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Abstract 

This study investigates the secondary failure of Malaysian Dark Red Meranti (Shorea 

spp.) and Spruce (Picea abies) finger joints in a glulam beam in a fire test using a 

bench-scale test set-up. Secondary failure is the occurrence of failure of the bond 

lines due to fire and the falling off of the outermost tension layers, exposing the 

uncharred inner layers to a sudden increase of fire intensity. The lack of published 

work and the difficulties in describing the behaviour of the finger joints after the 

secondary failure in a full-scale fire test has identified the need for a simple bench-

scale method, incorporating the conditions of the standard fire test. This paper 

focusses on the performance of the finger joints which together with other defects 

such as knots and splits are generally the weakest component in the glulam beam. 

The finger joints were bonded with structural adhesives, specifically phenol 

resorcinol formaldehyde (PRF) and polyurethane (PUR). They were tested in tension 

to imitate the failure of finger joints on the tension side of a standard fire test of a 
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glulam beam. Constant heat flux was introduced to the finger-jointed specimens to 

replicate the secondary failure of a glulam beam in the standard fire test. The results 

of this study indicate a relationship between the charring rate and density of the 

specimens, with higher density Dark Red Meranti showing lower charring rate 

compared to the lower density Spruce specimens. Factors such as constant heat flux 

as opposed to the time-increasing heat flux exposure and specimen size influenced 

the charring rate of the specimens. The char rate was measured at the early stages 

of the fire test, which is known to have higher values since the build-up of the 

charred layers was not sufficiently substantial to protect the inner unburnt wood. 

Overall, the bench-scale fire test set-up was able to differentiate the fire performance 

of the adhesives, with PRF showing better fire performance compared to the 

specimens finger-jointed with PUR adhesive. In addition, tensile tests at ambient 

temperature showed no significant difference in tensile strength between finger joints 

bonded with different adhesives for the same wood species. The tensile strengths of 

the finger joints bonded with different adhesives were influenced by the temperature 

profile through the joint. The proposed bench-scale fire test was used to compare the 

quality of the adhesives in a fire situation, specifically with respect to secondary 

failure. The PRF was selected as the reference adhesive. 

Keywords: 

Dark Red Meranti (Shorea spp.), Spruce (Picea abies), finger joints, bench-scale fire 

test, charring rate, secondary failure, heat flux, tensile strength, phenol resorcinol 

formaldehyde and polyurethane adhesive. 
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1. Introduction 

It is beneficial to improve the understanding of the behaviour of glue-laminated 

timber (glulam) when exposed to fire because any additional information related to 

fire performance will significantly improve fire safety design. Generally, glulam 

beams are tested in bending in a standard fire resistance test [1], where the 

outermost tension lamella experiences the highest stress and at the same time is 

suddenly exposed to fire [2]. The charred outermost lamella will lose its strength and 

relatively reduce the effective cross-section of the beam. This will increase the 

deflection of the beam and the tensile stress at the interface between the residual 

beam and the failed outermost lamella. Consequently, secondary failure may occur 

where the outermost lamella starts to delaminate and fall off from the beam. This will 

lead to increased fire intensity and charring rate on the uncharred inner lamellae 

because of the sudden exposure to fire when the outermost charred lamella no 

longer acts as a thermal insulator. At present, there is a lack of published work which 

describes the behaviour of finger joints following secondary failure incidents. In a 

standard fire test, it is extremely difficult to evaluate the conditions of finger joints 

because of the limited access and control of the material once the test starts and 

secondary failure occurs. 

It is also well known that large-scale standard fire tests for glulam beams are time-

consuming, expensive to set up and may not describe adequately the fire 

performance of the tested materials [3,4]. Attempts were made to introduce small-

scale or bench-scale tests to investigate the performance of adhesives in finger 

joints and bonding lines at elevated temperature and in fire conditions. Craft et al. [3] 

reviewed some of the small-scale test methods available and proposed a new 

method to improve the shortcomings of the previous tests. The authors described the 
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advantages of their small-scale test method, which simultaneously evaluates multiple 

finger-jointed specimens under tension in an oven. However, their method does not 

describe the behaviour of finger joints at secondary failure since it uses a relatively 

low temperature and longer set-up time (approximately 30 minutes for temperature 

recovery in the oven) rather than the sudden exposure to high temperature which 

occurs when the char layer falls away. Klippel et al. [4] conducted extensive tests on 

small-scale finger joints at elevated temperatures using 12 different adhesives. The 

results showed moderate decrease in tensile strength of the joints in relation to the 

testing temperature of between 20 to 140oC. For temperature up to 220oC, phenol 

resorcinol formaldehyde and melamine urea formaldehyde showed mostly wood 

failure indicating the wood itself was being tested rather than the adhesives. These 

tensile bench-scale tests must be further refined before they can be used as an 

alternative to full-scale fire tests but none describe the behaviour of finger joints in a 

secondary failure incident. 

