. The time course of the instant number of
filaments (blue dashed line) is shown in Figure 12A, and the time
course of the instant total length of the filaments (blue dashed
line) is shown in Figure 12B. It can be seen that, after a very
fast transient increase in both the number of filaments and the
total length of the filaments, these fail to disappear, and keep
oscillating around above zero constants.
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FIGURE 2 | Anisotropy effect in the 2D slice simulations, time shown under each panel in time units of Equations (1, 2). (A) Isotropic conduction: after the transient

first rotation around the septum cuneiform opening, the slow excitation re-entry pins to the sharp low end of the opening in the fetal heart (See

Supplementary Video 1). (B) Anisotropic conduction: after the fast transient first rotation around the septum cuneiform opening, the anisotropy of the fetal heart

turns the initial spiral wave into the fast anatomical re-entry around the septum cuneiform opening (See Supplementary Video 2).
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FIGURE 3 | Isotropic whole heart simulation. The translucent fetal heart is shown in blue, excitation front shown in red (see the color box in this figure), the yellow lines

are the instant organizing filaments of the excitation vortices; time shown under each panel in time units of Equations (1, 2). After a short transient the organizing

filament of the initial vortex breaks into the two short pieces each of which finds its own synchronous perpetual pathway, resulting in the perpetual cardiac re-entry in

the fetal heart (See Supplementary Video 3).

Figure 4 shows anisotropic dynamics of the excitation vortex,
that is with the fiber orientation data “turned ON,” so that both
the geometry and the anisotropy of the otherwise homogeneous

model of the fetal heart affect dynamics of the vortex. Here,
the anisotropy of the heart causes fast transient distortion of
the filament, and drift toward the inexcitable boundary of the
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FIGURE 4 | Anisotropic whole heart simulation. The translucent fetal heart is shown in blue, excitation front shown in red (see the color box in Figure 3), the yellow

lines are the instant organizing filaments of the excitation vortices; time shown under each panel in time units of Equations (1, 2). The anisotropy of the heart causes

the fast transient distortion of the organizing filament of the initial excitation vortex and drift toward the inexcitable boundary of the heart, ultimately resulting in the very

fast self termination of the excitation vortex (See Supplementary Video 4).

heart, followed by the very fast self-termination of the vortex by
t = 5.3. The time course of the instant number of filaments (pink
dotted line) is shown in Figure 12A, and the time course of the
instant total length of the filaments (pink dotted line) is shown in
Figure 12B. It can be seen that, after a very fast transient increase
in both the number of the filaments and the total length of
the filaments, all the filaments rapidly disappear. The maximum
instant number of the filaments was 13 at t = 0.8, that is
higher and achieved faster than in the isotropic conduction. The
maximum instant total length of the filaments was 179.7 at t =
1.8, againmuch higher than in the isotropic conduction. The time
average number of the filaments in the simulation was 6.5, twice
higher than in the isotropic conduction, and the time average
total length of the filaments was 91.2, three times higher than
in the isotropic conduction, see the summary of the simulation
detail in Figure 11.

In the 3D whole heart raw DT-MRI based simulations shown
in the Figures 3, 4 a counter-clockwise excitation vortex was
initiated by the phase distribution method [53], with the initial
position of the transmural vortex filament (yellow line) at the
prescribed location along the y axis at x0 = 40, z0 = 60, that
is perpendicular to the initial orientation of the vortex filament
shown in Figures 3, 4. It can be seen in Figure 5 isotropic, and
in Figure 6 anisotropic 3D simulations, that at t = 0, there was
identical initial location of the filament of the excitation vortex:
that is transmurally, roughly in the middle through the ventricles

of the fetal heart, and perpendicular to the initial orientation of
the vortex filament shown in Figures 3, 4.

Figure 5 shows the isotropic dynamics of the excitation vortex,
that is with the fiber orientation data “turned OFF,” so that only
the geometry of the otherwise isotropic homogeneous fetal heart
affects dynamics of the vortex. Here, contrary to the expectation
for the positive filament tension vortex to always contract, the
organizing filament first transiently extends intramurally along
the tissue walls, before the final break up into the two ring-
like pieces, each of which then quickly contracts and terminates
at the opposite base and apex regions of the heart by t =
4. The time course of the instant number of filaments (blue
dashed line) is shown in Figure 12C, and the time course of
the instant total length of the filaments (blue dashed line) is
shown in Figure 12D. It can be seen that, after a very fast
transient increase in both the number of the filaments and the
total length of the filaments, all the filaments rapidly disappear.
The maximum instant number of the filaments was 12 at t =
1.4, with the maximum instant total length of the filaments
188.0 achieved at t = 1.5. The time average number of
the filaments in the simulation was 4.7, and the time average
total length of the filaments was 80.5, see the summary of the
simulation detail in Figure 11. It can be seen that in this isotropic
conduction simulation, with just a different location/orientation
of the initial vortex filament, the time average total length of the
vortex filaments was two and a half times higher than in the
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FIGURE 5 | Isotropic whole heart simulation. The translucent fetal heart is shown in blue, excitation front shown in red (see the color box in Figure 3), the yellow lines