Tensile testing was used in this study to imitate the behaviour of the finger joints at 

the outermost tension lamella of a glulam beam which experiences the highest 

stress in a bending test in a standard fire test. Frangi et al. [5] performed tensile and 

bending tests to evaluate the performance of finger joints bonded with different 

adhesives at elevated temperature. They concluded that tensile tests were suitable 

for evaluating the influence of adhesives in finger joints when tested at elevated 

temperature but did not report any significant correlation between adhesive types 

and strength in bending. 

Generally, the fire performance of timber structures can be described by the charring 

rate of the wood. The charring rate is subsequently influenced by factors including 

the material properties, namely density, moisture content, chemical composition and 
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permeability, and test conditions particularly thermal exposure, scale/size effect and 

direction of burning [6,7]. In this paper, the influence of factors such as density, 

constant heat flux exposure and size effect on the charring rate of the specimens 

tested using a bench-scale fire test are described. This paper aims to analyse the 

fire performance of hardwood finger joints in tension when exposed to a constant 

heat flux from a bench-scale set-up. The objective is to observe the behaviour of the 

finger joints in the tension region when exposed to sudden high temperature which 

occurs following the secondary failure of the glulam beam in a standard fire test. 

 

2. Materials and method 

2.1 Finger joints preparation 

Kiln-dried Dark Red Meranti (Shorea spp.) and Spruce (Picea abies) were used in 

this study. The average density of Dark Red Meranti (DRM) and Spruce was (659 ± 

99) kg/m3 and (462 ± 92) kg/m3 with the average moisture content of 14 and 12% 

respectively. The wood pieces were conditioned in a conditioning room at a 

temperature of 20oC and relative humidity of 65% before the cutting of the finger 

profiles. 

Larger DRM and Spruce pieces with the cross-section of 51 x 99 mm and 44 x 115 

mm respectively were used to create the finger-jointed specimens. Timber pieces 

with little or no defects were chosen to minimise their influence on the results. Finger 

profiles with length and pitch of 15 and 3.8 mm respectively, were cut from these 

pieces using a manual feed finger cutter. The length and pitch of the finger joints 

satisfied the requirements of the standard EN 14080 [8]. They were later pressure 

bonded with structural adhesives, namely phenol resorcinol formaldehyde (PRF) and 
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polyurethane (PUR) adhesives respectively. These finger-jointed pieces were then 

left to cure for two weeks, allowing them to reach their optimum strength. They were 

then cut and ripped to the test specimen size of 10 x 42 x 300 mm with the finger 

joints located in the middle (Fig. 1). A total of 84 finger-jointed specimens were 

produced for different types of test conditions (Table 1). The test specimens were 

kept in the conditioning room prior to being tested, to minimise any changes in 

moisture content. 

 

 

 

 

Fig. 1. Specimen and finger joints dimensions in mm 

 

Table 1: Test conditions 

Test conditions Species Adhesives Quantity 
Tensile test in fire DRM 

 
Spruce 
 

PRF 
PUR 
PRF 
PUR 

10 
10 
10 
10 

Tensile test at ambient temperature DRM 
 
Spruce 
 

PRF 
PUR 
PRF 
PUR 

10 
10 
10 
10 

Specimens with thermocouples DRM 
 
Spruce 
 

PRF 
PUR 
PRF 
PUR 

1 
1 
1 
1 

  Total 84 
 

 

3.8 
42 

10 15 

300 
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2.2 Bench-scale fire tests 

The preparation of specimens for the bench-scale fire tests is shown in Fig. 2. The 

ends of the specimens were reinforced with plywood and holes were made for 

anchoring purposes. These reinforcements were made to prevent failures at the 

gripping sections. Stone wool was used to protect both faces of the specimen 

against heat exposure, allowing the exposure of the specimen edge from one 

direction only. A load of 2.5 kN was introduced at the start of the test. This load was 

determined based on the load ratio of 14% (Spruce) and 8% (DRM) of the ultimate 

load of the reference finger-jointed specimens tested in tension at ambient 

temperature. The 2.5 kN load was used for both species so that comparison can be 

made between the fire performance of the Spruce and DRM. Furthermore, the aim 

was to differentiate the time to failure of the adhesives by extending the time of the 

test when using smaller load values. A constant heat flux of 50 kW/m2 was 

introduced at the start of the test. Prior to the tests, a heat flux gauge was used for 

calibration. Previous tests exposed with 50 kW/m2 incident radiant heat flux [9] have 

led to a charring depth of approximately 40 mm in one hour, which matches with the 

charring depth expected in standard fire resistance tests. The heat flux of 50 kW/m2 

was also found to correspond well with the ISO 834 and EN 1363-1 standard time-

temperature curve for the first 30 to 40 minutes of the fire resistance tests [10-12].  
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Fig. 2. Specimen preparation for fire tests a) DRM without end reinforcement and b) 

Spruce with end reinforcement 

 

The specimen together with the protective stone wool was held together with a steel 

casing for ease of placing them directly under the cone heater (Fig. 3). Additional 

stone wool was used to protect the outer region of the specimen near each end, thus 

exposing only the top edge of the specimen in the inner area of the casing where the 

finger joints were located. The reinforced ends of the specimen were clamped to 

steel tabs with a bolt passing through each hole (Fig. 3b). One end was anchored to 

the wall and the other end was connected to dead weights using a simple pulley 

system (Fig. 3c). Prior to the start of the test, fibre glass wool was used to protect the 

specimen. The fibre glass wool was removed at the same time as the application of 

load and the test began with the recording of time. It was pertinent to immediately 

start the fire test once the specimen was put under the cone heater because of the 

possibility that the specimen might start to heat up due to the elevated temperature 

in the surrounding region. The layout of this test attempts to imitate the conditions of 

secondary failure as described in the earlier section, where the finger joints were 

a) 

b) 
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exposed to a sudden heat flux once the fibre glass wool was removed and the load 

was applied. 

 

 

 

 

 

 

 

 

 

Fig. 3. Bench-scale fire test set-up (a) specimen held within steel casing, (b) 

specimen under the cone heater, (c) general view with load applied 

 

Immediately after the failure of the specimen, it was quickly removed and soaked in 

water to remove the remaining embers, preventing further charring once the test was 

completed. The charred area was brushed off and the residual depth was measured. 

The one dimensional charring rate ( ) was calculated based on the ratio of the 

charred depth to the measured time to failure. The residual cross-section was 

measured which includes an estimation of the rounded area of the charred line. The 

residual tensile strength was calculated based on the ratio of the applied load (2.5 

kN) to the measured residual cross-section after the fire test. The ignition time of the 

a) Top view  

b) Side view c) 

Exposed 
specimen 
edge Stone wool 

Steel casing 

Cone heater 

Load 
Steel tabs 
with bolts 

Pulley  

Load 
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specimen was recorded and the time to reach failure for this bench-scale fire test 

was approximately 5 to 11 minutes. 

Four specimens of different species and adhesives (Table 1) were prepared and 

each was instrumented with eight thermocouples. The thermocouples used in this 

study were 1.5 mm in diameter, glass fibre insulated Type K and were connected to 

a datalogger. They were positioned horizontally, laid parallel to the isotherm. The 

purpose of this test was to measure the temperature profile through the specimen at 

different depths, with no load applied during the fire test. The first thermocouple (T1) 

was located at 5 mm from the exposed surface. The subsequent thermocouples (T2 

to T8) were positioned every 5 mm across the depth of the specimen (Fig. 4). Holes 

with 1.5 mm diameter were drilled into the middle of the specimen (5 mm from the 

 and staggered along the depth. The tips of the thermocouples 

were inserted into the holes to measure the internal temperature of the specimen. 