are the instant organizing filaments of the excitation vortices; time shown under each panel in time units of Equations (1, 2). After a short transient the organizing

filament of the initial vortex breaks into the two pieces each of which fast terminates: one at the base and another at the apex of the heart (See

Supplementary Video 5).

FIGURE 6 | Anisotropic whole heart simulation. The translucent fetal heart is shown in blue, excitation front shown in red (see the color box in Figure 3), the yellow

lines are the instant organizing filaments of the excitation vortices; time shown under each panel in time units of Equations (1, 2). The anisotropy of the heart causes

the fast transient distortion of the organizing filament of the initial excitation vortex, followed by the fast drift and self-termination at the apex of the heart (See

Supplementary Video 6).

failed to self-terminate isotropic conduction simulation shown in
Figure 3.

Figure 6 shows anisotropic dynamics of the excitation vortex,
that is with the fiber orientation data “turned ON,” so that both
the geometry and the anisotropy of the otherwise homogeneous

model of the heart affect dynamics of the vortex leading to
its really fast termination at the apex of the heart by t =
2.6. The time course of the instant number of filaments (pink
dotted line) is shown in Figure 12C, and the time course of the
instant total length of the filaments (pink dotted line) is shown
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in Figure 12D. It can be seen that, after a very fast transient
increase in both the number of the filaments and the total
length of the filaments, all the filaments rapidly disappear. The
maximum instant number of the filaments was 17 at t = 0.5,
that is higher and achieved faster than in the corresponding
isotropic conduction shown in Figure 5. The maximum instant
total length of the filaments was 278.6 at t = 0.9, again much
higher than in the corresponding isotropic conduction. The time
average number of the filaments in the simulation was 9.5, twice
higher than in the isotropic conduction, and the time average
total length of the filaments was 152.6, also twice higher than
in the isotropic conduction, see the summary of the simulation
detail in Figure 11.

It can be seen in the rawDT-MRI model simulations shown in
Figures 3–6, that although the organizing filament of the vortex
could not get through into the accidental “leftover” piece of tissue
adjacent to the apical region, the piece still got activated, and
could have served as an artificial “capacitor” affecting dynamics
of the re-entry. In order to check whether this might be the
case, we edited the original raw DT-MRI model by removing
in the MRI the foreign “leftover” piece, and repeated the whole
heart isotropic and anisotropic simulations from the same two
orthogonal initial locations of the re-entry, similar to the shown
in Figures 3–6.

3.2.2. “Edited” DT-MRI Anatomy Model

In the 3D whole heart “edited” MRI model simulations shown
in the Figures 7, 8, a counter-clockwise excitation vortex was
initiated by the phase distribution method [53], with the initial
position of the transmural vortex filament (yellow line) at the
prescribed location along the x axis at y0 = 40, z0 = 60. It
can be seen in Figure 7 isotropic, and in Figure 8 anisotropic 3D
simulations, that, at t = 0, there was identical initial location of
the filament of the excitation vortex: that is transmurally, roughly
in the middle through the ventricles of the fetal heart, similar
to the initial location of the vortex filament in the raw DT-MRI
simulations shown in Figures 3, 4.

Figure 7 shows isotropic dynamics of the vortex, that is
with the fiber orientation data “turned OFF,” so that only the
geometry of the otherwise isotropic homogeneous fetal heart
affects dynamics of the vortex. Here, following the geometry of
the heart, the initial filament also breaks into the two major
pieces, each of which also finds its own synchronous pathway
similar to the beginning of the raw DT-MRI simulation shown
in Figure 3. However, this time, after just a few rotations, the two
re-entries find their end in their almost synchronous termination
in the base region of the heart by t = 16.9. The time course
of the instant number of filaments (green dashed line) is shown
in Figure 12A, and the time course of the instant total length
of the filaments (green dashed line) is shown in Figure 12B. It
can be seen that, after a very fast transient increase in both the
number of the filaments and the total length of the filaments, all
the filaments rapidly disappear. The maximum instant number
of the filaments was 9 at t = 0.2. The maximum instant total
length of the filaments was 122.3 at t = 0.7. The time average
number of the filaments in the simulation was 3.2, and the time
average total length of the filaments was 28.7, see the summary

of the simulation detail in Figure 11. It can be seen that, in the
“edited” MRI isotropic simulation in Figure 7, the maximum
instant and the time average number of the filaments, as well
as the maximum instant and the time average total length of
the filaments, were practically the same as in the corresponding
raw MRI isotropic simulation with the failed to self-terminate
re-entry shown in Figure 3. The only quantitative difference
between the two isotropic simulations, i.e., the perpetual re-entry
in Figure 3 vs. the self-termination in Figure 7, was that, in the
“edited” MRI isotropic simulation, without the “leftover” piece
of tissue adjacent to the apex of the heart, the maximum instant
number of the filaments, and themaximum instant total length of
the filaments were achieved much faster: by t = 0.2 and t = 0.7
correspondingly.

Figure 8 shows anisotropic dynamics of the vortex, that is
with the fiber orientation data “turned ON,” so that both the
geometry and the anisotropy of the otherwise homogeneous
model of the heart affect dynamics of the vortex. Here,
the anisotropy of the heart also causes significant transient
distortion of the initial filament, followed by the fast drift
toward the apex, with the ultimate termination at the AV border
before a completion of a single rotation, very similar to the
corresponding raw DT-MRI anisotropic simulation shown in
Figure 4. However, in the “edited” MRI model without the
“leftover” piece adjacent to the apex, repolarization of the
heart is faster than it was in the presence of the “incidental
capacitor” effect in the corresponding raw DT-MRI simulation
shown in Figure 4. The time course of the instant number
of filaments (red solid line) is shown in Figure 12A, and
the time course of the instant total length of the filaments
(red solid line) is shown in Figure 12B. It can be seen that,
after a very fast transient increase in both the number of the
filaments and the total length of the filaments, all the filaments
rapidly disappear by t = 4.8. The maximum instant number
of the filaments was 17 at t = 0.4, that is higher than
in the corresponding raw anisotropic conduction shown in
Figure 4, and twice higher than in the corresponding “edited”
isotropic conduction shown in Figure 7. The maximum instant
total length of the filaments was 180.3 at t = 0.7, similar
to the corresponding raw anisotropic conduction shown in
Figure 4, and much higher than in the corresponding “edited”
isotropic conduction shown in Figure 7. The time average
number of the filaments in the simulation was 6.3, similar to the
corresponding raw anisotropic conduction shown in Figure 4,
and twice higher than in the corresponding “edited” isotropic
conduction shown in Figure 7. The time average total length
of the filaments was 95.4, similar to the corresponding raw
anisotropic conduction shown in Figure 4, and three times
higher than in the corresponding raw isotropic conduction
shown in Figure 4. Time to the maximum number of the
filaments (t = 0.4), and time to the maximum total length
of the filaments (t = 0.7), were similar to the corresponding
“edited” isotropic conduction shown in Figure 7, and twice faster
than in the corresponding raw anisotropic conduction shown in
Figure 4, see the summary of the simulation detail in Figure 11.
So, that the anisotropy of the heart increased the number and
the total length of the filaments, and shortened the time to
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FIGURE 7 | Isotropic “edited” whole heart simulation. The translucent fetal heart is shown in blue, excitation front shown in red (see the color box in Figure 3), the

yellow lines are the instant organizing filaments of the excitation vortices; time shown under each panel in time units of Equations (1, 2). After a short transient the

organizing filament of the initial vortex breaks into the two short pieces each of which finds its own synchronous pathway, resulting after a few rotations in the

synchronous termination of the filaments in the base of the fetal heart (See Supplementary Video 7).

self-termination by folds, while the “incidental capacitor” effect
of the “leftover” piece adjacent to the apex slowed down the
process.

In the 3D whole heart “edited” MRI simulations shown in
Figures 9, 10, a counter-clockwise excitation vortex was initiated
by the phase distribution method [53], with the initial position
of the transmural filament (yellow line) at the prescribed location
along the y axis at x0 = 40, z0 = 60. It can be seen in Figure 9

isotropic, and in Figure 10 anisotropic 3D simulations, that at
t = 0, there was the identical initial location of the filament:
that is transmurally, roughly in the middle through the ventricles
of the heart, perpendicular to the filament initial location in the
“edited” MRI simulations shown in Figures 7, 8, and similar to
the initial location of the filament in the rawDT-MRI simulations
shown in Figures 5, 6 .