 

 

 

 

 

 

Fig. 4. Specimens with thermocouples attachment (measurements in mm) 

 

 

5 
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T1 

T2 

T3 

T6 

T4 

T5 

T7 

T8 
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2.3 Tensile tests at ambient temperature 

The tensile tests at ambient temperature were conducted to obtain reference values 

for the tensile tests in the fire condition. They were conducted using an Alwetron 

universal testing machine with a maximum load of 50 kN. A cross-head movement of 

approximately 5 mm/min was applied and the test specimens failed between 2 to 4 

minutes. The specimen was gripped with a steel clamp at each end, occupying 

approximately 80 . The finger joints were 

positioned in the middle of the set-up and the specimen was properly aligned with 

the clamp, minimising bending when applying tensile load. The tensile strength, ft 

was calculated based on the ratio of the maximum load, Fmax to the cross-sectional 

area, A of the specimen: 

ft = Fmax/A            (1)

 

3. Results and discussion 

In general, the specimens finger-jointed with polyurethane (PUR) retained a higher 

residual cross-section when compared to the phenol resorcinol formaldehyde (PRF) 

specimens for both DRM and Spruce wood species. The typical failures of the 

specimens in the bench-scale fire test are shown in Fig. 5. Almost all of the 

specimens exhibited failure along the joints (Fig. 5a). Some specimens showed 

fingers failure (Fig. 5b) and mixture of joints and wood failure (Fig. 5c). Few of the 

specimens exhibited failures near defects and along the slope of the grain (Fig. 5d). 

The failure along the joints indicates that the adhesives had a significant influence in 

the fire performance of the finger joints. An additional feature of failure was wood 

rupture indicating that the glue lines of the finger joints across a partial section of the 
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a) b) 

c) 
Unbroken 
finger joints 

Unbroken 
finger joints d) 

specimen (e.g. Fig. 5d) had higher tensile strength than the solid wood when tested 

in fire condition [13]. 

 

 

 

 

 

 

 

Fig. 5. Typical failures of finger-jointed specimens a) failure along the joints; b) 

failure of the fingers; c) mixture of joints and wood failure; d) wood failure 

 

3.1 Fire performance of finger joints with different adhesives 

The average results of the bench-scale fire tests are shown in Table 2. As expected, 

the fire performance of the PRF were better than the PUR adhesive. For finger joints 

glued with PUR, the average time to failure (TTF) was 72% (Spruce) and 57% 

(DRM) of the time measured for failure of specimens glued with PRF. The 

specimens bonded with PRF exhibited higher average residual strengths compared 

to the PUR for both DRM (33%) and Spruce (20%), as result of the lower values of 

residual cross-section (Ar) of PRF compared to the specimens glued with PUR 

adhesive. The results indicated that the finger-jointed specimens bonded with PRF 

have better fire performance compared to the specimens glued with PUR. The 
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distribution of the residual tensile strength values with density of the specimens 

jointed with PRF and PUR are shown in Fig. 6. 

 

Table 2: Overview of fire test results 

*Ratio to the original cross-section (in percentage) 

 

Species Adhesives  
Time to 

failure, TTF     
(min) 

Residual 
cross-section, 

Ar (mm2) 

Charring 

(mm/min) 

Ignition time 
(min) 

Residual tensile 
strength (MPa) 

Spruce PRF Average 7.59 258.8 (61*) 2.03 0.37 9.70 

  SD 1.18 17.26 0.19 0.08 0.58 

Spruce PUR Average 5.47 310.3 (73) 1.99 0.38 8.10 

  SD 0.98 22.21 0.26 0.16 0.60 

DRM PRF Average 11.0 244.2 (58) 1.61 0.48 10.3 

  SD 2.31 10.11 0.37 0.19 0.41 

DRM PUR Average 6.24 330.3 (76) 1.50 0.47 7.72 

  SD 0.89 13.65 0.09 0.14 0.31 
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Fig. 6. Residual tensile strength of finger-jointed specimens of DRM and Spruce as a 

function of density 

 

The PUR adhesive in this study may not be fully cross-linked and so might be 

expected to fail viscoelastically at elevated temperature. Thus, the PUR adhesive 

may be at a disadvantage compared to the highly cross-linked PRF adhesive. These 

results agree well with some other reports indicating that PRF adhesives have better 

fire performance than PUR adhesives. König et al. [14] reported that the moment 

resistance of three lamellae glulam beams, with the finger joints bonded with PUR in 

the middle region of the tension side, was 70 to 80% of the beams with PRF finger 

joints when tested in fire. However, this comparison does not mean that all PUR 

adhesive systems are inadequate in providing sufficient strength for the production of 

structural finger joints. Klippel et al. [4] stated that in a large-scale fire test, structural 

finger joints bonded with PRF may not always show better fire performance than 
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finger joints bonded with PUR adhesives. In their study, one of the PUR adhesives 

used in the elevated temperature tensile tests showed results comparable to the 

PRF adhesives. The PUR adhesives can be specially formulated to resist high 

temperature load with higher cross-link density and hard urea segments. 