Figure 9 shows “edited” MRI isotropic dynamics of the vortex,
that is with the fiber orientation data “turned OFF,” so that only
the geometry of the otherwise isotropic homogeneous fetal heart

affects the vortex. Here, again contrary to the expectation for a
positive filament tension vortex to always contract, the organizing
filament first transiently extends intramurally before breaking up
into the two ring-like pieces, each of which quickly contracts and
terminates at the opposite base and apex regions of the heart,
identical to what was seen in the raw DT-MRI simulation shown
in Figure 5. The time course of the instant number of filaments
(green dashed line) is shown in Figure 12C, and the time course
of the instant total length of the filaments (green dashed line)
is shown in Figure 12D. It can be seen that, after a very fast
transient increase both in the number of the filaments and in the
total length of the filaments, all the filaments rapidly disappear
by t = 4.0. The maximum instant number of the filaments was
12 at t = 0.5. The maximum instant total length of the filaments
was 190.7 at t = 1.5. The time average number of the filaments
in the simulation was 4.7, and the time average total length of the
filaments was 82.9, see the summary of the simulation detail in
Figure 11. So, from the comparison with the corresponding raw
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FIGURE 8 | Anisotropic “edited” whole heart simulation. The translucent fetal heart is shown in blue, excitation front shown in red (see the color box in Figure 3), the

yellow lines are the instant organizing filaments of the excitation vortices; time shown under each panel in time units of Equations (1, 2). The anisotropy of the heart

causes the significant transient distortion of the organizing filament of the initial vortex, followed by its fast drift toward the apex and the ultimate termination before

completing a single rotation (See Supplementary Video 8).

FIGURE 9 | Isotropic “edited” whole heart simulation. The translucent fetal heart is shown in blue, excitation front shown in red (see the color box in Figure 3), the

yellow lines are the instant organizing filaments of the excitation vortices; time shown under each panel in time units of Equations (1, 2). After a short transient the

organizing filament of the initial vortex breaks into the two pieces each of which fast terminates: one at the base and another at the apex of the heart (See

Supplementary Video 9).

MRI isotropic simulation shown in Figure 5, it seems that, for
that particular initial location of the filament, the “leftover” tissue
did not play any role in the re-entry self-termination time.

Figure 10 shows anisotropic dynamics of the vortex, that is
with the fiber orientation data “turned ON,” so that both the

geometry and the anisotropy of the otherwise homogeneous
model of the heart affect the vortex, which, in the absence of
the “incidental capacitor” effect of the “leftover” piece, results in
the fastest possible termination of the re-entry at the apex of the
heart by t = 2.3, before the vortex first rotation ever started. The
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FIGURE 10 | Anisotropic “edited” whole heart simulation. The translucent fetal heart is shown in blue, excitation front shown in red (see the color box in Figure 3), the

yellow lines are the instant organizing filaments of the excitation vortices; time shown under each panel in time units of Equations (1, 2). The anisotropy of the heart

causes the fast significant transient distortion of the organizing filament of the initial excitation vortex, followed by the fast drift toward the apex and ultimate

termination before the first rotation has ever started (See Supplementary Video 10).

re-entry termination time here is more than twice shorter than
in both the raw MRI isotropic simulation shown in Figure 5,
and in the “edited” isotropic simulations shown in Figure 9;
shorter than in the corresponding simulation with the “incidental
capacitor” effect shown in the Figure 6, and times shorter than
in any of the simulations of the re-entry with the perpendicular
initial location of the filament shown in the Figures 3, 4, 7, 8.
So, that the main reasons for the re-entry fastest self-termination
seem to be the initial location of the filament and the anisotropy
of the heart.

In Figure 11, we have summarized the results of the raw
MRI simulations shown in Figures 3–6, and the “edited” MRI
simulations shown in Figures 7–10. The re-entry termination
time, in the time units of Equations (1, 2), is shown under
each respected whole heart model initiation cite panel. It can
be seen that the anisotropy of the heart causes at least twice
faster termination of re-entry. It also can be seen that indeed the
“leftover” piece of tissue connected to the apical region of the
heart in the raw DT-MRI model served as an artificial “capacitor”
affecting the re-entry dynamics, and significantly prolongated the
life time of re-entry initiated at the particular location/orientation
respective to the “capacitor”.

Finally, the 3D anatomically realistic simulations of the
fetal heart show that the anisotropy of the heart causes
the fast transient increase in the number and the total
length of the filaments, see Figure 12, with the typical fast
drift toward the apex area of the heart, and re-entry self-
termination, see also the movies in the Supplementary Material
section.

4. DISCUSSION

Although the role of heart anatomy and anisotropy in the origin
and sustainability of cardiac arrhythmias has been appreciated for

a long time, there is limited experimental evidence to clarify detail
of the heart anatomy effect on persistent cardiac arrhythmias and
fibrillation. In particular, the theoretically plausible hypothesis
that the anisotropic discontinuities in the heart might be a
source of rise for cardiac re-entry due to the abrupt change
in conduction velocity and wavefront curvature [14, 40, 41]
was in controversy with the observation that the transmural
fiber arrangement, including the range of transmural change
in fiber angle in ventricular wall, although varied between
species [42, p. 173], was consistent within a species. So that
the question was that, if the pro-arrhythmic mechanism of
cardiac re-entry initiation by the anisotropic discontinuities in
a heart [14, 40, 41] was correct, what would then have been a
reason for the consistent structure [42, p. 173] of the anisotropic
discontinuities in healthy mammalian hearts. The combination
of the High Performance Computing with the high-resolution
DT-MRI based anatomy models of the heart allows anatomically
realistic in silico testing of the effects of individual heart anatomy
and anisotropy on the cardiac re-entry dynamics [34, 43, 44, 49,
56]. In this paper, for the first time, we present the anatomy
andmyofiber structure realistic computer simulation study of the
cardiac re-entry dynamics in the DT-MRI based model of the
human fetal heart [45].

The human fetal heart single anisotropic geometry dataset
used in these simulations needs to be a typical and accurate
representation of the cardiac structure and tissue architecture,
with a spatial resolution suitable for numerical solution of
the excitation equations. For a smoothly changing anisotropic
geometry the imaged dataset may be interpolated to provide
sufficient spatial resolution. DT-MRI has provided 17–200 cubic
voxel datasets of human fetal heart [45, 48, 57, 58]. Finite
difference numerical solutions of propagation in biophysically
detailedmodels of adult cardiac tissue need∼ 100µmspace steps
in a Cartesian coordinate system. During fetal development the
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FIGURE 11 | Whole heart simulation: re-entry termination times. The translucent fetal heart is shown in blue, excitation front shown in red (see the color box in

Figure 3), the yellow lines are the instant organizing filaments of the excitation vortices. Re-entry self-termination time in time units of Equations (1, 2) is shown under

each simulation Figures 3–10 initiation panel. Comparison of the respective isotropic (top row) vs. anisotropic (bottom row) simulations shows that, regardless of with

or without the “leftover” piece, anisotropy results in faster termination of re-entry, and at least twice shorter recovery time. Respective comparison of the original MRI

with the corresponding “edited out leftover” simulations shows that the leftover “incidental capacitor” effect, depending of the re-entry location/orientation with respect

to the “incidental capacitor” own location/orientation, might significantly prolongate cardiac re-entry life time. The bigger number and the total length of the filaments

tend to correlate with the faster termination of re-entry, though these fail to identify persistent re-entry in Figure 3 simulation.

structure of the heart changes, the ventricular wall is compactified
and trabeculated, and the size of the heart increases. Any
atlas of the developing human fetal heart would need to come
from longitudinal studies (which are impractical and potentially
unethical), or from a large number of hearts obtained and
imaged at different gestational ages. Here, all simulations are
done on a single cardiac geometry that was selected as the
transmural changes in fiber helix angle had developed. The
results illustrated are specific for this particular anisotropic
cardiac geometry, which is critically determined by how it was
imaged and reconstructed. The fiber orientation angles of
the heart were obtained from the orientation of the DT-MRI
primary eigenvectors. Propagation velocity was twice as fast
along the fibers than across the fibers. In all the simulations
on this DT-MRI based cardiac geometry, the anisotropy of
the myocardial tissue shortens the duration of re-entry by
several fold. The numerical simulations depend on the validity
of the DT-MRI dataset used. The ventricular wall showed the
characteristic transmural rotation of the helix angle of the

developed mammalian heart, while the fiber orientation in the
atria was irregular. We expect the results be subsequently verified
on other anatomy data, including different technique data e.g.,
MRI vs. DT-MRI vs. micro-CT vs. serial section histology,
etc.