 

3.2 Factors affecting the charring rates 

The charring rates of DRM for both PRF and PUR bonded finger joints were lower 

than the Spruce specimens (Fig. 7). These results were expected since DRM 

specimens have higher density compared to Spruce. Nevertheless, it can also be 

seen in the figure that several DRM specimens with lower density have high charring 

rates similar to the Spruce specimens. Overall, a one-way analysis of variance 

(ANOVA) test showed a statistically significant difference at 95% confidence level for 

charring rate values between Spruce and DRM specimens. Fig. 7 also shows a trend 

of increasing charring rate with decrease in density of the specimens. Higher wood 

density exhibits lower charring rate as reported in many previous studies [15-17]. 

Meanwhile, for the same wood species, comparison of charring rate between 

specimens finger-jointed with different adhesives, namely PRF and PUR, showed no 

significant difference at 95% confidence level when tested statistically with the 

ANOVA test. This analysis signified that the different adhesives used in the bonding 

of the finger joints do not influence the charring rate in this bench-scale fire test. This 

can be explained by the fact that the bonding area of the finger joints was small in 

comparison to the overall cross-section of the specimen. 
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Fig. 7. Charring rates of finger-jointed specimens as a function of density 

 

The measured charring rate values in this study were higher compared to the 

notional charring rate and one-dimensional charring rate published in EN 1995-1-2 

[18]. Although in reality the charring rate is nonlinear, the published values are taken 

to be constant with time in simplified design methods [7]. In fact, the charring rate 

was found to be higher initially and decreased when the charred layer started to build 

up. The charred layer becomes the insulation layer and protects the inner unburnt 

wood and the charring later stabilises to a constant rate. Majamaa (1991) (cited by 

Friquin, p.317, [6]) stated that different specimen thicknesses require different time 

periods for the charring to achieve a constant rate. He mentioned that a specimen 

with thickness of 40 mm may require a period of 10 minutes for the charring to reach 

a constant rate while 30 minutes was needed for specimens of 80 mm thickness. In 

this study, the nominal thickness of the specimens was 42 mm and the average time 
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to failure ranged from 5 to 11 minutes. The charring rate values in this study were 

measured in the early stages of fire. There was insufficient built-up of charred layer 

to insulate the unburnt inner wood of the specimens, thus higher charring rate values 

were measured. 

The constant heat flux used in this study may contribute to high charring rates 

compared to using a time-increasing heat flux [19]. Similarly, the method in this study 

was structured to imitate the condition of secondary failure in fire where the inner 

lamellae were exposed to the sudden constant heat flux.  

Another factor influencing the values of the charring rate is the size of the 

specimens. The specimens used in this study were small compared to the standard 

fire test of glulam beams. As noted in the earlier section, the objective for studying 

this bench-scale fire test was to replicate the full-scale standard fire test with a 

simpler and faster method, thus the use of small-sized specimen is a prerequisite. 

Frangi & Fontana [20] concluded that the charring rate of the underside of timber 

beams when exposed to fire on three sides would increase when its residual cross-

section decreases below a certain minimum values. They suggested that the 

constant charring rate in the simplified calculation method of fire resistance for 

structural members should only be used if the residual cross-section is bigger than 

40 by 60 mm. 

The average ignition time of the DRM was higher than the Spruce specimens (Table 

2) and the subsequent ANOVA test showed a statistically significant difference at 

95% confidence level between the values. White [21] noted that there was a 

correlation between the times for sustained ignition and the density of various 
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hardwood species. In this study, higher wood density (DRM) corresponded to higher 

ignition time while lower density wood species (Spruce) ignited more easily. 

 

3.3 Comparison of temperature profiles for DRM and Spruce 

In this section, thermocouples were attached to four specimens along their depth 

and the specimens were tested in fire without applying any load (see Fig. 4). The 

objective was to measure the temperature increment along the specimens 

throughout the time of fire exposure. Comparison between the temperature profiles 

of DRM and Spruce specimens indicated higher charring rate for the Spruce (Fig. 8). 