The comparative isotropic vs. anisotropic simulation of the
otherwise homogeneous model of the fetal heart shows that,
in the 2D slice of the heart, the fiber anisotropy might change
the re-entry dynamics from the re-entry pinned at the sharp
end of the septum cuneiform opening, Figure 2A, into the fast
anatomical re-entry around the opening, Figure 2B. Note that,
despite of the only basic segmentation of the MRI model into
the tissue/not tissue points, and the ventricles not being isolated
from the atria, because of the 2D re-entry pinning to either the
sharp end of the septum opening, as in the isotropic simulation
shown in Figure 2A, or to the whole septum opening, as in the
case of anatomical re-entry in the anisotropic simulation shown
in Figure 2B, the tip of the re-entry never penetrated from the
ventricles into the atria.
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FIGURE 12 | Whole heart simulation: time course of the number of filaments #, and of the total length of the filaments, time and the total length of the filaments shown

in the time and space units of Equations (1, 2). Initial position of the vortex filament along the x axis, Figures 3, 4, 7, 8 simulations: (A) time course of the number of

filaments # ; (B) time course of the total length of the filaments. Initial position of the vortex filament along the y axis, Figures 5, 6, 9, 10 simulations: (C) time course of

the number of filaments # ; (D) time course of the total length of the filaments. Anisotropy increases the transient number and the transient total length of the filaments.

The bigger transient number and the total length of the filaments tend to correlate with the faster termination of re-entry. The biggest transient total lengths of the

filaments was in case of the re-entry initiated along the y axis, (D), which ensured its fastest termination. It can be seen from Figures 5, 6, 9, 10, that the initial position

of the filament along the y axis allowed it to grow intramurally, thus maximally increasing the transient total length of the filaments, and speeding up their termination.

Although, from the cardiac physiology point of view, the
only basic segmentation of the raw DT-MRI data [45] into the
tissue/non-tissue pixels might be seen as a major limitation of
the study, from the non-linear science point of view, the use of
the raw MRI data, as an example of a nature provided medium
to study a re-entry dynamics, gives an important insight into
the pure anatomy induced drift in an otherwise homogeneous
2D medium, and into the possibility of pinning of the re-
entry not to a major blood vessel but to a sharp end of an
anatomical opening [20]; and into that a real fiber anisotropy
is capable to turn the pinned re-entry into an anatomical
one. Importantly though, the 2D simulations in Figure 2 are
an important step to highlight the role and the necessity of
the whole heart structure in the re-entry dynamics and self-
termination.

In the 3D DT-MRI based isotropic model of the fetal heart,
depending on the initial location/orientation of the re-entry
organizing filament, the geometry of the fetal heart might sustain
perpetual cardiac re-entry even with a positive filament tension,
see Figures 3, 12A,B. However, if the same positive filament
tension vortex is initiated at the exactly same location/orientation
in the anisotropicDT-MRI based model, the fiber structure of the
fetal heart facilitates fast self-termination of cardiac re-entry, see
Figures 4, 12A,B.

From the respective comparison of the “isotropic vs.
anisotropic” simulations in Figure 3 vs. Figure 4, and Figure 7

vs. Figure 8, it can be seen that, whereas the re-entry organizing
filaments were capable to penetrate from the ventricles to atria
in the isotropic simulations shown in Figures 3, 7, the abrupt
change in the fiber angles between the atria and the ventricles,
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which one can see in Figure 1, did not allow the organizing
filaments to penetrate from ventricles into atria in the anisotropic
simulations shown in Figures 4, 8, so that the anisotropy of
ventricles could complete the speedy elimination of the re-entry
within a single rotation.

The comparison of re-entry termination times in the whole
heart raw DT-MRI simulations shown in Figures 3–6, with the
corresponding “edited” MRI simulations shown in Figures 7–
10 showed that, although the filament of cardiac re-entry never
got through into the tiny piece of the “leftover” tissue adjacent
to the apex of the heart in the raw DT-MRI , the “not heart”
excitable tissue served as an accidental “capacitor,” significantly
prolongating the life time of cardiac re-entry initiated at a
particular location/orientation respective to the “leftover” piece
location/orientation. The comparison of the re-entry termination
times in Figures 11, 12 shows that the higher maximum number
of the filaments and the bigger total length of the filaments tend
to correlate with the faster termination of re-entry. However,
the usual transient increase in both the number of the filaments
and in the total length of the filaments, still failed to identify
and terminate the persistent re-entry shown in Figures 3,
12A,B.

The “isotropic vs. anisotropic” comparison of self-termination
time, both in the raw and in the “edited” MRI whole heart
simulations, confirmed that, regardless of with or without
the “leftover” piece adjacent to the apex, anisotropy of the
heart shortens re-entry self-termination time several folds, see
Figures 11, 12. Figure 12 shows that anisotropy increases the
maximum number and the maximum total length of the
filaments. The bigger maximum number and the maximum
total length of the filaments tend to correlate with the faster
termination of re-entry. The biggest transient total lengths of the
filaments was in the anisotropic case of re-entry initiated along
the y axis, see the corresponding dotted pink and solid red lines
in Figure 12D, which ensured the re-entry fastest termination.
It can be seen from Figures 5, 6, 9, 10, that the initial position
of the filament along the y axis allowed the filament to grow
intramurally, thus maximally increasing the transient total length
of the filaments, and shortening their termination time.

The comparison of the “edited” MRI simulations of thus
completely isolated heart shown in Figures 7–10, with the
raw DT-MRI simulations shown in Figures 3–6, provide an
important new insight into cardiac re-entry dynamics. Namely,
that an excitable tissue accidentally adjacent to the heart might
serve a capacitor capable to extend re-entry self-termination
time, see for the respective comparison Figure 3 vs. Figure 7,
Figure 4 vs. Figure 8, Figure 5 vs. Figure 9, and Figure 6 vs.
Figure 10, summarized in Figures 11, 12. The latter suggests
a possible new mechanism for a persistent cardiac re-entry.
That is if, apart from the major blood vessels normally adjacent
to the heart in vivo, and affecting cardiac re-entry dynamics,
there were also an accidental “touching” of the heart by an
adjacent excitable tissue, for example, due to a change of posture
in the night [59], the “incidental capacitor” effect could have
extended re-entry self-termination time, up to the failure to self-
terminate. The “incidental capacitor” hypothesis could be an
additional explanation to the circadian rhythm [60], for the

elusive and difficult to reproduce longer arrhythmia episodes
reported in the night ECGs as opposed to the on average shorter
arrhythmias in the day time ECGs. Although the raw DT-MRI
simulations with the “leftover” piece of tissue might have been
seen a limitation of the study, the real heart in vivo does not
exist in complete isolation from the main blood vessels and other
neighboring tissues. So, we believe that our “incidental” leftover
tissue results only once more confirm the importance and the
necessity of taking into account of the real anatomical settings
and surrounding of the heart for the full appreciation of cardiac
re-entry dynamics.

The BeatBox DT-MRI based in silico comparative study
confirms the heart anatomy and anisotropy functional effect on
cardiac re-entry self-termination as opposed to its sustainability,
pinning to anatomical features, transformation from pinned to
anatomical re-entry, while the anisotropy of the tissue facilitates
re-entry self-termination.

One of the limitations of the present study is the use of
the simplified FitzHugh-Nagumo [50] excitation model, chosen
for this study in order to eliminate the effects of realistic cell
excitation kinetics, such as e.g., meander [50], alternans [52],
negative filament tension [51], etc., and enhance and highlight
the pure effects of the heart anatomy and anisotropy on the re-
entry. The realistic cell excitation models should be used in the
future studies, in order to clarify specific interplay of the cell
kinetics with the heart anatomy and anisotropy.

As it can be seen from Figure 1[for the color-encoded
fractional anisotropy (FA) and for the color-encoded all the three
components of the fiber angles see also Figure 4 in Pervolaraki
et al. [45, p. 5]], formation of the fetal heart fiber structure at the
epicardium and endocardium is not completed yet, so that only
the already formed intramural laminar myofibers affect dynamics
of the re-entry. Although the use of the not fully formed fetal
heart can be seen as a limitation of the study, on the other hand,
the irregular epicardium and endocardium fibers seem to prevent
a re-entry from pinning to the fine endocardium features, which
were yet to be developed [45] later on. We appreciate that the
anatomy and fiber structure differences in the fetal and in a fully
formed adult heart might alter the re-entry dynamics, such as
in e.g., the reported case of re-entry pinning to the junction
of pectinate muscles with crystae terminalis in adult human
atrium [31, 33, 49]. That is, although it is possible to initiate a
cardiac re-entry in the tiny 1.4g (at 143 DGA) fetal heart [45],
the already formed intramural laminar anisotropy of the fetal
heart facilitates the re-entry self-termination, Figure 11. With the
hindsight of the present study, in an adult heart, because of the
pinning opportunities provided by the endocardium anatomical
features [31, 33, 49], there must exist additional mechanisms to
facilitate cardiac re-entry self-termination [61].