Since timber turns into char at a temperature of 300oC [22,23], it can be seen from 

the temperature profiles in Fig. 8 measured by thermocouples T1 to T7 that Spruce 

required less time to reach the charring temperature compared to the DRM 

specimens. From these figures, it can be concluded that the charring rate was 

influenced by the different wood species or specifically by the different density of the 

materials used in this bench-scale fire test. 
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Fig. 8. Temperature profiles of spruce (solid lines) and DRM (dash lines) specimens 

finger-jointed with (a) PRF; (b) PUR 
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Fig. 9 shows the char depths of the specimens based on the positions of the 

thermocouples in relation to the time it takes for the temperature to reach 300oC 

(timber is completely turned into char at 300oC). It can be seen that the charring 

rates were not constant. They were higher at the beginning and started to stabilise at 

a char depth of 20 mm for DRM specimens bonded with PRF and PUR adhesives. 

The Spruce specimens bonded with PUR stabilised after 25 mm (reduction in char 

rate) while finger joints with PRF adhesive did not show any trend of stabilizing the 

char rate.  

 

 

 

 

 

 

 

Fig. 9. Char depth as a function of time at a temperature of 300oC 
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10. The distribution of the tensile strength of the finger-jointed specimens as a 

function of density when tested at ambient temperature is shown in Fig. 11. A 

positive relationship can be seen where the tensile strength values increased with 

increasing density. Comparison between the tensile strength of finger-jointed Spruce 

and DRM revealed a statistically significant difference at 95% confidence level when 

tested with ANOVA. 

 

 

 

 

Fig. 10. Typical failures of specimens a) Spruce and b) DRM at ambient temperature 

 

Fig. 11. Tensile strength as a function of density for finger joints tested at ambient 

temperature 
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Comparison made between the tensile strength of the finger joints bonded with PRF 

and PUR for the same species showed no significant difference at a 95% confidence 

level when analysed with ANOVA for either Spruce or DRM respectively. In contrast, 

the specimens finger-jointed with PRF showed better performance than PUR when 

tested using the bench-scale fire tests in this study, indicating the influence of 

temperature on the tensile strength of the finger joints. The proposed bench-scale 

fire test set-up is suitable for differentiating the performance of the two investigated 

adhesives in finger joints in a fire condition. 

 

4. Conclusions 

The objective of this bench-scale fire test for finger joints was to provide an easier 

and less costly set-up with shorter time completion, as an alternative to standard fire 

resistance tests. The sudden exposure of constant heat-flux was used on the finger-

jointed specimens to imitate the conditions of secondary failure in the standard fire 

test. From these results, comparison can be made between the fire performance of 

PRF and PUR adhesives by comparing the time to failure and residual cross-section 

of the specimens. The specimens finger-jointed with PRF showed better fire 

performance than the PUR adhesive in this study. 

The measurement of charring rate is essential in the calculation of the fire safety 

when designing timber structures. Accurate charring rate results can be used to 

more accurately calculate the depth of residual cross-sections, optimising the fire 

design of timber structures. In this study, the charring rate of Spruce was higher than 

the DRM specimens because of the higher density of the latter species. Overall, the 

charring rate results in this study were much higher than the published values in 
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other papers. The possible reasons were the influence of factors such as the 

constant heat flux in contrast to time-increasing heat-flux and the smaller size of the 

specimens. Importantly, the charring rate in this study was measured in the early 

period of the fire test, where the char rate is higher because of the lack of insulating 

charred layer protecting the inner unburnt wood.  

In the tensile test at ambient temperature, the DRM specimens possessed higher 

strength than Spruce specimens. Comparison between finger joints bonded with 

PRF and PUR did not show any significant difference in tensile strength, contrary to 

the bench-scale fire test where PRF finger joints showed better residual tensile 

strength than PUR. It can be concluded that temperature plays a role in influencing 

the tensile strength of the finger joints bonded with different adhesives. The bench-

scale fire test is able to quickly differentiate and evaluate the quality of different 

adhesives for finger joints for structural use in fire conditions. Further tests are 

needed to verify the results of this bench-scale fire test in comparison to the 

standard full-size fire test and to find a correlation especially for conditions where 

secondary failure of the glulam beam occurs. At present, constant charring rate with 

time is commonly used in fire design with the assumption that non-linearity does not 

significantly influence the resistance of timber structures when exposed to fire. 
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