The most serious limitation of the study is that only the basic
segmentation of the raw DT-MRI data [45] into the tissue/non-
tissue pixels based on the MRI luminosity threshold, and only
the primary eigenvalues of fibers orientation, were taken into
account in the BeatBox [44] computer simulations of cardiac re-
entry dynamics. Further levels of DT-MRI segmentation, in order
to take into account e.g., the heart collagen skeleton, isolation of
ventricles from atria, etc., will inevitably change the outcome of
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the re-entry, by adding the electrically impermeable barriers to
cardiac re-entry. Currently, this further segmentation is added
into DT-MRI based models via complex rule based image post-
processing [62, 63], which brings in artificial assumptions, as
well as limits the number of available segmented data sets. From
the non-linear science point of view we pursued in this initial
study, the rationale was to use the raw DT-MRI as an example
of a nature provided medium to study a re-entry dynamics. In
the future, the multichannel computer tomography might offer
automatic tissue segmentation, so that multi-level segmented
DT-MRI based models become more available, and be used
in the BeatBox [44] anatomically and biophysically realistic
simulations.

Finally, we believe that a simple “mechanistic” explanation,
although often craved for, might be rather inadequate/premature
here, and will require better theoretical understanding of
the demonstrated potential effect of the heart anatomy and
anisotropy on cardiac re-entry dynamics, for it is not a particular
feature, or a sequence of features, but rather the whole complex
of the shape, anisotropy, and position of the heart within
the body, which affects the re-entry dynamics in a particular
way, and which seems to have evolved in order to ensure the
fastest self-termination of cardiac re-entry. If our hypothesis is
correct, it might explain the difficulties with reproducibility of
the arrhythmia in vivo and in an isolated heart. A general role
of fiber anisotropy in the genesis and sustenance of arrhythmias
could be and has been addressed by numerics on idealized
and simplified geometries with different spatial distributions
of anisotropy [14]. The biomedical question addressed in the
manuscript is whether self-terminating ventricular arrhythmias
can occur in a developing fetal heart, as has inferred from fECG
data in Benson et al. [46]. The most important novel finding
of the paper is that, contrary to what currently seems to be a
commonly accepted view of the pro-arrhythmic nature of cardiac
anisotropy, the point of view based on the mainly theoretical and
simplified anatomy models studies, for the first time ever, and
for the first time in a real whole heart DT-MRI based model, we
have demonstrated that anisotropy of the heart might have rather
anti-arrhythmic effect, as it facilitates the fastest self-termination
of cardiac re-entry.
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Supplementary Video 1 | 2D slice simulation, Isotropic Conduction: slow

excitation re-entry pins to the sharp end of the septum cuneiform opening in the

fetal heart.

Supplementary Video 2 | 2D slice simulation, Anisotropic Conduction:

anisotropy of the fetal heart turns initial spiral wave into fast anatomical re-entry

around the septum cuneiform opening.

Supplementary Video 3 | Isotropic whole heart simulation. After a short transient

of the vortex initiated along the x-axis, the organizing filament breaks into the two

short pieces each of which finds its own synchronous perpetual pathway, resulting

in the perpetual cardiac re-entry in the fetal heart.

Supplementary Video 4 | Anisotropic whole heart simulation. The anisotropy of

the heart causes the fast transient distortion of the organizing filament of the

vortex initiated along the x-axis, and drift toward the inexcitable boundary of the

heart, resulting in the very fast self-termination of the excitation vortex.

Supplementary Video 5 | Isotropic whole heart simulation. After a short transient

of the vortex initiated along the y-axis, the organizing filament breaks into two

pieces each of which fast terminates: one at the base and another at the apex of

the heart.

Supplementary Video 6 | Anisotropic whole heart simulation. The anisotropy of

the heart causes the fast transient distortion of the organizing filament of the

vortex initiated along the y-axis, followed by the fast drift and self-termination at

the apex of the heart.

Supplementary Video 7 | Isotropic “edited” whole heart simulation. After a short

transient of the vortex initiated along the x-axis, the organizing filament breaks into

two short pieces, each of which finds its own synchronous pathway, resulting after

a few rotations in the synchronous termination of the filaments in the base of the

fetal heart.

Supplementary Video 8 | Anisotropic “edited” whole heart simulation. The

anisotropy of the heart causes the significant transient distortion of the organizing

filament of the vortex initiated along the x-axis, followed by its fast drift toward the

apex, and the ultimate termination before completing a single rotation.

Supplementary Video 9 | Isotropic “edited” whole heart simulation. After a short

transient of the vortex initiated along the y-axis, the organizing filament breaks into

two pieces, each of which fast terminates: one at the base and another at the

apex of the heart.

Supplementary Video 10 | Anisotropic “edited” whole heart simulation. The

anisotropy of the heart causes the fast significant transient distortion of the

organizing filament of the vortex initiated along the y-axis, followed by the fast drift

toward the apex and termination before the first rotation has ever started.
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